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Abstract

Journals favor rejections of the null hypothesis. This selection upon re-
sults may distort the behavior of researchers. Using 50,000 tests published
between 2005 and 2011 in the AER, JPE and QJE, we identify a residual in
the distribution of tests that cannot be explained by selection. The distribu-
tion of p-values exhibits a camel shape with abundant p-values above .25, a
valley between .25 and .10 and a bump slightly under .05. Missing tests are
those which would have been accepted but close to being rejected (p-values
between .25 and .10). We show that this pattern corresponds to a shift in the
distribution of p-values: between 10% and 20% of marginally rejected tests
are misallocated. Our interpretation is that researchers might be tempted to
inflate the value of their tests by choosing the specification that provides the
highest statistics. Note that Inflation is larger in articles where stars are used
in order to highlight statistical significance and lower in articles with theoret-
ical models.
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If the stars were mine

I’d give them all to you

I’d pluck them down right from the sky

And leave it only blue.

(If The Stars Were Mine, Melody Gardot)

The introduction of norms – confidence at 95% or 90% – coupled with the use of

eye catchers – stars – has led the academic community to accept more easily starry

stories with marginally significant coefficients than starless ones with marginally in-

significant coefficients. As highlighted in the seminal paper of Sterling (1959), this

effect has modified the selection of papers published in journals and arguably bi-

ased publications toward tests rejecting the null hypothesis. This selection is not

unreasonable. First, the choice of a norm was precisely made to strongly discrimi-

nate between rejected and accepted hypotheses.1 Second, the incapacity to reject a

hypothesis might be due to weaknesses in the methodology.

As an unintended consequence, researchers may now anticipate this selection and

consider that it is a stumbling block for their ideas to be considered. As such, among

a set of acceptable specifications for a test, they may be tempted to keep those with

the highest statistics in order to increase their chances of being published. Keeping

only such specifications would lead to an inflation in the statistics of observed tests.2

1R. A. Fisher is the one who institutionalized the significance levels (Statistical Methods for
Research Workers 1st Edition 1925). Fisher supposedly decided to establish the 5% level since he
was earning 5% of royalties for his publications. It is however noticeable that, in economics, the
academic community has converged toward 10% as being the first hurdle to pass, maybe because
of the stringency of the 5% one.

2The way we understand the inflation bias is as follows. Imagine that there is only one hypothesis
tested per paper. For each hypothesis is attached a set of acceptable specifications and subsequently
a distribution of z-statistics. Imagine for the simplicity of exposure that journals care about
the average z-statistics. In our interpretation, rejection by journals or self-censorship by authors
(selection in general) consist in the full censorship of the distribution of z-statistics associated to
this hypothesis: this distribution of z-statistics is fully excluded if it does not satisfy the criterion.
On the other hand, inflation is a partial censorship of results: only a subset of the distribution of
z-statistics (i.e. a subset of acceptable specifications) is shown. Consequently, the submitted and
the published distributions might have different means than the set of acceptable specifications. In
addition, researchers sometimes strongly believe that an effect should be captured by the data and
specifications delivering insignificant results will be disregarded ex-post. Unconsciously, the choice
of the right specification depends on its capacity to detect an effect.
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This effect should be less present when the test is largely accepted/rejected.

This inflation bias should have different implications on the observed distribution

of tests than selection or self-censorship. Our methodology to identify the inflation

bias is the following. We argue that selection – by authors themselves, referees

or journals – should be weakly increasing with the value of a statistic exhibited

in a paper. Imagine now that researchers finding a set of specifications with p-

values centered around .15 were to exhibit the only specification with a p-value

slightly under .05. This behavior would generate shift in the observed distribution

of statistics which would be inconsistent with the previous assumption on selection.

There would be (i) not enough tests around .15 (as if they were disliked relatively

to .30 tests) and (ii) too many slightly under .05 (as if they were better than .001

tests).

We find support for this inflation bias. The distribution of test statistics pub-

lished in three of the most prestigious economic journals over the period 2005-2011

exhibits a sizeable under-representation of marginally insignificant statistics. In a

nutshell, once tests are all normalized as z-statistics, the distribution has a camel

shape with (i) missing z-statistics between 1.2 and 1.65 (p-values between .25 and

.10) and a local minimum around 1.5 (p-value of .12), (ii) a bump between 2 and 4

(p-values below .05). We argue that this pattern cannot be explained by selection

and derive a lower bound for the inflation bias under the assumption that selection

should be weakly increasing in the exhibited z-statistic. We find that between 10%

and 20% of tests with p-values between .05 and 0.0001 are misallocated. Note that

the bulk of z-statistics echoing the missing z-statistics is at the very start of the “sig-

nificant zone”. Interestingly, the interval between the valley and the bulk of p-values

corresponds precisely to the highest marginal returns for the selection function.3

3It is theoretically difficult to isolate inflation from selection: one may interpret selection and
inflation as the equilibrium outcome of a game played by editors/referees and authors (Henry 2009).
Editors and referees prefer to publish results that are "significant". Authors are tempted to inflate
(with a cost), which pushed the editors toward being even more conservative. We believe that the
observed selection and inflation are indeed exacerbated by the rational expectations of the different
agents. A strong argument in favor of this race between editors/referees and authors would be an
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Results vary along the subsamples of tests considered. For instance, inflation is

less present in articles where stars are not used as eye-catchers. To make a parallel

with central banks, the choice not to use eye-catchers might act as a commitment

to keep inflation low. However, such a causal interpretation might be challenged:

researchers may give up on stars precisely when their use is less relevant, either

because coefficients are very significant and the test of nullity is not a particular

concern or because coefficients are not significant. Articles with theoretical models

and experiments (laboratory experiments or randomized control trials) are also less

prone to the inflation bias.

The literature on tests in economics was flourishing in the eighties and already

pointed out some concerns evoked in this article. On the inflation bias, Leamer

and Leonard (1983) and Leamer (1985) point out the fact that inferences drawn

from coefficients estimated in linear regressions are very sensitive to the underlying

econometric model. They thus suggest to display the range of inferences generated by

a set of models. Leamer (1983) rule out the myth inherited from the physical sciences

that econometric inferences are independent of priors. It is possible to exhibit both a

positive or a negative effect of capital punishment on murder depending on priors on

the acceptable specification. Lovell (1983) and Denton (1985) are close to the present

paper and study the implications of individual and collective data mining. De Long

and Lang (1992) already suspect that the classical distribution of z-statistics is not

obtained. However, they essentially insist on a specific form of publication bias,

known as the file drawer problem: z-statistics with values near zero are not likely to

be published. We will refer to this file drawer issue as being part of selection among

other mechanisms such as self-censoring of insignificant results by authors.

A large number of recent publications identify this problem (see Ashenfelter and

Greenstone (2004) or Begg and Mazumdar (1994)). Ashenfelter et al. (1999) propose

a meta-analysis of the Mincer equation showing a selection bias in favor of significant

increasing selection even below .05, i.e. editors challenge the credibility of z-stats slightly above 2.
Our findings do not show this pattern.
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and positive returns to education. They implement a generalized method to identify

reporting bias. This method has been developed by Hedges (1992) and extended by

Doucouliagos and Stanley (2011). Card and Krueger (1995) and Doucouliagos et al.

(2011) are two other examples of meta-analysis dealing with publication bias. The

selection issue has also received a great deal of attention by the medical literature

(Berlin et al. 1989).

To our knowledge, this project is the first to identify a residual that cannot be

explained by selection and to propose a way to measure it. The major hindrance

is the need for a census of tests in the literature. Identifying tests necessitates

(i) a good understanding of the argument developed in an article and (ii) a strict

process avoiding any subjective selection of tests. The first observation restricts

the set of potential research assistants to economists and the only economists with

a sufficiently low opportunity cost were ourselves. We tackle the second issue by

being as conservative as possible, and by avoiding interpretations of the intentions

of the author. We report all the tests discussed in the body of the article by authors.

In the end, this collecting process generates 49,765 tests grouped in 3,437 tables or

results subsections and 637 articles, extracted from the AER, JPE and QJE over

the period 2005-2011.

Section I. details the methodology to construct the dataset, provides some de-

scriptive statistics, and documents the raw distribution of tests. Section II. provides

a theoretical framework and the associated empirical strategy. Finally, in section

III., we discuss the main results and condition the analysis to different types of

articles.

I. Data

In this section, we describe the reporting process of tests collected in the American

Economic Review, the Journal of Political Economy, and the Quarterly Journal of
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Economics between 2005 and 2011. We then provide some descriptive statistics and

derive the raw distribution of tests. Finally, we propose some methods to alleviate

the over-representation of round values and the potential overweight attributed to

articles with many tests.

A. Reporting process

The ideal measure of interest of this article is the reported value of formal tests of

central hypotheses. In practice, the huge majority of those formal tests are two-

sided tests for regressions’ coefficients and are implicitly discussed in the body of

the article (i.e. “coefficients are significant”). To simplify the exposition, we will

explain the process as if we only had two-sided tests for regressions’ coefficients but

the description applies to our treatment of other tests. Not all coefficients reported

in tables should be considered as tests of central hypotheses. Accordingly, we trust

the authors and report tests that are discussed in the body of the article except

if they are explicitly described as controls. The choice of this process helps to get

rid of cognitive bias at the expense of parsimony. With this mechanical way of

reporting tests, we also report statistical tests that the authors may expect to fail,

but we do not report explicit placebo tests. Sometimes, however, the status of a test

was unclear when reading the paper. In line with the methodology discussed above,

we prefer to add a non-relevant test than censor a relevant one. The final dataset

might include tests of controls as long as their results are extensively discussed by

the author without explicit reference to them as being controls.

As we are only interested in tests of central hypotheses of articles, we also exclude

descriptive statistics or groups comparisons.4 A specific rule concerns two-stages

procedures. We do not report first-stages, except if the first-stage is described by

the author as a major contribution of the article. We do report tests in extensions
4A notable exception to this rule was made for experimental papers where results are sometimes

only presented as mean comparisons across groups.
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or robustness tests. Other rules are as follows. We report numbers exactly as they

are presented in articles, i.e. we never round them up or down. Importantly, we

report the issue of the journal, the starting page of the article and give the position

of the test in the article (page or table, panel, row, column).

We report some additional information on each test, i.e. its type (one-sided,

two-sided, Spearman correlation test, Mann-Whitney, etc.) and the status of the

test in the article (main, non-main). As above, we prefer to be conservative and

only attribute the status of “non-main” statistics if evidence are clearly presented

as “complementary”, “additional” or “robustness checks”. Finally, the number of

authors, JEL codes when available, the presence of a theoretical model, the type

of data (laboratory experiment, random experiment or other) and the use of eye-

catchers (stars or other formatting tricks such as bold printing associated to a table)

are also recorded. We do not report the sample size and the number of variables

(regressors) as this information is not always provided by authors.

B. Descriptive statistics

The previous collecting process groups 3 types of measures, p-values or t-statistics

when directly reported by authors and coefficients and standard errors for the vast

majority of tests. In order to get an homogeneous measure, we transform p-values

into the equivalent z-statistics (1.96 would be associated to a p-value of .05). As for

coefficients and standard errors, we simply construct the ratio of the two. Recall

that the distribution of a t-statistic depends on the degrees of freedom, while that

of a z-statistic is standard normal. As we are unable to reconstruct the degrees of

freedom for all tests, we will treat the ratio of the coefficient over the standard error

as if they were following an asymptotically standard normal distribution under the

null hypothesis. Consequently, when the sample size is small, the level of rejection

we use is not adequate. For instance, some tests for which we associate a z-statistic

of z = 1.97 might not be rejected at .05.
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The transformation into z-statistic allows us to observe more clearly the fat tail

of tests (with small p-values). Figure I(a) presents the raw distribution. Notice that

a very large number of p-values end up below the .05 threshold (more than 50% of

tests are rejected at this significance level). Thus, on the 49,765 tests extracted from

the 3 journals, around 30,000 are rejected at .10, 26,000 at .05, 20,000 at .01. Table I

gives the decomposition of these 49,765 tests along several dimensions. The number

of tests per article is surprisingly high (a bit less than 80 on average) and mainly

driven by some articles with very large number of tests reported. The median article

has a bit more than 50 tests distributed among 5 tables. We think these figures are

reasonable. Imagine a paper with two variables of interest (i.e. democracy and

institutions), six different specifications per table and 5 tables. We would report 60

coefficients, a bit more than our median article.

Journals do not contribute equally. There is an over-representation of the Amer-

ican Economic Review (more articles are published in the AER than in the two

other journals) and an under-representation of the Journal of Political Economy. In

addition to the raw number of tests, we give the number of articles and tables from

which these tests have been extracted. Articles from the AER represent more than

half of the total (since AER articles are shorter and with fewer tables, they represent

51% of the number of articles but only 44% of the tests).

More interestingly, less than a third of the articles in our sample explicitly rely

on a theoretical framework but when they do so, the number of tests provided is not

particularly smaller. Experiments constitute a small part of the overall sample. To

be more precise, the AER accepts a lot of experimental articles while the QJE favors

randomized controlled trials. The overall contribution of both types is equivalent

(with twice as many laboratory experiments than randomized experiments but more

tests in the latter than in the former). With the conservative way of reporting

main results, more than 70% of tables/results from which tests are extracted are

considered as main.

8



90% of tests are two-sided tests of a coefficient. Stars are used for three quarters

of those tests. Most of the times, the starting threshold is .10 rather than .05. We

define henceforth the use of eye-catchers as the use of stars and bold in a table,

excluding the explicit display of p-values.

C. The distribution of tests

Two potential issues may be raised with the way authors report the value of their

tests and the way we reconstruct the underlying statistics. First, a small proportion

of coefficients and standard deviations are reported with a pretty poor precision

(0.020 and 0.010 for example). Reconstructed z-statistics are thus over-abundant

for fractions of integers (1
1
,2
1
,3
1
,1
3
,1
2
. . . ). Second, some authors report a lot of versions

of the same test. In some articles, more than 100 values are reported against 4 or

5 in others. Which weights are we suppose to give to the former and the latter in

the final distribution? This issue might be of particular concern as authors might

choose the number of tests they report depending on how close or far they are from

the thresholds.5

To alleviate the first issue, we randomly redraw a value in the interval of poten-

tial z-statistics given the reported values and their precision. In the example given

above, the interval would be [0.0195
0.0105

, 0.0205
0.0095

] ≈ [1.86, 2.16]. We draw a z-statistic from

a uniform distribution over the interval and replace the previous one. This reallo-

cation should not have any impact on the analysis other than smoothing potential

discontinuities.6

To alleviate the second issue, we construct two different sets of weights, account-

ing for the number of tests per article and per table in each article. For the first set
5For example, one might conjecture that authors report more tests when the significance of

those is shaky. Conversely, one may also choose to display a small number of satisfying tests as
others would fail.

6For statistics close to significance levels, we could take advantage of the information embedded
in the presence of a star. However, this approach could only be used for a reduced number of
observations, and for tables where stars are used.
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of weights, we associate to each test the inverse of the number of tests presented in

the same article such that each article contributes the same to the distribution. For

the second set of weights, we associate the inverse of the number of tests presented

in the same table (or result subsection) multiplied by the inverse of the number of

tables in the article such that each article contributes the same to the distribution

and tables of a same article have equal weights.

Figure I(b) presents the unweighted distribution. The shape is striking. The

distribution presents a camel pattern with a local minimum around z = 1.5 (p-value

of .12) and a local maximum around z equals 2 (p-value under .05). The presence of a

local maximum around 2 is not very surprising, the existence of a valley before more

so. Intuitively, selection could explain an increasing pattern for the distribution of

z-statistics at the beginning of the interval [0,∞). On the other hand, it is likely

that there is a natural decreasing pattern of the distribution over the whole interval.

Both effects put together could explain the presence of a unique local maximum,

a local minimum less so. Our empirical strategy will consist in formalizing this

argument: only a shift of statistics can generate such a pattern and the inflation

bias seems to explain this shift.7

Figures I(c) and (d) present the weighted distributions. The camel shape is

more pronounced than for the unweighted distribution. A simple explanation is

that weighted distributions underweight articles and tables for which a lot of tests

are reported. For these articles and tables, our conservative way to report tests

might have included tests of not-central hypotheses.

Figure II presents the unweighted distributions of z-statistics over various sub-

samples of articles. II(a) and (b) are decomposition along the use of eye-catchers,
7In our web Appendix, we also test for discontinuities. We find evidence that the total distri-

bution of tests presents a small discontinuity around the threshold .10, not much around the .05
or the .01 thresholds. This modest effect might be explained by the dilution of hypothesis testing
in journal articles. In the absence of a single test, empirical economists provide many converging
arguments under the form of different specifications or different samples for a single effect. Besides,
an empirical article is often dedicated to the identification of more than one mechanism. As such,
the real z-statistic related to an article is a distribution or a set of arguments and this dilution
smoothes potential discrepancies around thresholds.
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II(d) and II(d) along the presence of a theoretical model. The web appendix also

provides the distributions for each journal and each year and discriminate between

laboratory experiments/randomized control trials and other types of experimental

settings. The camel shape is more pronounced in tables where authors choose to use

eye catchers, in articles that do not include any explicit theoretical contribution and

for non-RCT/experimental papers. For the last category, test statistics are globally

lower, potentially highlighting lower selection.

Finally, one may think that there exists two natural modes in the distribution of

z-statistics. For example, for macroeconomic studies, with fewer observations and

low precision, the mode would be 0. Hypotheses may be generally accepted because

of the lack of precision. For microeconomic studies, with a better precision, hypothe-

ses may be rejected more easily and the mode would be around 2. Aggregating these

two types of studies would generate the pattern that we observe. However, the shape

that we uncover is very robust to decompositions along JEL code categories.

II. Theoretical framework and empirical strategies

In this section, we present our estimation strategy. The idea is that the observed dis-

tribution of z-statistics may be thought as generated by (i) an input, (ii) a selection

function over results, and (iii) a noise, which will partly capture inflation.

We first present a very simple model of selection in academic publishing. In this

framework, under the assumption that selection favors high over low statistics, the

ratio of the observed density of z-statistics over the input is increasing in z. The

empirical strategy will consist in capturing any violation of this prediction and relate

it with the inflation bias. Finally, we discuss the range of distributions chosen as

inputs and stories that may challenge our interpretation.

11



A. The selection process

We consider a very simple theoretical framework of selection into journals. We

abstract from authors and directly consider the universe of working paper.8 Each

economic working paper has a unique hypothesis which is tested with a unique

specification. Denote z the absolute value of the statistic associated to this test and

ϕ the density of its distribution over the universe of working papers, the input.

A unique journal gives a value f(z, ε) to each working paper where ε is a noise9

entering into the selection process. Working papers are accepted for publication as

long as they pass a certain threshold F , i.e. f(z, ε) ≥ F . Suppose without loss of

generality that f is strictly increasing in ε, such that high ε correspond to articles

with higher likelihood to be published, for a same z. Denote Gz the distribution of

ε conditional on the value of z.

The density of tests in journals (the output) can be written as:

ψ(z) =

∫∞
0

[
1f(z,ε)≥FdGz(ε)dε

]
ϕ(z)∫∞

0

∫∞
0

[
1f(z,ε)≥FdGz(ε)dε

]
ϕ(z)dz

.

The observed density of tests for a given z depends on the quantity of articles

with ε sufficiently high to pass the threshold and on the input. In the black box

which generates the output from the input, two effects intervene. First, as the value

of z changes, the minimum noise ε required to pass the threshold changes. This is

the selection effect. Second, the distribution Gz of this ε might change conditionally

on z.

Assumption 1 (Journals like stars). The function f is (weakly) increasing in z.

This assumption implies that if we shut down the second channel, i.e. the noise
8Note that the selection of potential economic issues into a working paper is not modeled here.

You can think alternatively that this is the universe of potential ideas and selection would then
include the process from the “choice” of idea to publication.

9We label here ε as a noise but it can also capture inclinations of journals for certain articles,
the importance of the question, the originality of the methodology, or the quality of the paper.
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is independent of z, then the ratio ψ(z)/ϕ(z) is (weakly) increasing in z.

This assumption that journals, referees and authors prefer tests rejecting the null

may not be viable for high z-statistics. Such results could indicate an empirical mis-

specification to referees, but this effect, if present, should only appear for very large

statistics. Another concern is that journals may also appreciate clear acceptance of

the null hypothesis, in which case the selection function would be initially decreas-

ing.10 We discuss the other potential mechanisms challenging this assumption at

the end of this section.

B. Identification strategy

The identification strategy relies on the result that, with an independent noise ε,

we should see an increasing pattern in the selection process, i.e. the proportion of

articles selected among the submitted/written ones should be (weakly) increasing

in z. We can not explain stagnation or slowdowns in this ratio (accepted articles

over the input) with selection or self-censoring alone, i.e. with a distribution of

noise invariant in z. Our empirical strategy consists in estimating how well selection

might explain the observed pattern and interpret the residual as violation of the

independence of the noise. This strategy is conservative as it attributes all purely

increasing patterns in z to selection.

Let us assume that we know the distribution ϕ. The ratio of the output density

to the input density can be written as:

ψ(z)/ϕ(z) =

∫∞
0

[
1f(z,ε)≥FdGz(ε)dε

]∫∞
0

∫∞
0

[
1f(z,ε)≥FdGz(ε)dε

]
ϕ(z)dz

.

In this framework, once cleared from the input, the output is a function of the

selection function f and the conditional distribution of noise Gz. We will isolate
10Journals and authors may privilege p-values very close to 1 and very close to 0, which would fit

the camel pattern with two bumps. There is no way to formally reject this interpretation. However,
we think that this effect is marginal as the number of articles for which the central hypothesis is
accepted is very small in our sample.
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selection z 7→ 1f(z,ε) from noise Gz(ε). We argue that this noise captures – among

other potential mechanisms – local shifts in the distribution. An inflation bias

corresponds to such a shift. In this framework, this would translate into productions

of low ε just below the threshold against very high ε above.

As explained above, under the assumption that the selection function is increas-

ing and with a distribution of noise invariant in z, the ratio output/input should be

increasing. In fact, the reciprocal is also true: any increasing pattern for the ratio

output/input can be explained by selection alone (i.e. with a distribution of noise

invariant in z). Given any selection process f verifying assumption 1, any increasing

function of z (in a reasonable interval) for the ratio of densities can be generated

by f and a certain distribution of noise, invariant in z. Intuitively, there is no way

to identify an inflation effect with an increasing ratio of densities, as an invariant

distribution of noise can always be considered to fit the pattern.

Lemma 1 (Duality). Given a selection function f , any increasing function g :

[0, Tlim] 7→ [0, 1] can be represented by a cumulative distribution of quality ε ∼ G̃,

where G̃ is invariant in z:

∀t, g(z) =

∫ ∞
0

[
1f(z,ε)≥FdG̃(ε)dε

]

G̃ is uniquely defined on the subsample {ε,∃z ∈ [0,∞), f(z, ε) = F}, i.e. on the

values of noise for which some articles may be rejected (with insignificant tests) and

some others accepted (with significant tests).

Proof. In the appendix.

Following this lemma, the empirical strategy will consist in the estimation of the

best-fitting increasing function f̃ for the ratio ψ(z)/ϕ(z).

We will find the weakly increasing f̃ that minimize the weighted distance with

the ratio ψ/ϕ:
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∑
i

[
ψ(zi)/ϕ(zi)− f̃(zi)

]2
ϕ(zi)

In order to estimate our effects, we have focused on the ratio ψ/ϕ. The following

corollary transforms the estimated ratio in a cumulative distribution of z-statistics

and relates the residual of the previous estimation to the distance between an in-

variant distribution of contribution (selection alone) and the observed distribution

of contribution.

Corollary 1 (Residual). Following the previous lemma, there exists a cumulative

distribution G̃ which represents f̃ uniquely defined on {ε,∃z ∈ [0, Tlim], f(z, ε) = F},

such that:

∀t, f̃(z) =

∫∞
0

[
1f(z,ε)≥FdG̃(ε)dε

]
∫∞

0

∫∞
0

[
1f(z,ε)≥FdGz(ε)dε

]
ϕ(z)dz

The residual u of the previous estimation can be written as the difference between G̃

and the true Gz:

u(t) =
G̃(h(z))−Gz(h(z))∫∞

0

∫∞
0

[
1f(z,ε)≥FdGz(ε)dε

]
ϕ(z)dz

where h is defined as f(z, ε) ≥ F ⇔ ε ≥ h(z). Define ψ̃(z) = (1− G̃(h(z)))ϕ(z) the

density of z-statistics associated to G̃, then the cumulated residual is simply

∫ z

0

u(τ)ϕ(τ)dτ =

∫ t

0

ψ̃(τ)dτ −
∫ t

0

ψ(τ)dτ

Proof. In the appendix.

This corollary allows us to map the cumulated residual of the estimation with

a quantity that can be interpreted. Indeed, given z,
∫ z

0
ψ(τ)dτ −

∫ z

0
ψ̃(τ)dτ is the

number of z-statistics between [0, z] that can not be explained by an increasing

selection function.
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C. Input

In practice, a difficulty arises. What do we want to consider as the exogenous

input and what do we want to include in the selection process? In the process

that intervenes before publication, there are several choices that may change the

distribution of tests: the choice of the research question, the dataset, the decision

to submit and the acceptance of referees. We think that all these processes are very

likely to verify the assumption 1 (at least for z-statistics not extremely high) and

that the input can be taken as the distribution before all these choices. All the

choices (research question, dataset, decision to create a working paper, submission

and acceptance) will thus be included in the endogenous process.

The process through which nature generates mechanisms is unobserved, the

shape of the input is unknown. The idea here is to consider a large range of distri-

butions. The classes of distribution should ideally be ratio distributions as the vast

majority of our tests are ratio tests. They should also capture as much as possible

of the fat tail of the observed distribution (distributions should allow for the large

number of rejected tests). Let us consider three candidate classes.

Class 1 (Gaussian). The Gaussian/Student distribution class arises as the distri-

bution class under the null hypothesis of t-tests. Under the hypothesis that tests are

t-tests for independent random processes following normal distributions centered in

0, the underlying distribution is a standard normal distribution (if all tests are done

with infinite degrees of freedom), or a mix of Student distributions (in the case with

finite degrees of freedom).

This class of distributions naturally arises under the assumption that the underly-

ing hypotheses are always true. For instance, tests of correlations between variables

that are randomly chosen from a pool of uncorrelated processes would follow such

distributions. From the descriptive statistics, we know that selection should be quite

drastic when we consider a normal distribution for the exogenous input. The output
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displays more than 50% of accepted tests against 5% for the normal distribution. A

normal distribution would rule out the existence of statistics around 10. In order

to account for the fat tail observed in the data, we extend the class of exogenous

inputs to Cauchy distributions.

Class 2 (Cauchy). The Cauchy distributions are fat-tail ratio distributions which

extend the Gaussian/Student distributions: (i) the standard Cauchy distribution co-

incides with the Student distribution with 1 degree of freedom, (ii) this distribution

class is, in addition, a strictly stable distribution.

Cauchy distributions account for the fact that researchers identify mechanisms

among a set of correlated processes, for which the null hypothesis might be false.

As such, Cauchy distribution allows us to extend the input to fat-tail distributions.

Our last approach consists in creating an empirical counterfactual distribution

of statistics obtained by random tests performed on large classic datasets.

Class 3 (Empirical). We randomly draw 4 variables from the World Development

Indicators (WDI) and run 2, 000, 000 regressions between these variables and stock

the z-statistic behind the first variable.11 Other datasets/sample can be considered

and the shapes are very close.

How do these different classes of distributions compare to the observed distribu-

tion of published tests?

Figure III(a) shows how poorly the normal distribution fits the observed one. The

assumption that input comes from uncorrelated processes can only be reconciled with

the observed output with a drastic selection (which would create the observed fat tail

from a gaussian tail). The fit is slightly better for the standard Cauchy distribution,

e.g. the Student distribution of degree 1. The proportion of accepted tests is much

higher then with 44% of accepted tests at .05 and 35% at .01. Cauchy distributions
11To be consistent with the literature, we just ran two million regressions (Sala-i Martin

(1997);Hendry and Krolzig (2004)).
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centered in 0 and the empirical counterfactuals of statistics obtained by random

tests performed on classic datasets such as the World Development Indicators have

fairly similar shapes. Figure III(c) show that the Cauchy distributions as well as the

WDI placebo may help to capture the fat tail of the observed distribution. III(c)

focuses on the tail: Cauchy distributions with parameters between 0.5 and 2 as well

as the empirical placebo fit very well the tail of the observed distribution. More

than the levels of the densities, it is their evolution which gives support to the use of

these distributions as input: if we suppose that there is no selection once passed a

certain threshold (p<0.000001 for these levels), we should observe a constant ratio

output/input.

We will consider as exogenous inputs:

• the WDI counterfactual (called hereafter placebo) which will be the higher

bound in terms of fat-tail (it is close to a Cauchy of parameter 1.5),

• the Cauchy(1)/Student(1) distribution,

• and a rather thin-tail distribution, i.e. the Cauchy distribution of parameter

0.5.

These distributions cover a large spectrum of shapes.12 We will show that re-

sults are not sensitive to changes in the choice of inputs (in the range of Cauchy

distributions with parameters between 0.5 and 2).

D. Discussion

The quantity that we isolate is a cumulated residual (the difference between the

observed and the predicted cumulative function of z-statistics) that cannot be ex-

plained by selection. Our interpretation is that it will capture the local shift of

z-statistics. In addition, this quantity is a lower bound of inflation as any globally
12Cauchy distributions with parameters above 2 would exhibit tails that are too fat to explain

the observed distribution of tests.

18



increasing pattern (in z) in the inflation mechanism would be captured as part of

the selection effect.

Several remarks may challenge our interpretation. First, the noise ε actually

includes the quality of a paper and quality may be decreasing in z. The amount

of efforts put in a paper might end up being lower with very low p-values or p-

values around .15. Authors might for instance misestimate selection by journals and

produce low effort in certain ranges of z-statistics. Second, the selection function

may not be increasing as a well-estimated zero might be interesting and there are

no formal tests to exclude this interpretation. We do not present strong evidence

against this mechanism. However, two observations make us confident that this

preference for well-estimated zero does not drive the whole camel shape. The first

argument is based on anecdotal evidence; very few papers of the sample present

a well-estimated zero as their central result. Second, these preferences should not

depend on whether stars are used or whether a theoretical model is attached to the

empirical analysis and we find disparities along those characteristics.

In addition, imagine that authors could predict exactly where tests will end

up and decide to invest in the working paper accordingly. This ex-ante selection

is captured by the selection term as long as it displays an increasing pattern, i.e.

projects with expected higher z-statistics are always more likely to be undertaken.

We may think of a very simple setting where it is unlikely to be the case: when

designing experiments (or RCTs), researchers compute power tests such as to derive

the minimum number of participants for which an effect can be statistically captured.

The reason is that experiments are expensive and costs need to be minimized under

the condition that a test may settle whether the hypothesis is true or not. We should

expect a thinner tail for those experimental settings (and this is exactly what we

observe). In the other cases, the limited capacity of the author to predict where the

z-statistics may end up as well as the modest incentives to limit oneself to small

samples make it more implausible.
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III. Main results

This section presents the empirical strategy tested on the whole sample of tests and

on subsamples. A different estimation of the best-fitting selection function will be

permitted for each subsample, as the intensity of selection may differ for theoretical

papers or RCT.

A. Non-parametric estimation

For any sample, we group observed z-statistics by bandwidth of .01 and limit our

study to the interval [0, 10]. Accordingly, the analysis is made on 1000 bins. As

the empirical input appears in the denominator of the ratio ψ(z)/ϕ(z), we smooth

it with an Epanechnikov kernel function and a bandwidth of 0.1 in order to dilute

noise (for high z, the probability to see an empty bin is not negligible).

Figures IV(a) and IV(b) give both the best increasing fit for the ratio out-

put/placebo input and the partial sum of residuals, i.e. our lower bound for the in-

flation bias.13 Results are computed with the Pool-Adjacent-Violators Algorithm.14

Two interpretations emerge from this estimation. First, the best increasing fit

displays high marginal returns to the value of statistics only for z ∈ [1.5, 2], and a

plateau thereafter. Selection is intense precisely where it is supposed to be discrim-

inatory, i.e. before the thresholds. Second, the misallocation of z-statistics starts to

increase slightly before z = 2 up to 4 (the bulk between p-values of .05 and 0.0001

can not be explained by an increasing selection process alone). At the maximum,

the misallocation reaches 0.025, which means that 2.5% of the total number of t-

statistics are misallocated between 0 and 4. As there is no difference between 0 and

2, we compare this 2.5% to the total proportion of z-statistics between 2 and 4, i.e.
13Note that there are less and less z-statistics per bins of width 0.01. On the right-hand part

of the figure, we can see lines that look like raindrops on a windshield. Those lines are bins for
which there is the same number of observed z-statistics. As this observed number of z-statistics is
divided by a decreasing and continuous function, this gives these increasing patterns.

14Results are invariant to the use of other algorithms of isotonic optimization.
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30%. The conditional probability of being misallocated for a z-statistic between 2

and 4 is thus around 8%.

Note that the attribution of misallocated z-statistics is a bit surprising: the

surplus observed between 2 and 4 is here compensated by a deficit after 4 while

we should expect such a deficit before 2. This result comes from the conservative

hypothesis that the pattern observed in the ratio of densities should be attributed

to the selection function as long as it is increasing. Accordingly, the stagnation in

this ratio which is observed before 1.7 is only accounted in the selection function.

Nonetheless, as the missing tests fall in the bulk between 2 and 4, it still allows us to

identify a strong shift of z-statistics. As shown by figures IV(c), (d), (e), (f), results

do not change when the input distribution is approximated by a Student distribution

of degree 1 (standard Cauchy distribution) and a Cauchy distribution of parameter

0.5. The results are very similar both in terms of shape and magnitude.

As already suggested by the shapes of weighted distributions (figures I(c) and

(d)), the results are much stronger when the distribution of observed z-statistics is

corrected such that each article contributes the same to the overall distribution (see

figure V). The shape of misallocation is similar but the magnitude is approximately

twice as large as in the case without weights: the conditional probability of being

misallocated for a z-statistic between 2 and 4 is there between 15% and 20%. In a

way, the weights may compensate for our very conservative reporting process.

A concern in this estimation strategy is that the misallocation can really reflect

different levels of quality between articles with z-statistics between 2 and 4 compared

to the rest. We can not exclude this possibility. Two observations however gives

support to our interpretation: the start of the misallocation is right after (i) the

first significance thresholds, and (ii) the zone where the marginal returns of the

selection function are the highest.15

Finally, what do we find when we split the sample into subsamples? This analysis
15This result is not surprising as it comes from the mere observation that the observed ratio of

densities reaches a maximum between 2 and 4.

21



might be hard to interpret as there might be selection into the different subsamples.

Authors with shaky results might prefer not to use eye-catchers. Besides, papers

with a theoretical model may put less emphasis on empirical results and the expected

publication bias may be lower. Still, the analysis on the eye-catchers sample shows

that misallocated t-statistics between 0 and 4 account for more than 3% of the total

number against 1% for the no-eye catchers sample (see figure VI). The conditional

probability of being misallocated for a z-statistic between 2 and 4 is around 12%

in the eye-catchers sample against 4% in the no-eye-catchers one. We repeat the

same exercise on the subsamples model/no model and main/not main. There seems

to be no inflation in articles with a theoretical model, maybe because the main

contribution of the paper is then divided between theory and empirics. The main/no

main analysis is at first glance more surprising: the misallocation is slightly higher

in tables that we report as not being “main” (robustness, secondary hypothesis or

side results). A reason might be that robustness checks may be requested by referees

when the tests are very close to the threshold. To conclude this subsample analysis,

experiments exhibit a very smooth pattern: there are no real bump around .05.

However, z-statistics seem to disappear after the .05 threshold. An interpretation

might be that experiments are designed such as to minimize the costs while being

able to detect an effect. Very large z-statistics are thus less likely to appear (which

violates our hypothesis that selection is increasing).

B. Parametric estimation

A concern of the previous analysis is that it attributes misallocated tests between 2

and 4 to missing tests after this bulk. The mere observation of the distribution of

tests does not give the same impression. Apart from the bulk between 2 and 4, the

other anomaly is the valley around z=1.5. This valley is considered as a stagnation

of the selection function in the previous non-parametric case. We consider here

a more parametric and less conservative test by estimating the selection function
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under the assumption that it should belong to a set of parametric functions.

Assume here that the selection function can be approached by an exponential

polynomial function, i.e. we consider the functions {f, ∃{ai}, f(z) = c + exp(a0 +

a1z + a2z
2)}. This pattern allows us to account for the concave pattern of the

observed ratio of densities.16

Figure VII gives both the best parametric fit and the partial sum of residuals

as in the non-parametric case. Contrary to the non-parametric case, the misallo-

cation of t-statistics starts after z=1 (p-values around 30%) and is decreasing up

to z=1.65 (p-values equals to 10% and first significance threshold). These missing

statistics are then completely retrieved between 1.65 and 3-4. Remark that the size

of misallocation is very similar to the non-parametric case.

IV. Conclusion

He who is fixed to a star does not change his mind. (Da Vinci)

In this paper, we have identified an inflation bias in tests reported in some

of the most respected academic journals in economics. Among the tests that are

marginally significant, 10% to 20% are misreported. These figures are likely to be

lower bounds of the true misallocation as we use very conservative collecting and

estimating processes. The results presented in this paper may have potentially dif-

ferent implications for the academic community than the already known publication

bias. Even though it is unclear whether these biases should be larger or smaller in

other journals and disciplines,17 it raises questions about the importance given to

values of tests per se.

A limit of our work is that it does not say anything about how researchers

inflate results. Nor does it say anything about the importance of expectations of
16The analysis can be made with simple polynomial functions: this worsen slightly the fit.
17Auspurg and Hinz (2011) and Gerber et al. (2010) collect distributions of tests in journals of

sociology and political science.
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authors/referees/editors in the amplitude of selection and inflation. Understanding

the effects of norms requires not only the identification of the biases, but also an

understanding of how the academic community adapts its behavior to those norms

(Mahoney (1977)).

Propositions have already been made in order to reduce selection and inflation

biases (see Weiss and Wagner (2011) for a review). First, some journals (the Journal

of Negative Results in BioMedecine or the Journal of Errology) have been launched

with the ambition of giving a place where authors may publish non-significant find-

ings. Second, attempts to reduce data mining have been proposed in medicine or

psychological science. There is a pressure for researchers to submit their methodol-

ogy/empirical specifications before running the experiment (especially because the

experiment can not be reproduced). Some research grants ask researchers to submit

their strategy/specifications beforehand (sample size of the treatment group for in-

stance) before starting a study. It seems however that researchers pass through this

hurdle by (1) investigating an issue, (2) applying ex-post for a grant for this project,

(3) funding the next project with the funds given for the previous one.
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Table I: Descriptive statistics.

Number of . . .
Sample Tests Articles Tables

Full 49,765 637 3,437

By journal AER 21,226 323 1,547
[43.28] [50.71] [44.54]

JPE 9,287 110 723
[18.93] [17.27] [20.82]

QJE 18,534 204 1,203
[37.79] [32.03] [34.64]

By theoretical contrib. With model 15,502 230 977
[31.15] [36.11] [28.13]

By type of data Lab. exp. 3,503 86 343
[7.04] [13.50] [9.98]

RCT 4,032 37 249
[8.10] [5.81] [7.24]

Other 42,23 519 2,883
[84.86] [81.47] [83.88]

By status of result Main 35,108 2,472
[70.55] [71.18]

By use of eye catchers Stars 32,221 383 2,141
[64.75] [60.12] [61.68]

Sources: AER, JPE, and QJE (2005-2011). This table reports the number of tests, articles, and tables for each
category. Proportions relatively to the total number are indicated between brackets. The sum of articles or tables by
type of data slightly exceeds the total number of articles or tables as results using different data sets may presented
in the same article or table. “Theoretical contrib.” stands for “theoretical contribution”. “Lab. exp.” stands for
“laboratory experiments”. “RCT” stands for “randomized control trials”.
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Figure I: Distributions of z-statistics.

(a) Raw distribution of z-statistics. (b) Unrounded distribution of z-statistics.

(c) Unrounded distribution of z-statistics,
weighted by articles.

(d) Unrounded distribution of z-statistics,
weighted by articles and tables.

Sources: AER, JPE, and QJE (2005-2011). See the text for unrounding method. The distribution presented in
sub-figure (c) uses the inverse of the number of tests presented in the same article to weight observations. The
distribution presented in sub-figure (d) uses the inverse of the number of tests presented in the same table (or result)
multiplied by the inverse of the number of tables in the article to weight observations. Lines correspond to kernel
density estimates.
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Figure II: Distributions of z-statistics for different sub-samples: eyes-catchers, theo-
retical contribution and lab/rct experiments.

(a) Distribution of z-statistics when
eyes-catchers are used.

(b) Distribution of z-statistics when
eyes-catchers are not used.

(c) Distribution of z-statistics when
the article includes a model.

(d) Distribution of z-statistics when
the article does not include a model.

(e) Distribution of z-statistics for
main tables.

(f) Distribution of z-statistics for
non-main tables.

(g) Distribution of z-statistics for
single-authored papers.

(h) Distribution of z-statistics for co-
authored papers.

Sources: AER, JPE, and QJE (2005-2011). Distributions are unweighted and plotted using unrounded statistics.
Lines correspond to kernel density estimates. 30



Figure III: Unweighted and weighted distributions of the universe of z-statistics and
exogenous inputs.

(a) Gaussian/Student inputs (0<z<10, un-
weighted).

(b) Gaussian/Student inputs (0<z<10,
weighted by articles).

(c) Cauchy inputs (0<z<10, unweighted). (d) Cauchy inputs (0<z<10, weighted by arti-
cles).

(e) All inputs (5<z<20, unweighted). (f) All inputs (5<z<20, weighted by articles).

Sources: AER, JPE, and QJE (2005-2011). Distributions are plotted using unrounded statistics.
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Figure IV: Non-parametric estimation of selection and inflation.

(a) Best increasing non-parametric fit for the ra-
tio of densities output/WDI placebo input.

(b) Cumulated residual (WDI placebo input).

(c) Best increasing non-parametric fit for the ra-
tio of densities output/Student input.

(d) Cumulated residual (Student input).

(e) Best increasing non-parametric fit for the ra-
tio of densities output/Cauchy(0.5) input.

(f) Cumulated residual (Cauchy(0.5) input).

Sources: AER, JPE, and QJE (2005-2011).
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Figure V: Non-parametric estimation of selection and inflation (weighted distribu-
tions).

(a) Best increasing non-parametric fit for the ra-
tio of densities output (weights articles)/WDI
placebo input.

(b) Cumulated residual (WDI placebo input).

(c) Best increasing non-parametric fit for the
ratio of densities output (weights tables)/WDI
placebo input.

(d) Cumulated residual (WDI placebo input).

Sources: AER, JPE, and QJE (2005-2011).
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Figure VI: Estimation of selection and inflation for different sub-samples: eyes-
catchers, theoretical contribution and lab/rct experiments.

(a) Eye-catcher sample. (b) No eye-catcher sample.

(c) Theoretical framework. (d) No theoretical framework.

(e) Main tables. (f) No-main tables.

Sources: AER, JPE, and QJE (2005-2011).
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Figure VII: Parametric estimation of selection and inflation.

(a) Best increasing parametric fit for the ratio of
densities output/WDI placebo input.

(b) Cumulated residual (WDI placebo input).

(c) Best increasing parametric fit for the ratio of
densities output/Student input.

(d) Cumulated residual (Student input).

(e) Best increasing parametric fit for the ratio of
densities output/Cauchy(0.5) input.

(f) Cumulated residual (Cauchy(0.5) input).

Sources: AER, JPE, and QJE (2005-2011).
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Appendix

Proof. Lemma 1.

As f is strictly increasing in e for any given z, there exists a unique hz such that:

f(z, e) ≥ F ⇔ e ≥ hz

Note that the function h : z 7→ hz should be non-increasing. Otherwise, there

would exist z1 < z2 such that hz1 < hz2 . This is absurd as F = f(z1, hz1) ≤

f(z2, hz1) < f(z2, hz2) = F . This part shows that an increasing function G̃ verifying

G̃(h(z)) = 1 − g(z) can easily be constructed and is uniquely defined on the image

of h. Note that G is not uniquely defined outside of this set. This illustrates that G

can take any values in the range of contributions where articles are always rejected

or accepted irrespectively of their t-statistics.

Finally, we need to show that such a function G̃ can be defined as a surjection

(−∞,∞) 7→ [0, 1], i.e. G̃ can be the cumulative of a distribution. To verify this, note

that on the image of h, G̃ is equal to 1− g(z). Consequently, G̃(h([0, Tlim])) ⊂ [0, 1]

and G̃ can always be completed outside of this set to be a surjection.

Note that for any given observed output and any selection function, an infinite

sequence {Gz}z may transform the input into the output through f . The intuition

is the following: for any given z, the only crucial quantity is how many ε would help

pass the threshold. The shape of the distribution above or below the key quality

h(z) does not matter. When we limit ourselves to an invariant distribution, G is

uniquely determined as h(z) covers the interval of contribution.

Proof. Corollary 1.

Given lemma 1, the only argument that needs to be made is that the image of

the function
∫∞

0

∫∞
0

[
1f(z,ε)≥FdGz(ε)dε

]
ϕ(z)dz× f̃ is in [0, 1]. To prove this, remark

first that the image of
∫∞

0

∫∞
0

[
1f(z,ε)≥FdGz(ε)dε

]
ϕ(z)dz × ψ/ϕ is in [0, 1] as it is
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equal to
∫∞

0

[
1f(z,ε)≥FdGz(ε)dε

]
. Finally, note that max[0,∞)(f) ≤ max[0,∞)(ψ/ϕ)

and min[0,∞)(f) ≥ min[0,∞)(ψ/ϕ). Otherwise, the function equal to f̃ but bounded

by the bounds of ψ/ϕ would be a better increasing fit of the ratio ψ/ϕ.
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