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Abstract 

In this paper, I investigate some of the preliminary lemmas of Princip-

ia and deal with two important aspects of Newton’s mathematics: the 

method of first and last ratios and the role of figures in the mathemati-

cal reasoning. In particular, I tackle the question of the relationship 

between the method of first and ultimate ratios and the modern theory 

of limits; then, I show that in Newton’s mathematics, the figure con-

tinued to play one of the fundamental functions of the figure in Greek 

geometry: a part of the reasoning was unloaded on to it. 
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1. The method of first and ultimate ratios  

 

In his Correcting the Principia, Rupert Hall wrote: 

 
The Principia was to remain a classic fossilized, on the wrong side of the frontier 

between past and future in the application of mathematics to physics [1, p. 301] 

 

In effect, if Newton’s physics was immediately winning, his math-

ematics was losing and his mathematical methodology was abandoned 
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within some decades, after furious polemics with the continental 

mathematicians led by Leibniz and the Bernoullis
1
. 

 In the present paper I will illustrate two important aspects of New-

ton’s mathematics: in section 1, I will discuss the method of the first 

and ultimate ratios, whereas in section 2, I will deal with the use of 

geometric figures in the Principia and their role in mathematical 

demonstrations.  

The most known exposition of the method of first and last ratios is 

found in Book I of the Principia Mathematica Philosophia Naturalis, 

which opens with Section I containing the famous preliminary math-

ematical lemmas and subtitled De methodo rationum primarum et ul-

timarum, cujus ope sequentia demonstrantur. 

By the expression ultima ratio Newton attempted to give a meaning 

to the ratio 
 

 
 which two variable quantities assume when become 

equal to zero, namely when they go to zero. In the final scholium of 

Section I, Book I, Newton justified the notion of “ultimate ratio” in 

this way: 

 

(Q) Ultimæ rationes illæ quibuscum quantitates evanescunt, revera non sunt ra-

tiones quantitatum ultimarum, sed limites ad quos quantitatum sine limite decrescen-

tium rationes semper appropinquant, & quas propius assequi possunt quam pro data 

quavis differentia, nunquam vero transgredi, neque prius attingere quam quantitates 

diminuuntur in infinitum. Res clarius intelligetur in infinite magnis. Si quantitates 

duæ quarum data est differentia augeantur in infinitum, dabitur harum ultima ratio, 

nimirum ratio æqualitatis, nec tamen ideo dabuntur quantitates ultimæ seu maximæ 

quarum ista est ratio. Igitur in sequentibus, siquando facili rerum imaginationi con-

sulens, dixero quantitates quam minimas, vel evanescentes vel ultimas, cave intelli-

gas quantitates magnitudine determinatas, sed cogita semper diminuendas sine li-

mite
2
. 

                                                 
1 On this question, I refer to Reading the Principia by Guicciardini [10]. 
2 “Those  ultimate  ratios  with  which quantities vanish, are not truly the ratios of 

ultimate quantities, but limits towards which the ratios of quantities, decreasing  

without  limit, do always converge; and to which they approach nearer than by any 

given difference, but never go beyond, nor in effect attain to, till the quantities are 

diminished in infinitum. This matter will be understood more clearly in the case of 

quantities indefinitely great. If two quantities whose difference is given are in-

creased indefinitely, their ultimate ratio will be given, namely the ratio of equality, 
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One might be tempted to consider this sentence as a definition of 

limit: in this case the expression ultima ratio would denote something 

very similar to the modern concept of limit. This is, for instance, the 

point of view of Bruce Pourciau. In his Newton  and  the  notion  of  

limit, he, first, stated: 
 

We find that Newton … was the first to present an epsilon argument, and that, in 

general, Newton’s understanding of limits was clearer than commonly thought [21, 

p. 18].  

 

and, then, he commented upon the above-mentioned Newton’s 

words as follows: 
 

A surprise: this is not the confused Newton we were led to expect. It may be 

more an epsilon than an epsilon-delta definition, but the core intuition is clear and 

correct [21, p.19]. 

 

I view the matter differently. Indeed, I think that Newton’s concept 

of first and ultimate ratio can be reduced to the modern concept of 

limits: it is true that Newton has a clear idea of what meaning “ap-

proaching  a limit”, but this is only an intuitive and non-mathematical 

idea that is entirely different from the modern, mathematical concept 

of limit
3
. 

To justify my opinion, I consider the first of the preliminary math-

ematical lemmas of Book 1 of Principia: 

 

                                                                                                                   
and yet the ultimate or maximal quantities of which this is the ratio will not on this 

account be given” [14, p. 87]. 
3 In my Differentials and differential coefficients in the Eulerian foundations of 

the calculus, investing Euler’s concept of infinitesimals, I defined this intuitive and 

non-mathematical idea of quantities approaching a limit or approaching each other 

as “protolimit”: ‘However, apart from these crucial differences,  there is something 

in common between the Eulerian procedure  and  the  modern  one  based  upon  the  

notion  of  limit:  evanescent  quantities  and  endlessly increasing  quantities  were 

based  upon an intuitive  and  primordial  idea  of two quantities  approaching each 

other. I refer to this idea as “protolimit” to avoid any possibility of a modern inter-

pretation’ (see [5, p. 46]).  
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Lemma 1. Quantitates, ut & quantitatum rationes, quæ ad æqualitatem dato 

tempore constanter tendunt & eo pacto propius ad invicem accedere possunt quam 

pro data quavis differentia; fiunt ultimo æquales4. 

     

This lemma contains the following explicit hypotheses:  

  

(H1)       two quantities, say A(t) and B(t), approach closer and 

closer to one other, when t varies over a finite interval I, whose 

endpoints are a and  c, and approach c. 

(H2)        A(t) and B(t) approach so close to one other that their 

difference is  less than any given quantity, namely it is  

|A(t)-B(t)|<, 

when t < c  but near enough to c. 

 

Hypothesis  (H1)  implies  that  A(t) and B(t) approach  each  other,  

but  this does  not  necessarily  mean  that  the  distance  between  A(t)  

and  B(t)  becomes smaller  than  any  quantity.  For  instance, the 

quantities 

 

A(t)=-t
2
 and B(t)=t

2
+1 (when t goes to 0) 

 

 satisfy  hypothesis  (H1). 

Hypothesis (H2) guarantees that the distance actually becomes 

smaller than any given quantity. The thesis is  

 

 (T)        A(t) and B(t) are ultimately equal. 

 

  The  thesis  states that the  two  quantities  effectively  reach  each  

other  when t = c.  If we use the term  “limit” in the same way as New-

ton does in the  scholium,  the  thesis  states  that  the  quantities  A(t) 

and B(t) have the same limit or that the limit of their difference is ze-

ro.  

The proof runs as follows: 

 

                                                 
4 “Quantities, and the ratios of quantities, which in any finite time converge con-

tinually to equality, and before the end of that time approach nearer the one to the 

other than by any given difference, become ultimately equal” [14, p. 73]. 
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Si negas, sit earum ultima differentia D. Ergo nequeunt propius ad æqualitatem 

accedere quam pro data differentia D: contra hypothesin5. 

 

Newton assumes  that D > 0 is  the ultimate  difference, namely   

 

|A(c)-B(c)| = D; 

 

then  

 

|A(t) - B(t)| 

 

does not become less than D, contrary to hypothesis (H2).  

  It  is  clear  that  if  the  proof  is  to  be  taken  seriously,  (H2)  

and  (T)  are not the same thing, and this implies that Newton does not 

think of (H2) as  the  definition  of limit  or  ultimately  equal: (H2)  is  

an  essential  property of  limit  but not the definition.  

In effect, Newton does not define  the terms “limit” and “ultimate 

ratio”:  these terms have a clear intuitive meaning to him.  

In the final scholium of Section 1, Book 1, of Principia, Newton il-

lustrates this intuitive meaning by referring to the “limit" as the last 

place or the last velocity of a motion: 

 
Objectio est, quod quantitatum evanescentium nulla sit ultima proportio; quippe 

quæ, antequam evanuerunt, non est ultima, ubi evanuerunt, nulla est. Sed & eodem 

argumento æque contendi posset nullam esse corporis ad certum locum pergentis 

velocitatem ultimam. Hanc enim, antequam corpus attingit locum, non esse ultimam, 

ubi attigit, nullam esse. Et responsio facilis est. Per velocitatem ultimam intelligi 

eam, qua corpus movetur neque antequam attingit locum ultimum & motus cessat, 

neque postea, sed tunc cum attingit, id est illam ipsam velocitatem quacum corpus 

attingit locum ultimum & quacum motus cessat.  

Et similiter per ultimam rationem quantitatum evanescentium intelligendam esse 

rationem quantitatum non antequam evanescunt, non postea, sed quacum 

evanescunt. Pariter & ratio prima nascentium est ratio quacum nascuntur. Et summa 

prima & ultima est quacum esse (vel augeri & minui) incipiunt & cessant. Extat 

limes quem velocitas in fine motus attingere potest, non autem transgredi.  Hæc est 

velocitas ultima. Et par est ratio limitis quantitatum & proportionum omnium inci-

                                                 
5 “If you deny this, let them become ultimately unequal, and let their ultimate 

difference be D. Then they  cannot approach so close to equality that their difference 

is less than the given difference D, contrary to the hypothesis.” [14, p. 73]. 
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pientium & cessantium.  Cumque hic limes sit certus & definitus, Problema est vere 

Geometricum eundem determinare. Geometrica vero omnia in aliis Geometricis 

determinandis ac demonstrandis legitime usurpantur 6. 
 

This quotation clearly shows that for Newton, the notion of limit or 

ultimate value is an idea borrowed from Nature: it is not a mathemati-

cal notion determined by its definition and a translation into modern 

terminology would strain Newton’s concept. 

    It is very interesting to compare lemma 1 (where Newton does 

not use the word “limit”) and quotation (Q), which is considered by 

Pourciau to be “Newton’s best definition of limit” [21, p.19]. In quota-

                                                 
6 “Perhaps it may be objected, that there is no ultimate proportion of evanescent 

quantities;  because  the  proportion,  before  the  quantities  have  vanished,  is  not  

the  ultimate, and when  they  are vanished, is none.  But by the same argument it 

may be alleged, that a body arriving at a certain place, and  there stopping, has no ul-

timate velocity;  because the velocity, before the body comes to the place, is not its 

ultimate velocity; when it has arrived,  is none.  But the answer  is  easy;  for  by  the  

ultimate  velocity  is  meant that with which the body is moved, neither before it ar-

rives at its last place and the motion ceases, nor  after,  but  at  the  very  instant  it  

arrives;  that  is,  that  velocity  with  which  the  body arrives  at  its  last  place,  and  

with  which  the  motion  ceases. And  in  like  manner,  by  the ultimate ratio of ev-

anescent quantities is to be understood the ratio of the quantities, not before  they  

vanish,  nor  afterwards,  but  with  which  they  vanish.   

 In  like  manner  the  first ratio of nascent quantities is that with which they 

begin to be.  And the first or last sum is that with which they begin and cease to be 

(or to be augmented or diminished). There is a  limit  which  the  velocity  at  the  

end  of  the  motion  may  attain,  but not exceed. This is the ultimate velocity.  And 

there is the like limit in all quantities and proportions that begin and cease to be. And 

since such limits are certain and definite, to determine the same is a problem strictly 

geometrical. But whatever is geometrical we may be allowed to use in determining 

and demonstrating any other thing that is likewise geometrical" [14, p. 87]. 

Newton goes on stating: “Contendi etiam potest, quod si dentur ultimæ quantita-

tum evanescentium rationes, dabuntur et ultimæ magnatudines; et sic quantitas om-

nis constabit ex indivisibilibus, contra quam Euclides de incommensurabilibus, in 

libro decimo Elementorum, demonstravit. Verum hæc Objectio falsæ innititur hy-

pothesi.” (It can also be contended, that if the ultimate ratios of vanishing quantities 

[that is, the limits of such ratios] are given, their ultimate magnitudes will also be 

given; and thus every quantity will consist of  indivisibles, contrary to what Euclid 

has proved in Book X of Elements. But this objection is based on a false hypothesis) 

[14, p. 87]. 
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tion (Q), Newton states that the last ratios of two quantities, say f(t) 

and g(t), are the limits 

 

(A)  towards  which the ratios of quantities decreasing without 

limit, do always converge, 

(B) to which they approach nearer than by any given difference,  

(C) but never go beyond, nor in effect attain to, till the quantities 

are diminished in infinitum. 

 

In effect, in quotation (Q) Newton repeats the conditions of lemma 

1:  

 

if (A) and (B) are verified, then the ratio f(t)/g(t) is ultimately equal 

to the limit. 

 

Since, Newton uses the word ‘limit’, we can also state that the the-

sis (T) means that 

 

(T1) the quantities A(t) and B(t) have the same limit [or that the 

limit of their differences is zero].  

 

However, (H2) and (T) do not mean the same thing. Newton do not 

feel (H2) as the definition of “limit” or “ultimately equal”. Rather, he 

states that if (H1) and (H2) are verified, then A(t) and B(t) become 

equal when the process finishes (in the sense that they assume the 

same value). 

 

In conclusion, differently from what Pourciau stated, Newton does 

not define the word “limit” by referring to quantities that approach a 

certain value becoming less than any fixed quantity : Newton uses 

the term “limit” without defining it since he thinks this term had a 

clear, intuitive meaning. The limit is identified with the ultimate value 

and is conceived as something physical: the final position of a body in 

motion, the final speed; at most, the limit is a geometric idealization: 

the final position of a point that describes a curve. 

In any case Newton does not distinguish between the limit process  
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)t(Alim
cx

 

 

and the ultimate value of this process 

 

cx
)t(A


. 

 

In the modern conception, the limit notion is the result of a conven-

tional definition and it is precisely this definition that creates the 

mathematical object “limit”. For modern mathematicians, the notion 

of limit is entirely reduced to its definition. Today, by the symbols 

 

l = )z(flim
cz

 

we mean: 

 

(D)  given any >0 there exists a >0 such that if z belongs to the 

domain S and |z|< then  

|f(z)- l |<; 

 

This definition formalizes the notion of a function f(x) approaching 

to a number l; however, there is a gap between the intuitive idea of 

“reaching the limit” and definition (D); a gap that only intuition is able 

to fill.  

In the modern theory of limits no theorem is demonstrated by refer-

ring to the intuitive idea of approaching a number: only the formal 

definition is used. For Newton, the notion of reaching the limit is a 

natural notion (namely, a notion derived from the observation of natu-

ral phenomena), not a mathematical notion created by its definition. 

According to Newton, if anything has property (H2), then it reaches 

its limit; however, Newton’s idea of limit cannot be reduced to such a 

property and entirely maintains its intuitiveness and also its ambiguity 

and so the method of the first and ultimate ratios cannot be reduced to 

the method of limits. 
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2. The role of diagrams  

 

In this section I will examine another crucial aspect of Newton’s 

mathematics closely
7
: the use of physical and geometric evidences in 

mathematical reasoning, an use that was mediated by geometric fig-

ures.  

In the previous section, we already saw that, in Principia, there is 

no definition of the notion of first and ultimate ratios and that Newton 

refers to a physical and geometric evidence to explain such a notion. 

In effect, in the Principia, there are several other mathematical notions 

that Newton uses without definition, only basing on their geometric 

evidence. For instance, let us consider the second of the preliminary 

mathematical lemmas of the Principia: 

 
Lemma II. Si in figura quavis Aa cE rectis Aa, AE, et curva AcE comprehensa, 

inscribentur parallelogramma quotcunque Ab, Bc, Cd, &c. sub basibus AB, BC, CD, 

etc. æqualibus, & lateribus Bb, Cc, Dd, &c. figuræ lateri Aa parallelis comenta; et 

compleantur parallelogramma aKbl, bLcm, cMdn, etc, Dein horum parallelogram-

morum latitudo minuatur, et numerus augeatur in infinitum: dico quod ultimæ ra-

tiones, quas habent ad se invicem figura inscripta AKbLcMdD, circumscripta 

AalbmcndoE, et curvilinea AabcdE, sunt rationes æqualitatis
8
. 

 

 

                                                 
7 This is an aspect that Newton shared with all mathematicians of his time (on 

this matter, see [4]). 
8 LEMMA II.    If in any figure AacE comprehended by the straight lines Aa and 

AE and the curve acE  any number of parallelograms  Ab, Bc, Cd ... are inscribed 

upon equal bases  AB, BC, CD ... and sides, Bb, Cc, Dd ... parallel to the side Aa of 

the figure; and if the parallelograms aKbl, bLcm, cMdn  ... are completed; if then the 

width of these parallelograms is diminished and their number increased   indefinite-

ly, I say that the ultimate ratios which the inscribed figure  AKbLcMdD  the circum-

scribed figure AalbmcndoE , and the curvilinear figure AabcdE, have to one another 

are ratios of equality [19, p. 433; 18, p. 29]. 
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Figure 1 

 

Newton gives the following proof: 

 
Nam figuræ inscriptæ et circumscriptæ differentia est summa parallelogram-

morum Kl+Lm+Mn+Do, hoc est (ob æquales omnium bases) rectangulum sub unius 

basi Kb & altitudinum summa Aa, id est rectangulum ABla. Sed hoc rectangulum, eo 

quod latitudo ejus AB in infinitum minuitur, sit minus quovis dato. Ergo, per Lemma 

I, figura inscripta et circumscripta et multo magis figura curvilinea intermedia fiunt 

ultimo æquales. Q.E.D.
9
 

 

According to Pourciau, “in his geometric style, Newton has stated 

and proved a basic theorem of calculus … Every monotonic function 

on a closed and bounded interval must be integrable.” [21, p. 24]. In 

effect, Pourciau recasts Newton’s lemma in modern terms and inter-

prets the figure AacE as the graph of a function f defined on the seg-

                                                 
9 For the difference of the inscribed and circumscribed figures is the sum of the 

parallelograms Kl, Lm, Mn  and Do that is (because they all have equal bases), the 

rectangle having as base Kb (the base of one  of them) and as altitude Aa  (the sum 

of the altitudes) that is the rectangle ABla . But this rectangle, because its width AB  

is diminished indefinitely, becomes less than any given rectangle. Therefore (by 

lem. I) the inscribed figure and the circumscribed figure and all the more the inter-

mediate curvilinear figure become ultimately equal. Q.E.D. [19, p. 433; 18, p. 29] 
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ment AE. In his opinion, “Newton clearly (but without saying so) 

takes f to be monotone decreasing with f(E)=0. Of course the areas of 

the inscribed and circumscribed figures, AKbLcMdD and Aalbmcn-

doE, correspond to lower and upper sums,  

 

Ln≡f(t1)∆t+…+ f(tn)∆t         and      Un≡f(t0)∆t+…+ f(tn-1)∆t 

 

that arise from a partition  

 

                                A =  t0 < t1 < … < tn-1 <  tn =  E  

 

of the segment AE into n subintervals of equal length ∆t = AE/n”. 

[21, p. 23].  

I view the matter differently. First, I observe that Newton does not 

use the abstract concept of functions representing them geometrically 

by a graph, but uses geometric quantities represented by curves 

(sometimes, these curves are analytically expressed by letters, but this 

does not usually occur in the Principia). For this reason the expression 

“graph of f” is misleading.  

Second, it is true that Newton conceived the area under the curve as 

the last ratio of the inscribed and circumscribed figures, it is however 

clear that he define neither the concept of integral, nor the area. In 

fact, for him, the area is only an entity that has a geometric and physi-

cal evidence. In lemma 2, Newton does not prove the existence of the 

area; rather he proves that the ultimate ratios which the inscribed fig-

ures, circumscribed figures and area under the curve have to one an-

other are ratios of equality, namely the ratio of the area and the ulti-

mate value of the inscribed and circumscribed figures is 1. 

In a similar way, in lemma VI where Newton stated that the angle 

between the secant and tangent is evanescent, he simply reasons on 

the geometric evidence and does not give the definition of tangent to a 

curve. 
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Figure 2  

 

 
Lemma VI. Si arcus quilibet positione datus ACB subtendatur chorda AB, et in 

puncto aliquo A, in medio curvaturae continuae,tangatur a recta utrinque producta 

AD; dein puncta A, B ad invicem accedant et coeant; dico quod   angulus BAD, sub 

chorda et tangente contentus, minuetur in infinitum et ultimo evanescet10. 

 

The proof goes as follows: 
Nam si angulus ille non evanescit, continebit arcus ACB cum tangente AD 

angulum rectilineo aequalem, et propterea curvatura ad punctum A non erit 

continua, contra hypothesin11. 

 

Lemma I, II, and VI show a peculiar use of figures that makes 

Newton’s mathematics deeply different from the modern one. This 

                                                 
10 “If any arc ACB, given in position is subtended by its chord AB, and in any 

point A, in the middle of the continued curvature, is touched by a right line AD, pro-

duced both ways; then if the points A and B approach one another and meet, I say, 

the angle BAD, contained between the chord and the tangent, will be diminished in 

infinitum, and ultimately will vanish. [19, p. 443] 
11 “For if that angle does not vanish, the arc ACB will contain with the tangent 

AD an angle equal to a rectilinear angle; and therefore the curvature at the point A 

will not be continued, which is against the supposition.” [19, p. 443] 
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way of using figures was shared by most mathematicians of that time 

and rooted in ancient Greek conception.  

Indeed, Greeks did not manipulate algebraic symbols in their math-

ematical reasonings; rather, they reasoned upon figures.  A figure is a 

symbolic representation as well; however, it has a different  nature 

with respect to algebraic symbolism. It is iconic and imitative and re-

produces the features of various real bodies by analogy. When a mod-

ern mathematicians uses figures, he considers them as dispensable 

tools for facilitating the comprehension. Their role is essentially peda-

gogical or illustrative. Indeed, a modern mathematical theory is a con-

ceptual system, composed of explicit axioms and rules  of  inference, 

definitions and theorems derived by means of a merely linguistic de-

duction.  For instance, consider the proposition  

 
Two equal circles of radius r intersect each other if the separation of their centers 

is less than 2r.  

 

 In modern geometry one can state  this proposition if  an appropri-

ate axiom (or  a theorem based  upon  appropriate axioms) guarantees 

their intersection.  Modern verbal formulation of geometry implies 

that terms such as circle, radius, and center, only have the properties 

that derive from their definitions and the axioms of the theory. 

Instead, Greek geometry used figures as parts of reasoning (and not 

as a merely pedagogical or illustrative tool). Thus, in order to derive 

the existence of the intersection between two circles, say C and C', 

Greek geometers could instead refer to the evidence of Fig. 3 and 

simply say:  “Look!” This is precisely what Euclid did in the proof of 

his very first proposition, where he  constructed  an  equilateral  trian-

gle. There was  no  necessity to  clarify precisely  all  the  relation-

ships between  the objects of  a theory,  to  make  all axioms explicit 

and to define all terms. The mere inspection of figures provided in-

formation that we would now consider missing. 
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Figure 3  

 

 

In conclusion, the previous analysis shows the permanence in New-

ton’s mathematics of various traditional aspects, aspects that are to be 

investigated further to make the real nature of Newton’s mathematics 

clearer. 
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