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Abstract

The study of tail events has become a central preoccupation for academics, investors and

policy makers, given the recent financial turmoil. However, what differentiates a crash from a

tail event? This article answers this question by taking a risk management perspective that is

based on an augmented extreme value theory methodology with an application to the French

stock market (1968-2008). In contrast with the common sense, it claims that crashes happen

when the volatility is the lowest. Our empirical results indicate that the French stock market

experienced only two crashes in 2007-2008 among the 12 identified over the whole period.
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1 Introduction

Financial markets throughout the world have been subject to financial disasters during the last

twenty years (October 1987, the Long Term Capital Management collapse and Russian debt crisis,

the Latin American and Asian currency crises and more recently, the U.S. mortgage credit market

turmoil, followed by the bankruptcy of Lehman Brothers and the world’s biggest-ever trading loss

at Société Générale). Stock market crashes are some of the most fascinating subjects in finance.

However, there is no unique definition of a crash. Financial literature on that topic creates some

confusion on rare events usually called extremes, crashes or crises. Even if it not straightforward to

define a priori a crash, the investors may be able to identify a posteriori a crash through its panic

effect; it can have been induced by systemic risk, liquidity risk, regulatory risk or even trading

algorithm risk. For example, the biggest intraday drop in the history of the Dow Jones index on

May 6, 2010 was interpreted by market participants as a crash. Indeed, the computer-automated

trades cause a total drop of 9.16% from the previous day’s close; however, the market rebounded to

close down by 348 points.

The Extreme Value Theory (EVT) has widely documented1 ways in which extreme events can

be quantified. A general discussion on the application of EVT to finance is proposed by Embrechts,

Klüppelberg and Mikosch (1997), McNeil (1999), Coles (2001), and Beirlant, Goegebeur, Segers

and Teugels (2004). However, Longin (1993) remains the only one in this literature to address

explicitly the question of the existence of crashes. Longin (2001) addresses the same question by

applying EVT to two sub-samples; one sub-sample of the so-called crashes and an other sub-sample

from other minima. He finally concludes that crashes and non-crashes have no statistical differences

because they are drawn from the same unconditional distribution of extremes. This conclusion may

1Longin (1993), Longin (1996), McNeil (1997), Danielsson and de Vries (1997), McNeil and Saladin (1998),
Christoffersen, Diebold and Schuermann (1998), Diebold, Shuermann and Stroughair (1999), McNeil and Frey (2000),
Jondeau and Rockinger (2003), Gilli and Këllezi (2000), Bali and Neftci (2002), LeBaron and Samanta (2004), Daniels-
son and Morimoto (2000), Longin (2001), Gençay, Selçuk and Ulugülyagci (2003), Mandira (2004), Tolikas and Brown
(2005), Gettingby, Sinclair, Power and Brown (2006). This literature has become risk management oriented.
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have closed the debate, earlier than expected, in this literature. Indeed, if the conclusion is not

questionable within this literature2, the application of EVT to raw returns may cause a problem

to identify real crashes from large negative returns. Actually, the investors are not symmetrically

affected by a negative return that comes from a high volatility period or by an equal negative return

that comes from a low volatility period. Indeed, investors are more cautious during high volatility

period and may panic much more if an extreme event occurs during a low volatility period due to

the surprise effect. For this reason, this article considers the role of volatility in the crash definition.

The first question to address is why is it useful to identify a crash? Because this may helps

investors, regulators and policymakers to differentiate warning signals according to their scale level;

for these same reasons, the NBER defines expansion cycles and recession cycles in the US since 1854.

For instance, the recognition of crash events may justify intervention policies from economic agents

with the right timing. For example, would the identification of a crash in 2007 after the collapse

of the U.S. Housing Bubble have forced the policy makers to save Lehman Brothers and avoid the

huge international volatility spill over of 2008? Recently, Brockmeijer et al. (2011) recommend

that "a risk measure breaching a given threshold would prompt policy makers to provide a policy

response". However, all crashes do not lead to a macro-economic downturn; for example, the 1987

stock market crash did not generate an economic contraction. Therefore, if all crashes affect the

risk aversion of investors, they do not equally affect the economic business cycles.

The second question is how can we define a crash versus a tail event? Defining a tail event is

straightforward. Indeed, it corresponds to any return located in the tails of the distribution; an

adverse tail event represents an negative extreme return for a long position and a positive extreme

return for a short position. In addition, if a crash (anti-crash) corresponds to a negative (positive)

extreme return, the reverse is not true. Indeed, the largest negative return during a bullish period

will surely not be a crash; for example, the minimal return of the S&P 500 stock index during year

2This issue has been a debate among economists (see Gabaix, Gopikrishnan, Plerou, Stanley (2005) who conclude
that daily crashes are not outliers to the distribution of returns).
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1999 is -2.85%.

We introduce a definition of stock market crash that is risk-management oriented; per hypothesis,

stock market crash is defined as being sudden, significant and brief:

Sudden event. This corresponds to a price variation that is independent of the current volatil-

ity regime. It refers to a high-return shock during a period of low volatility and not to a small-

return shock during a period of high volatility. Given the asymmetric nature of volatility, returns

and volatility are negatively related in equity markets; this relation is more pronounced for large

negative returns. When the volatility is high, financial markets over-react to bad news (See e.g.

Black (1976), Campbell and Hentschel (1992), Beckaert and Wu (1992) for the so-called "leverage

effect" and "feedback effect" hypotheses); this over-reaction is characterized by large volumes of sell

orders during stress periods, which contribute to exacerbate downside volatility (see more recently

Gabaix, Gopikrishnan, Plerou and Stanley (2003) on the relationship between large fluctuations in

prices, trading volume and the number of trades.). In contrast, when the volatility is low, bad news

can drive markets into unexpected collapse; this was the case after the heart attack of the U.S.

President Eisenhower on September, 26 1955 with a one-day drop of 6.85% on the S&P 500 stock

index. Therefore, contrary to the common sense, crashes may happen when the volatility is the

lowest.

Significant decline. This corresponds to a price variation whose magnitude is high (domestic

crash) and induces systemic risk throughout the world financial markets, increasing the stock market

index correlation levels (international crash). Equity markets react not only to their domestic

political and economic factors but also to trading pressures around the world. Such was the case

on October 19, 1987 with a decline of 22.89%; this one-day drop is comparable to the percentage

drop that occurred over October 28 and 29, 1929 with a respective decline of 12.82% and 11.73%.
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One-day horizon. Shiller (1988) notices that "The concentration of attention on 1987 as a

unique year in stock market history is to some extent an artifact of the one-day interval chosen."

But if the shock is sudden and significant, it is almost impossible to hedge a portfolio within a

one-day horizon. In that sense, the one-day interval choice is no longer artificial. Choosing a longer

period for identifying a crash remains possible from a macro-economic perspective, but it will be

no longer relevant for a risk management perspective because the crash is supposed to be sudden.

Choosing a shorter period for identifying a crash is limited to the existence of circuit-breakers; for

example, trigger levels for a market-wide trading halt are set at 10%, 20% and 30% of the Dow

Jones index; another example in France, when the price movement of a share exceeds 10% from the

quoted price at the close of the previous market day, quotation is suspended for 15 minutes. These

trading curbs limit physically the possibility of intra-day crashes. In addition, trading pressures

may induce several intra-day trading halts whose global effect will appear in the daily closing price.

Therefore, we argue that it is almost impossible to hedge a portfolio against a crash within a time

period of one day or less.

The purpose of this article is therefore to disentangle crashes from tail events. An augmented

extreme value theory methodology is employed. In addition, an application to the French stock

market index is provided, using the longest daily time series ever used (1968-2008) for this country.

This choice is motivated by a long history of crashes illustrated by recent literature3.

3Many authors (e.g., Gallais-Hamonno and Arbulu (2002), Le Bris (2008), Le Bris and Hautcoeur (2008)) provide a
rich long-term analysis of the French market’s extreme behavior. Since there are no official statistics on any aggregate
stock market index from the XIX century, they did an important work of recomposing a French stock market index a
posteriori. In contrast, in this study, we rely on daily available prices. They use monthly returns (Gallais-Hamonno
and Arbulu (2002) recognize that using monthly returns force them to remain under a Gaussian framework; they
also recongnize that a high monthly variation can appear as an extreme event while it can stem from successive
weak daily negative returns), while we use daily returns; they provide a historical perspective, while we also consider
a forecasting outlook; they evaluate market performance, while we discuss the risk management implications; they
usually define crashes as standard deviation multiples of monthly periods (Gallais-Hamonno and Arbulu (2002) define
crashes as +/-3 standard deviations versus +/-2.5 for Le Bris (2008)), while we test a less restricted definition of
crash, based on an extreme value theory approach.
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The remainder of this article is organized as follows. Section 2 synthesizes the theoretical

background of extreme value theory used in the empirical section. Section 3 presents an analysis of

the data, the filtering process and its economic implications. Section 4 analyses the tail distributions

to differentiate crashes from extremes. Section 5 gives the conclusions.

2 Methodology

2.1 Tail distribution

Let X1, ...Xn be a sequence of random variables corresponding to stock returns. If these variables

are independent and identically distributed (i.i.d.) and if F is the cumulative distribution function

then,

Pr(Mn < x) = Pr(max(X1 < x, ..., Xn < x) = (F (x))n (1)

This has two consequences. First, the law of maxima can be easily obtained once we know

F . Second, the law of minima is directly deduced from the law of maxima since we have Mn =

maxi=1,...,n(Xi) = −mini=1,...,n(−xi). Therefore, we only expose the part of the theory for the

upper tail of the distribution. Let F be an unknown function and look for approximate families of

models Fn, which can be estimated from extreme observations only. We consider the behavior of

Fn as n −→ ∞. Let us consider a distribution function Fu representing a probability that the value

of X exceeds the threshold u by at most an amount x given that X exceeds the threshold u. The

conditional distribution of excess losses over the threshold u is defined as,

Fu(x) = Pr(X − u ≤ x|X > u) (2)

The conditional probability can be written as
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Fu(x) =
F (x + u) − F (u)

1 − F (u)
(3)

It may be difficult to compute Fu as there are few observations in the considered area. However,

Balkema and de Haan (1974) and Pickands (1975) showed that when the threshold u is sufficiently

high, the distribution function Fu of the excess beyond this threshold can be approximated by the

Generalized Pareto Distribution (GPD)

Fu(x) ≈ Gξ,β(x) (4)

This limit distribution has a general form given by

Gξ,β(x) =






1 − (1 + ξx/β)−1/ξ, for ξ 6= 0

1 − exp(−x/β), for ξ = 0

(5)

where β ≥ 0 and where x ≥ 0 when ξ ≥ 0 and where 0 ≤ x ≤ −β/ξ when ξ < 0 . β is a scaling

parameter and ξ is the tail index. The tail index is an indication of the tail heaviness, the larger ξ ,

the heavier the tail. This distribution encompasses other type of distributions. If ξ > 0 (ξ < 0) then

it is a reformulated version of the ordinary Pareto distribution (Pareto type II distribution) and

if ξ = 0, it corresponds to the exponential distribution. Smith (1987) showed that the maximum

likelihood estimates of the GP distribution parameters are consistent and asymptotically normal

for large samples provided that ξ > −0.5 . In contrast to the normal distribution, which is defined

for each moment, the GPD heavy-tailed distribution is not necessarily defined for each moment.

Indeed, a large set of data in physics or insurance have infinite second moments. The tail index

parameter helps examine how many finite moments the marginal distributions have. For example,

an estimate of ξ < 0.5 implies finite variance; an estimate of ξ < 0.25 implies a finite fourth moment,

etc.
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2.2 Threshold selection

Threshold selection is subject to a trade off between finding a high threshold where the tail estimate

has a low bias with a high variance or finding a low threshold where the tail estimate has a high bias

with a low variance. The standard practice, to overcome the balance between bias and variance,

requires adopting the lowest threshold as possible. There are two families of approaches for threshold

selection. The first one is visual inspection and the second one is automatic selection. Visual

selection denotes a plausible threshold choice based on the results of the two or more plot methods.

Adaptive selection denotes the application of an automated method which aims at minimizing

asymptotic mean squared error (see Beirlant et al. (2004), Section 4.7 ii).

We follow Gumbel (1958), Embrechts, Kluppelberg and Mikosch (1997) and Coles (2001) who

suggest visual inspection methods for the observation of the tail region. Two approaches exist. The

first approach corresponds to explanatory techniques carried out before the model estimation. The

second approach corresponds to the assessment of the parameter estimate stability while fitting

various models through a range of different thresholds. The first visual inspection method is based

on the mean of excesses of the GPD defined as,

E(X − u|X > u) =
σu

1 − ξ
(6)

Denote σu the value of the GPD scale parameter for a threshold u > u0. The sample mean excess

function is termed mean residual life plot (MRLP). The threshold detection is done by choosing

the smallest observation to the right of which the mean excess function remains approximately

linear as a function of the ordered data. Confidence intervals are associated to the graph given the

approximate normality of sample means. Let nu be the number of exceedances over the threshold

u, the MRLP is

[
u,

1

nu

u∑

i=1

(xi − u)

]
(7)
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However, MRLP can be difficult to interpret for threshold detection. A complementary visual

method is to check for parameter stability. It corresponds to the second visual inspection method

that involves fitting the GPD over a range of thresholds. This method allows observation of both

the parameter estimate stability and variance. A range of possible thresholds would correspond to

these criteria of relative stability and low variance. Indeed, plotting ξ̂ with its confidence intervals

against u allows the selection of a threshold that is as low as possible, such as selecting u0 for which

the estimates of ξ remain near constant. It is defined by

[
ξ̂, Gξ,β(x) = 1 − (1 + ξx/β)−1/ξ

]
(8)

For the optimal threshold selection method, let us consider an ordered sample of size nu,

Xnu , ..., X1 with Xk being the nth
u upper order statistic. The Hill (1975) estimator is defined by

[
nu, ξ̂H

nu
=

1

nu

nu∑

i=1

(logXn−i+1 − logXn−nu)

]
(9)

The Hill estimator is asymptotically normal. The choice of the Hill index is motivated by the

fact that it has been proven to be efficient in the case of a Fréchet-type distribution (Longin (1996)).

However, an important issue is to choose an appropriate nu, which determines the red line between

the tails and the centre of the distribution. The more nu increases, the more the bias is large

but with small variance. The Hill’ estimator is of practical use for determining the threshold by

drawing a Hill-plot. The value of nu can be inferred by identifying a stable region in the graphic.

However, the Hill plot does not quite stabilize throughout its range and therefore it is usually hard

to come up with a value for nu. It has been popular for the optimal threshold 4 to be estimated such

that the bias and variance of the estimated Hill tail index vanish at the same rate and where the

4Many researchers have tried to overcome this problem of finding the optimal threshold. Among then, Hall and
Welsh (1985), Hall (1990), Dacorogna, Muller, Pictet and de Vries (1994), Beirlant, Vynckier and Teugels (1996),
Danielsson and de Vries (1997), Danielsson, de Haan, Peng and de Vries (2001), de Sousa and Michailidis (2004),
and Beirlant, Goegebeur, Teugels and Segers (2004). The optimal tail size may vary from one method to another;
however, the tail estimates remain generally stable.
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mean squared error is asymptotically minimized. Usually, AMSE is obtained through a sub-sample

bootstrap procedure.

2.3 Tail risk management measures

Every day risk management practices require evaluating the potential risk of loss. The recent

severity of losses that struck the banking system requires extreme-oriented risk-measures. First, the

Value-at-Risk (VaR) approach has become the benchmark risk measure for bank risk management.

VaR summarizes the expected loss over a target horizon within a given confidence interval. It

corresponds to a decline in the portfolio market value over a given horizon for a given probability

level. A loss which exceeds the VaR threshold is termed a VaR break. Accurate estimation of the

VaR is important but is subject to a traditional trade-off between risk and returns. Indeed, if the

risk management overestimates the VaR, the trading desk return objectives may not be reached

and the top management will impose a penalty on their personal wealth. In contrast, if the risk

management undererestimates the VaR, the trading desk risk constraints may not be reached and

the top management will impose a penalty on their personnel wealth. In any cases, VaR calculation

often requires determining the probability distribution of the portfolio value change. However, there

is no need to fully identify the probability distribution because only the extreme quantiles are of

interest. Extreme VaR estimates are computed by inverting the tail estimation formula based on

the loss distribution

V aRq = F−1(q) (10)

where the quantile function F−1 is the inverse of F and q is the qth quantile of the distribution

F of profit and loss. We recall that n is total sample size and nu the number of exceedances over

the threshold u, so the tail estimator is given by

F (x) = 1 −
nu

n

(
1 + ξ

x − u

β

)−1/ξ

(11)
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The VaR expression can be computed upon the maximum likelihood GPD parameter estimators

V aRq = u +
β

ξ

[(nu

n
(1 − q)

)−ξ
− 1

]
(12)

VaR models have been criticized for their inadequacy. First, VaR can be misleading during

volatile periods (e.g., Yamai and Yossiba (2005), Bao et al. (2006)); however, the use of GPD-VaR

on GARCH-filtered data answers this problem. Second, VaR disregards any loss beyond the VaR

level. Third, it has not the nice property of sub-additivity, in that the VaR of a portfolio can be

higher than the sum of the respective VaRs of each individual asset in the portfolio (Artzner, et

al. (1999)). For example, the failure of VaR to be sub-additive can drive the clearinghouse to be

exposed to large adverse price movements. However, Danielsson, et al. (2005) demonstrate that

VaR is sub-additive for the tails of all fat-tailed distributions, provided that the tails are not super

fat (e.g., an asset that has a first moment that is not defined). Second, a complementary measure

known as the Expected Shortfall (ES) is usually used in, for example, margin requirements. This

accounts for the sizes of tail losses since it evaluates the expected loss size given that VaR is exceeded

ESq = V aRq + E (X − V aRq|X > V aRq) (13)

where the second term corresponds to the mean excess function over the threshold V aRq. The

explicit value for expected shortfall related to the VaR is given by

ESq =
V aRq

1 − ξ
+

β − ξu

1 − ξ
(14)

Filtered VaR and ES models are computed using the standardized return series. Indeed, most of

the recent literature confirms the superior in and out-of-sample performance of the risk management

models when combining a heavy-tailed GARCH filter with an extreme value theory-based approach

(McNeil (1999), Acerbi (2002), Kuester, et al. (2005), Inui and Kijima (2005), Martins and Yao

(2006), and Ozun, et al. (2007)). In fact, Kuester, et al. (2005) note precisely that the introduction
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of GARCH volatility dynamics almost uniformly improves VaR prediction performance in contrast

with the unconditional approach. Third, the last measure known as the return level (Gumbel

(1941)) is convenient for both model presentation and validation. The effect of extrapolation is

highlighted. Scarcity produces large variance estimates. Let term ζu be the probability of exceeding

the threshold u

Pr(X > u) = ζu =
nu

n
(15)

Consider xm as the return level that is exceeded on average once every m observations. It is

solution of

Pr(X > u) = ζu

[
1 + ξ

(
xm − u

σ

)]−1/ξ

=
1

m
(16)

Equivalently, the m− observation return level is

xm = u +
σ

ξ

[
(mζu)ξ − 1

]
(17)

Return levels are expressed in annual scale so that the N -year return level is the level expected

to be exceeded once every N years. Consider n250 as the average number of trading days per year

with m = N × n250. The N -year return level then becomes

xm = u +
σ

ξ

[
(N × n250ζu)ξ − 1

]
(18)
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3 Data analysis

3.1 Data description

The database5 consists of 10,017 daily stock prices that span the period of time from September,

30th 1968 to December 31, 2008. The French stock index known as the "Indice Général CAC"

has been recomputed after the 1987 stock market crash and renamed as "CAC 40". The closing

price was set to 1000 on December, 31st 1987. The longest data set available from NYSE-Euronext

begins from January, 5th 1962; however, from this date to September, 13th 1968, the frequency of

the stock index is weekly. For this reason, we choose to begin the period study from September,

30, 1968 until the end of year 2008. We note the presence of stock index return autocorrelation

for any given lag; in addition, we observe the presence of strong heteroskedasticity according the

Q-statistics. This study makes use of filtered daily data 6 in order to apply EVT techniques to iid

observations given that the fat-tailedness of returns stems from the fat-tailedness of innovations.

3.2 Data filtering process

We examine all the possible specifications within five lags. We test 25 specifications of ARMA(p,q)

models with p = 1, ..., 5 and q = 1, ..., 5 in addition to 25 specifications with ARMA(p,q) +

GARCH(1,1). We select the more parsimonious model. Four criteria are used for comparison:

the log-likelihood value, the Akaike criterion, the autocorrelogram of residuals and squared resid-

uals and the ARCH effect test. We take care of the trade off between parsimony and maximizing

criteria. We find that the ARMA(2,4)+GARCH(1,1) model produces the best fit. We then test

an alternative model that allows for leverage effects by considering the contribution of the negative

residuals in the ARCH effect. The ARMA(2,4)+TGARCH(1,1) model improved the fit in all con-

sidered criteria. Define the market log-returns as {Rt}t=1,...,T with T= 10,017 daily observations.

The ARMA(2,4) + TGARCH (1,1) specification is then given as follows

5I would like to thank Professor Michel Fleuriet who provided me with the data set.
6Filtering processes on high frequency financial data are discussed among others by Dacorogna et al. (2001),

Breymann, Dias and Embrechts (2003).
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Rt = µ +
2∑

i=1

φiRt−i +
2∑

i=1

θiǫt−i + ǫt (19)

with the innovations ǫt being functions of Zt and σt

ǫt = Ztσt (20)

where the standardized returns Zt are independent and identically distributed, such as:

Zt →֒ FZ(0, 1) (21)

where FZ is an unknown distribution of Z. The purpose of the time-varying σt is to capture as

much of the conditional variance in the residual ǫt in order to leave Zt approximately iid

σ2
t = ω + α (Zt−1σt−1)

2 + γ (Zt−1σt−1)
2 IZt−1σt−1<0 + βσ2

t−1 (22)

As the MA(1) term is not statistically significant, we remove it from the model and set θ1 = 0

. The results for the maximum likelihood estimation of this model are displayed in Table 1. This

model provides very good fit according to the selected criteria; all the model’s parameters are

highly statistically significant. We therefore extract the maxima and minima from the return shocks

{Zt}t=1,...,T corresponding to standardized demeaned return series using a time-varying volatility

model. Figure 1 shows the evolution of the CAC 40 stock index (1) prices, (2) volatility, (3) raw

returns and (4) standardized returns. Our discussion is hereafter restricted to the standardized

return maxima +Z and minima −Z.

3.3 Crash event detection

The filtering process contributes to answer the question of how to identify a crash event from

the past. Indeed, from an economic perspective, it corresponds to a transformation of daily raw
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returns into daily standardized (devolatized) returns. This transformation helps to identify tail

events independent of the associated volatility regime. It is clear that this transformation allows

the disentanglement of a crash from another tail event, whose magnitude may be amplified by the

high level of volatility. More generally, according to our hypothesis, the stock market crash requires

being:

Sudden It means a price variation independent of the current volatility regime. It refers to a

high-return shock during a period of low volatility and not to a small-return shock during a period

of high volatility. As a consequence, crashes are supposed to happen when the volatility is the

lowest.

Given that standardized returns Zt are independent and are identically distributed, such as

Zt →֒ FZ(0, 1), we have

∀t ∈ [1, ..., T ] , Zt = min (Z1, ..., ZT ) (23)

Significant It means a price variation whose magnitude is high. This magnitude effect can be

captured by a jump in the volatility process. Indeed, asymmetric volatility is a striking phenomenon

in equity markets. More precisely, the so-called leverage effect characterized a negative relation

between past realized returns and conditional volatility. Therefore, a decline in realized returns will

be followed by an asymmetric increase in the conditional volatility. In addition, volatility of stock

price changes is directly related to the rate of flow of information (e.g. Ross (1989), Maheu and

McCurdy (2004)). This jump volatility effect can be given by

∀t ∈ [1, ..., T ] ,
σt+1

σt
= max

(
σ2

σ1
, ...,

σT

σT−1

)
(24)

International crash: It induces contagion effect throughout international financial markets, in-

creasing the stock market index correlation level. A leading U.S stock index such as the S&P 500 can
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be considered as a benchmark for international correlation measure. The conditional correlations

are derived indirectly, in multivariate GARCH models, from the ratio of the covariance and the

product of the roots of the conditional variances 7. However, various multivariate GARCH spec-

ifications remain cumbersome. Engle (2002) proposes a Dynamic Conditional Correlation model

(DCC) with a two step procedure; the first step requires the GARCH variances to be estimated

univariately. Their parameter estimates remain constant for the next step; the second step parame-

terizes the conditional correlations directly and maximizes the log-likelihood function. Engle (2002)

finds that DCC model is often the most accurate among the multivariate GARCH model family.

The contagion effect is given by

∀t ∈ [1, ..., T ] , |ρt+1 − ρt| = max (|ρ2 − ρ1| , ..., |ρT − ρT−1|) (25)

where ρ is the time varying conditional correlation level between conditional volatility changes

of the French CAC 40 stock index and the S&P 500 stock index. Even if we introduce the definition

of a domestic crash, it sounds intuitive that a crash should induce systemic risk.

Domestic crash:

∀t ∈ [1, ..., T ] , |ρt+1 − ρt| ≈ 0 (26)

One-day time period

∀t ∈ [1, ..., T ] , δt = 1/252. (27)

7Given the pair
{

Z, Z
′

}
of standardized returns referring respectively to the CAC 40 stock index and the S&P

500 stock index, ρ
Z,Z

′
,t

is the conditional correlation level, σZ,Z′,t is the conditional covariance level, and
{

σ2
t , σ

′2
t

}

are the respective conditional variances of Z and Z
′

. The time-varying conditional correlation is therefore given
by ρ

Z,Z
′
,t

= σZ,Z′,t/
√

σ2
t σ

′2
t . In our case, we consider the time-varying conditional correlation between conditional

volatility logarithmic changes of Z and Z
′

respectively denoted

{
log

(
σt

σt−1

)
, log

(
σ
′

t

σ
′

t−1

)}
. Results provided upon

request.
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3.4 Return transformation

The reverse transformation for computing raw returns from standardized returns is also very useful

for understanding the economic meaning of the statistical inference drawn from standardized return

series analyses. Indeed, many articles applying EVT to standardized returns leave the reader with

few economic interpretations of the results extracted from the filtered series. Therefore, we need

to transform the standardized returns into "equivalent raw returns". As recent literature, to our

knowledge, does not propose any solution, this article proposes a linear transformation based on a

semi-parametric technique that extends the ordinary least squares regression model to conditional

quantiles. Indeed, while the great majority of regression models are concerned with analyzing the

conditional mean of a dependent variable (standard ordinary least squares); quantile regression

(Koenker and Bassett (1978)) permits a more complete description of the conditional distribution.

It can be used to measure the effect of covariates, not only in the center of a distribution, but

also in the upper and lower tails. Therefore, quantile regression is the ideal tool for estimation of

conditional quantiles of a response (raw return), given a vector of covariates (standardized returns).

As a consequence, a quantile regression is implemented8 for the left tail and another one for the

right tail. The choice of the percentile level corresponds exactly to the respective selected threshold

levels for each tail, which are computed in section 3.6. This complementary methodology refers to

the augmented extreme value theory approach.

3.5 Descriptive statistics of filtered data

Table 1 presents the descriptive statistics of the devolatized log-returns. The D’Agostino (1970) test

of skewness (DAST) under the null hypothesis of normality supports the alternative hypothesis of

8The linear conditional quantile function can be estimated by solving β̂nu
(q) =

argminβ(q)

{∑n

i=1 ςq (Ri − Ziβ(q)}
)

where the check function which weights positive and negative values asymmet-
rically for any quantile 0 < q < 1 is ςq(v) = v (q − I(v < 0)) where I(.) denotes the indicator function. For the
left tail (respectively the right tail), the intercept is -0.0047 (respectively 0.0033), the slope coefficient is 0.0105
(respectively 0.0099). The parameters are all statistically significant at the level of 1%. The adjusted r-squared value
is 0.5715 (respectively 0.6082). The sum of squares errors between raw returns and equivalent raw returns is 9.15%
(respectively 10.86%). Details are given upon request.
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skewness with a p-value of less than 2.2e-16. The Anscombe-Glynn (1983) test of kurtosis (AGKT)

under the null hypothesis of normality supports the alternative hypothesis of a kurtosis different

from three, with a p-value of less than 2.2e-16. This statistic measures the heaviness of the tails

relative to normal distribution. In all cases, the Jarque-Bera statistics yield a strong rejection of

the normality hypothesis. Next, we consider various percentiles from 1% to 99% as comparisons

with those implied by the normal distribution. Again, we have a departure when comparing the

empirically extreme one percentile with the 2.3263 critical value of the normal distribution. This

means that such a realization would have no probability of existing in a Gaussian framework. The

Q-statistic for a given lag is a test statistic for the null hypothesis, where there is no autocorrelation

up to the given order. For 5 and 10 lags, the Q-statistic is distributed as a χ2
5, χ2

10 and χ2
20 with

95% critical values of 11.07, 18.31 and 31.41. The correlogram for the filtered series shows no more

dependence because the Q-statistics for the series are lower than the critical values. Short-term

serial dependence remains significantly below the confidence interval at 95%. Engle’s Lagrange

multiplier (LM) test statistic measures the ARCH effect in the residuals. It computes the number

of observations times the R2 from the test regression of the squared residuals, on constant and

lagged squared residuals up to a given order q. The LM test statistic is asymptotically distributed

χ2
q under general conditions. The null hypothesis underlying this test assumes that there is no

ARCH up to order q in the residuals. There is no more evidence of remaining ARCH effects at any

lag.

4 Empirical results

4.1 Threshold selection

Threshold selection is usually arbitrarily limited to one method in most of the literature, while there

are many approaches that can be complementary. In this article, we propose a complete approach

for threshold detection, mixing visual inspection and automatic selection. The sample mean ex-
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cess function allows for distinction between thin- and heavy-tailed distributions; the heavy-tailed

distribution is associated with a positive slope. We compute the mean residual life plot (MRLP),

which is an estimate of the mean excess function. The threshold detection is done by choosing the

smallest observation, to the right of which the mean excess function remains approximately linear as

a function of the ordered data. Figure 2 displays the mean residual life plot. The critical threshold,

above which the slope is positive, is around +1.0 for +Z and -1.50 for −Z. From this level, the

sample mean excess function increases linearly as the threshold increases. This signifies entrance

into a tail area. The threshold plot exposes the stability region of the tail index parameter and is

presented in Figure 3. An investigation of the stability of the tail index parameter is checked by

implementing the General Pareto distribution over a possible range of thresholds. Even if we note a

relative instability, a possible range of stability belongs in an interval of +1.0 and +2.0 for +Z, while

it is between -0.50 and -1.50 for −Z. For the optimal threshold detection, we follow Beirlant et al.

(2004), who propose a criterion for which the AMSE of the Hill estimator of the extreme value index

is minimal for the optimal number of observations in the tail. Optimal threshold selection yields

estimates very close to the mean residual life plot. The optimal threshold9 is around +0.95 (or the

84.80th percentile) for +Z and -1.38 (or (1-0.9246) i.e., 7.54th percentile) for −Z. It corresponds,

respectively, to a number of upper order statistics of 1,522 and 755 out of 10,014 observations.

The threshold values computed from the optimal algorithm respond to the criteria of stability and

sufficient exceedances with minimum variance. Table 2 summarizes the results for the threshold

selection. Due to the convergence between the three approaches, we consider the threshold optimal

values in this study.

9The same approach applied directly on raw returns gives for the right tail a threshold of +1.07% (upper order
statistics of 1406) and for the left tail a threshold of -3.95% (upper order statistics of 71). Results provided upon
request.
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4.2 Tail area detection

The critical threshold of +0.95 for +Z and -1.38 for −Z corresponds to the entry point of the right

and left tail standardized distributions. Applying the return transformation from the standardized

returns into equivalent raw returns will give us virtual location entry points for the left and right

tails. Indeed, the threshold for the right tail becomes +1.28% (upper order statistics of 1,013)

and for the left tail becomes -1.92% (upper order statistics of 444). This means approximately

that beyond +1.5% and below -2.0%, the French CAC 40 stock index enters into tail areas. This

threshold selection is required for the GPD estimation. Table 3 displays the results for the GPD

when considering the optimal threshold values. The maximum likelihood estimators of the GPD

are the values of the two parameters (ξ̂, σ̂) that maximize the log-likelihood. The tail index value

of +0.1439 for −Z is statistically significant, in contrast to that of +Z. The positive sign confirms

the presence of fat-tailedness for the lower tail. Indeed, the larger the tail index, the more fat-tailed

the distribution. This tail index value indicates that the CAC 40 standardized returns stem from

a distribution with finite variance, skewness, and kurtosis. The upper tail has a tail index close to

zero, indicating moderate tail behavior belonging to the Gumbel-type domain of attraction. These

results are fully consistent with the Q-Q plots of Figure 4. The scale parameters of +Z and −Z are

statistically significant and with the same dispersion.

4.3 Crash event identification

The Table 4a reveals that the 1981-05-13 event is the biggest crash of the sample with a standardized

return of -11.66%. It is consistent with results reported in Table 4b. The next day, the volatility

reaches its highest level ever at 95%. The contagion effect remains relatively high despites its

domestic origin. The 1991-08-19 event is the second biggest crash of the sample. They can be

visually identified in Figure 1 (lower right corner); the second crash does not appear in the raw

returns graph (lower left corner); this means that relying on raw returns to identify crashes turns

out to be misleading; these two first order crashes correspond to a natural cut-off; in addition, they
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both have a political connotation. The 1989-10-16 event is the third biggest crash of the sample.

These two events do not appear in table 4b because their impact is relatively limited in time. The

2007-02-27 event is the eighth biggest crash for which the correlation with the U.S. market is the

highest of the sample; this date marks the beginning of the subprime crisis. The 2008-01-21 event is

the tenth biggest crash; the U.S. market was closed at that date. These two dates are the only crash

events from the recent banking crisis. In fact, most of the extreme returns that occurred in 2007

and 2008 are due to a high regime of volatility. Indeed, the CAC 40 implied (historical) volatility is

about 31.44% (35.40%) in 2008 versus 19.43% (17.13%) in 2007 and 22.67% (20.55%) from 2000 to

2007; actually, 2008 is the most volatile year of the sample. As a consequence, this 2008 financial

year appears to be more volatile than extreme. For instance, Table 4a gives an example of the

over-representation of year 2008 in terms of lowest raw returns and highest volatilities. Precisely,

21 (50) out of the 100 lowest raw returns (highest volatilities) of the sample belong to year 2008.

The 2001-09-11 event is the eleventh biggest crash; the U.S. market was closed at that date. The

1987-05-15 event is the twelfth biggest crash; this date corresponds to a percursor of the 19 October

1987. The remaining negative standardized returns have very low contagion effect (rank > 100); as

a consequence, we can limit the number of crashes as 12 among 755 negative tail events.

4.4 Tail event forecasting

Table 5 displays some tail-related risk measures, such as the value at risk and expected shortfall

measures, for both Gaussian and General Pareto distributions. Probability levels of 99%, 99.5%,

99.9%, 99.95% and 99.99% are considered. The distance between the GPD and Gaussian measures

increases with the level of probability. The conservative choice of the 0.9999 probability level cor-

responds to a worst possible movement in 10,000 days, or approximately 40 years. The reported

0.01%-GPD-VaR is -6.94% and the 0.01%-GPD-ES is -8.46%. This corresponds to transformed

returns of -7.78% for the 0.01%-GPD-VaR and -9.39% for the 0.01%-GPD-ES. It means that the

prediction at the 99.99% level cannot predict the magnitude of the two lowest standardized re-
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turns. Both of them have a political connotation (see Table 4a). Figure 6 is the associated tail

plot in log-log scale. Table 6 displays the return levels for both positive and negative standardized

residuals with confidence intervals. We note, unsurprisingly, that the return levels for negative

returns are higher in comparison to the positive ones; it confirms the asymmetric nature of the

distribution. Figure 5 shows the associated plots. The return level plot consists of plotting the

theoretical quantiles as a function of the return period with a logarithmic scale for the x-axis. It

shows the profile log-likelihood curve of the 100-year return level with the 95% confidence intervals.

It corresponds to a -8.21% standardized return with an asymmetric confidence interval. The 95%

confidence interval is obtained from the profile of log-likelihood as [-9.98%, -6.44%]. This corre-

sponds to an equivalent raw return of -9.13% with a 95% confidence interval of [-10.99%, -7.26%].

The level expected to be exceeded once every century is therefore -9.13%; its lower bound is -10.99%.

4.5 Result summary

1) The tail area begins from +1.5% for the right tail and -2.0% for the left tail.

2) The CAC 40 stock returns distribution has an asymmetric nature: left tail distribution has a

General Pareto form and right tail distribution is exponential.

3) Tail-related risk measures, such as the value at risk and expected shortfall based on a General

Pareto distribution, can capture the magnitude of the 2007-2008 extreme events at the 0.01%

associated probability level. The 0.01%-GPD-VaR level is -7.78% and the 0.01%-GPD-ES is -

9.39%. In addition, the theoretical daily loss, which should be exceeded in one year every century,

is -10.99%.

4) Over the 40-year period, 12 crashes are identified (2 in 2007-2008) in comparison with 755 negative

tail events; in addition, the 2007-02-27 marks the beginning of the subprime crisis.

5) The magnitude of the recent banking crisis is very important in terms of raw returns because the

French market experienced its highest level of volatility in 2008.
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5 Conclusion

The goal of this article is to disentangle crashes from negative extreme returns with a risk manage-

ment stand point. The modus operandi is based on an augmented extreme value theory approach.

An application to the French stock market is provided using the longest daily time series ever used

(1968-2008). The general contribution is to test a definition of stock market crashes that is risk

management-oriented, while the empirical contributions are three-fold:

First, an econometric specification is proposed for the French data over the 40-year period. From

50 possible candidates, the ARMA(2,4)-TGARCH(1,1) structure appears to offer the best fit for

explaining the return-generating process over the long run.

Second, both visual inspection techniques and recent automated threshold selection procedures are

applied to identify the tail region of the standardized returns. This represents one of the most

complete approaches for threshold selection.

Third, a return transformation method for converting standardized returns into equivalent raw

returns is developed; it is based on a quantile regression technique, in order to offer economic inter-

pretation of the empirical results.

Finally, the policy-oriented conclusions are twofold: (i) a counter-intuitive idea in economics is that

crashes happen when the volatility is the lowest, (ii) the identification of the crash event of 2007

(2007-02-27) might have justify the bailout plan of Lehman Brothers and avoid the crisis spread.
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Figure 1: CAC 40 stock index

Figure 1 displays graphics from CAC 40 stock index from September, 30th 1968 to December 31st 2008. From upper
left to lower right corner: CAC 40 stock index prices, TGARCH volatility, raw returns and standardized returns.
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Figure 2: Mean residual life plot

Figure 2 displays the mean excess function plot of the upper (+Z) and lower tail (−Z) of the CAC 40 stock index
standardized returns. The mean residual life plot is flat for the exponential distribution. When the plot is approxi-
mately linear with positively sloped, it indicates Pareto behavior in the tail. This plot is used to select an appropriate
threshold value.
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Figure 4: Quantile-Quantile plot

Figure 4 displays the QQ-plot of the upper (+Z) and lower tail (−Z) of the CAC 40 stock index standardized
returns. The QQ-plot compares the observed quantiles with the theoretical ones. If the standardized returns follow
an exponential distribution then we should observe a linear trend. We note a strong concave departure in the QQ-plots
that is a sign of the presence of heavy tails.
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Figure 5: Return level plot

Figure 5 displays two return level plots for the lower tail (−Z) of the CAC 40 stock index standardized returns. The
plot in the left hand side is based on the computation of the 1, 2, 5, 10, 20, 50 and 100-year return levels for the fitted
GPD with 95% confidence intervals computed by the delta method. The plot in the right hand side shows the profile
log-likelihood curve of the 100-year return level with the 95% confidence intervals located in the points of intersection.
In contrast with the delta method, the confidence intervals are asymmetric about the maximum likelihood estimate.
More precisely, the profile likelihood interval is shifted to the right showing an asymmetry with the increasing return
level since the data provide weaker information on high levels.
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Figure 6: Tail plot

Figure 6 displays the CAC 40 stock index standardized negative returns (−Z). The tail plot is based on a generalized
Pareto model fitted to losses over the −Z-threshold. The estimated model is plotted as a solid line while the actual
daily −Z above the threshold are shown in circles. The left y-axis indicates the tail probabilities 1 − F (x) and the
lower x-axis indicates the −Z values (in logarithmic scale). The vertical three lines (from left to right) locate the
0.99th, 0.995th, 0.999th and 0.9999th Expected Shortfall level.
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Table 1: Descriptive statistics

Table 1 presents the descriptive statistics of the CAC 40 stock index standardized daily log-returns (Z) from Septem-
ber, 30th 1968 to December 31st 2008. The filtered model is an ARMA(2,4)-TGARCH(1,1).

Z Z
Mean −0.0011 Q10 (residual) 8.8759

(p − value) (0.114)
Median −0.0015 Q10 (squared residual) 3.0381

(p − value) (0.694)
Maximum 8.5990 Q20 (residual) 17.046

(p − value) (0.316)
Minimum −11.6598 Q20 (squared residual) 12.034

(p − value) (0.676)
Std.Dev. 0.9999 EngleLM(1) 0.5133

(Probability) (0.4737)
Skewness −0.4068∗∗∗ EngleLM(2) 0.6564

(z − statistic, p − value) (−10.5515, 2.2e − 16) (Probability) (0.7202)
Kurtosis 8.0388∗∗∗ µ 0.00026∗∗

(z − statistic, p − value) (29.7265, 2.2e − 16) (z − statistic) (2.4299)
Jarque − Bera 10869.99∗∗∗ φ1 0.1691∗∗∗

(p − value) (0.0000) (z − statistic) (15.2579)
q1% −2.4432 φ2 0.6769∗∗∗

(z − statistic) (6.9853)
q5% −1.6230 θ1 NA

(z − statistic)
q95% 1.5603 θ2 −0.7311∗∗∗

(z − statistic) (−7.5155)
q99% 2.3612 θ3 −0.1210∗∗∗

(z − statistic) (−6.1262)
AR1 −0.001 θ4 0.0491∗∗∗

(z − statistic) (4.2774)
AR2 0.008 ω 1.96e − 06∗∗∗

(z − statistic) (8.2497)
AR3 −0.008 α 0.0737∗∗∗

(z − statistic) (4.7794)
AR4 0.013 β 0.8790∗∗∗

(z − statistic) (90.7266)
AR5 −0.001 γ 0.0771∗∗∗

(z − statistic) (3.8216)
AR6 −0.010 Log − likelihood 31987.06

Q6 (residual) 3.9322∗∗ Akaike criterion −6.3864
(p − value) (0.047)

Q6 (squared residual) 2.0451 Number 10014
(p − value) (0.153)

*, ** and*** denotes parameter statistically significant at the 90%, 95% and 99% confidence level.
q1%, q5%, q95% and q99% represent the empirical quantile measures at respectively 1%, 5%, 95% and 99%.



Table 2: Threshold choice

Table 2 presents the results of the threshold detection for the upper (+Z) and lower (−Z) tail of the CAC 40 stock
index standardized returns. Mean Excess Function plot is the first visual inspection where selection is made around
linear region. Stability plot is the second visual inspection method where selection is made around stability region.
The given intervals denote the range of acceptable threshold. Visual guidance denotes a plausible threshold choice.
The optimal selection method is an automated method consisting in minimizing asymptotic mean squared error.

+Z −Z
MEF plot 1 −1.5

Stability plot [1; 2] [−0.5;−1.5]
QQ plot 2.5 −1.5

Optimal selection 0.9547 −1.3811

Table 3: Parameters estimates for the GPD model

Table 3 gives parameter estimates of the General Pareto distribution fitted to the upper (+Z) and lower tails (−Z) of
the CAC 40 stock index standardized returns. The generalized Pareto distribution is fitted to excesses over the selected
threshold. The vector parameters are estimated by the maximum likelihood method. Nb. Exceedances corresponds
to the number of observations in the tail. Percentile is the percentage of observations below the threshold. Neg. Lik
is the negative logarithm of the likelihood evaluated at the maximum likelihood estimates.

+Z −Z
ξ −0.00055 0.14397∗∗∗

(s.e) (0.0195) (0.0345)
σ 0.5403∗∗∗ 0.5015∗∗∗

(s.e) (0.0174) (0.0250)
Threshold 0.9547 −1.3811

Nb.Exceedances 1522 755
Percentile 0.8480 0.9246
Neg.Lik. 584.326 342.7594

*** denotes parameter significantly different from zero
at the 99% confidence level.



Table 4: Extreme events

Table 4a displays the fifteen: daily lowest raw returns (−R), lowest standardized returns (−Z), highest ARMA(2,4)-TGARCH volatilities (σ) and highest
jump volatility ratio (σt+1/σt) for the CAC 40 stock index (1968-2008); last column displays the highest time-varying conditional correlation absolute
variations |ρt+1 − ρt| between the CAC 40 stock index standardized returns (Z) and the S&P 500 stock index standardized returns (Z’) from 1968 to 2008.
Table 4b displays the ten monthly lowest extreme events identified by Gallais-Hamonno and Arbulu (2002) and Le Bris (2008). Gallais-Hamonno and Arbulu
(2002) covered a period from 1802 to 2002. GH-A consider only raw returns. Le Bris (2008) covers a period from 1854 to 2008. LB considers both raw
returns (1) and centered-reduced returns (2). Note that the difference of magnitude for a given event (between LB and GH-A) arises from the different way
of construction of their respective monthly index. For the comparison, all their returns lying outside the range of 1968-2008 are removed from this table.
The French presidential election was held on Sunday 1981-05-10 and proclaimed by the Constitutional Council on 1981-05-15. The market panic was very
strong judging by the magnitude of the decline of -15.10%. The French stock index followed on 1981-05-13 the sudden decline of the companies that were
supposed to be nationalized according to the socialist program. This date also corresponds to the Pope John Paul II assassination attempt. The second
lowest standardized return of -10.89% occurred on Monday 1991-08-19 and corresponds to the 1991 Soviet coup d’état attempt against President Mikhail
Gorbachev. Note that these two lowest standardized returns (-Z) have a political connotation. The third lowest standardized return of -6.36% occurred on
Monday 1989-10-16 in reaction of the US stock market crash that occurred on Friday 1989-10-13 when the junk bond market collapsed; this alert signal is
captured in last column (rank # 6). The date of 01-04-1982 corresponds to the Falkland Islands War during a context of currency crisis. President Carter
appoints Paul Volcker chairman of the Federal Reserve Board in August 1979. Paul Volcker announces on October 6 that he imposes a one percent increase
in the discount interest rate in order to slow double digit inflation rate. Banks raise their prime loan rate on October 9. The consequence is a small investor’s
panic that leads Dow Jones Industrial Average to fall by 26.48 points this day. On 1979-10-10, the New York Stock Exchange has a record 81.6 million
shares; it affects by the same way the Paris Stock Exchange. The peak of early January 1980 marks the onset of a recession in US that spreads to Europe.
On 2007-02-27, the Federal Home Loan Mortgage Corporation (Freddie Mac) announces that it will no longer buy the most risky subprime mortgages and
all mortgage-related securities. This government agency was not able to profit from diversification effect because of the legal constraint imposed on its
investment choices. This explains its huge risk exposition during the credit market meltdown. This date marks the beginning of the subprime crisis. The date
of 1986-05-26 does not have any correspondence in the French Regulator archive; this corresponds exactly to one month after the explosion of the Chernobyl
plant; note that the Paris Bourse started to implement an electronic trading system in May 1986. US stock markets are closed on this Memorial Day. The
date of 2008-01-21 was characterized by a sharp decline in all non-US equity markets due to successive negative information. US stock markets are closed on
this Martin Luther King Day. By Monday 21 January, the Société Générale bank had already discovered the total exposure of 50 billion euros made by one
of his traders Jerome Kerviel. After having informed the Banque de France and the French financial market regulator, the decision to liquidate the position
was taken; the CAC 40 stock index plunged by 7.08% the same day. The next day, with no information about this event, the U.S. Fed decided to prevent
a similar crash in its domestic market and decided to cut the interest rates sharply. Note finally the weak daily impact of the Black Monday (1987-10-19)
on the French market. It represents the 36th lowest raw return (-4.76%) over the 40-year period. However, its impact is significant in terms of cumulative
returns. In addition, during year 1987, the jump volatility ratio is highest on 1987-10-16. It can be interpreted as an alert signal. The US stock markets are
closed on World Trade centre attacks the 2001-09-11; they stay closed the rest of the week. In conclusion, by excluding the tail events with low contagion
effect (rank > 100), we identify 12 crashes among 755 negative tail events.

Table 4a
Date R Date Z Date σ Date (σt+1/σt) Date |ρt+1 − ρt|#rank
13/05/1981 −15.10% 13/05/1981 −11.66% 14/05/1981 95.06% 14/05/1981 4.63 27/02/2007 27.71%#1
06/10/2008 −9.47% 19/08/1991 −10.89% 14/10/2008 94.29% 20/08/1991 4.34 02/01/1980 25.88%#2
10/10/2008 −8.05% 16/10/1989 −6.36% 16/10/2008 93.73% 17/10/1989 2.64 19/08/1991 24.01%#3
11/09/2001 −7.68% 04/01/1982 −6.29% 18/05/1981 92.88% 05/01/1982 2.62 19/10/1987 12.83%#5
19/08/1991 −7.57% 10/10/1979 −5.94% 17/10/2008 91.69% 12/08/1969 2.52 13/10/1989 11.72%#6
21/01/2008 −7.08% 02/01/1980 −5.92% 15/05/1981 90.68% 11/10/1979 2.49 16/10/1989 6.70%#12
15/10/2008 −7.06% 03/01/1983 −5.35% 19/05/1981 88.83% 03/01/1980 2.49 15/05/1987 6.51%#13
26/05/1986 −6.94% 27/02/2007 −5.12% 15/10/2008 88.53% 04/01/1983 2.29 13/05/1981 6.17%#14
10/11/1987 −6.61% 26/05/1986 −5.07% 20/10/2008 88.38% 28/02/2007 2.21 03/01/1983 4.87%#22
06/11/2008 −6.59% 21/01/2008 −4.79% 13/10/2008 85.14% 27/05/1986 2.19 10/09/2001 4.75%#23
08/10/2008 −6.51% 11/09/2001 −4.73% 21/10/2008 83.79% 22/01/2008 2.09 04/01/1982 4.59%#27
16/10/1989 −6.50% 15/10/1987 −4.70% 20/05/1981 83.43% 12/09/2001 2.06 10/10/1979 4.46%#29
16/10/2008 −6.10% 21/03/1977 −4.44% 09/10/2008 80.00% 16/10/1987 2.06 21/03/1977 2.00%#104
28/10/1987 −6.07% 15/05/1987 −4.40% 23/10/2008 79.58% 22/03/1977 1.97 12/09/1986 1.67%#138
30/09/2002 −6.04% 12/09/1986 −4.05% 22/10/2008 78.60% 18/05/1987 1.96 15/10/1987 1.56%#152



Table 4b
Date LB (1) Date LB(2) Date GH − A
May1981 −32.79% May1981 −4.48% November1987 −18.36%
October1987 −25% October1987 −3.49% June1981 −14.37%
May1986 −18.56% September1998 −3.23% October1987 −14.02%
September1998 −17.66% May1986 −2.89% May1981 −12.96%
July2002 −15.99% November1973 −2.85% August1990 −12.79%
October2008 −14.99% October2008 −2.79%
September2002 −14.81%
november1973 −14.31%
August1990 −13.39%
June1974 −12.82%

Table 5: Estimated risk measures

Table 5 gives for each probability level of 0.99, 0.995, 0.999, 0.9995, 0.9999 the VaR and the associated Expected
Shortfall estimates based on a (i) GPD model fitted to the CAC 40 stock index negative standardized returns (−Z)
and a (ii) normal distribution.

Probability VaR − GPD ES − GPD VaR − normal ES − normal
0.9900 −2.5570 −3.3408 −2.3263 −2.6652
0.9950 −3.0461 −3.9120 −2.5758 −2.8919
0.9990 −4.3886 −5.4804 −3.0902 −3.3670
0.9995 −5.0699 −6.2762 −3.2905 −3.5543
0.9999 −6.9402 −8.4611 −3.7190 −3.9584

Table 6: Estimated return levels

Table 6 displays the results of the return levels for 1, 2, 5, 10, 20, 50 and 100 years. This table displays the result
of the fit of the upper tail (+Z) and lower tail (−Z) of the CAC 40 stock index standardized returns. 2x2 columns
represent upper and lower bound with 95% confidence interval.

Period +Z Lower bound Upper bound −Z Lower bound Upper bound
1 2.9182 2.7994 3.0371 −3.2143 −3.0316 −3.3970
2 3.2920 3.1330 3.4510 −3.7722 −3.4975 −4.0470
5 3.7859 3.5582 4.0135 −4.6006 −4.1431 −5.0581
10 4.1593 3.8677 4.4509 −5.3039 −4.6522 −5.9557
20 4.5326 4.1669 4.8983 −6.0811 −5.1776 −6.9846
50 5.0259 4.5466 5.5052 −7.2348 −5.8935 −8.5762
100 5.3989 4.8219 5.9758 −8.2145 −6.4479 −9.9811


