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1 Introduction

Balanced-budget rules recommendations to governments is a recurrent sub-

ject of controversies among economists and politicians. In the recent years,

the financial crisis has generated a strong revival of interest of this debate

through its consequences in terms of government debt sustainability. Some

countries, characterized by too large debt and public deficits, are constrained

to borrow on the financial markets against excessively high interest rates and

this generates an increasing debt burden. In Europe, this has been experi-

enced by several countries, starting with Greece, but US faces the same kind

of difficulties. These concerns related to the solvability of public debt also

enforce governments to reduce their deficits and implement public policies

characterized by a balanced-budget.

From a theoretical point of view, several arguments have been considered

in favor or against balanced-budget fiscal policy rules. In their seminal contri-

bution, Schmitt-Grohé and Uribe [24] focus on the fact that balanced-budget

rules may induce belief driven aggregate instability. Considering an economy

with infinitely-lived households, their basic model introduces a proportional

tax on labor income. Since public expenditures are assumed to be constant,

the tax rate is counter-cyclical, which is shown to be a source of endogenous

fluctuations.1

The economic intuition relies on self-fulfilling expectations. If households

expect a higher tax rate at the next period, they will reduce their labor sup-

ply, which has a negative effect on capital returns. Therefore, they currently

reduce investment. Needing less income to finance capital accumulation, they

also supply less labor. Since the labor tax rate is counter-cyclical, it becomes

larger, explaining that expectations are self-fulfilling.

Contributing to this debate, Giannitsarou [10] argues that consumption

taxation should be preferred to income taxation. As in Schmitt-Grohé and

Uribe [24], she assumes a balanced-budget rule with a constant level of public

spendings, but entirely financed by consumption taxation, and she shows

that saddle-path stability always prevails.2 Therefore, she suggests that a

1See also Gokan [7] and Pintus [21] for similar analysis of finance constrained economies.
2Consumption taxation is shown however to have destabilization effects by Lloyd-Braga
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government running policies with a stabilization target should increase the

share of public spendings financed by consumption taxation.

Although Schmitt-Grohé and Uribe [24] and Giannitsarou [10] show that

the (de-)stabilizing impacts of labor income and consumption taxations are

opposite, both tax rates introduce a similar distortion, which affects the price

of leisure in terms of the consumption good. An increase in either the labor

income or the consumption tax rate decreases the relative price of leisure, re-

ducing both labor supply and consumption through a substitution effect. As

mentioned previously, this lowers labor supply and generates expectation-

driven fluctuations and aggregate instability. In the case of consumption

taxation, the decrease of consumption is also compensated by an increase of

the labor supply through an income effect. When this latter effect is suffi-

ciently large with respect to the former, any instability due to self-fulfilling

expectations is ruled out. This explains the clear-cut conclusions obtained

by Giannitsarou [10] in the case of additively-separable preferences. Never-

theless, this economic intuition also suggests that the final impact of a tax

on consumption crucially depends on the relative size of the substitution and

income effects, and thus on the specification of the utility function.

The aim of this paper is to re-examine the (de-)stabilizing role of con-

sumption taxation considering the extreme case of the Greenwood-Hercovitz-

Huffman [8] (GHH) utility function, characterized by the absence of any

income effect. In addition, we assume a general one-sector technology to

take into account any degree of input substitution. Finally, we focus on

a balanced-budget rule that generalizes the one introduced in Giannitsarou

[10]. We consider indeed public spendings that can be pro-cyclical, constant

or counter-cyclical. Note that when public spendings are counter-cyclical,

constant or weakly pro-cyclical, the consumption tax rate is counter-cyclical,

whereas when public spendings are sufficiently pro-cyclical, the consumption

tax rate becomes pro-cyclical.

Our main results are the following: First we prove the existence of a Laf-

fer curve and thus of multiple steady states if the tax rate is counter-cyclical.

Second, we show that the existence of local indeterminacy also requires a

counter-cyclical consumption tax rate. More precisely, under GHH prefer-

et al. [17] in a finance constrained economy with heterogeneous households.

2



ences, expectation-driven fluctuations arise for a non-empty range of tax rates

when public spendings are constant, the case considered in Giannitsarou [10].

This conclusion is even reinforced by counter-cyclical public spendings: the

minimum level of the tax rate compatible with local indeterminacy becomes

lower.

A numerical illustration allows finally to confirm all these results. Us-

ing a standard parameterization of the fundamentals, we show that aggre-

gate instability and endogenous sunspot fluctuations are compatible with tax

rates observed in most OECD countries, depending on the degree of counter-

cyclicality of the public spendings. This paper then proves that in the absence

of any income effect, a balanced-budget rule financed by consumption taxa-

tion may be destabilizing. As a result, if the government’s interventions have

a stabilization target, any policy recommendation leading to an increase of

the share of public spendings financed by consumption taxation may not be

worthwhile. The precise impact of a larger tax rate on consumption has to

be evaluated depending on the size of income effects.

The rest of this paper is organized as follows. We present the model in

the next section. In Section 3, we analyze the multiplicity of steady states

in connection with the existence of a Laffer curve. In Section 4, we give

conditions for the existence of aggregate instability and endogenous sunspot

fluctuations under GHH preferences. Section 5 focuses on a numerical il-

lustration and in Section 6, we provide economic intuitions for our results.

Some concluding remarks are provided in Section 7, and all the proofs are in

a final Appendix.

2 The model

2.1 The production structure

Consider a perfectly competitive economy in which the final output is pro-

duced using capital K and labor L. The production function of a represen-

tative firm is thus AF (K, L), with F (K, L) homogeneous of degree one and

A > 0 a scaling parameter. Denoting, for any L 6= 0, x = K/L the capital

stock per labor unit, we define the production function in intensive form as
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Af(x).

Assumption 1. f(x) is defined over R+, C
r over R++ for r large enough,

increasing (f ′(x) > 0) and concave (f ′′(x) < 0). Moreover, there exist M > 0

and N > 0 such that f ′(0) > M and f ′(+∞) < N .

The rental rate of capital r(t) and the wage rate w(t) then satisfy:

r(t) = Af ′(x(t)) (1)

w(t) = A[f(x(t)) − x(t)f ′(x(t))] (2)

We can also compute the share of capital in total income:

s(x) = xf ′(x)
f(x)

∈ (0, 1) (3)

and the elasticity of capital-labor substitution:

σ(x) = − (1−s(x))f ′(x)
xf ′′(x)

> 0 (4)

2.2 Households’ behavior

We consider an economy populated by a large number of identical infinitely-

lived agents. We assume without loss of generality that the total population

is constant and normalized to one. At each period a representative agent

supplies elastically an amount of labor l ∈ [0, ℓ], with ℓ > 1 his endowment

of labor. He then derives utility from consumption c and leisure L = ℓ − l

according to a function U(c,L/B), where B > 0 is a scaling parameter,3

which satisfies:

Assumption 2. U(c,L/B) is defined over R+ × [0, ℓ], C
r over R++ × (0, ℓ)

for r large enough, increasing with respect to each argument and con-

cave. Moreover, U12

U1

L

B
− U22

U2

L

B
6= 1, limX→0 XU2(c, X)/U1(c, X) = 0 and

limX→+∞ XU2(c, X)/U1(c, X) = +∞, or limX→0 XU2(c, X)/U1(c, X) = +∞

and limX→+∞ XU2(c, X)/U1(c, X) = 0.

3The constant B is used to prove the existence of a normalized steady state which

remains invariant with respect to preference parameters such that the elasticity of in-

tertemporal substitution in consumption or the wage elasticity of the labor supply.
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We also introduce a standard normality assumption between consumption

and leisure which ensures that the demands for these two goods are increasing

functions of the agent’s total income

Assumption 3. Consumption c and leisure L are normal goods.

Actually, within these general properties for the utility function, we

mainly consider in this paper the Greenwood-Hercovitz-Huffman [8] (GHH)

formulation such that

U(c,L/B) = u(c + G(L/B)) (5)

with u(.) and G(.) some increasing and concave functions. Such a speci-

fication then satisfies Assumption 3 and implies that the marginal rate of

substitution between consumption and leisure depends on the latter only as
U2(c,L/B)

BU1(c,L/B)
= G′(L/B)/B

As this expression does not depend on consumption, there is no income effect

associated with the agent’s labor supply decision. Assumption 2 imposes the

following properties:

Assumption 4. ǫG
LL ≡ −G′(X)/(G′′(X)X) 6= 1, limX→0 G′(X)X =

0 and limX→+∞ G′(X)X = +∞, or limX→0 G′(X)X = +∞ and

limX→+∞ G′(X)X = 0.4

Remark 1 : Three other specifications of preferences are also quite popular

in the literature:

- the additively separable formulation U(c,L/B) = u(c) + v(L/B), with

u(c) and v(L/B) some positive increasing concave functions,5

- the King-Plosser-Rebelo [13] (KPR) formulation

U(c,L/B) = [cv(L/B)]1−θ

1−θ
(6)

with v(L/B) a positive increasing function and θ ≥ 0,

4If G(X) = X1−γ/(1 − γ) with γ ≥ 0 the inverse of the elasticity of the function, the

first part of Assumption 4 is satisfied when γ ∈ [0, 1) while the second part holds if γ > 1.
5Giannitsarou [10] mainly uses such an additively separable specification with u(c) =

lnc, v(L/B) = −[ℓ − L)/B]1+χ/(1 + χ) and χ ≥ 0.
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- the linearly homogeneous formulation which is characterized by the

share of consumption within total utility α(c,L/B) ∈ (0, 1) defined as follows:

α(c,L/B) = U1(c,L/B)c
U(c,L/B)

(7)

As we are interested in finding conditions for local indeterminacy, i.e. the

existence of a continuum of converging equilibrium paths, under reasonable

(standard) parameterizations, we do not consider these formulations. Indeed,

under Assumptions 1-3, it can be shown that for the additively separable and

KPR specifications, local indeterminacy is always ruled out. This conclusion

generalizes the main result of Giannitsarou [10] to any production function

and any utility function, be it additively separable or KPR. Moreover,

with the linear homogeneous specification, local indeterminacy is ruled out

under constant government spendings, and requires extreme conditions with

counter-cyclical government spendings.6

Since the population is constant and of unit size, we have L = l. The

intertemporal maximization program of the representative agent is given as

follows:

max
c(t),l(t),K(t)

∫ +∞

t=0

e−ρtU (c(t), (ℓ − l(t))/B)

s.t. h(c(t))c(t) + K̇(t) + δK(t) = r(t)K(t) + w(t)l(t)

K(0) > 0 given

(8)

where ρ > 0 is the discount factor, δ ∈ (0, 1) the depreciation rate of capital

and K(0) the initial capital stock. In the budget constraint, h(c) denotes

one plus the tax rate on consumption. This function is assumed to have the

following properties:

Assumption 5. h (c) : [0, +∞) → [1, +∞) is continuous, and C1 on

(0, +∞).

Assumption 5 provides quite large degrees of freedom for the formulation

of government income Ω(c) = h(c)c − c. This allows us to consider in the

same framework pro-cyclical (Ω(c)/c and h(c) increasing), or counter-cyclical

6The proofs of these claims can be provided upon request.

6



(Ω(c)/c and h(c) decreasing) consumption tax rules. Let us introduce the

following elasticity:
ζ(c) = h′(c)c

h(c) (9)

The consumption tax rate is then pro-cyclical (counter-cyclical) if ζ is positive

(negative).

We assume in the following that the representative agent considers as

given the tax rate on consumption. Let us introduce the Hamiltonian in

current value:

H = U(c(t), (ℓ − l(t))/B) + λ(t)
[

r(t)K(t) + w(t)l(t) − h(c(t))c(t) − δK(t)
]

with λ(t) the shadow price of capital K(t). Considering the prices (1)-(2)

and h(c) as given, we derive the following first order conditions

U1(c(t), (ℓ − l(t))/B) = λ(t)h(c(t)) (10)

(1/B)U2(c(t), (ℓ − l(t))/B) = λ(t)w(t) (11)

λ̇(t) = −λ(t) [r(t) − ρ − δ] (12)

Any solution needs also to satisfy the transversality condition

lim
t→+∞

e−ρt U1(c(t), ℓ − l(t))

h(c(t))
K(t) = 0 (13)

2.3 Government

Taxes on consumption are used to finance an endogenous level of public

spending G(t). Given the level of government income Ω (c(t)) derived from

the tax function, the government expenditures G(t) are endogenously deter-

mined by the following balanced-budget rule:

G(t) = Ω (c(t)) = h(c(t))c(t) − c(t) (14)

We further assume that the public expenditures G(t) neither affect the con-

sumers’ preferences nor the production function.

In the following we will consider a sufficiently general formulation of pub-

lic expenditures G(t) that encompasses the case of Giannitsarou [10], in which

the government faces an exogenous stream of constant expenditure G(t) = G

that is financed by levying proportional taxes on consumption. Our formu-

lation allows indeed for counter or pro-cyclical government spendings. We
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choose consumption c as a proxy of the measure of the business cycle and we

assume that public spending is a function of c, namely G(t) ≡ G(c(t)). Using

our notations we get

G(c(t)) = Ω(c(t)) = h(c(t))c(t) − c(t) = τc(c(t))c(t) (15)

This expression endogenously determines the level of the consumption tax

rate. Let us then denote:

η ≡ G′(c)c/G(c)

We will say that public expenditures are counter(pro)-cyclical when η <

0 (η > 0). The Giannitsarou’s case of constant government spending is

obtained when η = 0. Using the balanced-budget rule it follows that:

ζ = τc(η−1)
1+τc

(16)

The tax rate τ(c) = G(c)/c is therefore counter-cyclical for η < 1, pro-cyclical

for η > 1 and constant for η = 1.

2.4 Intertemporal equilibrium

Under Assumptions 2 and 3, substituting equation (2) in (11) and solving

(10)-(11) with respect to c(t) and l(t) gives consumption demand and la-

bor supply functions c(K(t), λ(t)) and l(K(t), λ(t)). Using (1)-(2), we get

equilibrium values for the rental rate of capital r(t) and the wage rate w(t):

r(t) = Af ′(x(t)) ≡ r(K(t), λ(t))

w(t) = A[f(x(t)) − x(t)f ′(x(t))] ≡ w(K(t), λ(t))
(17)

with x(t) = K(t)/l(K(t), λ(t)). From the budget constraint in the program

(8) and (12), we finally derive the following system of differential equations

in K and λ:

K̇(t) = r(K(t), λ(t))K(t) + w(K(t), λ(t))l(K(t), λ(t)) − δK(t)

− h(c(K(t), λ(t)))c(K(t), λ(t))

λ̇(t) = −λ(t) [r(K(t), λ(t)) − ρ − δ]

(18)

An intertemporal equilibrium is then a path {K(t), λ(t)}t≥0, with K(0) > 0,

that satisfies equations (18) and the transversality condition (13).
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3 Steady state analysis

3.1 Multiplicity of steady states and Laffer curve

A steady state is a 4-tuple (K∗, l∗, x∗, c∗) such that x∗ = K∗/l∗, which is

solution of:

δ + ρ = Af ′(x) (19)

h(c)c = l [Af(x) − δx] (20)

U2(c, (ℓ − l)/B)

BU1(c, (ℓ − l)/B)
=

A[f(x) − xf ′(x)]

h(c)
(21)

Obviously, when M > δ + ρ > N in Assumption 1, there is a unique x = x∗

satisfying (19). However, given x = x∗, nothing guarantees the existence nor

the uniqueness of c, l and k.

Lemma 1. Let Assumptions 1-3 and 5 hold with M > δ + ρ > N and

ζ 6= −1 for all l ∈ (0, ℓ). Then there exists at most one steady state if the

consumption tax rate is pro-cyclical, i.e. ζ > 0. Multiplicity requires ζ < 0,

at least for some values of l ∈ (0, ℓ).

Proof : See Appendix 8.1.

In the case of the balanced-budget rule as given by (15) and the expression

(16), we conclude that uniqueness is ensured as soon as η ≥ 1 and multiplicity

requires η < 1.

The multiplicity of steady states can also be related to the existence of a

Laffer curve. Using the balanced-budget rule as given by (15) and considering

a given x = x∗, a steady state can be defined by a solution (τc, c, l) satisfying:

G(c) = Ω(c) = τcc (22)

(1 + τc)c = [Af(x∗) − δx∗] l (23)

(1 + τc)
U2(c, (ℓ − l)/B)

BU1(c, (ℓ − l)/B)
= A[f(x∗) − x∗f ′(x∗)] (24)

Substituting the labor supply l derived from (23) into (24), we can define

consumption as c = c(τc). Therefore, government spendings and incomes can

be expressed as functions of τc. We can then define the following elasticities
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ǫG(τc) ≡
dG
dτc

τc

G
, ǫΩ(τc) ≡

dΩ
dτc

τc

Ω
(25)

The existence of a Laffer curve is obtained if ǫΩ(τc) is a non-monotonic func-

tion of τc and the multiplicity of steady states can be analyzed by comparing

ǫG(τc) and ǫΩ(τc) when τc ∈ [0, +∞). With GHH preferences, from the elas-

ticity of the G(.) function ǫG
LL defined in Assumption 4, we need to introduce

ǫG
ll = −ǫG

LLL/l which also gives the elasticity of the labor supply with respect

to the wage rate as ǫℓw = −ǫG
ll . It follows that

ǫG(τc) =
ητc(ǫG

ll−1)

1+τc
, ǫΩ(τc) =

1+τcǫG
ll

1+τc
(26)

We then derive the existence of a Laffer curve in the case of a constant

elasticity of the labor supply:7

Proposition 1. Let U(c,L/B) = u(c + G(L/B)) with G(L/B) = −(ℓ −

L)1+1/ǫG
ll /(1 + 1/ǫG

ll ), and Assumptions 1, 2, 4 hold with M > δ + ρ > N .

Then ǫΩ(τc) T 0 if and only if τc S τ ∗
c ≡ −1/ǫG

ll .

Proof : See Appendix 8.2.

The Laffer curve is illustrated by Ω(c(τc)) on Figure 1. The number

of steady states is determined by the intersections of the curves G(c(τc))

and Ω(c(τc)). As shown in Lemma 1, when η ≥ 1, i.e. ζ ≥ 0, we have

ǫG(τc) < ǫΩ(τc) for all τc ≥ 0 and there exists a unique steady state. On the

contrary, if government spendings are too counter-cyclical with η ≪ 0 and

the initial value G(c(0)) is too large, there is no steady state.

In the case of constant government spendings with G(t) = G, the existence

of two steady states is generic as soon as G is not too large. Actually, Figure

1 shows that there exist η < 0 and η̄ ∈ (0, 1) such that the same property

holds when variable government spendings are considered with η ∈ (η, η̄) and

ǫG
ll < −η/(1 − η).8

7In the case of a general function G(L/B) the elasticity ǫG
ll depends on τc and the Laffer

curve may have an unconventional shape with multiple local maxima.
8This inequality ensures ǫG(+∞) > ǫΩ(+∞) and thus a second crossing of the curves

G(c(τc)) and Ω(c(τc)). Note that the inequality is obviously satisfied if government spend-

ings are counter-cyclical with η ≤ 0.
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G, Ω

G(c(0))

τcτ ∗
c

Ω(c(τc))

η ≪ 0 η < 0

η = 0

η ∈ (0, 1)

η ≥ 1

Figure 1: Laffer curve and multiple steady states

3.2 A normalized steady state

Consider equations (19)-(21). Assuming ζ(c∗) 6= −1, equation (20) im-

plicitely defines c∗ = c(x∗, l∗). Substituting this expression in (21), we use

the scaling parameters A > 0 and B > 0 in order to give conditions for the

existence of a normalized steady state (NSS in the sequel) such that x∗ = 1

and l∗ = 1. They have to satisfy:

δ + ρ = Af ′(1) (27)

U2(c(1, 1), (ℓ − 1)/B)

BU1(c(1, 1), (ℓ− 1)/B)
=

A[f(1) − f ′(1)]

h(c(1, 1))
(28)

Using this, we can show:

Proposition 2. Let Assumptions 1-3 and 5 hold and ζ(c∗) 6= −1. Then there

exist A∗ and B∗ which are the unique solutions of (27) and (28) respectively

such that when A = A∗ and B = B∗, (x∗, l∗) = (1, 1) is a steady state.

Proof : See Appendix 8.3.
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In the rest of the paper, we evaluate all the shares and elasticities previously

defined at the NSS. From (3), (4) and c∗ = c(1, 1), we consider indeed s(1) =

s, σ(1) = σ and ζ(c∗) = ζ .

Remark 2 : Using a continuity argument we derive from Proposition 2

that there exists an intertemporal equilibrium for any initial capital stock

K0 in the neighborhood of K∗.

4 Aggregate instability with consumption

taxes

Let us introduce the following elasticities:

ǫcc = − U1(c,L)
U11(c,L)c

, ǫLc = − U2(c,L)
U21(c,L)c

, ǫcL = − U1(c,L)
U12(c,L)L

, ǫLL = − U2(c,L)
U22(c,L)L

,

As it is more convenient to study our model in terms of elasticities with

respect to labor, we consider:

ǫlc = ǫLc, ǫcl = −ǫcL
ℓ−l
l

, ǫll = −ǫLL
ℓ−l
l

< 0 (29)

The linearization of the dynamical system (18) around the NSS gives the

characteristic polynomial P(λ) = λ2−λT +D with T and D which obviously

depend on all the previous elasticities evaluated at the NSS.9

Our aim is to discuss the local indeterminacy properties of equilibria, i.e.

the existence of a continuum of equilibrium paths starting from the same

initial capital stock and converging to the NSS. Our model consists in one

predetermined variable, the capital stock K, and one forward variable, the

shadow price λ of capital. Any solution from (18) that converges to the NSS

satisfies the transversality condition and is an equilibrium. Therefore, given

K(0), if there is more than one initial price λ(0) solution of equations (18),

the equilibrium path from K(0) will not be unique. In particular, if both

roots of the characteristic polynomial have negative real parts, there will be

a continuum of converging paths and thus a continuum of equilibria.

Definition 1. If D > 0 and T < 0 the NSS is locally indeterminate.

9The precise expression of the characteristic polynomial is given in Appendix 8.4.
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We provide immediately a general result.

Lemma 2. Under Assumptions 1-3 and 5, the NSS is locally indeterminate

only if the consumption tax rate is counter-cyclical, i.e. ζ < 0.

We then derive from Lemmas 1 and 2 that if ζ ≥ 0, there exists a unique

steady state which is locally determinate.

In the case of a GHH utility function, let us consider the elasticity of the

function G(L/B), denoted ǫG
LL, as defined in Assumption 4. We easily get

from (29) that

ǫcc = ǫlc,
1
ǫll

= 1
ǫcl

+ 1
ǫG
ll

= − (1−s)(δ+ρ)
δ(1−s)+ρ

1
ǫcc

+ 1
ǫG
ll

, ǫG
ll = −ǫG

LL
ℓ−l̄
l̄

< 0 (30)

We derive the following results:

Proposition 3. Let U(c,L) = u(c + G(L/B) and Assumptions 1, 3 and 4

hold. When ζ = τc(η − 1)/(1 + τc) with η < 1 and ǫG
ll < −η/(1 − η), there

exist σ̄ > 1, ρ̄ > 0, ǭcc > 0, ǫcc > 0 and 1 > τ̄c > τ c > 0 such that the NSS is

locally indeterminate if one of the following sets of conditions are satisfied:

i) if σ ≥ σ̄, η < [δ(1 − s) + ρ]/(ρσ), ǫcc ≥ ǫcc and τc ∈ (τ c, τ̄c),

ii) if σ ∈ (0, σ̄), ǫcc ≥ max{ǫcc, ǭcc} and τc ∈ (τ c, τ̄c),

iii) if σ ∈ (0, σ̄), ρ ∈ (0, ρ̄), ǫcc ∈ (ǫcc, ǭcc) and τc ∈ (τ c, τ̄c).

Proof : See Appendix 8.5.

There is a range of tax rates such that indeterminacy occurs even when the

balanced budget is characterized by constant public expenditures, i.e. η = 0.

This is in contrast to the result obtained in Giannitsarou [10] with additively-

separable preferences. Note also that local indeterminacy is compatible with

both pro-cyclical (η ∈ (0, 1)) and counter-cyclical (η < 0) government spend-

ings. It is worth pointing out that the upper bound τ̄c is lower than τ ∗
c as

given in Proposition 1, i.e. sunspot fluctuations arise in the increasing part

of the Laffer curve, when government spendings are counter-cyclical (η ≤ 0).

5 Constant/variable government spendings

We provide now a numerical exercise to illustrate some of our results. On the

basis of yearly data, we consider the benchmark parameterization (s, δ, ρ) =
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(0.3, 0.1, 0.01). Concerning the other structural parameters, the numerical

illustration will be based upon the following empirical evidences:

i) While Cobb-Douglas technologies are widely used in growth theory,

recent papers have questioned the empirical relevance of this specification

and find that capital and labor have an elasticity of substitution significantly

different than unity. However, empirical evidences for both gross substi-

tutability (elasticity above one) and gross complementarity (elasticity below

one) of capital and labor are obtained in the literature. For instance, Duffy

and Papageorgiou [4] report robust estimates that are contained in [1.24, 3.24]

and Krusell et al. [14] find an elasticity of substitution between unskilled la-

bor and equipment of 1.67. On the contrary, Chirinko [3], Klump et al. [12]

and León-Ledesma et al. [16] provide robust estimates in the range [0.4, 0.6].

In the following, in order to cover both configurations, we assume that σ = 2

and σ = 0.6.

ii) The elasticity of intertemporal substitution in consumption is usually

assumed to be low, i.e. less than one. However, recent contributions provide

divergent views. Mulligan [20], Vissing-Jorgensen [25] and Vissing-Jorgensen

and Attanasio [26] repeatedly obtained estimates of this elasticity which are

significantly larger than one. More recently, Gruber [10] and Kapoor and

Ravi [11] provide robust estimates in the range (2, 3).10 We consider in the

following ǫcc = 2.2 and ǫcc = 2.8.

iii) Concerning the elasticity of the labor supply with respect to the wage

rate, Rogerson and Wallenius [23] have shown that the elasticities at the

macroeconomic level are virtually unrelated to the micro elasticities, and are

much larger than expected. The reason for this discrepancy is attributed

to the role of the participation decision of women and the extent of early

retirement. According to Rogerson and Wallenius [23] the macroeconomic

elasticity of the labor supply with respect to the wage is in the range of

(2.25, 3.0). We finally assume that ǫℓw = −ǫG
ll = 2.5.

Assuming first σ = 2 and ǫcc = 2.2, Figure 5 shows the region of inde-

terminacy corresponding to Proposition 3, case iii), when τc is between τ c

(dash line) and τ̄c (solid line).

10Barro [1] uses the lower bound of this interval to evaluate the welfare costs of rare

disasters in a representative-consumer model.
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Figure 2: Indeterminacy, consumption taxes and public spendings with σ > 1

We can see how the indeterminacy area is modified when the elasticity η

varies from −1 to 0, thus from strongly counter-cyclical to constant public

spendings. Considering consumption tax rates provided by Mendoza et al.

[18, 19],11 and more recently by Volkerink and De Haan [27], depending on the

degree of counter-cyclicality of public spendings, local indeterminacy arises

for almost all OECD countries. We get indeed:

η = 0 and τ ∈ (0.338, 0.4) Denmark, Norway

η = −0.3 and τ ∈ (0.241, 0.282) Ireland, Finland

η = −0.36 and τ ∈ (0.228, 0.266) Iceland, Luxembourg, Sweden

η = −0.49 and τ ∈ (0.204, 0.237) Austria, France

η = −0.7 and τ ∈ (0.175, 0.202) New Zealand, Portugal

η = −0.8 and τ ∈ (0.163, 0.188) Belgium, Germany, Greece, Netherlands, UK

η = −1 and τ ∈ (0.144, 0.166) Italy

Note that Spain also belongs to the indeterminacy area when η = −1.06.

On the contrary, Australia, Canada, Japan, Switzerland and the US are

characterized by much lower consumption tax rates and are strongly out of

the indeterminacy region, at least for reasonable values of the elasticity η.

11Updated estimates up to 1996 are available online from the authors.

15



Assuming now σ = 0.6 and ǫcc = 2.8, Figure 3 again shows the region of

indeterminacy corresponding to Proposition 3, case iii), when τc is between

τ c (dash line) and τ̄c (solid line).

Figure 3: Indeterminacy, consumption taxes and public spendings with σ < 1

Although we now consider a complementarity between capital and labor, lo-

cal indeterminacy still arises for the same OECD countries as in the previous

case. We get indeed:

η = 0 and τ ∈ (0.348, 0.4) Denmark, Norway

η = −0.3 and τ ∈ (0.248, 0.282) Ireland, Finland

η = −0.36 and τ ∈ (0.234, 0.266) Luxembourg, Sweden

η = −0.49 and τ ∈ (0.209, 0.237) Austria, France, Iceland

η = −0.7 and τ ∈ (0.179, 0.202) New Zealand, Portugal

η = −0.8 and τ ∈ (0.167, 0.188) Belgium, Germany, Greece, Netherlands, UK

η = −1 and τ ∈ (0.148, 0.166) Italy

This numerical exercise clearly shows that the existence of indeterminacy

is a robust property that occurs for a wide range of values for the elasticity

of capital-labor substitution. This point is worth to mention as such a ro-

bustness is usually not satisfied. Indeed, in a Benhabib and Farmer [2] type

model with productive externalities, Guo and Lansing [9] prove that local
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indeterminacy becomes much more difficult if not impossible when capital

and labor are gross complement.12 Similarly, in a Schmitt-Grohé and Uribe

[24] type model with labor taxes, Ghilardi and Rossi [5] show that balanced-

budget rules deliver determinacy for a broad range of OECD countries when

the elasticity of capital-labor substitution is in the range [0.4, 0.6].

Let us finally complete this exercise by discussing the value of η. Using

annual data over the interval 1960 − 1998 for 22 OECD countries, Lane [15]

provides some empirical estimates of the elasticity of government expenditure

with respect to output growth. Since consumption is almost perfectly corre-

lated with output, we then have a measure of η. Lane shows that in most

OECD countries, namely Austria, Belgium, Finland, France, Germany, Italy,

Netherlands, Sweden and UK, government spending is counter-cyclical, i.e.

η < 0. Moreover, his estimates perfectly match the values of η used in the two

previous tables for Finland, France, Sweden and UK. We have then proved

that with GHH preferences, aggregate instability based of expectation-driven

fluctuations can be generated by balanced-budget consumption taxes under

empirically plausible parameters’ configurations.

6 Economic interpretations

To establish the intuition for our results, let us explain why the expecta-

tions of an increase of the consumption tax rate may be self-fulfilling. To

simplify, as in Schmitt-Grohé and Uribe [24] and Giannitsarou [10], we re-

strict our attention to a balanced-budget rule with constant spendings. In

order to clearly emphasize the economic mechanism behind the occurrence of

expectation-driven fluctuations, let us come back to the intratemporal choice

between consumption and leisure. When both labor income and consumption

are taxed, at rate τl and τc respectively, we have:13

U2(c,ℓ−l)
U1(c,ℓ−l)

= 1−τl

1+τc
w

This equation shows that both tax rates affect the choice between con-

sumption and leisure in a similar way. Indeed, an increase of τl or τc reduces

12See also Pintus [22].
13To simplify the presentation, we omit the scaling parameter B in this section.
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the price of leisure in terms of the consumption good, which decreases the

labor supply. This is the main channel that explains expectation-driven

fluctuations in Schmitt-Grohé and Uribe [24] where only labor taxation is

considered. To be more specific, assume that households expect a higher

labor tax rate at the next period. They will reduce their future labor supply.

Therefore, the return on capital will be lower, reducing current investment.

To sustain a lower investment, households need to work less today. Since

taxation is counter-cyclical, this implies a higher tax rate, explaining that

expectations are self-fulfilling.

Since we argue that consumption taxation can a priori have the same

effect on labor supply than labor taxation, let us focus on the case considered

in this paper where the consumption tax is the only distortion. The (inverse)

labor supply is given by:

w = (1 + τc)
U2(c,ℓ−l)
U1(c,ℓ−l) (31)

On the one hand, given τc and c, this equation describes a positive relation-

ship between w and l (under Assumption 3), as drawn in Figure 4. On the

other hand, an increase in either τc or c shifts the labor supply to the left,

reducing labor at equilibrium.

-
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Figure 4: The role of labor market

If households expect a higher future consumption tax rate, they will re-

duce their future labor supply, as above. This corresponds to a substitution
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effect. The labor supply will move from ls0 to ls1 in Figure 4. However, house-

holds also expect to decrease their future consumption. This induces an

income effect, which goes in the opposite direction and increases labor at

equilibrium. Indeed, as shown in Figure 4, this shifts the labor supply to the

right from ls1 to ls2. However, if this second effect is dominated by the first

one, a higher expected consumption tax rate implies a lower labor supply.

This decrease of next period labor reduces the real interest rate, which has

a negative effect on current investment. Needing less income today, house-

holds work less. This induces a lower consumption, and thus an increase

of the current consumption tax rate in order to match the balanced-budget

rule. Therefore, expectations are self-fulfilling.

These substitution and income effects, that play in opposite directions,

allow to explain why indeterminacy may occur under some particular pref-

erences, while this is not possible with others. Starting with the GHH case,

equation (31) rewrites:
w = (1 + τc)G

′(ℓ − l)

The absence of income effect in this formulation explains why indeterminacy

appears easily. Consider as in Giannitsarou [10] the separable case, with a

log-linear utility of consumption, i.e. U(c, ℓ − l) = lnc + v(ℓ − l). Equation

(31) becomes:

w = (1 + τc)cv
′(ℓ − l) = (c + G)v′(ℓ − l)

where the second equality is obtained using the balanced-budget rule. When

G is constant, a modification of the tax rate does not have any impact on the

labor supply. This explains that expectation-driven fluctuations cannot occur

in this case. Actually, such a property still holds with general additively-

separable preferences.

When the utility is of the King-Plosser-Rebelo [13] type, equation (31) is

given by:
w = (1 + τc)c

v′(ℓ−l)
v(ℓ−l)

= (c + G)v′(ℓ−l)
v(ℓ−l)

Again, the labor supply does not depend on the tax rate and expectation-

driven fluctuations are also ruled out. Finally, when preferences are linear

homogeneous, we can show that indeterminacy may occur, but this requires

sufficiently counter-cyclical public spendings and a strong departure from

the Cobb-Douglas specification. Indeed, for constant public expenditures

and U(c, ℓ − l) = cα(ℓ − l)1−α, one obtains:
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w = (1 + τc)c
1−α

α
1

ℓ−l
= (c + G)1−α

α
1

ℓ−l

and expectation-driven fluctuations are again ruled out.

7 Concluding comments

This paper re-examines the impact of balanced budget fiscal policy rules

on the aggregate instability that may arise from self-fulfilling expectations.

The recent debate has focussed indeed on two main contributions showing

that while distortionary taxes on labor income could have expectation-driven

destabilizing effects (Schmitt-Grohé and Uribe [24]), when the government

finances instead its constant expenditures via taxes on consumption, the

equilibrium is always unique and determinate (Giannitsarou [10]). Based on

that, consumption taxes appear to be more appropriate than income taxes

if the government is willing to avoid instability.

We show in this paper that such a conclusion has to be taken with caution

as it heavily relies on the specification of the fundamentals, in particular the

utility function. We prove indeed that GHH preferences, which are charac-

terized by the absence of income effects, generate expectation-driven insta-

bility under counter-cyclical consumption taxes and plausible restrictions on

the main parameters, namely, the elasticity of capital-labor substitution, the

elasticity of intertemporal substitution in consumption and the elasticity of

the labor supply. Moreover, numerical illustrations, based on empirically rel-

evant parameterizations of the model, show that consumption taxation can

be a source of instability for most OECD countries.

8 Appendix

8.1 Proof of Lemma 1

Let us consider equations (19)-(21). Equation (20) implicitly gives c =

c(x∗, l), where
dc
dl

l
c

= 1
1+ζ (32)

implying that c can be defined as a function of l for all ζ 6= −1. Substituting

x = x∗ and c = c(x∗, l) into (21), one obtains:
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H(l) ≡ h(c(x∗, l)) U2(c(x∗,l),(ℓ−l)/B)
BU1(c(x∗,l),(ℓ−l)/B)

= A[f(x∗) − x∗f ′(x∗)] (33)

Multiplicity of equilibria may occur as soon as H(l) is non-monotonic. Dif-

ferentiating equation (33) with respect to l, we get:

ǫH(l) ≡ H′(l)l
H(l)

= 1
1+ζ

[

1
ǫcc

− 1
ǫlc

+ 1
ǫcl

− 1
ǫll

+ ζ
(

1 + 1
ǫcl

− 1
ǫll

)]

(34)

Under the normality Assumption 3 we conclude immediately that if ζ ≥ 0

H(l) is monotonic and uniqueness holds.

8.2 Proof of Proposition 1

Let us consider equations (22)-(24). Equation (23) rewrites:

l = (1+τc)c
Af(x∗)−δx∗

≡ l(τc, c) (35)

Substituting l(τc, c) into (24), we get:

(1 + τc)
U2(c,(ℓ−l(τc,c))/B)

BU1(c,(ℓ−l(τc,c))/B)
= A[f(x∗) − x∗f ′(x∗)] (36)

which defines c as a function of τc. Differentiating this equation gives:

dc
dτc

τc

c
= − τc

1+τc

1+ 1
ǫcl

− 1
ǫll

1
ǫcc

− 1
ǫlc

+ 1
ǫcl

− 1
ǫll

< 0 (37)

Using (22), we conclude that:

dΩ
dτc

τc

Ω
=

1
ǫcc

− 1
ǫlc

+ 1
ǫcl

− 1
ǫll

− τc
1+τc

“

1+ 1
ǫcl

− 1
ǫll

”

1
ǫcc

− 1
ǫlc

+ 1
ǫcl

− 1
ǫll

≡ ǫΩ(τc) (38)

Consider now the GHH utility function. We have ǫcc = ǫlc and 1/ǫcl−1/ǫll =

−1/ǫG
ll . We conclude that:

ǫΩ(τc) =
1+τcǫG

ll

1+τc
(39)

with ǫΩ(0) = 1 and ǫΩ(+∞) = ǫG
ll < 0. Therefore, ǫΩ(τc) S 0 if and only if

τc T τ ∗
c ≡ −1/ǫG

ll .

8.3 Proof of Proposition 2

To establish the existence of the normalized steady state (x∗, l∗) = (1, 1), we

have to prove the existence and uniqueness of solutions A∗ and B∗ solving

(27) and (28). We first obviously conclude that there is a unique value
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A = (δ + ρ)/f ′(1) ≡ A∗ solving (27). Considering A∗, we show now that

there exists a unique B∗ solving

Γ(B) = (δ+ρ)[1−s(1)]
h(c(1,1))

with

Γ(B) = U2(c(1,1),(ℓ−1)/B)
BU1(c(1,1),(ℓ−1)/B)

Under Assumption 2, either limB→0 Γ(B) = 0 and limB→+∞ Γ(B) = +∞

or limB→0 Γ(B) = +∞ and limB→+∞ Γ(B) = 0. Since Assumption 2 also

ensures Γ′(B)B/Γ(B) 6= 0, this proves existence and uniqueness of B∗.

8.4 Proof of Lemma 2

Considering all these elasticities evaluated at the NSS, the linearization of

the dynamical system (18) around the NSS gives:

Proposition 8.1. Under Assumptions 1-2, the characteristic polynomial is

P(λ) = λ2 − λT + D

with

D = δ+ρ
∆

(1−s)[δ(1−s)+ρ]
sσ

[

1
ǫcc

− 1
ǫlc

− 1
ǫll

+ 1
ǫcl

− ζ
(

1
ǫll

− 1 − 1
ǫcl

)]

T = ρ + (δ+ρ)(1−s)ζ
∆σǫlc

and
∆ =

(

1
ǫcc

+ ζ
)(

1
ǫll

− s
σ

)

− 1
ǫclǫlc

Proof : Using (29) and the first order conditions (10) and (11), we get

ǫcl = −ǫlc(ch(c)/wl). Using the expression of w at the NSS given in (17)

together with (3) and (19) we find wl = K(1 − s)(δ + ρ)/s. Similarly we

derive from (20)

h(c)c + δK = (δ + ρ)K/s and thus h(c)c = [δ(1 − s) + ρ]K/s (40)

Then at the NSS we get

ǫcl = − δ(1−s)+ρ
(1−s)(δ+ρ)

ǫlc (41)

Consider again the first order conditions (10) and (11). Under Assump-

tions 2 and 3, solving with respect to c(t) and l(t) gives consumption demand

and labor supply functions c(K(t), λ(t)) and l(K(t), λ(t)). Using (29), the
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implicit function Theorem allows to get the partial derivatives of these func-

tions evaluated at the NSS
dc
dK

= c
K∆

s
σǫcl

, dc
dλ

= − c
λ∆

(

1
ǫll

− s
σ
− 1

ǫcl

)

dl
dK

= − l
K∆

s
σ

(

1
ǫcc

+ ζ
)

, dl
dλ

= − l
λ∆

(

1
ǫcc

+ ζ − 1
ǫlc

)

with
∆ =

(

1
ǫcc

+ ζ
)(

1
ǫll

− s
σ

)

− 1
ǫclǫlc

From these results and (17) we also derive at the NSS

dr
dK

= −r(1−s)
Kσ

[

1 + s
∆σ

(

1
ǫcc

+ ζ
)]

, dr
dλ

= −r(1−s)
λ∆σ

(

1
ǫcc

+ ζ − 1
ǫlc

)

dw
dK

= ws
Kσ

[

1 + s
∆σ

(

1
ǫcc

+ ζ
)]

, dw
dλ

= ws
λ∆σ

(

1
ǫcc

+ ζ − 1
ǫlc

)

Consider then the system of differential equations in K and λ:

K̇(t) = r(K(t), λ(t))K(t) + w(K(t), λ(t))l(K(t), λ(t)) − δK(t)

− h(c(K(t), λ(t)))c(K(t), λ(t))

λ̇(t) = −λ(t) [r(K(t), λ(t)) − ρ − δ]

Linearization around the NSS using (40), (41) and the above results gives

dK̇
dK

= ρ − (δ+ρ)(1−s)
σ

[

1
ǫcc

+ ζ − 1+ζ
ǫlc

]

dK̇
dλ

= −K(δ+ρ)(1−s)
λ∆s

[

1
ǫcc

+ ζ − 1
ǫlc

− (1 + ζ) δ(1−s)+ρ
(δ+ρ)(1−s)

(

1
ǫll

− s
σ
− 1

ǫcl

)]

dλ̇
dK

= λ(δ+ρ)(1−s)
Kσ

[

1 + s
∆σ

(

1
ǫcc

+ ζ
)]

dλ̇
dλ

= (δ+ρ)(1−s)
∆σ

(

1
ǫcc

+ ζ − 1
ǫlc

)

The expression of the characteristic polynomial follows after tedious compu-

tations and straightforward simplifications.

We may now prove Lemma 2. Note first that concavity of the utility

function implies
1

ǫccǫll
− 1

ǫclǫlc
≤ 0 (42)

while Assumption 3 implies
1

ǫcc
− 1

ǫlc
≥ 0 and 1

ǫcl
− 1

ǫll
≥ 0 (43)

If ζ ≥ 0, we conclude that ∆ < 0 and thus, from (42) and (43), that D < 0.
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8.5 Proof of Proposition 3

Using (30), we derive from Proposition 8.1

D = − δ+ρ
∆

(1−s)[δ(1−s)+ρ]
sσ

[

1
ǫG
ll

+ ζ
(

1
ǫG
ll

− 1
)]

T = ρ + (δ+ρ)(1−s)ζ
∆σǫcc

=
ρσ

„

1

ǫG
ll

− s
σ

«

+ζ

»

ρσǫcc

„

1

ǫG
ll

− s
σ

«

+ (ρ+δ)(1−s)
δ(1−s)+ρ

[δ(1−s)+ρ(1−σ)]

–

∆σǫcc

(44)

and
∆ = 1

ǫcc

(

1
ǫG
ll

− s
σ

)

+ ζ
(

1
ǫll

− s
σ

)

= 1
ǫcc

(

1
ǫG
ll

− s
σ

)

+ ζ
(

1
ǫG
ll

− (1−s)(δ+ρ)
δ(1−s)+ρ

1
ǫcc

− s
σ

)

Since ζ < 0, we derive that T < 0 requires ∆ > 0, i.e.

ζ < −

1
ǫcc

„

1

ǫG
ll

− s
σ

«

1

ǫG
ll

− s
σ
−

(1−s)(δ+ρ)
δ(1−s)+ρ

1
ǫcc

≡ ζ̄

Let us first consider the expression of D in (44). When ∆ > 0, we get D > 0

if and only if
ζ > 1

ǫG
ll
−1

≡ ζ
1

We then need to show that ζ
1

< ζ̄ which is satisfied if and only if

ǫcc >
(1−ǫG

ll )

„

s
σ
− 1

ǫG
ll

«

−
(ρ+δ)(1−s)
δ(1−s)+ρ

„

s
σ
− 1

ǫG
ll

« ≡ ǫcc > 1 (45)

Assume that ζ = τc(η−1)/(1+ τc) with η < 1. We derive that indetermi-

nacy requires ζ
2

< τc(η−1)/(1+τc) < ζ̄. This is obtained if ǫG
ll < −η/(1−η),

ǫcc > ǫcc and τc ∈ (τ c, τ
1
c ) with

τ 1
c ≡ − 1

(1−η)ǫG
ll

+η
and τ c ≡

„

s
σ
− 1

ǫG
ll

«

[ǫcc(1−η)−1]

„

s
σ
− 1

ǫG
ll

«

+(1−η)
(1−s)(δ+ρ)
ρ+(1−s)δ

Let us now consider the expression of T in (44). We get T < 0 if and

only if

(1 + τc)
(

1
ǫG
ll

− s
σ

)

< τc(1 − η)
[

ǫcc

(

1
ǫG
ll

− s
σ

)

+ (ρ+δ)(1−s)
δ(1−s)+ρ

δ(1−s)+ρ(1−σ)
ρσ

]

(46)

a) Assume first that
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σ ≥ 1 + δ(1−s)
ρ

≡ σ̄

so that the rhs of (46) is negative. Moreover (46) can be written as follows
(

1
ǫG
ll

− s
σ

)

< τc

[

[ǫcc(1 − η) − 1]
(

1
ǫG
ll

− s
σ

)

+ (ρ+δ)(1−s)
δ(1−s)+ρ

δ(1−s)+ρ(1−σ)
ρσ

]

(47)

It follows that T < 0 if ǫcc ≥ 1/(1 − η) and τc < τ 2
c with

τ 2
c ≡

„

s
σ
− 1

ǫG
ll

«

[ǫcc(1−η)−1]

„

s
σ
− 1

ǫG
ll

«

+ (1−s)(δ+ρ)
ρ+(1−s)δ

−
(1−s)(ρ+δ)

ρσ

Note that τ 2
c > τ c when η < [δ(1− s)+ ρ]/(ρσ) < 1, and that ǫcc > 1/(1− η)

when ǫG
ll < −η/(1 − η).

b) Assume now that σ ∈ (0, σ̄) and

ǫcc >
(ρ+δ)(1−s)
δ(1−s)+ρ

[δ(1−s)+ρ(1−σ)]

ρσ

„

s
σ
− 1

ǫG
ll

« ≡ ǭcc

so that the rhs of (46) is still negative. We derive from (47) that T < 0 in

two distinct cases:

1- if ǫcc ≥ (1 + ǭcc)/(1 − η) and τc < τ 2
c ,

2- if η > −1/ǭcc and ǫcc ∈ (ǭcc, 1+ ǭcc) without any restriction on τc.

c) Assume finally that σ ∈ (0, σ̄) and ǫcc ≤ ǭcc. Then the rhs of (46) is

positive and T < 0 without any restriction on τc. But considering condition

(45), we need to check that ǫcc < ǭcc, i.e.

ρsǫG2
ll + ǫG

ll [(δ + ρ)(1 − s) − ρ(σ + s)] − 4ρ2σs ≡ h(ρ) < 0

Direct inspection of this inequality shows that there exists ρ̄ ∈ (0, +∞] such

that when ρ ∈ (0, ρ̄), ǫcc < ǭcc.

Considering all the above computations, when ǫG
ll < −η/(1 − η), local

indeterminacy occurs in three different cases:

i) if σ ≥ σ̄, η < [δ(1 − s) + ρ]/(ρσ), ǫcc ≥ ǫcc and τc ∈ (τ c, τ̄c), with

τ̄c = min{τ 1
c , τ 2

c },

ii) if σ ∈ (0, σ̄), and

- either ǫcc ≥ max{ǭcc, (1 + ǭcc)/(1 − η)} and τc ∈ (τ c, τ̄c), with τ̄c =

min{τ 1
c , τ 2

c },

- or η > −1/ǭcc, ǫcc ∈ (ǭcc, (1 + ǭcc)/(1 − η)) and τc ∈ (τ c, τ̄c), with

τ̄c = τ 1
c ,

iii) if σ ∈ (0, σ̄), ρ ∈ (0, ρ̄), ǫcc ∈ (ǫcc, ǭcc) and τc ∈ (τ c, τ̄c), with τ̄c = τ 1
c .

The result is proved.
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