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Abstract

The main purpose of this paper is to consider the multivariate
GARCH (MGARCH) framework to model the volatility of a multivari-
ate process exhibiting long term dependence in stock returns. More
precisely, the long term dependence is examined in the �rst conditional
moment of US stock returns through multivariate ARFIMA process
and the time-varying feature of volatility is explained by MGARCH
models. An empirical application to the returns series is carried out
to illustrate the usefulness of our approach. The main results con�rm
the presence of long memory property in the conditional mean of all
stock returns.
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1 Introduction

Long memory seems to be in recent years a very widespread phenomenon
in the modelling of economic and �nancial time series. It can be de�ned in
terms of the persistence of the autocorrelations which decays at a very slow
hyperbolic rate. A large numbers of papers demonstrate the existence of
long memory in �nancial economics. Peters (1991) and Greene and Fielitz
(1977) found evidence of long-term positive dependence in stock returns by
applying the rescaled range (R=S) statistic1 proposed by Hurst (1951) and
modi�ed by Lo (1991). Similar evidence on the German stock return is
given by Lux (1996). However, Jegadeesh (1990) challenged the notion of
mean reversion for stock returns. He reported negative �rst order serial
correlation and signi�cant positive serial correlation for longer lags using
monthly returns for individual stocks. Kim et al. (1991) also challenged
the �ndings of mean reversion. Their �ndings for post war data showed
persistence in returns. Volos and Siokis (2006) examined the presence of long-
range dependence in a sample of 34 stock index returns using the procedure
of Geweke and Porter-Hudak (1983) and Robinson (1995b). Their results
provided signi�cant and robust evidence of fractional dynamics in most major
and small stock markets over the sample periods. Goetzmann (1993) applied
R/S tests which provided some evidence that the London stock exchange
and New York Stock Exchange stock market prices may exhibit long-term
memory. Some authors found signi�cant and robust evidence of positive
long-term persistence in the Greek stock market (Barkoulas et al. (2000)),
in the Brazil stock market (Cajueiro and Tabak (2005) and Cavalcante et al.
(2004)), and in the Finnish stock market return data (Tolvi (2003)). Sadique
and Silvapulle (2001) examined the presence of long memory in weekly stock
returns of seven countries. They found evidence of long-term dependence in
four countries. Moreover, Cajueiro and Tabak (2004) found that the markets
of Hong Kong, Singapore and China exhibited long-range dependence, while
Mills (1993) and Zhuang et al. (2000) investigated British stock returns
and found little evidence of long-range dependence. However, Limam (2003)
analyzed stock index returns in 14 markets and concluded that long memory
tends to be associated with thin markets and Huang and Yang (1999) applied
the modi�ed R=S technique to intraday data and provide evidence of long
memory phenomenon in both the New York Stock Exchange and Nasdaq
indices.
In fact, all these empirical works are based on univariate models. How-

1The R=S statistic is the range of partial sums of deviations of a time series from its
mean, rescaled by its standard deviation.
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ever, for many important questions in empirical literature, multivariate set-
tings are preferable. For example, suppose one is considering a portfolio of
many assets. The return of the portfolio can be directly computed if one
knows the asset shares and the return of each asset (Brooks et al.(2003)).
Granger and Joyeux (1980) proposed the univariate fractionally integrated
autoregressive moving average (ARFIMA) model to explain the long mem-
ory property that exists in the conditional mean. Therefore, we consider in
this study the multivariate ARFIMA model2, where the fractional integra-
tion parameters determine the long memory properties of the data. Apart
from the presence of long term dependence in the conditional mean, we will
take into account the volatility�s properties of the series3. More precisely,
the time-varying feature of volatility is explained by multivariate generalized
autoregressive conditionally heteroscedastic models (MGARCH).
Despite the fact that univariate descriptions are useful and important,

various �nancial operations require a multivariate framework, since high
volatilities are often observed in the same time periods across di¤erent as-
sets. The development of MGARCH models from the original univariate
speci�cations represents a major step forward in the modelling of time se-
ries: these models permit time-varying conditional covariances as well as
variances. To this end, the main contribution of this paper is then to in-
corporate the MGARCH framework to model the volatility of a multivariate
process exhibiting a long term dependence and slow decay in the stock re-
turns. More precisely, we have examined the long memory property in the
�rst conditional moment of daily stock returns; the robustness of the results
is also investigated by considering that its innovations are generated by a
MGARCH process. We found that the long memory property existed in the
conditional mean of the Nasdaq 100, New York Stock Exchange (NYSE)
composite and Russell 3000 stock returns.
The rest of this paper is organized as follows. We brie�y review the mul-

tivariate models in the next Section. Section 3 outlines the Quasi-maximum
likelihood estimation and testing procedures for the models which are ap-
plied to US stock returns. Section 4 describes multi-step forecasting with
some MGARCH model and Section 5 presents the data used and provides
empirical results. The paper ends with a short concluding section.

2For more details, see Sowell (1989b) and Gil-Alana (2003-2007).
3See Ding et al.(1993) and Doukhan et al.(2003).
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2 Econometric framework

The following is a brief description of the time series models used in this
study. The vector ARFIMA models are discussed in detail in Sowell (1989b)
and Luceeno (1996). Tsay (2007) provided a more detailed description for esti-
mation of the vector ARFIMA models. He suggested a conditional likelihood
Durbin-Levinson algorithm to e¢ ciently evaluate the conditional likelihood
function of the vector ARFIMA processes. Hosoya (1996) and Nielsen (2004)
proposed a class of maximum likelihood estimators and tests. Lobato (1999)
analyzed a two-step estimator of the long memory parameters of a vector
process by using a semiparametric version of the multivariate Gaussian like-
lihood function in the frequency domain.
Consider a vector ARFIMA processes:

� (L)� (L) (yt � �) = � (L) "t (1)

where yt = (y1t; ::::; ynt)
0 ; t = 1; :::; T; is an n�dimensional vector of ob-

servations, � = (�1; ::::; �n)
0 is the conditional mean vector of the process,

� (L) = In� �1L� ::::� �pLp and �(L) = In+ �1L+ ::::+ �qL
q are (n� n)

matrix polynomials in the lag operator L, and satisfy the usual station-
ary and invertible conditions respectively, i.e., the roots of det (� (L)) 4 and
det (� (L)) are outside the unit circle. In is the identity matrix of order

n and �(L) = diag
h
(1� L)d1 ; ::::::; (1� L)dn

i
: The fractional di¤erencing

operator is de�ned by the binomial expansion,

(1� L)di =
1X
j=0

� (�di + j)

� (�di) � (1 + j)
Lj; for i = 1; :::; n

where � (:) is the Gamma function5. Hence, the long-range dependence be-
tween observations is eventually determined only by the fractional di¤erenc-
ing parameter. These characteristics can be seen in the shapes of the spectral
density and the autocorrelation function. Indeed, if jdij < 0:5 for i = 1; :::; n;
the multivariate process is stationary and invertible. If 0 < di < 0:5; the
process is characterized by strong positive dependency between observations.
This is noted in the frequency domain by the spectral density increasing to
an in�nite value at the zero frequency. In the time domain, the persistence
is indicated by the slow decline of the autocorrelation functions which are
not absolutely summable. In this case, yt is said to have a long memory6. If

4det (� (L)) is the determinant of the matrix � (L) :
5The Gamma function is de�ned as, � (t) =

R1
0
zt�1e�zdz:

6See Beran (1994) for the overviews of long memory processes.
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�0:5 < di < 0; the process exhibits negative dependency between observa-
tions. In the frequency domain, this is indicated by the decline of the spectral
density to zero, as the frequency approaches zero. The time domain indicates
the antipersistence by the rapid decline of the autocorrelation functions.
So, in this paper, we consider a vector ARFIMA model, which generates

the long memory property in the �rst conditional moment and which allows
its innovations to be generated by a multivariate MGARCH process. As
an illustration, the proposed model is applied to the daily stock returns of
Nasdaq, New York Stock Exchange and Russell indices.
The most commonly employed distribution in the literature is the mul-

tivariate normal. Thus, we assume that the stochastic vector process "t =
("1t; ::::; "nt)

0 is conditionally multivariate normal with zero expected value
and covariance matrix Ht :

"t = H
1=2
t zt; "tj
t�1 � N (0; Ht) (2)

with Et�1 ("t) = 0: We denoted by 
t�1 the information set generated by
the observed series until time t � 1. Ht = (hijt) is an (n� n) conditional
covariance matrix of "t: Ht = Et�1 ("t"

0
t) and zt is an independent identically

distributed random vector error process such that E (zt) = 0 and E (ztz0t) =
In.
As noted by Silvennoinen and Teräsvirta (2008)7, the speci�cation of an

MGARCH should be �exible enough to be able to represent the dynamics of
the conditional variances and covariances, and, as the number of parameters
in an MGARCH model often increases rapidly with the dimension of the
model, the speci�cation should be parsimonious enough to allow for easy
estimation of the model. Another feature that needs to be taken into account
in the speci�cation is that the conditional covariance matrices should be
positive de�nite.

2.1 Generalizations of the univariate GARCH model:
VEC and BEKK Models

The V EC (p; q) model of Bollerslev et al. (1988) is the �rst multivariate
GARCH model. It is a generalization of the univariate GARCH model,
where each element of Ht is a linear function of the lagged squared errors as
well as cross-products of errors and lagged values of the elements of Ht. The
model is given by:

7See also Silvennoinen (2008).
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ht = C +

qX
j=1

Ajet�j +

pX
j=1

Bjht�j (3)

where ht = vech (Ht)
8, Ht is the (n� n) conditional covariance matrix,

et = vech ("t"
0
t) ; C is a

�
n(n+1)
2

�
parameter vector and, Aj and Bj are�

n(n+1)
2

� n(n+1)
2

�
parameter matrices.

The main disadvantage of this model is the number of parameters which
is equal to n(n+1)

2

h
(p+ q)

�
n(n+1)
2

�
+ 1
i
and which becomes larger and larger

as the number of variables increases. Thus, the estimation of the parameters
is di¢ cult. Furthermore, the positivity of Ht is not guarantee. To overcome
this problem, Bollerslev et al. (1988) suggest the diagonal VEC9 model in
which Aj and Bj are assumed to be diagonal, each element hijt depending
only on its own lag and on the previous value of "it"jt. This restriction
reduces the number of parameters to n(n+5)

2
. But even under this diagonality

assumption, large scale systems are still highly parameterized and di¢ cult
to work with in practice.
One of the most general forms, proposed in Engle and Kroner (1995),

is the BEKK (Baba-Engle-Kraft-Kroner) representation. This formulation
developed a general quadratic form for the conditional covariance equation
which eliminated the problem of assuring the positive de�niteness of the
conditional covariance matrix. The BEKK (p; q;K) representation for the
(n� n) conditional covariance matrix Ht takes the form:

Ht = C 0C +

qX
j=1

KX
k=1

A0kj"t�j"
0
t�jAkj +

pX
j=1

KX
k=1

B0
kjHt�jBkj (4)

where the summation limit K determines the generality of the process, C
is upper triangular (n� n) matrix, and Akj and Bkj are both (n� n) para-
meter matrices. This representation guarantees that Ht is positive de�nite.
Although the form of the above model is quite general especially when K is
reasonably large, it su¤ers from the problems due to overparametrization10.

8vech is an operator that replaces the columns of the lower triangular part of Ht in a�
n(n+1)

2 � 1
�
vector column.

9See also Bauwens et al. (2006) and Silvennoinen and Teräsvirta (2008).
10See Engle and Kroner (1995) for more discussion on the identi�cation problem of this

model.
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The parameters of the BEKK model do not represent directly the impact of
the di¤erent lagged terms on the elements of Ht, like in the VEC model.
The number of parameters in the BEKK model is equal to (p+ q)Kn2+�

n(n+1)
2

�
and is still quite large. Thus, as we already mentioned, a problem

with these models is that the number of parameters can increase very rapidly
as the dimension of the process increases, what creates di¢ culties in the
estimation of the models due to several matrix inversions. So it is typically
assumed that p = q = K = 1 in applications of this model. A further
simpli�ed version of (4) in which Akj and Bkj are diagonal matrices has
sometimes appeared in applications. This is a diagonal BEKK model11 where
the number of parameters is equal to (p+ q)Kn +

�
n(n+1)
2

�
. This model is

also a DVEC model but it is less general, although it is guaranteed to be
positive de�nite while the DVEC is not.

2.2 Nonlinear combinations of univariate GARCHmod-
els: CCC and DCC Models

Bollerslev (1990) proposed a class of MGARCH models in which the condi-
tional correlation matrix is time-invariant and thus the conditional covari-
ances are proportional to the product of the corresponding conditional stan-
dard deviations. This model is so-called Constant Conditional Correlation
(CCC). This restriction greatly reduces the number of unknown parameters
and thus simpli�es the estimation. So, the conditional covariance Ht, may
always be decomposed as:�

Ht = DtRDt where hijt = �ij
p
hiithjjt; 8 i 6= j

Dt = diag
�p

h11t;
p
h22t; :::;

p
hnnt

� (5)

where hiit can be de�ned as any univariate GARCHmodel, and R is a (n� n)
symmetric positive de�nite matrix of conditional correlations with typical
element:

�ijt =
covt�1 ("it; "jt)

vart�1 ("it)
1=2 vart�1 ("jt)

1=2

with �ii = 1; 8 i = 1; :::; n: Dt denotes the (n� n) diagonal matrix with
typical element vart�1 ("it) : The CCC-GARCH model assumes that the con-
ditional correlations are constant �ijt = �ij, so that the temporal variation in
Ht is determined solely by the time-varying conditional variances for each of

11Bauwens et al. (2006) propose a scalar BEKK model, where Akj and Bkj are equal
to a scalar times a matrix of ones to reduce also the number of parameters.
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the elements in "t. As long as each conditional variances are positive12, the
CCC model guarantees that the resulting conditional covariance matrices
are positive de�nite.
Despite the simplicity of this model, the assumption that the conditional

correlations are constant may seem too restrictive and unrealistic. Engle
(2002) proposed a new class of estimator that both preserves the ease of esti-
mation of Bollerslev�s constant correlation model yet allows for non-constant
correlations. Dynamic Conditional Correlation (DCC)-GARCH13 preserves
the parsimony of univariate GARCH models of individual assets�volatility
with a simple GARCH process. Further, the number of parameters estimated
using maximum likelihood is considerable improvement over both the VEC
and the BEKK models. Tse and Tsui (2002) have also proposed a dynamic
correlation MGARCH model, however no attempt has been made to allow
for separate estimation of the univariate GARCH processes and the dynamic
correlation estimator.
The DCC model of Engle (2002) computes the time changing conditional

correlation matrix from the standardized residuals series:8<:
Ht = DtRtDt

Dt = diag
�p

h11t;
p
h22t; :::;

p
hnnt

�
Rt = Q��1t QtQ

��1
t

(6)

where Q�t = (diagQt)
1=2 ; Qt is the (n� n) symetric positive de�nite matrix

given by:
Qt = (1� �1 � �2)Q+ �1ut�1u

0
t�1 + �2Qt�1 (7)

�1 and �2 are non-negative scalar parameters satisfying �1 + �2 < 1: Q is
the (n� n) unconditional covariance matrix composed from the standardized
residuals resulting from the �rst step estimation, where ut = (u1t; u2t; :::; unt)

0

is the standardized residuals vector14, and

Q��1t = diag

�
1

p
q11

;
1

p
q22

; :::;
1

p
qnn

�
The typical element of Rt will be of the form:

�ijt =
qijtp
qiiqjj

12See Nelson and Cao (1992) for discussion of positivity conditions for hit in univariate
GARCH (p; q) models.
13Various generalizations of the DCC-GARCH model are proposed in the literature (Pel-

letier (2006), Billio and Caporin (2006), Cappiello et al.(2006), Silvennoinen and Teräsvirta
(2009)...).
14uit =

"itp
hiit
; for i = 1; :::; n:
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A slightly di¤erent formulation was suggested by Tse and Tsui (2002):

Rt = (1� �1 � �2)R + �1	t�1 + �2Rt�1 (8)

�1 and �2 are non-negative scalar parameters such that �1 + �2 < 1: Here
R =

�
�ij
	
is a time-invariant (n� n) symmetric positive de�nite parame-

ter matrix of conditional correlations with ones on the diagonal and 	t�1
is a (n� n) correlation matrix of the past m standardized residuals ut =
(u1t; u2t; :::; umt) : The positive de�niteness of Rt is ensured by construction
if R and 	t�1 are positive de�nite such that m � n . The typical element of
	t�1 will be of the form:

	ij;t�1 =

Pm
l=1 ui;t�luj;t�lq�Pm

l=1 u
2
i;t�l
� �Pm

l=1 u
2
j;t�l
� (9)

where uit = "itp
hiit
; for i = 1; :::; n:

The number of parameters in both the DCC models is equal to (n+1)(n+4)
2

if the conditional variances are speci�ed as GARCH(1,1). However, to check
if the assumption of the conditional correlations is empirically relevant, one
can test �1 = �2 = 0: A drawback of the DCC models is that �1 and �2 are
scalars, so that all the conditional correlations obey the same dynamics. This
is necessary to ensure that Rt is positive de�nite through su¢ cient conditions
on the parameters.

3 Estimation of MGARCH model

Bollerslev (1990) introduced the CCC-GARCH speci�cation, where univari-
ate GARCH models are estimated for each asset and then the correlation
matrix is estimated using the standard closed form MLE correlation estima-
tor by transforming the residuals using their estimated conditional standard
deviations. The assumption of constant correlation makes estimating a large
model feasible and ensures that the estimator is positive de�nite, simply
requiring each univariate conditional variance to be non-zero and the corre-
lation matrix to be of full rank. However, the constant correlation estimator,
as proposed, does not provide a method to construct consistent standard er-
rors using the multi-stage estimation process. Bollerslev (1990) noticed that
the notion of constant correlation is plausible but Tse and Tsui (2002) and
Tse (2000) found that it can be rejected for some assets.
For the maximum likelihood estimation (MLE) of parameters we assume

the conditional normality of the errors. The log-likelihood function of the
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model: �
�(L) (yt � �) = "t; "t = H

1=2
t zt

Ht = DtRtDt
(10)

has the following form:

LT (�) = �
1

2

TX
t=1

�
n log (2�) + ln jHtj+ "0tH

�1
t "t

�
(11)

where � is the vector of all the parameters in the model.
Estimating the parameters simultaneously with the conditional variance

parameters would increase the e¢ ciency at least in large samples, but this is
computationally more di¢ cult. For this reason, we estimate the fractionally
integrated model for the conditional mean and we consider �(L) yt as the

data for �tting the MGARCH model, where �(L) = diag
�
(1� L)

bdi� ; for
i = 1; :::; n:
Engle and Sheppard (2001)15 showed that the loglikelihood can be written

as the sum of a mean and volatility part, depending on a set of unknown
parameters and a correlation part that is:

LT (�) = �1
2

TX
t=1

�
n log (2�) + ln jHtj+ "0tH

�1
t "t

�
(12)

= �1
2

TX
t=1

�
n log (2�) + ln jDtRtDtj+ "0tD

�1
t R�1t D�1

t "t
�

= �1
2

TX
t=1

�
n log (2�) + 2 ln jDtj+ ln jRtj+ u0tR

�1
t ut

�
The conditional variance matrix of a DCC model can be expressed as Ht =
DtRtDt. The DCC model was designed to allow for two stage estimation,
where in the �rst stage univariate GARCH models are estimated for each
residual series, and in the second stage, the residuals, transformed by their
standard deviations estimated during the �rst stage, are used to estimate the
parameters of the dynamic correlation. The likelihood used in the �rst stage
involves replacing Rt by the identity matrix in (15). Let � = (�1; ::::; �n;  ) =
(�;  ) ; where the elements of �i correspond to the parameters of the univari-
ate GARCH model for the ith asset reurns, �i = (ci; �i; �i) ;for i = 1; :::; n:

15See also Sheppard (2003).
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The resulting �rst stage quasi-likelihood function is:

Q1LT (�) = �1
2

TX
t=1

�
n log (2�) + 2 ln jDtj+ ln jInj+ "0tD

�1
t InD

�1
t "t

�
(13)

= �1
2

TX
t=1

�
n log (2�) + 2 ln jDtj+ "0tD

�2
t "t

�
= �1

2

TX
t=1

 
n log (2�) +

nX
i=1

�
ln (hiit) +

"2iit
hiit

�!

= �1
2

TX
t=1

nX
i=1

�
log (2�) + ln (hiit) +

"2iit
hiit

�
which is simply the sum of the log-likelihoods of the individual GARCHmod-
els for each of the asset returns. Once the �rst stage has been estimated, the
second stage is estimated using the correctly speci�ed likelihood, conditioned
on the parameters estimated in the �rst step:

Q2LT

�
 j b�� = �1

2

TX
t=1

�
n log (2�) + 2 ln jDtj+ ln jRtj+ "0tD

�1
t R�1t D�1

t "t
�

(14)

= �1
2

TX
t=1

�
n log (2�) + 2 ln jDtj+ ln jRtj+ u0tR

�1
t ut

�
where ut = D�1

t "t are the univariate GARCH standardized residuals.
Since we are conditioning on b�, the only portion of the log-likelihood that

will in�uence the parameter selection is ln jRtj+ u0tR�1t ut, and in estimation
of the DCC parameters, it is often easier to exclude the constant terms and
simply maximize:

Q2L�T

�
 j b�� = �1

2

TX
t=1

�
ln jRtj+ u0tR

�1
t ut

�
(15)

� Test of constant conditional correlations

The �rst step of modelling time-varying conditional correlations is to test
the hypothesis of constant correlations. Testing data for constant correlation
has proven to be a di¢ cult problem, as testing for dynamic correlation with
data that have time-varying volatilities can result in misleading conclusions
and can lead to rejecting constant correlation when it is true due to mis-
speci�ed volatility models. Bera and Kim (2002) have provided tests of a
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null of constant correlation against an alternative of a dynamic correlation
structure. It is an information matrix-type test that besides constant cor-
relations examines at the same time various features of the speci�ed model.
An alternative test has been proposed by Longin and Solnik (1995). We are
interested in testing the null of constant correlation against an alternative of
dynamic conditional correlation via the Lagrange Multiplier (LM) approach
suggested by Tse (2000) which tested a null of constant conditional corre-
lation against an ARCH in correlation alternative. A rejection of the null
hypothesis supports the hypothesis of time-varying correlations. Rewrite the
DCC model: 8<:

Ht = DtRtDt

Dt = diag
�p

h11t;
p
h22t; :::;

p
hnnt

�
Rt = Q��1t QtQ

��1
t

Then, we test
H0 : hijt = �ij

p
hiithjjt

against the alternative

HA : hijt = �ijt
p
hiithjjt

where the conditional variances are GARCH (1,1). Under H0; the LM statis-
tic is asymptotically �2 (n (n� 1) =2). Under the normality assumption the
conditional log-likelihood of the observation at time t is given by:

lt = �
1

2
ln jDtRtDtj �

1

2
y0tD

�1
t R�1t D�1

t yt

and the log-likelihood function L is given by L =
Pn

t=1 lt:
Engle and Sheppard (2001) proposed another test of the constant corre-

lation hypothesis in the DCC models. The null hypothesis: Rt = R 8 t is
tested against the alternative: vech (Rt) = vech

�
R
�
+ �1vech (Rt�1) + ::::+

�pvech (Rt�p) : The test is easy to implement sinceH0 implies that coe¢ cients
in the regression Xt = �0+�1Xt�1+ ::::+�pXt�p+rt are equal to zero, where
Xt = vechu (bztbz0t � In) ; vech

u is like the vech operator but it only selects the

elements under the main diagonal, bzt = bR�1=2 bD�1
t b"t is the (n� 1) vector of

standardized residuals (under H0), and Dt = diag
�p

h11t;
p
h22t; :::;

p
hnnt

�
:
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� Portmanteau Statistics

It is crucial to check the adequacy of the MGARCH speci�cation. Boller-
slev (1990) suggested some diagnostics for the constant correlation MGARCH
model. He computed the Ljung-Box portmanteau statistic on the cross prod-
ucts of the standardised residuals across di¤erent equations. Critical values
were based on the �2 distribution. As mentioned by Tse (2000), diagnos-
tics for conditional heteroscedasticity models applied in the literature can
be divided into three categories: portmanteau test of the Ljung-Box type,
residual-based diagnostic and Lagrange multiplier test. So, to check the over-
all signi�cance of the residual autocorrelation, we consider the Ljung-Box
portmanteau statistic. This test was introduced by Box and Pierce (1970)
for goodness-of-�t checking of univariate strong ARMA models. Ljung and
Box (1978) proposed a slightly di¤erent portmanteau test which is nowadays
one of the most popular diagnostic checking tools in ARMA modelling of
time series. Following Hosking (1980-1981b), a multivariate version of the
Ljung-Box portmanteau16 statistic is given by:

Qm (k) = T 2
kX
j=1

(n� j)�1 tr
�
C�1Yt (0)CYt (j)C

�1
Yt
(0)C 0Yt (j)

	
where tr denotes the trace of a matrix. Yt = vech (yty

0
t) and CYt (j) is the

sample autocovariance matrix of order j. Under the null hypothesis, Qm (k)
is distributed asymptotically as �2 (p2k) : Duchesne and Lalancette (2003)
generalized this statistic using a spectral approach and obtained higher as-
ymptotic power by using a di¤erent kernel than the truncated uniform kernel
used in Qm (k). This test is also used to detect misspeci�cation in the con-
ditional variance matrix Ht, by replacing yt by bzt = bH�1=2

t b"t: Ling and Li
(1997) proposed an alternative portmanteau statistic for multivariate condi-
tional heteroscedasticity. They de�ned the sample lag-h (transformed) resid-
ual autocorrelation as:

G (h) =

PT
t=h+1

�b"0t bH�1
t b"t � n

��b"0t�h bH�1
t�hb"t�h � n

�
PT

t=h+1

�b"0t bH�1
t b"t � n

�2
Their test statistic is given by LL (k) = T

Pk
h=1G

2 (h) and is asymptoti-
cally distributed as �2 (k) under the null hypothesis. In the derivation of
the asymptotic results, normality of the innovation process is not assumed.

16For more details see Francq and Raïssi (2007).
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The statistic is thus robust with regard to the distribution choice. Tse and
Tsui (2002) showed that there is a loss of information in the transformationb"0t bH�1

t b"t of the residuals and the test may su¤er from a power reduction.

4 Multivariate GARCH Prediction

Forecasting is one of the main objectives of multivariate time series analysis.
Predictions from multivariate GARCH models can be generated in a similar
fashion to predictions from univariate GARCH models17. Indeed, for the
univariate GARCH models, such as CCC model and principal component
model, the predictions are generated from the underlying univariate GARCH
models and then converted to the scale of the original multivariate time series
by using the appropriate transformation. This section focuses on predicting
from diagonal BEKK and DCC model.
To illustrate the prediction of conditional covariance matrix for multi-

variate GARCH models, consider the conditional variance equation for the
diagonal BEKK(1,1,1) model:

Ht = C 0C + A0"t�1"
0
t�1A+B0Ht�1B (16)

where C, A and B are (3� 3) matrices, C is upper triangular and A and
B are diagonal matrices. The model (16) is estimated over the time period
t = 1; :::; T: Given the information at time T , the one-step-ahead prediction
(k = 1) of conditional covariance matrix at time T + 1 is given by:

ET (HT+1) = C 0C + A0ET ("T "
0
T )A+B0ET (HT )B

= C 0C + A0"T "
0
TA+B0HTB;

when k = 2, it can be shown that

ET (HT+2) = C 0C + A0ET
�
"T+1"

0
T+1

�
A+B0ET (HT+1)B

= C 0C + A0ET (HT+1)A+B0ET (HT+1)B

where ET (HT+1) is obtained in the previous step. This procedure can be
iterated to obtain ET (HT+k) for k > 2:
Let us consider the DCC (1; 1)-GARCH (1; 1) model given by (14), which

can be written as:8>><>>:
Ht = DtRtDt , Dt = diag

�p
hiit
�
for i = 1; :::; n

ht = c+ �"2t�1 + �ht�1
Rt = Q��1t QtQ

��1
t

Qt = (1� �1 � �2)Q+ �1ut�1u
0
t�1 + �2Qt�1

17For more details see Moon et al. (2008) and Hlouskova et al. (2009).
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where Q��1t = diag
�
q
�1=2
ii

�
; Qt is the (n� n) symetric positive de�nite ma-

trix, �1 and �2 are non-negative scalar parameters satisfying �1 + �2 < 1
and Q is the (n� n) unconditional covariance matrix composed from the
standardized residuals resulting from the �rst step estimation. However, the
k-step ahead forecast of a standard GARCH(1,1) and the DCC evolution
process are given by:8<:

ht+k =
Pk�2

i=0 c (�+ �)i + (�+ �)k�1 ht+1
=
Pk�2

i=0 c (�+ �)i + (�+ �)k ht
Qt+k = (1� �1 � �2)Q+ �1ut+k�1u

0
t+k�1 + �2Qt+k�1

(17)

where Et
�
ut+k�1u

0
t+k�1

�
= Et (Rt+k�1) and Rt+k = Q��1t+kQt+kQ

��1
t+k : Thus, the

k-step ahead forecast of the correlation cannot be directly solved forward to
provide a convenient method for forecasting. In examining methods to over-
come this di¢ culty, two forecasts seem to be the most natural, each requiring
a di¤erent set of approximations. The �rst technique proposed would be to
generate the k-step ahead forecast of Qt by making the approximation that
Et
�
ut+1u

0
t+1

�
� Qt+1. Using this approximation, we then have the k-step

ahead forecast of Qt is

Et (Qt+k) =
k�2X
i=0

(1� �1 � �2)Q (�1 + �2)
i + (�1 + �2)

k�1Qt+1 (18)

for i 2 (1; ::::; k) and Rt+k = Q��1t+kQt+kQ
��1
t+k : An alternative approximation

would be that Q � R and that Et (Qt+1) � Et (Rt+1) : Using this approxi-
mation, we can forecast Rt+k directly using the relationship

Et (Rt+k) =
k�2X
i=0

(1� �1 � �2)R (�1 + �2)
i + (�1 + �2)

k�1Rt+1 (19)

In order to test which of these approximations performs better, Engle and
shepard (2001) have conducted a Monte Carlo experiment. They have con-
cluded that the forecast produced by solving forward for Qt+k was more
biased than the method for solving Rt+k forward which had better bias prop-
erties for almost all correlations and horizons. Also of interest is that both
forecasts appear to be unbiased when the unconditional correlation is zero,
and that they make essentially the same forecast when the unconditional
correlation is zero.
While none of these two techniques signi�cantly outperformed the other,

it would seem that a logical choice for forecasting would be the method that
directly solves forward Rt+k which appear easier to implement. Therefore,
we will choose this second technique for further work.
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5 Empirical application

5.1 The data

The data employed in this study are taken from Datastream and are the
4530 daily observations on the Nasdaq 100 (NAS), New York Stock Ex-
change composite (NYA) and Russell 3000 (RUA) stock returns over the
period January 4, 1988 to December 21, 2005. The returns series denoted
by rt are calculated as rt = 100 � log (yt=yt�1) ; where yt is the price index:
Models used are Full-BEKK(1,1), Diagonal BEKK(1,1), CCC(1,1)-GARCH
and DCC(1,1)-GARCH where each of the univariate GARCH models esti-
mated is a GARCH(1,1) and we focus our attention to the covariance matrix
modelling.
Figures 1 and 2 give the plots of the daily price indices and daily stock

returns. We can see that the market volatility is changing over time which
suggests a suitable model for the data should have a time varying volatility
structure as suggested by the GARCH model.

Nasdaq daily price index
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Figure 1. Daily price indices
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Nasdaq daily returns
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Figure 2. Daily stock returns

5.2 Estimation results

For the above mentioned indices, the sample mean of returns, standard devi-
ation of returns, skewness and kurtosis coe¢ cients as well as the Jarque-Bera
and the Ljung-Box (univariate and multivariate version) tests are all reported
in Table 1. Skewness is used to describe asymmetry from the normal distri-
bution in a set of statistical data, taking two forms: positive or negative, it
depends on whether data points are skewed to the left (negative coe¢ cient)
or to the right (positive coe¢ cient) of the data average. Negative skewness
means that there is a substantial probability of a big negative return, whereas
positive one means that there is a greater than normal probability of a big
positive return wich indicates that the tail on the right side is longer than
the left one and the bulk of the values lie to the left of the mean. The
kurtosis measures the peakedness and fatness of the tails of a probability
distribution. A fat tailed distribution has higher than normal chances of a
big positive or negative realization. For all series, the returns distributions
display positive skewness. Moreover, the data indicates high degree of excess
kurtosis (leptokurtic), since the kurtosis coe¢ cients are signi�cantly larger
than those of a normal distribution which is three. The returns series ap-
pear extremely non normal based on the Jarque-Bera test. The Ljung-Box
test applied to the series and squared series, provides clear evidence against
the hypothesis of serial independence of observations and indicates the ex-
istence of ARCH e¤ect. The unit root tests of Phillips and Perron (1988),
Kwiatkowski et al. (1992) and Dickey-Fuller Augmented (1979) reject the
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stationarity hypothesis at both 5% and 1% signi�cance levels for all series18.
The estimation of fractional integration parameter d based on the GPH

procedure as well as the CCC and DCC -GARCH are given in Tables 2 and
3 respectively. The results reveal a clear evidence of long-range dependence
for all stock returns, since d estimates are signi�cantly positive implying
covariance-stationarity of the process. These results are statistically signi�-
cant and contrast with most of the studies of long memory in asset returns
which have generally found weak or no evidence for long memory. How-
ever, Henry (2002) investigated long range dependence in nine international
stock index returns and found evidence of long memory in four of them, the
German, Japanese, South Korean and Taiwanese markets, but not for the
markets of the UK, USA, Hong Kong, Singapore and Australia19. Further-
more, Serletis and Rosenberg (2009) analyzed daily data on four US stock
market indices and concluded that US stock market returns display anti-
persistence. This implies that the behaviour of stock returns is inconsistent
with the e¢ cient market hypothesis, which asserts that returns of a stock
market are unpredictable from previous price changes (Narayan (2008) and
Narayan and Smyth (2007)).
Moreover, we observe that the correlations across the three stock returns

give strong evidence of time-varying correlations between them. The last col-
umn of Table 3 present the results of the estimation of the DCC parameters.
we note that the estimate of �2 is statistically signi�cant at 1% signi�cance
level meaning that the correlation is signi�cantly time varying. The DCC
parameters estimates imply a highly persistent correlation with b�1 and b�2,
however, they satisfy the 0 < b�1+b�2 < 1 condition of stationarity. Thus, the
model is mean reverting and the conditional correlation matrix is positive
semi-de�nite. Apart the tables, we compute the Lagrange Multiplier statis-
tic proposed by Tse (2000) for constant conditional correlation test for the
trivariate model which is signi�cant at the 5% level: its p-value is 0:0001.
Thus, there is evidence against time-invariant correlations among the selected
stock returns. In Figure 320, we observe a slow decay of the autocorrelation
functions which indicate the presence of long memory behaviour. The plots
of conditional variance of BEKK-GARCH models and CCC-GARCH are
shown respectively in Figures 4 and 5.

18The results are not reported here to conserve space but are available from the authors
upon request.
19See also Aydogan and Booth (1988).
20R11, R12 and R13 is respectively the returns series of NAS, NYA and RUA.
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Table 1. Basic properties of the distribution
of returns series

NAS NYA RUA
� 0:586 0:502 0:521
� 0:545 0:508 0:516
sk 2:065 2:882 2:705
K 9:651 21:082 18:431

JB
5:305e+ 003
(0:000)

3:117e+ 004
(0:000)

2:314e+ 004
(0:000)

Q (12)
313:787
(0:000)

166:785
(0:000)

141:769
(0:000)

Q2 (12)
220:788
(0:000)

52:357
(0:000)

57:845
(0:000)

Qm (12)
931:965
(0:000)

- -

Q2m (12)
526:008
(0:000)

- -

Notes: � denotes the sample mean, � is standard deviation, k is the Kurtosis (exc), sk
is the Skewness cor¢ cient, JB is the Jarque-Bera normality test, Q (12) and Q2 (12)
are respectively the 12-th order Ljung-Box tests for serial correlation in the residuals

and squared residuals. Qm (12) and Q
2
m (12) are multivariate Ljung-Box version. The

number in parenthese are the p-values.

Table 2. Estimation of the long memory parameter

bdNAS bdNY A bdRUA
GPH

0:301
(0:049)

0:206
(0:050)

0:245
(0:052)

Notes: GPH are the Geweke and Porter-Hudak (1983) procedure. The number in

parenthese are standard errors.
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Table 3. Estimation of the MGARCH model

Full BEKK(1,1,1) Diagonal BEKK(1,1,1) CCC-GARCH(1,1) DCC-GARCH(1,1)

c11
0:095
(0:008)

c12
0:089
(0:014)

c13
0:099
(0:015)

c22
0:062
(0:010)

c23
0:064
(0:011)

c33
0:0220
(0:001)

�11
0:103
(0:022)

�12
0:040
(0:096)

�13
�0:071
(0:118)

�21
0:048
(0:023)

�22
0:151
(0:105)

�23
�0:113
(0:137)

�31
0:037
(0:023)

�32
�0:032
(0:123)

�33
0:131
(0:125)

�11
0:897
(0:013)

�12
�0:019
(0:069)

�13
0:007
(0:081)

�21
0:001
(0:013)

c11
0:084
(0:023)

c12
0:068
(0:019)

c13
0:072
(0:019)

c22
0:046
(0:014)

c23
0:041
(0:012)

c33
�0:007
(0:002)

�11
0:214
(0:030)

�22
0:198
(0:032)

�33
0:191
(0:028)

�11
0:969
(0:009)

�22
0:972
(0:010)

�33
0:973
(0:008)

c11
0:007
(0:003)

c22
0:012
(0:002)

c33
0:012
(0:003)

�11
0:066
(0:009)

�22
0:075
(0:010)

�33
0:078
(0:009)

�11
0:932
(0:009)

�22
0:901
(0:009)

�33
0:904
(0:013)

�12
0:666
(0:011)

�13
0:666
(0:019)

�23
0:429
(0:016)

c11
0:005
(0:023)

c22
0:008
(0:001)

c33
0:007
(0:002)

�11
0:064
(0:008)

�22
0:040
(0:004)

�33
0:064
(0:008)

�11
0:934
(0:006)

�22
0:948
(0:007)

�33
0:916
(0:010)

�1
0:042
(0:005)

�2
0:942
(0:008)
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Table 3. Continued

Full BEKK(1,1,1) Diagonal BEKK(1,1,1) CCC-GARCH(1,1) DCC-GARCH(1,1)

�22
0:849
(0:072)

�23
�0:021
(0:082)

�31
0:011
(0:010)

�32
0:072
(0:068)

�33
0:870
(0:083)

- - -

AIC �756:715
BIC �621:363
HQ �707:114

Qm (12)
646:262
[0:000]

Q2m (12)
423:541
[0:000]

�743:369
�511:044
�768:169
487:183
[0:000]
361:060
[0:000]

�758:793
�699:117
�781:993
141:769
[0:481]
85:242
[0:948]

�760:490
�698:454
�787:756
151:019
[0:399]
99:283
[0:797]

Notes: The number in parenthese are standard error, �ij is the correlation coe¢ cient,
AIC;BIC and HQ are respectively the Akaike, Bayesian and Hannan-Quinn informa-

tion criterion. Qm (12) and Q2m (12) are respectively the 12-th order multivariate Port-
manteau tests for serial correlation in the standardized and squared standardized residuals

(null Hypothesis: no serial correlation). The numbers in brackets are the p-values.

To check the goodness of �t of our model, we consider several diagnostic
tests on the standardized residuals, the Ljung-Box test for the 12-th or-
der serial autocorrelation and heteroskedasticity, when it is applied on the
standardized residuals. We use the Jarque-Bera test, the skewness and the
kurtosis coe¢ cients to test the normality of standardized residuals. From
Table 3, the multivariate portmanteau test reveal that the hypothesis of no
residual autocorrelation is rejected in the residuals only for both Full and
Diagonal-BEKK(1,1,1) models at 5% level of signi�cance. From Table 4, we
can see that, for most series, the hypothesis of uncorrelated standardized and
squared standardized residuals is well supported, indicating that there is no
statistically signi�cant evidence of misspeci�cation. The skewness and kurto-
sis coe¢ cients indicate that the standardized residuals are still not normally
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distributed, which is con�rmed by the Jarque-Bera test. Finally, the hypoth-
esis of no conditional heteroscedasticity are not rejected in the residuals for
all the series at 5% level of signi�cance.

Table 4. Diagnostic tests

Full BEKK(1,1,1) Diagonal BEKK(1,1,1)
NAS NY A RUA

Q (12)
166:771
(0.000)

270:155
(0.000)

6:996
(0.857)

Q2 (12)
5:301
(0.947)

1:393
(0.999)

11:843
(0.458)

LM
6:204
(0.905)

2:776
(0.996)

11:760
(0.465)

sk 1:889 2:926 2:722
k 6:969 19:891 16:882
JB 5449:493 3724:512 2725:128

NAS NY A RUA
43:283
(0.00202)

9:720
(0.640)

12:224
(0.427)

20:662
(0.055)

16:073
(0.187)

37:287
(0.021)

7:236
(0.654)

2:939
(0.965)

3:197
(0.805)

0:753 1:006 0:410
4:456 21:923 17:2967
380:193 31340 17700

CCC-GARCH(1,1) DCC-GARCH(1,1)
NAS NY A RUA

Q (12)
45:318
(0.0009)

0:838
(0.999)

1:066
(0.999)

Q2 (12)
8:758
(0.723)

0:012
(1.000)

0:013
(1.000)

LM
0:9395
(0.998)

0:0027
(1.000)

0:0035
(1.000)

sk 1:877 2:896 2:717
k 5:994 18:415 15:870
JB 4333:862 32283:720 24376:48

NAS NY A RUA
8:735
(0.725)

5:711
(0.901)

5:390
(0.949)

4:491
(0.972)

1:593
(0.997)

1:690
(0.995)

0:229
(1.000)

1:176
(0.999)

1:197
(0.998)

1:904 3:141 2:936
6:817 24:626 21:209
5283:913 55953:071 41956:369

Notes: k is the Kurtosis (exc), sk is the Skewness coe¢ cient, JB is the Jarque-

Bera normality test, Q (12) and Q2 (12) are respectively the 12-th order Ljung-Box
tests for serial correlation in the standardized and squared standardized residuals (Null

Hypothesis: no autocorrelation). LM is the test for ARCH E¤ects (Null Hypothesis: no

ARCH e¤ects).
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Figure 3. Autocorrelation of returns series
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Figure 4. Conditional variance of returns series in BEKK(1,1,1)
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Figure 5. Conditional variance of returns series in CCC models

5.3 Forecasting performance of estimated models

The DCC model seems better with respect to the other models in terms
of information criteria. So, in order to assess the out-of-sample forecasting
performance for diagonal BEKK, CCC and DCC models, we still use root
mean square error (RMSE) and mean absolute error (MAE) as two criteria
for comparison. we have selected an out-of-sample forecast data set using the
last 1000 observations of the original data. We have re-estimated the models
adding a new observation and obtaining the k-day-step ahead forecasts for
k = 1; 3 and 5. The results are shown in Table 5. They appear to show a
trend that the forecasting errors are proportionate to the forecasted periods.
Moreover, we draw clear inference to the e¤ect that they all appeared to be
more accurate in DCC than in the other models, regardless of what criterion
is adopted. This seems to be consistent not only in RMSE but also in MAE
(the DCC model has the lowest RMSE and MAE). In addition, predicting
results of CCC perform even worse than diagonal BEKK . The results suc-
cessfully provide evidence in favour of the predictive superiority of the DCC
model against the diagonal BEKK and CCC. We can thus conclude that
the forecasts of the DCC modelling are signi�cantly better than those of the
other model.
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Table 5. Out-of-sample forecast

Diag BEKK CCC DCC
1

RMSE 3
5

0:506
0:545
0:611

0:783
0:785
0:790

0:429
0:445
0:478

1
MAE 3

5

0:359
0:368
0:389

0:452
0:457
0:460

0:318
0:329
0:361

Conclusion

The aim of the present paper is to study the dynamic modelling of the US
stock returns. We considered multivariate GARCH framework to model the
time-varying covariance matrices of a process exhibiting a long term depen-
dence and be used to produce out-of-sample forecasts. In particular, we
examined the persistence phenomenon in the �rst conditional moment of
daily stock returns; the robustness of the results was also investigated by
considering that its innovations was generated by a multivariate GARCH
process. As illustration, we applied our models to the trivariate systems.
The estimated parameters show that the returns series are characterized by
long memory behaviour and time-varying correlations. These results are sta-
tistically signi�cant and contrast with most of the studies of long memory
in the returns series showing weak or no evidence for long term dependence.
Using daily returns of Nasdaq 100, New York Stock Exchange composite
and Russell 3000, the results successfully provide evidence that DCC model
outperforms the other ones in estimating and forecasting covariance matrices
for out-of-sample analysis.
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