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Abstract

Our new approach to mobility measurement involves separating out the valuation of
positions in terms of individual status (using income, social rank, or other criteria) from
the issue of movement between positions. The quanti�cation of movement is addressed
using a general concept of distance between positions and a parsimonious set of axioms
that characterise the distance concept and yield a class of aggregative indices. This class
of indices induces a superclass of mobility measures over the di�erent status concepts
consistent with the same underlying data. We investigate the statistical inference of
mobility indices using two well-known status concepts, related to income mobility and
rank mobility.
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1 Introduction

Mobility is an important concept in several branches of social science and economics. The
way it has been conceived has, to some extent, depended on the particular application
or even the particular data set under consideration. So, di�erent parts of the literature
have focused on income or wealth mobility, wage mobility, educational mobility, mobility
in terms of social class. As a consequence of this diversity, the measurement of mobility
is an intellectual problem that has been addressed from many di�erent standpoints.1

Mobility measures are sometimes de�ned, explicitly or implicitly, in relation to a speci�c
dynamic model,2 sometimes as an abstract distributional concept similar to inequality,
polarisation, dispersion and so on.

This paper focuses on the second interpretation of mobility measurement - mobility
measures in the abstract. It develops an approach that is su�ciently �exible to cover
income or wealth mobility on the one hand and, on the other, various types of �rank�
mobility where the underlying data are categorical. Our approach separates out the
fundamental components of the mobility-measurement problem, proposes an axiomatic
framework for the core theoretical issues and examines the statistical properties of several
classes of measures that emerge from the implementation of the theory.

In the extensive literature mobility is characterised either in terms of one's income
or in terms of one's position in the distribution, or sometimes both. In some approaches
the distinction between mobility and income volatility - movement of incomes (Fields
and Ok 1999b) - becomes a little fuzzy. This is perhaps a mistake since mobility is
essentially something that characterises society, or the individual's relationship to the
society (Dardanoni 1993), whereas volatility can be seen as something that relates just to
an individual; mobility would be meaningless for Robinson Crusoe, but income volatility
might be very important.

In the light of this the essential ingredients for a theory of mobility measurement are
as follows:

1. a time frame of two or more periods;

2. a measure of an individual's status within society;

3. an aggregation of changes in individual status over the time frame.

In this paper we consider a standard two-period problem and focus on the interplay
between ingredients 2 and 3, the status measure and the basis for aggregation of move-
ments.

A brief word on the notion of �status� is important here. Status may be de�ned in a
variety of ways, depending on the focus of interest of a particular mobility study. It could
be something that is directly observable and measurable for each individual, independent
of information about anyone else, a person's income or wealth, perhaps. Alternatively it
could be that a person's status is only well de�ned in relation to information about others
- one's location in the income distribution, for example. Our approach is su�ciently
�exible to cover either of these interpretations, as we will explain in detail in Section 2.

1For a survey see Fields and Ok (1999a).
2See, for example, Atoda and Tachibanaki (1991), Bénabou and Ok (2001).
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Because mobility is inherently quite a complex phenomenon it is common to �nd
that the phenomenon is broken down into constituent parts, for example into structural
and exchange mobility.3 However, this traditional breakdown is not so important here.
What is crucial in our approach is the notional separation of the status concept from the
aggregation method (see above). Nevertheless, there is a link to the structural/exchange
distinction as presented in the literature. Exchange mobility can be characterised as a
type of average of individual distances �travelled� in the reranking process (Ayala and
Sastre 2008, Van de gaer et al. 2001).4 The method of aggregation that we will apply
is also based on an elementary distance concept that could have a similar natural inter-
pretation in terms of exchange mobility. As a consequence, di�erent implementations
of our classes of mobility measure would allow di�erent ways of breaking down overall
mobility into exchange and structural mobility.

The paper is organised as follows. Section 2 sets out in more detail the basic ideas
underlying our approach. Section 3 contains the theoretical foundations of the approach
and the formal derivation of a �superclass� - a collection of classes - of mobility indices.
The properties of the superclass are discussed in Section 4 and statistical inference for
key members of the superclass are discussed in section 5. Section 7 concludes.

2 The Approach: Individual status and mobility

As suggested in the introduction we need very few basic concepts to set out our ap-
proach. We will assume that there is some quantity, to be called �income,� that is
cardinally measurable and interpersonally comparable. However, this is used only as a
device to show the range of possibilities with our approach; in fact the informational
requirements for our approach are very modest: only ordinal data are required. We
need to characterise in a general way a set of classes and a way of representing indi-
vidual movements between the classes. So the word �income� here is just a convenient
shorthand for initiating the discussion; in what follows �income� can be replaced with
any other quantity that is considered to be interpersonally comparable.

Let there be an ordered set of K income classes; each class k is associated with
income level xk where xk < xk+1, k = 1, 2, ..., K − 1. Let pk ∈ R+ be the size of class
k, k = 1, 2, ..., K and

K∑
k=1

pk = n,

where n is the size of the population. Let k0 (i) be the income class occupied by person
i; then the information about a distribution is completely characterised by the vector(
xk0(1), ..., xk0(n)

)
. Clearly this includes the special case where classes are individual

incomes if pk = 0 or 1 in each class and the individual is assumed to be at the lower
bound of the class.

3For an illuminating discussion see Van Kerm (2004). On the de�nition of exchange mobility see
Tsui (2009),

4Several ad hoc measures of income mobility pursue the idea of average distance (Mitra and Ok
1998). Fields and Ok (1996, 1999b) proposed a mobility index whose distance concept is based on the
absolute di�erences of logarithms of incomes.
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To represent mobility we need income distributions in two time periods 0 and 1
(�before� and �after�) and the location of any person i in the two distributions. Let
k0 (i) and k1 (i) be the income class occupied by person i in periods 0 and 1 respectively.
Mobility is completely characterised by

(
xk0(1), ..., xk0(n)

)
and

(
xk1(1), ..., xk1(n)

)
. However

this does not necessarily mean that we should use some simple aggregation of the xk or
aggregation of a transformation of the xk in order to compute a mobility index. We
could instead carry out a relabelling of the income classes using information from the
income distribution. For example we could do this using the number of persons in, or
below, each income class, according to the distribution in period 0:

n0 (xk) :=
k∑

h=1

ph, k = 1, ..., K. (1)

Of course we could also do a similar relabelling using information about the 1-distribution.
Suppose that the class sizes (p1, ..., pK) in period 0 change to (q1, ..., qK) in period 1, Then
the new way of relabelling the income classes is given by

n1 (xk) :=
k∑

h=1

qh, k = 1, ..., K. (2)

All of this gives us a way of thinking about the second of the essential ingredients
of the mobility problem mentioned in the introduction: how to measure an individual's
status within society. The combination of the two-period framework and the di�erent
types of information about the classes enables us to specify a number of status concepts
that can be used to generate di�erent types of mobility measure. Let us use ui and vi to
denote individual i's status in the 0-distribution and the 1-distribution respectively and,
for each i = 1, 2, ..., n, de�ne the ordered pair zi := (ui, vi); then consider four examples
of status concepts:

• Distribution-independent, static (1). The simplest and, perhaps, most obvious case
is where we just use the x values to evaluate individual status, both the before and
after the event:

zi =
(
xk0(i), xk1(i)

)
. (3)

The information about distribution (before or after) is irrelevant to the evaluation
of individual status. This simple case results in a model of the movements of
incomes.

• Distribution-independent, static (2). Clearly case 1 can be extended to include any
case that involves a simple transformation of income:

zi =
(
ϕ
(
xk0(i)

)
, ϕ
(
xk1(i)

))
, (4)

where the monotonic increasing function ϕ could be chosen for arbitrary conve-
nience, (such as log or exp), economic interpretation (utility of x) or to insure that
the transformed variable has appropriate statistical properties. The ϕ function is
used to �revalue� the income concept and in general one would expect the mobility
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index to be dependent upon the choice of ϕ; this amounts to requiring that mobil-
ity be characterised as a cardinal concept. But such an approach is inappropriate
for some types of mobility problem: if one is studying social status or educational
attainment then one particular cardinalisation may appear to be rather arbitrary.
To require that a mobility index be based on purely ordinal concepts - to be inde-
pendent of the cardinalisation ϕ - might seem rather demanding and to require a
somewhat vague approach to the measurement problem. However there is a way
forward that, as we will see, leads to sharp conclusions. This way forward uses the
distribution itself as a means of valuing the K classes; there are two important
further cases that we will consider.

• Distribution-dependent, static. If we wish to use information from the income
distribution to evaluate a person's status then, for example we might take the
number of persons with incomes no greater than that of i :

zi =
(
n0

(
xk0(i)

)
, n0

(
xk1(i)

))
. (5)

Here we use the cumulative numbers in class to �value� the class. It results in a
concept that is consistent with a purely ordinal approach to mobility - one that
it is independent of arbitrary monotonic, order-preserving transformations of the
xk. As an aside note that this case can be naturally extended to the case where
the 1-distribution is used to evaluate the classes: just replace n0 with n1 in both
parts of expression (5).

• Distribution-dependent, dynamic. An extension of the previous case that is ar-
guably more important is where both n0 and n1 are used in status evaluation:

zi =
(
n0

(
xk0(i)

)
, n1

(
xk1(i)

))
. (6)

In (6) we are taking into account the change in �valuation� of each status class
that arises from the changing income distribution.5

It is clear that status is di�erent from �income�: we could, if we wish, make the two
things identical, but that would be an explicit normative assumption. It is also clear
that di�erent status concepts could produce quite di�erent interpretations of mobility
from the same basic data. In particular the meaning of zero mobility depends on the
way individuals' status is de�ned. For example, in each of the cases (3) to (6) it makes
sense say that there is zero mobility if

vi = ui, i = 1, ..., n. (7)

Consider the n = 3 scenario depicted in Table 1: three individuals A, B, C move up the
income classes from period 0 to period 1. If status is de�ned as (6) then there is zero
mobility; if it is de�ned as (5) it is clear that mobility is positive. Now suppose that

xk = λxk−1, k = 2, ..., K, λ > 1. (8)

5If there were an exogenous revaluation of the K classes so that (x1, ..., xK) in period 0 changes
to (y1, ..., yK) in period 1 - perhaps because of in�ation or economic growth - then clearly one could
also consider a distribution-independent, dynamic case where zi =

(
xk0(i), yk1(i)

)
. However, this is

intrinsically less interesting and cases where the income scale changes are probably better handled as
in the next paragraph.
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period 0 period 1
x1 A _
x2 B A
x3 C B
x4 _ C
x5 _ _

Table 1: Zero mobility?

Then, in the cases (3) and (4), it may make sense to consider

vi = λui, i = 1, ..., n, λ > 0. (9)

as representing zero mobility; this would apply, for example, if one made the judgment
that uniform proportional income growth for all members of society is irrelevant for
mobility. Each of these answers makes sense in its own way.

It is also clear that allowing for di�erent de�nitions of status will induce di�erent
types of mobility measure. Moreover the four illustrative examples of status concepts
are not exhaustive. What we will see in the theoretical development of Section 3 is that
for any given de�nition of status we can derive an associated class of mobility measures.
Taking this with the diversity of status concepts that may be derived from a given data
set we are, in e�ect, characterising a superclass of classes of mobility measures.

To make progress we may exploit the separability of the concept of status from the
concepts of individual and aggregate mobility.

3 Mobility measures - theory

3.1 Individual mobility

Accordingly, let us address the third essential ingredient of the mobility problem men-
tioned in the introduction: the aggregation of changes in individual status.6 For the
analysis that follows the status measure that is imputed can be arbitrary, subject only
that it be weakly increasing in the income levels xk - for example it does not matter
whether or not is dependent on the cardinalisation of income. So, we assume that a
measure of individual status has been agreed, determined by the information available
from the income distribution at any moment; we also assume that we have an observa-
tion of the status of each person i in periods 0 and 1; we need a coherent method of
quantifying the implicit status changes as �mobility.�

In this approach the set of status distributions is given by

U :=
{
u| u ∈ Rn

+, u1 ≤ u2 ≤ ... ≤ un
}
. (10)

6An early treatment of this type of problem for the speci�c case where status equals income is given
in Cowell (1985). However, the present treatment is more general, in two ways. First, the axiomatisation
here does not require di�erentiability or additivity, which were arbitrarily imposed in Cowell (1985);
second, the current paper deals with any arbitrary representation of status (including ordinal status)
rather than being speci�c to income.
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Individual mobility is completely characterised by the ordered pairs zi, i = 1, 2, ..., n as
de�ned in section 2. The set of possible income movements Z is taken to be a connected
subset of R+ × R+ and we de�ne

Zn := Z × Z × ...× Z.

We may refer to any z ∈ Zn as a movement pro�le. Overall mobility for a given
pro�le can be described in terms of the individual mobility of each person as a vector

m (z) := (m (z1) , ...,m (zn)) .

where the function m : Z → R is such that m (zi) is strictly increasing in |ui − vi|. Other
than this property, the form of the individual-mobility function m is left open at the
moment. It will be determined through an axiomatisation of a mobility ordering that
will then induce a particular structural form on individual and overall mobility.

As we have noted, a particular advantage of our approach is that the axiomatisation
of the ordering can be completely separated from the speci�cation of the status concepts.
Of course it will be the case that some axioms are particularly appropriate in the case
of certain types of status measure and we will discuss these on a case-by-case basis.

3.2 A mobility ordering

First we need to characterise a method of comparing movement pro�les. Let us consider
mobility as a weak ordering � on Zn; denote by � the strict relation associated with
� and denote by ∼ the equivalence relation associated with �. We also need one more
piece of notation: for any z ∈ Zn denote by z (ζ, i) the member of Zn formed by replacing
the ith component of z by ζ ∈ Z.

Axiom 1 [Continuity] � is continuous on Zn.

Axiom 2 [Monotonicity] If z, z′ ∈ Zn di�er only in their ith component thenm (ui, vi) >
m (u′i, v

′
i)⇐⇒ z � z′.

In other words, if two movement pro�les di�er only in respect of person i's status,
then the pro�le that registers higher individual mobility for i is the pro�le that exhibits
greater mobility. This is a very weak requirement.

Axiom 3 [Independence] For z, z′ ∈ Zn such that: z ∼ z′ and zi = z′i for some i then
z (ζ, i) ∼ z′ (ζ, i) for all ζ ∈ [zi−1, zi+1]∩

[
z′i−1, z

′
i+1

]
.

Suppose that the pro�les z and z′ are equivalent in terms of overall mobility and
that there is some person i such that i's status pair zi = (ui, vi) is the same in z and
in z′. Then, the same small change ∆zi in i's status pair in both pro�les z and z′ still
leaves z and z′ as equivalent in terms of overall mobility.

Axiom 4 [Local immobility] Let z, z′ ∈ Zn be such that, for some i and j, ui = vi,
uj = vj, u

′
i = ui + δ, v′i = vi + δ, u′j = uj − δ, v′j = vj − δ and, for all h 6= i, j, u′h = uh,

v′h = vh. Then z ∼ z′.
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The principle states that if two pro�les are identical except for the status of i and j
who are both immobile then a status-preserving spread involving only i and j (a notional
improvement in the status of i and worsening of the status of j by the same amount)
has no e�ect on the evaluation of mobility. Person i has the same before-status and
after-status in z and the same is true for j; by construction the same is true for both i
and j in z′; for every other person individual mobility is the same in z andz′; so it seems
reasonable to require that z andz′ represent the same overall mobility.

Theorem 1 Given Axioms 1 to 4 (a) � is representable by the continuous function
given by

n∑
i=1

φi (zi) ,∀z ∈ Zn (11)

where, for each i, φi : Z → R is a continuous function that is strictly increasing in
|ui − vi| and (b)

φi (u, u) = ai + biu. (12)

Corollary 1 Since � is an ordering it is also representable by

φ

(
n∑
i=1

φi (zi)

)
(13)

where φi is de�ned as in (11), (12) and φ : R → R continuous and strictly monotonic
increasing.

This additive structure means that we can proceed to evaluate aggregate mobility
by taking one person at a time. The following axiom imposes a fairly weak structural
requirement, namely that the ordering remains unchanged by some uniform scale change
to status in both periods simultaneously. As Theorem 2 shows it is enough to induce a
rather speci�c structure on the function representing �.

Axiom 5 [Status scale irrelevance] For any z, z′ ∈ Zn such that z ∼ z′, tz ∼ tz′for all
t > 0.

Axiom 5 is completely natural in the case of distribution-dependent measures of sta-
tus such as (5) or (6) since it enables one to characterise mobility in terms of population
proportions rather than absolute numbers. In the case where status is given by x one is
clearly making a judgment about the mobility implications of across-the-board changes
in real income.

Theorem 2 Given Axioms 1 to 5 � is representable by

φ

(
n∑
i=1

uiHi

(
ui
vi

))
(14)

where Hi is a real-valued function.

This result is important but limited since the function Hi is essentially arbitrary: we
need to impose more structure.
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3.3 (u, v) vectors and mobility

We now focus on the way in which one compares the (u, v) vectors in di�erent parts
of the distribution. The form of (14) suggests that movement should be characterised
terms of proportional di�erences:

m (zi) = max

(
ui
vi
,
vi
ui

)
.

This is the form for m that we will assume from this point onwards. We also introduce:

Axiom 6 [Mobility scale irrelevance] Suppose there are z0, z
′
0 ∈ Zn such that z0∼ z′0.

Then for all t > 0 and z, z′ such that m (z) = tm (z0) and m (z′) = tm (z′0): z ∼ z′.

The principle states this. Suppose we have two pro�les z0 and z′0 that are regarded
as equivalent under �. Then scale up (or down) all the individual mobility (the status
movements) in z0 and z′0 by the same factor t. The resulting pair of pro�les z and z′

will also be equivalent.7

Theorem 3 Given Axioms 1 to 6 � is representable by

Φ (z) = φ

(
n∑
i=1

uαi v
1−α
i

)
(15)

where α 6= 1 is a constant.

3.4 Aggregate mobility index

We can now use the function representing mobility rankings to generate an aggregate
mobility index. Consider the behaviour of the index over the following subset of Z :

Z (ū, v̄) :=

{
z ∈Z|

n∑
i=1

zi = (ū, v̄)

}
.

Theorem 3 implies that, for all z ∈Z (ū, v̄), the mobility index must take the form

Φ (z) = φ̄

(
n∑
i=1

uαi v
1−α
i ; ū, v̄

)
, (16)

where ū, v̄ are parameters of the function φ̄ that is the counterpart of φ in (15). It is
reasonable to require that Φ (z) should take the value zero when z there is no mobility
between the 0-distribution and the 1-distribution. If we take the standard interpretation
of zero mobility as given in (7) in which case the form (16) requires that

φ̄

(
n∑
i=1

ui; ū, ū

)
= 0, (17)

7Also note that Axiom 6 can be stated equivalently by requiring that, for a given z0, z
′
0 ∈ Zn such

that z0∼ z′0, either (a) any z and z′ found by rescaling the u-components will be equivalent or (b) any
z and z′ found by rescaling the v-components will be equivalent.
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in other words we have the restriction φ̄ (ū; ū, ū) = 0; but this restriction does not
impose much additional structure on the problem. By contrast, suppose we take a
broader interpretation of zero mobility given in (9), namely that if the 1-distribution is
obtained rescaling each component in the 0-distribution by a factor λ > 0 then there is
no mobility; in other words suppose we say that the aggregate of status is not relevant
in the evaluation of mobility. This interpretation requires that, if vi = λui, i = 1, .., n
(where λ = v̄/ū) then, from (16), we have

φ̄

(
λ1−α

n∑
i=1

ui; ū, v̄

)
= 0 (18)

which implies
φ̄
(
ūαv̄1−α; ū, v̄

)
= 0. (19)

This can only be true for all α if φ in (15) and φ̄ in (16) can be written in the form

ψ

(
n∑
i=1

[
ui
µu

]α [
vi
µv

]1−α)
, (20)

where µu := 1
n

∑n
i=1 ui and µv := 1

n

∑n
i=1 vi.

A suitable cardinalisation of (20) gives the aggregate mobility measure

Mα :=
1

α [α− 1]n

n∑
i=1

[[
ui
µu

]α [
vi
µv

]1−α
− 1

]
, α ∈ R, α 6= 0, 1 (21)

where we have the following limiting forms for the cases α = 0 and α = 1, respectively

M0 = − 1

n

n∑
i=1

vi
µv

log

(
ui
µu

/
vi
µv

)
, (22)

M1 =
1

n

n∑
i=1

ui
µu

log

(
ui
µu

/
vi
µv

)
. (23)

Expressions (21)-(23) constitute a class of aggregate mobility measures where an indi-
vidual family member is characterised by choice of α: a high positive α produces an
index that is particularly sensitive to downward movements (where u exceeds v) and a
negative α yields an index that is sensitive to upward movements (where v exceeds u).

4 Discussion

The nature of the superclass referred to in the introduction is now clear: expressions
(21)� (23) characterise a class of indices, for a given de�nition of the status variables u
and v; the superclass is the collection of all such classes for the di�erent status concepts
that are supported by the data. We can generate a di�erent class of mobility indices
just by replacing the status concept, for example by choosing a di�erent speci�cation
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from section 2. Let us brie�y review the issues raised by the structure of our superclass
in the light of the mobility-measurement literature.

First, is there a good argument for taking an ordinal-status class of indices from the
superclass? In so far as mobility is concerned with ranks rather than income levels then
making status an ordinal concept is exactly the thing to do (Chakravarty 1984, Van Kerm
2009). However, there is a variety of ways of attempting to de�ne status ordinally. For
example a large section of the mobility adopts a �mobility table� or �transition matrix�
approach to mobility.8 This focuses attention on the size pk of each class k and the
number of the pk that move to other classes. However, this approach could be sensitive
to the merging or splitting of classes or the adjustment of class boundaries. Consider
the case where in the original set of classes pk = 0 and pk+1 > 0; if the mobility index
is sensitive to small values of p and the income boundary between classes k and k + 1
is adjusted some of the population mass that was formerly in class k + 1 is now tipped
into class k and there could be a big jump in the mobility index. This will not happen
if the index is de�ned in terms of ui and vi as in (5) or (6).

Our axioms induce an additive structure for the mobility index, which might be
thought to be restrictive. Individual mobility depends only on the individual's status
in the before- and after-distributions. Should mobility perhaps also depend on the
person's rank relative to others? (see for example Demuynck and Van de gaer 2010)
However, as we have just explained, i's status may well depend on i's relative position
in the distribution according to some formulations of u and v. So, rank can enter into
the formulation of the mobility index, but through the de�nition of status, not the
formulation of individual mobility. In fact the additive structure makes it particularly
straightforward to interpret the underlying composition of mobility; the reason for this
is that the expressions in (21)� (23) are clearly decomposable by arbitrary population
subgroups. This means, for example, that we may choose a number i∗ and partition U
in (10) unambiguously9 into a poor group P (for i ≤ i∗ ) and a rich group R (for i > i∗)
and, using an obvious notation, express overall mobility as

Mα = wPMP
α + wRMR

α +Mbetween
α ,

where the weights wP, wR and the between-group mobility component Mbetween
α are

functions of the status-means µu, µv for each of the two groups and overall; comparing

MP
α and MR

α enables one to say precisely where in the distribution mobility has taken
place.

Our axioms also induce a homothetic structure, which once again might be thought
to be rather restrictive for some interpretations of u and v. We have e�ectively intro-
duced scale independence which could be considered unobjectionable when u and v are
evaluated in terms of numbers of persons, but might be questioned if u and v are to be
interpreted in terms of income or wealth, say: why not have a translation-independent
mobility index? However, the fact that our approach de�nes a superclass, not just a sin-
gle class, of mobility measures can be used to handle this issue. As we have discussed,

8See, for example, Atkinson (1981, 1983), Bibby (1975), D'Agostino and Dardanoni (2009), Kearl
and Pope (1984), Shorrocks (1978).

9Clearly �poor� and �rich� refer to status in the before-distribution and we could have used a �ner
partition into more than two groups.
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the methodology is valid for arbitrary methods of valuing the K classes. So, for example,
we may replace the u and v by u + c and v + c where c is a non-negative constant. In
which case (21) will be replaced by

θ (c)

n

n∑
i=1

[[
ui + c

µu + c

]α(c) [
vi + c

µv + c

]1−α(c)
− 1

]
, α(c) ∈ R, α(c) 6= 0, 1 (24)

where γ ∈ R, β ∈ R+, the term α(c) indicates that the sensitivity parameter may
depends upon the location parameter c and θ (c) is a normalisation term given by

θ (c) :=
1 + c2

α(c)2 − α(c)
; (25)

for α(c) = 0 and α(c) = 1 there are obvious special cases of (24) corresponding to
(22) and (23). If we take a given value of c then we have generated an �intermediate�
version of the mobility index (borrowing the terminology of Bossert and P�ngsten 1990,
Eichhorn 1988). However, by writing

α(c) := γ + βc (26)

and analysing the behaviour as c→∞ we may say more. Consider the main expression
inside the summation in (24); taking logs we may write this as

log

(
1 + v

c

1 + µv
c

)
+ α(c)

[
log
(

1 +
u

c

)
+ log

(
1 +

µv
c

)
− log

(
1 +

v

c

)
− log

(
1 +

µu
c

)]
.

(27)
Using the standard expansion

log (1 + t) = t− t2

2
+
t3

3
− ... (28)

and (26) we �nd that (27) becomes

log

(
1 + v

c

1 + µv
c

)
+
[
β +

γ

c

] [
u+ µv − v − µu −

u2

2c
− µ2

v

2c
+
v2

2c
+
µ2
u

2c
...

]
. (29)

For �nite γ, β, u, v, µu, µv we �nd that (29) becomes

β [u− µu − v + µv] (30)

and

lim
c→∞

θ (c) = lim
c→∞

1 + 1
c2[

β + γ
c

]2 − 1
c

[
β + γ

c

] =
1

β2
. (31)

From (30) and (31) we can see that in the limit (24) becomes10

1

nβ2

n∑
i=1

[
eβ[ui−µu−vi+µv ] − 1

]
, (32)

10See also equation (56) of Cowell (1985).
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for any β 6= 0. Let qi := ui − µu − vi + µv so that (32) can be written

1

nβ2

n∑
i=1

[
eβqi − 1

]
=

1

nβ2

n∑
i=1

[
1 + βqi +

1

2!
β2q2i +

1

3!
β3q3i +

1

4!
β4q4i + ...− 1

]
, (33)

using a standard expansion. Noting that 1
n

∑n
i=1 qi = 0, the right-hand side of (33)

becomes
1

n

n∑
i=1

[
1

2!
q2i +

1

3!
βq3i +

1

4!
β2q4i + ...

]
. (34)

As β → 0 it is clear that (34) tends to 1
2n

∑n
i=1 q

2
i . So the limiting form of (32) for β = 0

is
1

2
var (ui − vi) . (35)

So expressions (32) and (35) show that a class of translation-independent mobility mea-
sures - where mobility is independent of uniform absolute additions to/subtractions from
everyone's income - is also contained within our superclass.

Finally, should mobility indices be �ethical� indices?11 Some recent contributions to
the literature have built this in - notably the �extended Atkinson� approach of Gottschalk
and Spolaore (2002), which is based on Atkinson and Bourguignon (1982). Although our
approach has not started from a basis in welfare economics, ethical considerations can be
incorporated through two channels, (1) the de�nition of status and (2) the parameter α.
(1) The use income itself or a rank-dependent construct as the status variable is essen-
tially a normative choice. (2) Depending on the interpretation of u and v we can endow
the sensitivity parameter α with welfare interpretation, using an analogy with the well-
known relation between welfare-based inequality measures and the generalised-entropy
approach.12 It enables us to capture directional sensitivity in the mobility context:13

high positive values result in a mobility index that is sensitive to downward movements
from period 0 to period 1; negative α is sensitive to upward movements. Picking a value
for this parameter is again a normative choice.

5 Statistical Inference

In this section we establish the asymptotic distribution of our mobility measures, taking
the situation where there are as many classes as there are observations. For two well-
known status concepts, associated with movements of incomes and with rank mobility,
we show that Mα is asymptotically Normal.

11The classic paper by King (1983) is explicitly based on a social-welfare function..Other early con-
tributions using a welfare-based approach see Markandya (1982, 1984) and Chakravarty et al. (1985)
later reinterpreted by Ruiz-Castillo (2004).

12In particular notice that in the case where ui = xi and ∀vi = µv, Mα in (21)-(23) becomes the class
of generalised-entropy inequality indices.

13See also Demuynck and Van de gaer (2010) and Schluter and Van de gaer (2011).
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5.1 Income mobility

Let us consider the distribution-independent, static status, as de�ned in (3). The income
values at period 0 and 1 are used to evaluate individual status,

ui = x0i and vi = x1i, (36)

it corresponds to a model of movement of incomes. Let us de�ne the following moment:
µg(u,v) = n−1

∑n
i=1 g(ui, vi), where g(.) is a speci�c function. We proceed by taking the

cases (21)� (23) separately.

Case Mα (α 6= 0, 1). We can rewrite the index (21) as

Mα =
1

α(1− α)

[
n−1

∑
uαi v

1−α
i

µαu µ
1−α
v

− 1

]
from which we obtain Mα as a function of three moments:

Mα =
1

α(α− 1)

[
µuαv1−α

µαuµ
1−α
v

− 1

]
. (37)

Under standard regularity conditions, the Central Limit Theorem can be applied and
thus the Mα index will follows asymptotically a Normal distribution. Under these cir-
cumstances the asymptotic variance can be calculated by the delta method. Speci�cally,
if Σ̂ is the estimator of the covariance matrix of µu, µv and µuαv1−α , the variance estimator
for Mα is :

V̂ar(Mα) = DΣ̂D> with D =
[
∂Mα

∂µu
; ∂Mα

∂µv
; ∂Mα

∂µuαv1−α

]
(38)

where the matrix D can be written as functions of sample moments. We have

D =

[
−µuαv1−αµ−α−1u µα−1v

(α− 1)
;
µuαv1−αµ

−α
u µα−2v

α
;
µ−αu µα−1v

α(α− 1)

]
.

The covariance matrix Σ̂ is de�ned as follows:14

Σ̂ =
1

n

 µu2 − (µu)
2 µuv − µuµv µu1+αv1−α − µuµuαv1−α

µuv − µuµv µv2 − (µv)
2 µuαv2−α − µvµuαv1−α

µu1+αv1−α − µuµuαv1−α µuαv2−α − µvµuαv1−α µu2αv2−2α − (µuαv1−α)2

 (39)

We can use this variance estimator of Mα to compute a test statistic or a con�dence
interval.15

Similar developments permit us to derive the variance estimators of the limiting
forms of the mobility index.

14If the observations are assumed independent, we have Ĉov(µu, µv) =
1
n Ĉov(ui, vi). In addition, we

use the fact that, by de�nition Cov(U, V ) = E(UV )− E(U)E(V ).
15Note that we assume that the observations are independent, in the sense that Cov(ui, uj) = 0

and Cov(vi, vj) = 0 for all i 6= j, but this independence assumption is not between the two samples:
Cov(ui, vi) can be di�erent from 0.
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Case M0. We can rewrite M0 as a function of four moments:

M0 =
µv log v − µv log u

µv
+ log

(
µu
µv

)
(40)

The variance estimator of this index is de�ned as follows:

V̂ar(M0) = D0Σ̂0D
>
0 with D0 =

[
∂M0

∂µu
; ∂M0

∂µv
; ∂M0

∂µv log v
; ∂M0

∂µv log u

]
(41)

We have

D0 =

[
1

µu
;
−µv log v + µv log u − µv

µ2
v

;
1

µv
; − 1

µv

]
,

and the estimator of the covariance matrix of the four moments Σ̂0 is equal to:

1

n

 µu2 − (µu)
2 µuv − µuµv µuv log v − µuµv log v µuv log u − µuµv log u

µuv − µuµv µv2 − (µv)
2 µv2 log v − µvµv log v µv2 log u − µvµv log u

µuv log v − µuµv log v µv2 log v − µvµv log v µ(v log v)2 − (µv log v)
2 µv2 log u log v − µv log uµv log v

µuv log u − µuµv log u µv2 log u − µvµv log u µv2 log u log v − µv log uµv log v µ(v log u)2 − (µv log u)
2



Case M1. We can rewrite M1 as a function of four moments:

M1 =
µu log u − µu log v

µu
+ log

(
µv
µu

)
(42)

The variance estimator of this index is de�ned as follows:

V̂ar(M1) = D1Σ̂1D
>
1 with D1 =

[
∂M1

∂µu
; ∂M1

∂µv
; ∂M1

∂µu log u
; ∂M1

∂µu log v

]
(43)

We have

D1 =

[
−µu log u + µu log v − µu

µ2
u

;
1

µv
;

1

µu
; − 1

µu

]
,

and the estimator of the covariance matrix of the four moments Σ̂1 is equal to:

1

n

 µu2 − (µu)
2 µuv − µuµv µu2 log u − µuµu log u µu2 log v − µuµu log v

µuv − µuµv µv2 − (µv)
2 µuv log u − µvµu log u µuv log v − µvµu log v

µu2 log u − µuµu log u µuv log u − µvµu log u µ(u log u)2 − (µu log u)
2 µu2 log u log v − µu log uµu log v

µu2 log v − µuµu log v µuv log v − µvµu log v µu2 log u log v − µu log uµu log v µ(u log v)2 − (µu log v)
2



5.2 Rank mobility

Let us consider the distribution-dependent, dynamic status, as de�ned in (6), that is, ui
(resp. vi) is the number of individuals with incomes less or equal to the income of i at
period one (resp. at period two). In other words, ranks are used to evaluate individual
status. Because of the scale independence property of Mα, we may use proportions
rather than numbers to de�ne status,

ui = F̂0(x0i) and vi = F̂1(x1i) (44)
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where F̂0(.) and F̂1(.) are the empirical distribution functions of individual incomes in
period 0 and 1,

F̂k(x) =
1

n

n∑
j=1

I(xkj ≤ x) (45)

where k = 1, 2 and I(.) is an indicator function, equals to 1 if its argument is true and to
0 otherwise. Then, ui (resp vi) is the rank of i's income in the set of incomes at period
0 (resp. 1), divided by the total number of incomes n. Let us consider that we have
no ties in the sample, u and v are thus de�ned by two di�erently ordered sets of the
same values { 1

n
, 2
n
, . . . , 1}. The values in u and v are non i.i.d., and thus, the method of

moments used previously in the case of income mobility does not apply.
Ruymgaart and van Zuijlen (1978) have established the asymptotic normality in the

non i.i.d. case of the following multivariate rank statistic,

Tn =
1

n

n∑
i=1

cinφ1(ui)φ2(vi), (46)

where cin are given real constants, φ1 and φ2 are (scores) functions de�ned on (0,1),
which are allowed to tend to in�nity near 0 and 1 but not too quickly. Indeed, the
following assumption is required: there exists positive numbers K1, a1 and a2, such that

φ1(t) ≤
K1

[t(1− t)]a1
and φ2(t) ≤

K1

[t(1− t)]a2
with a1 + a2 <

1

2
(47)

for t ∈ (0, 1). This condition implies that φ1(t) and φ2(t) should tend to in�nity near 0
at a rate slower than the functions t−a1 and t−a2 . Moreover, they have shown that the
variance of Tn is �nite, even if not analytically tractable.

In the following, we show that Mα can be written as a function of Tn and we check
when the condition de�ned in (47) is respected. Let us �rst notice that,

µu = µv =
1

n

n∑
i=1

i

n
=
n+ 1

2n
. (48)

Case Mα (α 6= 0, 1). From (37) and (48) , we obtainMα as a function of one moment:

Mα =
1

α(α− 1)

[
2n

n+ 1
µuαv1−α − 1

]
. (49)

From (49) and (46), it is clear that

Mα =
1

α(α− 1)
[Tn − 1] , (50)

with cin = 2n
n+1

, φ1(ui) = uαi and φ2(vi) = v1−αi . The condition de�ned in (47) is
respected for α ∈]− 0.5, 1.5[. Indeed, for α > 0, we have 0 < φ1(ui) ≤ 1 and we can use
a1 = 0. Then, the condition requires a2 < 1/2, that is, −(1− α) < 1/2. For α < 0, we
have 0 < φ2(vi) ≤ 1 and we can use a2 = 0, the condition requires a1 < 1/2, that is,
−α < 1/2. Note that, when 0 < α < 1, the two functions φ1 and φ2 are bounded, they
both provide values in (0, 1).
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Case M0. From (40), (48) and (46), we have

M0 =
2n

n+ 1
(k − µv log u) = l − Tn, (51)

where k and l are real constants16 and cin = 2n
n+1

, φ1(ui) = log ui and φ2(vi) = vi. The
condition (47) is respected because φ2(vi) ≤ 1 and φ1(ui) tends to in�nity near 0 at a
slower rate than −1/

√
ui, which implies a1 < 1/2.

Case M1. From (42), (48) and (46), we have

M1 =
2n

n+ 1
(k − µu log v) = l − Tn, (52)

where cin = 2n
n+1

, φ1(ui) = ui and φ2(vi) = log vi. The condition (47) is respected
because φ1(ui) ≤ 1 and φ2(vi) tends to in�nity near 0 at a slower rate than −1/

√
vi,

which implies a2 < 1/2.
Our rank mobility indices Mα can be rewritten as linear functions of Tn and the

condition (47), required to establish the asymptotic normality of Tn, is respected for
−0.5 < α < 1.5. It follows that Mα is asymptotically normal, for −0.5 < α < 1.5. Even
if the asymptotic variance is not analytically tractable, the existence of the asymptotic
distribution provides an asymptotic justi�cation for using the bootstrap to perform
statistical inference.

6 Finite sample performance

We now turn to the way mobility indices within the superclass perform in practice.
We study the �nite sample properties of Mα for the two families of measures within the
superclass: a family of income-mobility measures and a family of rank-mobility measures.
We do this for the case where there are as many classes as observations.

The coverage error rate of a con�dence interval is the probability that the random
interval does not include, or cover, the true value of the parameter. A method of
constructing con�dence intervals with good �nite sample properties should provide a
coverage error rate close to the nominal rate. For a con�dence interval at 95%, the nom-
inal coverage error rate is equal to 5%. In this section, we use Monte-Carlo simulation
to approximate the coverage error rate of asymptotic and bootstrap con�dence intervals
in several experimental designs.

Three methods are considered to calculate con�dence intervals: asymptotic, per-
centile bootstrap and studentized bootstrap methods. The asymptotic con�dence inter-
val is equal to

ICasym = [Mα − c0.975V̂ar(Mα)1/2 ; Mα + c0.975V̂ar(Mα)1/2] (53)

where c0.975 is a critical value obtained from the Student distribution T (n− 1). Asymp-
totic con�dence intervals do not always perform well in �nite samples. When asymptotic

16k = µv log v = µu log u = n−1
∑n
i=1

i
n log i

n and l = 2nk
n+1
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con�dence intervals give poor coverage, bootstrap con�dence intervals can be expected
to perform better. A variety of bootstrap intervals can be used - for a comprehensive dis-
cussion, see Davison and Hinkley (1997). A �rst method, called the percentile bootstrap
method, does not require the computation and the use of the (asymptotic) standard er-
ror of the mobility measure estimated. We generate B bootstrap samples, by resampling
in the original data, and then, for each resample, we compute the mobility index. We
obtain B bootstrap statistics, M b

α, b = 1, . . . , B. The percentile bootstrap con�dence
interval is equal to

ICperc = [cb0.025 ; cb0.975] (54)

where cb0.025 and cb0.975 are the 2.5 and 97.5 percentiles of the EDF of the bootstrap
statistics. A second method, called the studentized bootstrap method, makes use of the
asymptotic standard error of the mobility measure estimated. We generate B bootstrap
samples, by resampling in the original data, and then, for each resample, we compute a t-
statistic. We obtain B bootstrap t-statistics tbα = (M b

α−Mα)/V̂ar(M b
α)1/2, b = 1, . . . , B,

where Mα is the mobility index computed with the original data. The studentized
bootstrap con�dence interval is equal to

ICstud = [Mα − c∗0.975V̂ar(Mα)1/2 ; Mα − c∗0.025V̂ar(Mα)1/2] (55)

where c∗0.025 and c∗0.975 are the 2.5 and 97.5 percentiles of the EDF of the bootstrap t-
statistics. It is also called a bootstrap-t or a percentile-t con�dence interval. The main
di�erence between the two bootstrap methods is that the studentized bootstrap con�-
dence interval is based on an asymptotically pivotal statistic, not the percentile bootstrap
con�dence interval. Indeed, the t-statistics follow asymptotically a known distribution,
which does not depend on unknown parameters. This property is known to provide
superior statistical performance of the bootstrap over asymptotic con�dence intervals
(Beran 1987). Note that both bootstrap con�dence intervals are asymmetric. Then,
they should provide more accurate con�dence intervals than the asymptotic con�dence
interval when the exact distribution of the statistic is not symmetric. For well-known
reasons - see Davison and Hinkley (1997) or Davidson and MacKinnon (2000) - the
number of bootstrap resamples B should be chosen so that (B + 1)/100 is an integer.
In what follows, we set B = 199.

In our experiments, samples are drawn from a Bivariate Lognormal distribution with
parameters

(x0, x1) ∼ LN(µ,Σ) with µ = (0, 0) and Σ =

(
1 ρ
ρ 1

)
(56)

where µ and Σ are the mean and the square root of the covariance matrix of the vari-
able's natural logarithm. The case ρ = 1 corresponds to zero mobility and the case
ρ = 0 corresponds to incomes in periods 0 and 1 (resp. x0 and x1) being indepen-
dently generated. Then mobility should increases as ρ decreases. The asymptotic dis-
tribution is unde�ned for the case of zero mobility (ρ = 1); it is thus interesting to
study the statistical properties in case of �nearly� zero mobility (ρ = 0.99). In the
experiments, we consider di�erent mobility indices (α = −1,−0.5, 0, 0.5, 1, 1.5, 2), dif-
ferent sample sizes (n = 100, 200, 500, 1 000, 5 000, 10 000) and di�erent mobility levels
(ρ = 0, 0.2, 0.4, 0.6, 0.8, 0.9, 0.99).
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For �xed values of α, n and ρ, we draw 10 000 samples from the bivariate lognormal
distribution. For each sample we compute Mα and its con�dence interval at 95%. The
coverage error rate is computed as the proportion of times the true value of the mobility
index is not included in the con�dence intervals. The true value of the mobility index
is approximated from a sample of a million observations. Con�dence intervals perform
well in �nite sample if the coverage error rate is close to the nominal value, that is, close
to the value 0.05.

6.1 Income mobility

Let us consider the distribution-independent, static status, as de�ned in (36). Here the
income values are used to evaluate individual status: this corresponds to a model of
movement of incomes.

α -1 0 0.5 1 2

n = 100, ρ = 0 0.3686 0.1329 0.1092 0.1357 0.3730
n = 100, ρ = 0.2 0.3160 0.1334 0.1136 0.1325 0.3194
n = 100, ρ = 0.4 0.2664 0.1353 0.1221 0.1351 0.2889
n = 100, ρ = 0.6 0.2175 0.1346 0.1275 0.1361 0.2263
n = 100, ρ = 0.8 0.1718 0.1349 0.1304 0.1345 0.1753
n = 100, ρ = 0.9 0.1528 0.1321 0.1308 0.1329 0.1531
n = 100, ρ = 0.99 0.1355 0.1340 0.1331 0.1324 0.1333
n = 200, ρ = 0 0.3351 0.1077 0.0923 0.1107 0.3153
n = 500, ρ = 0 0.2594 0.0830 0.0696 0.0818 0.2631
n = 1000, ρ = 0 0.2164 0.0703 0.0609 0.0726 0.2181
n = 5000, ρ = 0 0.1713 0.0554 0.0469 0.0522 0.2066
n = 10000, ρ = 0 0.1115 0.0532 0.0527 0.0534 0.1151

Table 2: Coverage error rate of asymptotic con�dence intervals at 95% of income mobility
measures. The nominal error rate is 0.05, 10.000 replications

Table 2 shows coverage error rates of asymptotic con�dence intervals at 95%. If the
asymptotic distribution is a good approximation of the exact distribution of the statistic,
the coverage error rate should be close to the nominal error rate, 0.05. From Table 2,
we can see that:

• asymptotic con�dence intervals always perform poorly for α = −1, 2,

• the coverage error rate is stable as ρ varies (for α = 0, 0.5, 1 and n = 100),

• the coverage error rate decreases as n increases,

• the coverage error rate is close to 0.05 for n ≥ 5.000 and α = 0, 0.5, 1.

These results suggest that asymptotic con�dence intervals perform well in very large
sample, with α ∈ [0, 1].
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α -1 0 0.5 1 2

n = 100, ρ = 0.8
Asymptotic 0.1718 0.1349 0.1304 0.1345 0.1753
Boot-perc 0.1591 0.1294 0.1215 0.1266 0.1552
Boot-stud 0.0931 0.0751 0.0732 0.076 0.0952
n = 200, ρ = 0.8
Asymptotic 0.1315 0.0973 0.0927 0.0973 0.1276
Boot-perc 0.1222 0.0943 0.0900 0.0950 0.1176
Boot-stud 0.0794 0.0666 0.0660 0.0688 0.0791
n = 500, ρ = 0.8
Asymptotic 0.1127 0.0847 0.0828 0.0857 0.1124
Boot-perc 0.1054 0.0814 0.0813 0.0843 0.1036
Boot-stud 0.0765 0.0641 0.0629 0.0630 0.0779
n = 1.000, ρ = 0.8
Asymptotic 0.0880 0.0678 0.0659 0.0672 0.0864
Boot-perc 0.0862 0.0672 0.0661 0.0689 0.0851
Boot-stud 0.0680 0.0585 0.0589 0.0596 0.0693

Table 3: Coverage error rate of asymptotic and bootstrap con�dence intervals at 95% of
income mobility measures. 10 000 replications, 199 bootstraps

The dismal performance of asymptotic con�dence intervals for small and moderate
samples is su�cient to motivate the use of bootstrap methods. Table 3 shows coverage
error rates of asymptotic and bootstrap con�dence intervals at 95%. We select the value
ρ = 0.8, because it gives the poorest results for asymptotic con�dence intervals with
α ∈ [0, 1] in Table 2. It is clear from Table 3 that:

• percentile bootstrap and asymptotic con�dence intervals perform similarly,

• studentized bootstrap con�dence intervals outperform other methods,

These results show that studentized bootstrap con�dence intervals provide signi�cant
improvements over asymptotic con�dence intervals.

6.2 Rank mobility

Let us consider the distribution-dependent, dynamic status, as de�ned in (44). Here
ranks (the income positions) are used to evaluate individual status; it corresponds to a
model of rank mobility. Since the variance ofMα is not analytically tractable, we cannot
use asymptotic and studentized bootstrap con�dence intervals. We use the percentile
bootstrap method.

Table 4 shows coverage error rates of percentile bootstrap con�dence intervals at 95%
with n = 100 observations. We can see that:

• the coverage error rate can be very di�erent for di�erent values of ρ and α,

• it decreases as ρ increases, except for the case of �nearly� zero mobility (ρ = 0.99).
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α -0.5 0 0.5 1 1.5

ρ = 0 0.5592 0.1575 0.1088 0.1583 0.5282
ρ = 0.2 0.3176 0.1122 0.0884 0.1135 0.3231
ρ = 0.4 0.1883 0.0931 0.0755 0.0913 0.1876
ρ = 0.6 0.1122 0.0767 0.0651 0.0741 0.1118
ρ = 0.8 0.0671 0.0593 0.0555 0.0590 0.0652
ρ = 0.9 0.0432 0.0430 0.0431 0.0441 0.0446
ρ = 0.99 0.0983 0.0985 0.0981 0.0984 0.0992

Table 4: Coverage error rate of percentile bootstrap con�dence intervals at 95% of rank-
mobility measures. 10 000 replications, 199 bootstraps and 100 observations.

α -0.5 0 0.5 1 1.5

n = 100, ρ = 0 0.5592 0.1575 0.1088 0.1583 0.5282
n = 200 0.4613 0.1143 0.0833 0.1180 0.4723
n = 500 0.3548 0.0868 0.0645 0.0814 0.3644
n = 1000 0.3135 0.0672 0.0556 0.0735 0.3170
n = 100, ρ = 0.9 0.0432 0.0430 0.0431 0.0441 0.0446
n = 200 0.0454 0.0441 0.0456 0.0454 0.0459
n = 500 0.0500 0.0499 0.0485 0.0480 0.0483
n = 1000 0.0511 0.0509 0.0539 0.0538 0.0538
n = 100, ρ = 0.99 0.0983 0.0985 0.0981 0.0984 0.0992
n = 200 0.0981 0.0971 0.0970 0.0974 0.0977
n = 500 0.0855 0.0838 0.0833 0.0822 0.083
n = 1000 0.0788 0.0777 0.0762 0.0767 0.0771

Table 5: Coverage error rate of percentile bootstrap con�dence intervals at 95% of rank-
mobility measures. 10 000 replications, 199 bootstraps.

• the coverage error rate is close to 0.05 for ρ = 0.8, 0.9 and α = 0, 0.5, 1.

These results suggest that percentile bootstrap con�dence intervals perform well in small
sample in the presence of low but signi�cant mobility levels (ρ = 0.8, 0.9) and for α ∈
[0, 1].

Table 5 shows coverage error rates of percentile bootstrap con�dence intervals at 95%
as the sample size increases. We can see that:

• the coverage error rate gets closer to 0.05 as the sample size increases,

• the coverage error rate is smaller when α = 0, 0.5, 1.

These results show that percentile bootstrap con�dence intervals have better statistical
properties as the sample size increases.
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7 Conclusion

What makes our approach to mobility measurement novel is not the introduction of a
new speci�c index but rather a way of rethinking the representation of the problem and
then the theoretical and statistical treatment of this representation of mobility. The key
step involves a logical separation of fundamental concepts, (1) the measure of individual
status and (2) the aggregation of changes in status.

The status concept is derived directly from information available in the marginal
distributions. It could involve the simplest derivation - the assumption that status
equals income. Or it could involve something more sophisticated, incorporating the
person's location in the income distribution. This is a matter for normative judgment.

The aggregation of changes in status involves the application of standard principles to
status pairs. From this one derives a superclass of mobility measures - a class of classes
of measures. As we have seen this is generally applicable to a wide variety of status
concepts and, for any given status concept, the members of the class are indexed by a
parameter α that determines the type of mobility measure. Each measure in each class of
the superclass involves a kind of averaging of individual mobilities and the evaluation of
individual mobility depends on status in the two periods, but no more (in our approach
rank may be important for status but not for quantifying movement). Every measure
in the superclass has attractive scale properties that imply structural regularity, but no
more than that; once again this is because status can be separated from - if not divorced
from - income and wealth.

We have also shown that the principal status types that are likely to be adopted
in practice will result in statistically tractable mobility indices. Bootstrap con�dence
intervals perform well in moderate sample sizes for α in the interval [0, 1], in the cases
of both income mobility and rank mobility.
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A Proofs

Proof. [Proof of Theorem 1] . Axioms 1 to 4 imply that � can be represented by a
continuous function Φ : Zn → R that is increasing in |ui − vi|, i = 1, ..., n. Using Axiom
3 part (a) of the result follows from Theorem 5.3 of Fishburn (1970). Now take z′ and
z in as speci�ed in Axiom 4. Using (11) it is clear that z ∼ z′ if and only if

φi (ui + δ, ui + δ)− φi (ui, ui)− φj (uj + δ, uj + δ) + φj (uj + δ, uj + δ) = 0

which can only be true if

φi (ui + δ, ui + δ)− φi (ui, ui) = f (δ)

for arbitrary ui and δ. This is a standard Pexider equation and its solution implies (12).

Proof. [Proof of Theorem 2] Using the function Φ introduced in the proof of Theorem
1 Axiom 5 implies

Φ (z) = Φ (z′)

Φ (tz) = Φ (tz′)

and so, since this has to be true for arbitrary z, z′ we have

Φ (tz)

Φ (z)
=

Φ (tz′)

Φ (z′)
= ψ (t)

where ψ is a continuous function R→ R. Hence, using the φi given in (11), we have for
all z:

φi (tzi) = ψ (t)φi (zi) i = 1, ..., n.

or, equivalently
φi (tui, tvi) = ψ (t)φi (ui, vi) , i = 1, ..., n. (57)

So, in view of Aczél and Dhombres (1989), page 346 there must exist c ∈ R and a
function Hi : R+ → R such that

φi (ui, vi) = uciHi

(
ui
vi

)
. (58)

From (12) and (58) it is clear that

φi (ui, ui) = uciHi (1) = ai + biui, (59)

which implies c = 1. Putting (58) with c = 1 into (13) gives the result.

Proof. [Proof of Theorem 3] Take the special case where, in distribution z′0 the
individual movement takes the same value r for all n. If (ui, vi) represents a typical
component in z0 then z0∼ z′0 implies

r = ψ

(
n∑
i=1

uiHi

(
ui
vi

))
(60)
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where ψ is the solution in r to

n∑
i=1

uiHi

(
ui
vi

)
=

n∑
i=1

uiHi (r) (61)

In (61) can take the ui as �xed weights. Using Axiom 6 in (60) requires

tr = ψ

(
n∑
i=1

uiHi

(
t
ui
vi

))
, for all t > 0. (62)

Using (61) we have

n∑
i=1

uiHi

(
tψ

(
n∑
i=1

uiHi

(
ui
vi

)))
=

n∑
i=1

uiHi

(
t
ui
vi

)
(63)

Introduce the following change of variables

ui := uiHi

(
ui
vi

)
, i = 1, ..., n (64)

and write the inverse of this relationship as

ui
vi

= ψi (ui) , i = 1, ..., n (65)

Substituting (64) and (65) into (63) we get

n∑
i=1

uiHi

(
tψ

(
n∑
i=1

ui

))
=

n∑
i=1

uiHi (tψi (ui)) . (66)

Also de�ne the following functions

θ0 (u, t) :=
n∑
i=1

uiHi (tψ (u)) (67)

θi (u, t) := uiHi (tψi (u)) , i = 1, ..., n. (68)

Substituting (67),(68) into (66) we get the Pexider functional equation

θ0

(
n∑
i=1

ui, t

)
=

n∑
i=1

θi (ui, t)

which has as a solution

θi (u, t) = bi (t) +B (t)u, i = 0, 1, ..., n

where

b0 (t) =
n∑
i=1

bi (t)
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� see Aczél (1966), page 142. Therefore we have

Hi

(
t
ui
vi

)
=
bi (t)

ui
+B (t)Hi

(
ui
vi

)
, i = 1, ..., n (69)

From Eichhorn (1978), Theorem 2.7.3 the solution to (69) is of the form

Hi (v) =
βiv

α−1 + γi, α 6= 1
βi log v + γi α = 1

(70)

where βi > 0 is an arbitrary positive number. Substituting for Hi (·) from (70) into (14)
for the case where βi is the same for all i gives the result.
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