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Abstract : We re-examine issues of coordination in the standard RBC
model. Can the unique the unique rational expectations equilibrium be "educed"
by rational agents who contemplate the possibility of small deviations from
equilibrium? Surprisingly, we �nd that coordination along this line cannot be
expected. Rational agents anticipating small but possibly persistent deviations
have to face the existence of retroactions that necessarily invalidate any initial
tentative "common knowledge" of the future. This �impossibility�theorem for
eductive learning is not fully overcome when adaptive learning is incorporated
into the framework.
Résumé :
Nous réexaminons la question de la coordination des anticipations dans le

modèle standard de cycles réels. L�équilibre à anticipations rationnelles unique
peut-il être déduit de raisonnements d�agents rationnels confrontés à la possibil-
ité de petites déviations de l�équilibre ? De façon quelque peu inattendue, nous
donnons une réponse négative à cette question. Des agents rationnels faisant
face à des possibilités de petites déviations persistantes ne peuvent écarter des
rétroactions qui invalident nécessairement toute hypothétique « Connaissance
Commune » initiale de l�avenir. Ce théorème d�impossibilité de l�apprentissage
« divinatoire » a des contreparties qui mettent en exergue des di¢ cultés par-
allèles de l�apprentissage « adaptatif » dans ce contexte.
Codes JEL : E1, E30, E32, E6
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1 Introduction

This paper examines the question of expectational coordination in a simple Real Busi-
ness Cycle model. The long run focal point for expectational coordination, as usual in
economic modelling, is the rational expectations (in this simple model, perfect fore-
sight) equilibrium. Our analysis puts emphasis on the expectational robustness of the
equilibrium, using what may be called the �eductive�viewpoint, (see Evans and Gues-
nerie (1993, 2005) and Guesnerie (2002) for an introductory conceptual assessment
and Guesnerie (2005) for a collection of studies along these lines). �Eductive learning�
can be contrasted with the more standard �evolutive�or �adaptive� learning view-
point,1 which is also introduced at a later stage in the paper. The logical framework
and the central results for eductive learning, as well as the connections with evolutive
learning, are well understood in many contexts, and in particular within simple mod-
els of the overlapping generations type in which agents are short lived (see Gauthier
and Guesnerie (2004) for an assessment that puts emphasis on the consistency of
di¤erent viewpoints on expectational coordination).

In contrast, in an RBC (real business cycle) model, agents are long lived and
in fact have in�nite life. The long-life assumption plays an important role in the
working of the world under examination. In particular, long-lived agents take into
account their permanent income, rather than income over a short horizon, a fact
that has a key impact on the understanding and design of macroeconomic policies.
The question under scrutiny here is the e¤ect of the introduction of long-lived agents
on expectational coordination: does it make expectational coordination more or less
robust?

The answer, based on our �eductive�assessment of coordination, is that coordi-
nation is necessarily weak. There is no collective image of the future, close but not
identical to the �true,�self-ful�lling, image, which is able to trigger (a common knowl-
edge of) the self-ful�lling image. Thus every such image is subject, at some stage, to
be invalidated by facts: in this simple world, a �crisis,�here an expectational crisis,
is in some sense unavoidable. However, the extent of weakness of expectational co-
ordination, and metaphorically the plausibility of the crisis, depends upon a certain
number of characteristics of the system that we exhibit. Also, the �real-time�amend-
ment of the collective image of the future must necessarily rely on adaptive learning,
the success of which in maintaining the collective image of the future, i.e. in some
sense in avoiding the crisis, depends on features of the system that we stress.

The paper proceeds as follows. In section 2, we present the model and its equilib-
ria. We then provide a number of preliminary results, together with their intuition,
on the connections between long-run and short-run individual expectations and ag-

1For the adaptive learning approach see, for example, Marcet and Sargent (1989), Woodford
(1990) and Evans and Honkapohja (2001).
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gregate, long-run or short-run, e¤ects. In section 3, we present from two di¤erent
viewpoints the eductive criteria that serve to assess expectational robustness of the
equilibrium. Section 4 provides conditions for weak eductive stability, gathered in
three propositions. Section 5 shows that strong eductive stability, whatever its exact
de�nition, necessarily fails. Section 6 focuses on the possibility of maintaining a plau-
sible image of the future in the presence of real-time adaptive learning. Section 7,
which precedes the Conclusion, contrasts our results with those for a model of capital
accumulation in which agents have short lives.

2 The model, equilibrium and the in�uence of be-
liefs on states

2.1 The model and equilibrium

We consider a standard RBC model, except that for simplicity we assume a �xed
labor supply and omit exogenous productivity shocks.2 These simplifying assump-
tions, which amount to a focus on a nonstochastic discrete-time Ramsey model, are
not critical to our results and are made in order to clarify the central features of our
analysis. Elimination of both random shocks and labor-supply response to disequi-
librium expectations can be expected to facilitate coordination on the REE.3 Despite
eliminating these in�uences we establish that a strong form of eductive stability fails.

2.1.1 The household problem

There is a continuum of identical in�nitely-lived households, indexed by ! 2 [0; 1].
Households own capital, kt(!), and one unit of labor, each supplied inelastically. At
time t = 0, household ! solves

max E0(!)
1X
t=0

�tU(ct(!)), where 0 < � < 1, (1)

subject to kt+1(!) = (1 + rt)kt(!) + qt � ct(!); (2)

with initial wealth k0(!) given. Here qt is the wage rate, and rt is the rental rate
for capital, at time t, and the utility function U(c) is increasing, strictly concave and
smooth. We further impose a No Ponzi Game (NPG) condition that the present value
of their limiting lifetime wealth be nonnegative. If, at this stage, one does not assume

2The seminal papers developing the RBC model include Kydland and Prescott (1982), Long and
Plosser (1983) and Prescott (1986).

3For example, the weak eductive stability conditions, given below, can be shown to be stricter
when labor supply is elastic.
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that the future is deterministic, E0(!) captures the expectations of agent ! formed
using his subjective distribution.

Let us assume at this stage that k0(!) = k0 for all agents. Iterating forward the
household �ow budget constraint, and imposing the NPG and transversality con-
ditions, gives the lifetime budget constraint of the household; thus, we rewrite the
consumer program as:

maxE0(!)

1X
t=0

�tU(ct(!))

subject to

1X
t=0

Rtct(!) =

1X
t=0

Rtqt + (1 + r0)k0(!), where

Rt =

tY
i=1

(1 + ri)
�1

and R0 = 1. The �rst-order condition for the household optimization problem is the
Euler equation

U 0(ct(!)) = �Et(!) ((1 + rt+1)U
0(ct+1(!))) . (3)

2.1.2 Equilibrium

Goods are produced by �rms from capital and labor using a constant returns to scale
production function f(K;L), satisfying the usual assumptions, under conditions of
perfect competition. Thus rt; qt are given by

rt = fK(Kt; 1)� �
qt = fL(Kt; 1)

where Kt =
R 1
0
kt(!)d! and where fK = @f=@K and fL = @f=@L. For convenience,

below, we also write f(K) in place of f(K; 1) and use the notation f 0 = fK and
f 00 = fKK . In addition we have the aggregate capital accumulation equation

Kt+1 = (1� �)Kt + f(Kt; 1)� Ct;

where Ct =
R 1
0
ct(!)d!.

We can now de�ne the (unique) perfect foresight steady state.

De�nition 1 The perfect foresight steady state Kt = kt(!) = �K, Ct = ct(!) = �C,
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rt = �r and qt = �q is given by

1 = �(1 + �r)

�r = fK( �K; 1)� �;
�q = fL( �K; 1)
�C = f( �K; 1)� � �K

In steady state, agents consume what is left after depreciated capital is replaced.

Since,
f( �K; 1) = fK( �K; 1) �K + �q

we also know that �C = �r �K + �q:

If K0 = �K then under perfect foresight the economy stays in the steady state for
all t, and if K0 6= �K, then there is a unique perfect foresight path that converges to
the steady state as t!1. We now assume that we are initially in steady state, with
k0(!) = �K for all !, and we examine the robustness of expectational coordination on
this equilibrium.

2.2 Beliefs, actions, plans and realizations

2.2.1 Preliminaries

Consider an individual agent facing the consumption/savings problem (1)-(2). The
behavior of the agent is in part determined by his beliefs about the future values
of wages and interest rates. At the most general level, an agent�s beliefs may be
stochastic, and so summarized by a sequence of joint density functions fFt(qt; rt)g
where qt and rt are the time t wage and interest rate histories, respectively. Here,
we restrict attention to deterministic beliefs, i.e. to point expectations, which is
satisfactory in our nonstochastic setting for beliefs that are small deviations from
perfect foresight.

The beliefs of agent ! may therefore be summarized by real sequences of expected
wages and interest rates. We choose to assume that the agent understands the rela-
tionship between aggregate capital and input prices, that is, the agent knows

rt = f
0(Kt)� �; and qt = f(Kt)� f 0(Kt)Kt;

so that, in fact, his beliefs are completely captured by a sequence of real numbers
identifying his point expectations of future capital stock: we denote these beliefs by
~Ke(!) = fKe

t (!)gt�0; where Ke
0(!) = K0 = �K is known to all agents. A beliefs

pro�le is the collection of all agents�beliefs: ~Ke = f ~Ke(!) : ! 2 [0; 1]g.
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The key ingredient of the analysis is the understanding of the e¤ect of change in
individual expectations on changes in individual actions or plans (particularly when
these changes occur around the equilibrium). Taking as reference point the perfect
foresight steady-state path K0 = �K;Kt = �K, for all t, we analyze the e¤ects on
an agent�s plans of small changes, around the steady state-values, in the agent�s
individual initial capital k0(!); in the aggregate initial capital and in the agent�s
point expectations Ke

t (!). The analysis relies on the following lemma.

Lemma 1 Let V (k0(!); ~Ke(!)) be the value function associated with the problem (1)-
(2) and the NPG condition, given initial stock k0(!), aggregate capital K0 and beliefs
~Ke(!). The derivatives of the value function, at the steady-state path k0(!) = �K;
K0 = �K; Ke

t (!) = �K for all t � 1; are as follows:

1. @V
@k0(!)

= ��1U 0( �C)

2. @V
@K0

= 0

3. @V
@Ke

t (!)
= 0:

The proof of the Lemma is provided in the Appendix. The �rst result of the Lemma
is fairly intuitive from examination of the intertemporal budget constraint. The third
result relies on the fact that, given the individual budget constraint of period t as
written above, kt+1(!) = (1+rt)kt(!)+qt� ct(!); the equilibrium plan Kt = kt(!) =
�K, Ct = ct(!) = �C; is still feasible, to �rst-order approximation, when rt changes
from �r to �r+ fKK( �K; 1)dKe

t (!) and qt changes from �q to �q+ fKL( �K; 1)dKe
t (!), since

�KfKK( �K; 1) + fKL( �K; 1) = 0: (The second result uses the same argument at period
0). In other words, the expected price changes induced by the change in expectations
on the capital stock have no income e¤ect, to the �rst order approximation. For that
reason, it has no welfare e¤ect, as stressed in the second and third parts of the Lemma.

2.2.2 Further insights

Lemma 1 provides a useful computational conclusion, which is most easily exploited by
allowing for a modi�ed notation that measures quantities as deviations from steady
state: set dkt(!) = kt(!) � �K and dKe

t (!) = Ke
t (!) � �K, and similarly for any

individual or aggregate quantity or point expectation thereof. Using the Lemma we
can now explicitly compute, to �rst-order, the consumption function.

Because we are restricting attention to beliefs time paths within a small neighbor-
hood of the steady state, we will often identify a particular variable�s time path with
its �rst-order approximation; and we will use our deviation notation to capture this
identi�cation. Suppose, for example, that agent ! has beliefs ~Ke(!), initial wealth
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k0(!), and that ct(!) is his optimal consumption decision at time t. Then we will also
say that he has beliefs d ~Ke(!), initial wealth dk0(!) and that dct(!) is his optimal
consumption decision at time t.4 With this notation, an intuitively straightforward
consequence of the previous lemma is:

Corollary 1 Consider any time path of beliefs dKe
t (!), and any initial capital stock

dk0(!) and dK0. Let dct(!) be the associated sequence of consumption decisions.
Then

��1dk0(!) =
X
t�0
�tdct(!): (4)

Corollary 1 follows from Lemma 1 and implies in particular that given beliefs dKe
t (!),

if k0(!) = �K then the optimal consumption path satis�es
P
�tdct(!) = 0: The

natural welfare interpretation of the second part of the Lemma can again be stressed:
a change in the expected path of aggregate capital, and the corresponding expected
price changes that it triggers, have no �rst-order impact on welfare. For this reason,
we call this the welfare corollary.

The next Lemma exploits the welfare corollary as well as the above individual
Euler equation.

Lemma 2 Consider any time path of beliefs dKe
t (!) and assume dk0(!) = 0. Let

dct(!) be the associated sequence of consumption decisions. Then

dct(!)
�C

=
dc0(!)
�C

+
�

�

 
tX
s=1

dres(!)

!
;

where � = � �CU 00( �C)=U 0( �C); and

dc0(!) = �
�
� �C

�

� 1X
s=1

�sdres(!)

!
;

where dret (!) = fK( �K; 1)dK
e
t (!):

The above Lemma (which is proved in the Appendix) brings two facts into sharp
relief. The �rst, expressed in the second formula, is the sensitivity of current con-
sumption, dc0(!); to expectations of the distant future. The second, captured in the

4We may compute the agent�s optimal consumption as

dct(!) =
@ct(!)

@k0(!)
dk0(!) +

X
s�1

@ct(!)

@Ke
s (!)

dKe
s (!);

where the partial derivatives are evaluated at steady-state beliefs.
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�rst formula, is still more striking since it shows that dct(!); the plans for even distant
future levels of consumption, can be extremely sensitive to a change in expectations.
As will be seen later, this is a key issue for the assessment of expectational stability
as we approach it here.

3 The robustness of expectational coordination:
�eductive stability�criteria

We shall �rst provide a de�nition of �eductive� stability based on rather abstract
game-theoretical considerations. This will be the �high-tech�view on expectational
coordination. We shall however see later how the sophisticated �high-tech�viewpoint
meets simpler considerations, that may be termed �low-tech�. This �rst analysis
will voluntarily leave in the shadow the time dimension of the problem. We shall
reintroduce time in order to see how to adapt the general ideas to our in�nite horizon
setting.

3.1 Local eductive stability: the high-tech view

We are in a world populated of rational economic agents (in all the following, we shall
assume that these agents are in�nitesimal and modelled as a continuum). The agents
know the logic of the collective economic interactions (the underlying model). Both
the rationality of the agents and the model are Common Knowledge (CK). The state
of the system is denoted E and belongs to some subset E of some vector space.
Note that E can be a number (the value of an equilibrium price or a growth

rate), a vector (of equilibrium prices,...), a function (an equilibrium demand function),
an in�nite trajectory of states, as will be the case in this paper, or a probability
distribution.

Emphasizing the expectational aspects of the problem, we view an equilibrium
of the system as a state E� such that if everybody believes that it prevails, it does
prevail.5

Under eductive learning, as described below, each agent contemplates the possible
states of the economy implied by the beliefs and associated actions of the economy�s
agents. Coordination on a particular equilibrium outcome obtains when this con-
templation, together with the knowledge that all agents are engaged in the same
contemplation, rules out all potential economic outcomes except the equilibrium. If
coordination on an equilibrium is implied by the eductive learning process, then we

5Note that E� is such that the assertion �it is CK that E = E��is meaningful.
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say that the equilibrium is �eductively stable�or �strongly rational.�6 The argument
can be either global or local. We now introduce the local version.

Formally, we say that E� is locally eductively stable (or locally strongly rational)
if and only if one can �nd some non-trivial �small� neighbourhood of E�, V (E�),
such that Assertion A implies Assertion B:

Assertion A : It is �hypothetically�CK that E 2 V (E�).
Assertion B : It is CK that E = E�.

Assertion A is at this stage hypothetical.7 The mental process that leads from
Assertion A to Assertion B is the following:

1. Because everybody knows that E 2 V (E�), everybody knows that everybody
limits their responses to actions that are best responses to some probability
distributions over V (E�). It follows that everybody knows that the state of the
system will be in a set E(1) � E .

2. If E(1) is a proper subset of V (E�), the mental process goes on as in step 1,
but based now on E(1) instead of V (E�). In this case it follows that everybody
knows that the state of the system will be in a set E(2) � E .

3. The process continues inductively provided that at each stage, E(n) is a proper
subset of E(n� 1).

In the stable case, we then have a decreasing sequence E(n) � E(n � 1) � :::: �
E(1) � V (E�).8 When the sequence converges to E�, the equilibrium is �locally
strongly rational�or �locally eductively�stable. Here �locally�refers to the fact that
the initial neighbourhood is small.9

Intuitively, an equilibrium is eductively stable if whenever agents believe the econ-
omy is within a neighborhood of the equilibrium, and these beliefs are common knowl-
edge to all agents, then the agents can conclude that the aggregate behavior implied

6We remain rather vague on the full game theoretical background of our investigation (for a
deeper discussion of some of the issues, the reader may refer to Guesnerie and Jara-Moroni (2011)).
A study within a �normal form�framework echoing the preoccupations of the present paper can be
found in Matsui and Oyama (2006).

7Although it might be sustained by some policy commitment.
8A given model or economic environment may be naturally allied with several distinct common

knowledge assumptions: these common knowledge assumptions will all impose the recursive reason-
ing process described above, but will di¤er in the initial restrictions on agents�beliefs; and because
of the central role the initial restriction plays in the eductive learning process, di¤erent common
knowledge assumptions may produce di¤erent stability results.

9If the initial neighbourhood were equal to the whole space E , then the word global would replace
the word local.
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by these beliefs results in an economy that is within a strictly smaller neighborhood
of the equilibrium.10

3.2 Local eductive stability: the low-tech view

The de�nition, i.e. the description of the successful deletion of non-best responses,
starting under the assumption that the state of the system is close to the equilibrium
state, re�ects the �local�version of a �hyper-rationality�viewpoint. Another plausible
intuitive de�nition of local expectational stability would be the following: there exists
a non-trivial neighbourhood of the equilibrium such that, if everybody believes that
the state of the system is in this neighbourhood, it is necessarily the case, whatever the
speci�c form taken by everybody�s belief, that the state is in the given neighbourhood.
With the above formal apparatus, the de�nition would be: one can �nd some non-
trivial �small� neighbourhood of E�, V (E�), such that if everybody believes that
E 2 V (E�), then the state of the system will be in E(1); a proper subset of V (E�).
The absence of such a neighbourhood V (E�) does signal risks of instability: there
can be facts falsifying any universally shared conjecture on the set of possible states,
whatever the proximity of the conjectured set to the equilibrium, unless V (E�) is
reduced to the equilibrium E� itself.

Again, with the initial belief assumption, individual actions are best responses to
some probability distributions over V (E�), and the stability property puts emphasis
on the non-falsi�ability of the initial belief. The criterion is low-tech, in the sense
that it refers to the rationality of agents, but not to CK of rationality or of the
model.11 In contrast, the low-tech criterion appeals only to the results of the �rst
step of the high-tech criterion: in the low-tech setting, agents�actions depend only
on their beliefs about the state of the system, and not on their beliefs about other
agents�beliefs. However, the high-tech and low-tech criteria turn out to be equivalent
in this abstract setting as been previously stressed in the literature, and producing a
formal statement is left to the reader.12

Some words are �nally in order concerning the connections between the �eductive�
viewpoint and the �evolutive learning�viewpoint. Let us only say that the failure to
�nd a set V (E�), for which the the equilibrium is locally strongly rational, signals a
tendency for any near-equilibrium states of beliefs, a priori reachable through some

10When this �rst step conclusion obtains, and the neighbourhood is small, then the next step
follows. Because of common knowledge, agents can also conclude that all agents will reach the
same conclusion, and therefore all agents can conclude that all agents will modify their beliefs
appropriately; the mental process repeats ad-in�nitum, with a (in�nitely) decreased support.
11It does not even require full knowledge of the model.
12The equivalence can for example be deduced from assumptions analogous to the weak assump-

tions of Guesnerie and Jara-Moroni (2009). Their results also allows one to show that the analysis
may concentrate on heterogenous point-expectations.
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�reasonable�evolutive updating process, to be triggered away in some cases, a fact
that threatens the convergence of the corresponding learning rule.13

3.3 Eductive stability: the time dimension

The time dimension of our problem, and in particular the in�nite horizon, as well as
the fact that agents are in�nitely-lived, creates a certain number of problems with
our general framework.

The equilibrium E� under consideration is given by Kt = �K for all t, and the
�rst issue is concerned with the notion of a neighbourhood V (E�), which is less
straightforward here than in timeless or short-horizon contexts. We begin with a
simple, natural restriction on the initial time paths of beliefs, that they lie within an
"-neighborhood of the steady state, which might be called the �cylinder�assumption.
In later sections we consider alternative initial assumptions. The cylinder assumption
is:

B1: For some " > 0 su¢ ciently small, Kt 2 D(") � [ �K � "; �K + "] for all t.14

We will refer to the assumption that B1 is common knowledge as CK1:

CK1: B1 is common knowledge.

Given our emphasis on point expectations, which is justi�ed15 for a small neigh-
bourhood of beliefs, we say that a beliefs pro�le ~Ke satis�es B1 provided that
Ke
t (!) 2 D(") for all ! and t. The neighborhood V (E�) is the collection of all

beliefs satisfying B1. The low-tech eductive approach simply assumes that agents�
beliefs satisfy B1, that is, lie in the neighborhood V (E�), and for eductive stabil-
ity, we require that the implied trajectory of capital is consistent with B1. Under
the high-tech eductive approach we require further that B1 is common knowledge:
agent !0 knows that Ke

t (!) 2 D("), and that agent !00 knows that agent !0 knows
that Ke

t (!) 2 D("), etc. If the equilibrium is eductively stable under the high-tech
approach, then agents are able to deduce at time zero that Kt = �K for all t. We
will henceforth say that the steady state is strongly eductively stable if it is eductively
stable according to the high-tech de�nition. We use the word �strong�to indicate the
simultaneous coordination at time zero of the entire time path of aggregate capital,
using the high-tech approach. Later we will distinguish this notion of stability from
less demanding concepts discussed below.

13And certainly forbids a strong form of �monotonic�convergence. More on this subject can be
found in Guesnerie (2002), Guesnerie and Woodford (1991) and Gauthier and Guesnerie (2004).
14We will later introduce alternative assumptions B1�and B2.
15since the expectation of a random variable remains in the support of the random variable.
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Our hope would be to demonstrate strong eductive stability as follows. The
criterion leads one to concentrate, at the �rst stage of the mental process, on the
in�nite-horizon aggregate plans of the agents. In the same way, second-order beliefs
are concerned with aggregate plans implied by �rst order beliefs, so on. At the end
of the mental process, assuming strong eductive stability, agents correctly predict the
next period�s state, and all future states resulting from the guessed actions and plans.

Strong eductive stability implies a low-tech version of strong eductive stability,
which requires that the plans of the agents, as deduced at the �rst step of the iteration
process by everybody from the B1 assumption, be compatible with B1. In a sense, as
noted above, this condition should be almost su¢ cient for (high-tech) strong eductive
stability. This line of argument is developed in Section 5.

As we will see in Section 5, even in its low-tech version, strong eductive stability
is impossible to achieve. Because of this, we consider less demanding concepts of
eductive stability. The �rst concept, which can regarded as an alternative form of
strong eductive stability, is inherently low-tech. This option consists of looking at
the real-time consequences of the beliefs: we ask whether beliefs satisfying B1 trigger
actions that generate an actual path of the system compatible with B1.

Under the alternative approach just described, we allow individual agents to hold
�xed or varying beliefs over time, even though these beliefs may have been (perhaps
repeatedly) contradicted, provided they stay close to the equilibrium in the sense
of B1, and we require that this implies that aggregate capital continues to satisfy
B1. This approach is considered in Section 5.3. Another real-time option is to mix
adaptive learning considerations with the eductive dimension stressed here: as is
standard under adaptive learning, agents are assumed to modify their beliefs over
time in response to the realizations of the capital stock according to a natural class of
adaptive rules; and, in line with the eductive approach, for stability we require that
both beliefs and realizations satisfy B1. This approach is studied in Section 6.

Whatever the approach to the coordination is, a necessary condition for eductive
stability is that the initial beliefs necessarily trigger a �rst period realization of ag-
gregate capital that is compatible with the belief restriction B1. We call this �weak
eductive stability,�and now turn to this concept.

4 Weak Eductive Stability

4.1 Further on the eductive view: weak eductive stability as
a necessary condition

As just argued, the �strong� stability question is whether CK1 will allow agents
to coordinate on the unique perfect foresight equilibrium Kt = �K for all t � 1.
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Answering this question will be the focus of Section 5. In the current Section, we
determine when a necessary condition for this is met: under B1 will the optimal
plans of agents necessarily lead to consumption and saving decisions c0(!); k1(!) that
satisfy K1 2 [ �K � "; �K + "]? If an equilibrium meets this necessary condition, we say
that it satis�es weak eductive stability.

De�nition 2 The steady state �K is weakly eductively stable if, given the initial con-
dition k0(!) = �K for all agents !; and that for all agents beliefs satisfy B1, the
aggregate capital stock in period t = 1 implied by the agents�optimal plans satis�es
K1 2 D(").

4.2 Weak eductive stability: a �rst result

We establish Lemma 6 in the Appendix which identi�es the worst-case expectations
of the agents in the sense of inducing a maximum threat to the validity of the initial
conjecture. In words the lemma says that the worst-case expectations are on the
boundary, i.e. they arise when agents believe that the capital stock will remain at
one of the boundaries of the cylinder.

Using this lemma, we may now establish our �rst stability result.16

Theorem 1 Under B1, the steady state is weakly eductively stable if and only if���� �2 �Cf 00�(1� �)

���� < 1 (5)

Proof: Let " > 0 be small, so that linear approximations to optimal behavior are
valid. Weak eductive stability is equivalent to showing that for any beliefs pro�le
satisfying B1 then dK1 2 I(") � (�"; "): By Lemma 6 it su¢ ces to �nd necessary
and su¢ cient conditions guaranteeing that dK1 2 I(") provided that dKe

t (!) = e for
all ! and t, and for e = �". Using dk1(!) = �dc0(!), recalling from Lemma 2 that

dc0(!) = �
�
� �C

�

� 1X
s=1

�sdres(!)

!
;

and noting dres(!) = jf 00j "; we get that

dk1(!) =

���� �2 �Cf 00(1� �)�

���� ":
16In the following theorem we by assumption exclude the case in which

���2 �Cf 00= (�(1� �))�� = 1.
Throughout the paper we exclude analogous nongeneric cases.
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From Kt =
R 1
0
kt(!)d! we thus have

dK1 =

���� �2 �Cf 00(1� �)�

���� ":
Since weak eductive stability requires jdK1j < ", the result follows.

Note that the formula (5) makes intuitive sense: high � and low f 00 promote
eductive stability. As an example, suppose that production is Cobb-Douglas, so that
f(K) = K�, for 0 < � < 1, and that utility takes the constant elasticity form
U(c) = (c(1��) � 1)=(1� �), for � > 0. Then

�K =

�
�

�r + �

�1=(1��)
and f 00 = �(� � 1) �K��2.

Using these and the steady-state equations for � and �C it can be computed that if,
say, � = 1=3, �r = 0:05 and � = 0:10, then we have weak eductive stability if and
only if � > 2=3. This condition is perhaps plausibly satis�ed, but we have obtained
the somewhat surprising result that even weak eductive stability of the RBC model
cannot be taken for granted.

4.3 Weak eductive stability: further results

A natural question is whether weak eductive stability can be obtained if assumption
B1 is strengthened. We consider the following alternative assumption in which the
possible deviations of Kt from �K shrink to 0 over time at a geometric rate.

B1�: For some 0 < a < 1 and " > 0 su¢ ciently small, Kt 2 [ �K � at"; �K + at"] for all
t.

Theorem 1�: For a > 0 su¢ ciently small, the steady state is weakly eductively
stable under B1 if and only if

�f
00 �C

�
�2 < 1:

Proof: Suppose again that all agents have homogeneous expectations given by
one of the extremes Ke

t (!) = K
e
t =

�K + at�1e for all t = 1; 2; 3; : : :, where e = �":
Then

dCt = dC0 +
� �C

�
f 00
Pt

s=1 dK
e
s

= dC0 +
� �C

�
f 00e

1� at
1� a :

15



Since also
P1

t=0 �
tdCt = 0, we obtain :

1X
t=0

�tdC0 +

1X
t=0

�t
�
� �C

�
f 00e

1� at
1� a

�
= 0;

which yields

dC0 = �
�2 �Cf 00e

�(1� �a) :

Considering a! 0 establishes the result.

Unsurprisingly, by imposing stronger belief assumptions, the condition we obtain
is weaker than the previous one. However, it puts emphasis on similar features of the
system, i.e. �2; �C; f 00; �; with similar intuitive e¤ects. We reserve consideration of a
more general class of assumptions to the case of strong eductive stability, to which
we now turn.

5 Strong eductive stability: impossibility theorems

5.1 The impossibility of strong eductive stability under CK1

The question of local �strong eductive stability�was discussed in Section 3.3 as a
suitable formulation of the high-tech approach that takes into account the time di-
mension. For our economic model we can state this explicitly as follows:

De�nition 3 The steady state is strongly eductively stable if CK1 implies that it is
common knowledge that the equilibrium path, Kt = �K for all t, will take place.

In Theorem 1 we gave a condition for a minimal consistency requirement: given
beliefs B1, the �rst period plans of agents will necessarily be consistent with CK1 in
the �rst period t = 1, if and only if the stated condition (5) is satis�ed. However, this
is only a weak necessary condition for consistency in the stronger sense just de�ned.
In t = 0, given their expectations of the aggregate capital stock fKe

t (!)g
1
t=1 each

agent formulates an optimal dynamic consumption plan fct(!)g1t=0. This implies a
trajectory for the aggregate consumption

n
Ct =

R 1
0
ct(!)d!

o1
t=0

and hence, using

Kt+1 = (1� �)Kt + f(Kt; 1)� Ct; (6)

a trajectory for the aggregate capital stock fKtg1t=1. Recall thatD(") = [ �K�"; �K+"].
For local strong eductive stability of the steady state, it is necessary �indeed, for the
reasons sketched in Section 3.1, almost su¢ cient �that the following condition be met:
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for every " > 0 su¢ ciently small, the implied trajectory of aggregate capital fKtg1t=1
lies in a strictly smaller cylinder D1("0) = D("0)�D("0)� � � � , i.e. Kt 2 D("0) for all
t = 1; 2; 3; : : :, for some 0 < "0 < ". This implies that for strong eductive stability, for
all expectations satisfying CK1, we must have Kt 2 D(") for all t = 1; 2; 3; : : :. We
now show that, in fact, for all parameter values, the plans made by agents at time
t = 0, based on CK1, can fail to be compatible with beliefs. That is,

Theorem 2 The steady state is never strongly eductively stable under CK1.

Proof: Suppose that all agents have homogeneous expectations Ke
t (!) = K

e
t =

�K + e for all t, where e = �": Their consumption plans thus satisfy

dCt
�C
=
dC0
�C
+
�

�
tdr =

dC0
�C
+
�

�
tf 00e:

We have already shown that dC0 = � (�(1� �))�1 �2f 00e �C; which implies

dCt = �
�f 00e

�
�C

�
�

1� � � t
�
, for t = 1; 2; 3; : : :

Linearizing (6) around the steady state we have dKt+1 = (1 + f
0 � �)dKt � dCt, or

dKt+1 = �
�1dKt � dCt:

For t > �=(1� �) it can be seen that dCt is bounded away from 0; with the opposite
sign to e; and grows linearly with t. Hence for t su¢ ciently large jdCtj > 2��1",
which implies jdKt+1j > " if jdKtj < ". It follows that there must be a time t at
which jdKtj > ". This establishes the result.

Theorem 2 shows that strong eductive stability never holds under CK1. We remark
that the proof in fact shows that the low-tech version of strong eductive stability also
necessarily fails.

The Theorem 2 result should be contrasted with the fact that, with short-lived
agents, eductive stability holds under assumptions that are reminiscent of (though
often more stringent than) standard conditions (such as determinacy, saddle-path
con�guration). The long-run horizon dramatically a¤ects expectational coordination,
as evaluated from the strong eductive viewpoint. In the next section we show that
the instability result does not depend on our speci�c choice of the neighbourhood.

5.2 The general impossibility of strong eductive stability

We now consider a more general class of beliefs, which nests B1 and B1�:
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B2: There exists a speci�ed deterministic sequence f"tg1t=1 with 0 < "t < �" and �"
su¢ ciently small, such that Kt 2 [ �K � "t; �K + "t] for all t.

CK2: B2 is common knowledge.

When the Common Knowledge assumption is CK2, De�nition 3 of strong eductive
stability is modi�ed in the obvious way.

Theorem 3 The steady state is never strongly eductively stable for any common
knowledge assumption CK2.

Proof: Fix a CK assumption with f"tg1t=1 that satis�es CK2. Suppose that
all agents have homogeneous expectations Ke

t (!) = Ke
t = �K + "t for all t. Their

consumption plans satisfy

dCt
�C
=
dC0
�C
+
�f 00

�

 
tX
s=1

"s

!
: (7)

From Lemma 2 we have

dC0 = �
�f 00

�
�C

 1X
s=1

�s"s

!
; (8)

which implies

dCt =
�f 00

�
�C

 
tX
s=1

"s �
1X
s=1

�s"s

!
, for t = 1; 2; 3; : : : : (9)

From the linearization of (6) around the steady, as in the proof of Theorem 2, we
have

dKt+1 = �
�1dKt � dCt: (10)

If (
P1

s=1 "s) = +1 then (7)-(8) imply that jdCtj ! 1 as t ! 1. It follows from
(10) that for t su¢ ciently large, jdKtj < "t < �" implies jdKt+1j > �", so that strong
eductive stability fails.

Suppose instead that (
P1

s=1 "s) is �nite. Then "t ! 0 as t ! 1. Furthermore,
since 0 < � < 1, we have

P1
s=1 "s = (1 + 2a)

P1
s=1 �

s"s for some a > 0, and hence
there exists T > 0 such that

tX
s=1

"s � (1 + a)
1X
s=1

�s"s
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for all t � T . Then t � T and (9) imply

dCt =
� jf 00j
�

�C

 1X
s=1

�s"s �
tX
s=1

"s

!
� �Q;

whereQ = �jf 00j
�
�Ca
P1

s=1 �
s"s > 0. Choose T1 > T su¢ ciently large so that "t < �Q=2

for all t > T1. By (10) it follows that jdKtj < "t and t � T1 imply

jdKt+1j � Q=2 > "t+1

and again strong eductive stability fails.

We remark that if the common knowledge assumption for a sequence f"tg1t=1
satis�es CK2 except that "t = 0 for some proper subset of times t, the contradiction
obtains more directly by focusing attention on such times. We also note that, again,
our proof in fact demonstrates the failure of even low-tech strong eductive stability.

The negative result of Theorem 3 means that the hyper-rationalistic viewpoint of
strong eductive stability is never conclusive. Our hyper-sophisticated agents cannot
convince themselves that the equilibrium will prevail. In a sense, here in the RBC
model, expectational coordination must appeal to bounded rationality considerations.

5.3 A �real-time� alternative view of stability: another im-
possibility theorem

Another way to read the above statement is that there are always initial plans in line
with initial beliefs of the type B2, which turn out to be inconsistent with such beliefs.
It follows that CK2 cannot trigger common knowledge of the equilibrium.

In this section we consider an alternative, real-time perspective of strong eductive
stability, following the low-tech approach. B2 continues to describe a (common)
set of possible beliefs: the beliefs of individual agents are taken from this set, and
now may or may not change through time. At time t the earlier speci�c beliefs of
agents will generally have been falsi�ed by events. However we suppose that their
beliefs always obey the initial restrictions B2 and that the actual path up to t also
satis�es Ks 2 [ �K � "s; �K + "s] for s � t. Will some of the possible paths of the
system generated from such beliefs falsify the assumed initial restrictions B2? The
connection of this question with the notion of strong stability indicated in De�nition
3 is not immediate.17 Let us go to the formal analysis. Our alternative low-tech
de�nition of strong eductive stability, for collective beliefs of type B2, is the following.

17We know from the previous analysis that initial plans turn out to be incompatible with B2;
however, the actual path of aggregate capital will clearly di¤er from the path determined by these
initial plans, and so violation of B2 by the actual path of aggregate capital is not obvious.
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De�nition 4 We say that �K is strongly eductively stable in the alternative sense if,
for all t, Kt 2 [ �K � "t; �K + "t] implies Kt+1 2 [ �K � "t+1; �K + "t+1] when each agent
! chooses ct(!) optimally given expectations fKe

s (!)g
1
s=t+1 consistent with B2.

This de�nition says that if up to period t, the actual path of capital has remained
compatible with the initially assumed restriction on beliefs, (making them close to
the equilibrium beliefs, in the sense of assumption B2), then it will remain compatible
at period t+ 1,... and hence for ever. For this de�nition we still have:

Theorem 4 Under the beliefs restriction B2, the steady state is never strongly educ-
tively stable in the sense of the alternative de�nition.

In fact, stability in the sense of the alternative de�nition implies here to strong
eductive stability in the sense of the �rst de�nition. To understand this, we compare
the planned and real aggregate trajectories of capital associated with beliefs consistent
with B2: the planned trajectory conditions the agents�time t choices on the expected
aggregate capital at time t+ s for s � 0, whereas the real trajectory conditions their
time t decisions on the realized aggregate capital at time t and the expected aggregate
capital at time t+ s for s > 0.

Note that in this real-time approach, beliefs at time 0 over the whole trajectory, to
in�nity, determine aggregateK1; then the beliefs from time 1, up to in�nity, determine
K2, and so on.

We claim that, when beliefs from time 1 up to in�nity are supposed identical to
what they were at time 0 (a case permitted under our de�nition), the real-time trajec-
tory is close (in fact at a second-order distance) to the planned trajectory. This comes
from the fact that although the planned aggregate capital and the realized aggregate
capital, along the real time path, di¤er, this has only a second order e¤ect on the
change of consumption of individual agents, as shown in Corollary 1, (which stresses
that changes in aggregate K0 do not matter). Hence, to �rst-order approximation,
the planned and real aggregate trajectories of capital, when beliefs are maintained as
explained, are the same. Thus Theorem 4 follows form Theorem 3. A formal proof
requires only notational care, and is omitted.

This analysis con�rms the pessimism of the �rst analysis. Trembling beliefs, of
the type described here, are subject to real-time falsi�cation, either in the long run
or in the short run (leading then to what may be called a crisis?). This brings us
to the next viewpoint which must necessarily mix bounded rationality with eductive
considerations. Bounded rationality will lead us to introduce learning of the evolutive
type.
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6 Combining eductive and evolutive learning

6.1 The framework

We have found that the steady state �K is not strongly eductively stable according to
the various de�nitions given above. At the same time it is known that it is locally
asymptotically stable under certain statistical learning rules.. At �rst sight, this sug-
gests a signi�cant contrast between stable adaptive and unstable eductive approaches.
A better way to consider the connection is to combine these approaches.

We will again endow agents with expectations about the future path of the ag-
gregate capital stock. These expectations are restricted to belong a set, which for
convenience we will take to be described by B1. The set B1 can here be viewed as de-
scribing a collective belief which provides bounds to individual beliefs. Starting from
k0(!) = �K these assumptions generate, in accordance with the analysis of Section 4,
a range of possible values for K1.

In line with the eductive approach, agents�decisions today are based on an as-
sessment of the whole future.18 Now, however, the �expected�trajectory at time t is
supposed not only to re�ect initial beliefs but to respond to observed actual capital,
and in the spirit of evolutive approach, we specify a set of adaptive learning rules
that determine the way initial expectations change along the real time trajectory of
aggregate capital. Then, coming back to the collective belief interpretation of B1,
reminiscent of the �eductive� approach, we then ask if the implied paths fKtg1t=1
will necessarily satisfy B1, i.e. if the collective belief which serves as a frame for the
individual beliefs is subject to falsi�cation. If for some nonempty subset of adaptive
learning rules, falsi�cation is impossible, then we say that the steady state is weakly
eductively stable under evolutive learning, and if this occurs for all adaptive learn-
ing rules within the set of adaptive learning rules under consideration, we say it is
strongly eductively stable under evolutive learning.

Let us �rst make more precise what the evolutive learning process is about, and
introduce a simple evolutive learning scheme in the nonstochastic RBC model. We
assume, in line with standard adaptive learning studies, that all the agents use the
same adaptive learning rule.19 We also assume that what is learned is not the whole
future trajectory, but some individually relevant summary statistics of the future. Let

18In the adaptive learning literature, within in�nite-horizon models, this approach has been fol-
lowed, for example, in Sargent (1993, pp. 122-125), Preston (2006), Eusepi and Preston (2008) and
Evans, Honkapoha and Mitra (2009). An alternative approach in the adaptive learning literature is
based on one-step-ahead �Euler equation� learning. See, e.g. Evans and Honkapohja (2001), Ch.
10, and Evans and McGough (2009).
19However, our strong instability results under adaptive learning extend to the case in which het-

erogeneous adaptive learning rules are permitted, since small perturbations of each agent�s learning
rule leads to a small perturbation of the aggregate path for Kt.
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us be more precise.

6.2 The real-time system

In the real-time system we assume that at each time t each agent ! re-solves their
dynamic optimization problem. That is, at each t agent ! chooses ct(!), given kt(!),
to solve their consumer program, given their time t expectations about future wages
and interest rates, where these are a function of their time t expectations of future
aggregate capital,

�
Ke
t;t+j(!)

	1
j=1
. From Corollary 1, for any speci�ed expectations,

the optimal path of consumption satis�es ��1dkt(!) =
P1

s=0 �
sdct+s(!), and from

Lemma 2 we have dct+s(!) = dct(!)+
� �C
�

Ps
j=1 dr

e
t;t+j(!): Combining these equations

and using dret;t+j(!) = f
00dKe

t;t+j(!) we obtain

dct(!) =
(1� �)
�

dkt(!)�
� �C

�
f 00

1X
j=1

�sdKe
t;t+j(!); (11)

which gives, in deviation from steady-state form, the consumption at t of agent ! as
a function of its current wealth kt(!) and the time path of expected future aggregate
capital

�
dKe

t;t+j(!)
	1
j=1
. It can be seen that the agent�s decision ct(!) depends on a

su¢ cient statistic for
�
dKe

t;t+j(!)
	1
j=1
, given by

dK̂e
t (!) = �

�1(1� �)
1X
j=1

�sdKe
t;t+j(!):

Thus dK̂e
t (!) is the time t discounted sum of the expected future aggregate capital

stock. Together with dkt(!) the quantity dK̂e
t (!) is a su¢ cient statistic for dct(!).

The proportionality factor ��1(1 � �) ensures that if dKe
t;t+j(!) = e for all j =

1; 2; 3; : : :, then dK̂e
t (!) = e.

20 Furthermore, it is easily seen that under B1, dK̂e
t (!)

must lie in the interval [�"; "].
From (11) we have

dct(!) =
(1� �)
�

dkt(!)�
�2 �C

(1� �)�f
00dK̂e

t (!);

20Adaptive learning in nonstochastic models with in�nite horizons often assumes �steady state
learning�in which forecasts are the same at all horizons. See, for example, Evans, Honkapohja and
Mitra (2009). In the current context this would mean dKe

t;t+j = e at t for all j, with the value of

e updated over time. Our formulation in terms of dK̂e
t allows for greater generality, while retaining

a single su¢ cient statistic that is updated over time. In stochastic models, the time pattern of
interest rates can be estimated and updated using recursive least squares. For technical reasons
this procedure cannot be used in nonstochastic systems. Intuitively, in a nonstochastic equilibrium
the asymptotic lack of temporal variation makes impossible consistent estimation of the time-series
parameters. See Evans and Honkapohja (2001, pp. 152-154).
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and from the linearized household accumulation equation (as in the proof of Theorem
3) we have

dkt+1(!) = �
�1dkt(!)� dct(!):

Finally we specify a simple adaptive scheme for the revisions of dK̂e
t (!) over time:

dK̂e
t (!) = (1� �)dK̂e

t�1(!) + �dKt;

where 0 < � � 1 parameterizes how expectations adapt to current information about
the actual capital stock.

We are now in a position to describe the �real-time� evolution of the system.
For the sake of simplicity, we start from an initial situation, in which the time zero
belief is the same for everybody dK̂e

0(!) = dK̂0; so that the system has homogeneous
expectations for all t; together with initial actual K0 at or near �K (so that dK0 is
near 0): The homogeneity assumption allows us to calculate the resulting time-path,
but is also illuminating in the sense that we would hope the system to be stable under
learning if we start near the steady state and with a small commonly-held expected
deviation of expected future capital from the steady state.

By combining the above expressions for dct(!) and dkt+1(!) we obtain dkt+1(!) =
dkt(!)� �dK̂e

t (!). The system can thus be written as

dKt+1 = dKt � �dK̂e
t (12)

dK̂e
t+1 = (1� �)dK̂e

t + �dKt+1; (13)

where

� = � �2 �Cf 00

�(1� �)
denotes parameter that determines weak eductive stability in the sense of Section 4.

We can now return to the previously suggested de�nitions of eductive stability
under evolutive (adaptive) learning and give formal de�nitions.

De�nition 5 The equilibrium is weakly eductively stable under adaptive learning if
there exists 0 < � � 1 such that the trajectory fKtg1t=1 ; triggered by (12)-(13),
remains in the cylinder D("); de�ned in B1, for all K0 near �K (dK0 near 0) and all
jdKe

0;jj � ", j = 1; 2; 3; : : :.

De�nition 6 The equilibrium is strongly eductively stable under adaptive learning if
for each 0 < � � 1 the trajectory triggered by (12)-(13) remains in the cylinder D("),
de�ned in B1, for all K0 near �K (dK0 near 0) and all jdKe

0;jj � ", j = 1; 2; 3; : : :.
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Stability obtains under these de�nitions if, starting near the steady state K0 = �K,
the real-time evolution of Kt stays for all t in the cylinder D("); provided the initial

(homogeneous) expectations satisfy B1, so that
���dK̂0

��� � ". For convenience, we
will henceforth refer to �weakly eductively stable under adaptive learning�as simply
�weakly stable under adaptive learning,�and similarly for �strongly eductively stable
under adaptive learning.�

6.3 The results

The �rst result is again an impossibility result.

Theorem 5 The equilibrium cannot be strongly stable under adaptive learning.

Proof: The result can be obtained as a consequence of the argument in Section
5.3. The trajectory under adaptive learning is continuous in � = 0 (for small � > 0;
the ��trajectory is close to the � = 0 trajectory under an appropriate metric). Im-
possibility then follows by continuity as a result of the impossibility of strong eductive
stability in the alternative sense. A second proof, obtained by explicit computation
of the path under adaptive learning, is given in the Appendix.

A striking feature of this result is that the instability arises in the �small gain�
limit of small �, which in the adaptive and least-squares learning literature is usually
viewed as a stabilizing case. In our approach, the problem is that in this case the
initial collective belief will be falsi�ed, which we view as a fragility of expectational
coordination.

Our �nding of strong instability under adaptive learning is even stronger than it
may appear. Theorem 5 implies that at some time t0 we must have jdKt0j > ", but is
it nonetheless possible that the discounted sum of future aggregate capital remains in
D(") for all t, i.e. that jdK̂tj � " for all t where dK̂t = �

�1(1��)
P1

j=1 �
sdKt+j? The

answer is again no: from the proof of Theorem 5 it can be seen that for su¢ ciently
small � there exists a time t1 such that jdKt1j > "�(1 � �)�1 and hence jdK̂t1j > ":
Hence the collective belief associated with B1 can be destroyed in two senses: actual
capital goes away from the cylinder, and the summary statistics of future capital also
goes away from the cylinder.

We next turn to weak stability under adaptive learning. We show �rst that it is
necessary for our de�nition that the system (12)-(13) be asymptotically stable.21

Lemma 3 The equilibrium is weakly stable under adaptive learning only if the system
(12)-(13) is asymptotically stable for some 0 < � � 1.
21Recall that througout the paper we rule out nongeneric cases. Thus we rule out eigenvalues of

(12)-(13) that lie on the unit circle.
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Proof: This follows from standard results for discrete-time linear systems. If the
equilibrium is weakly stable under adaptive learning then the system (12)-(13) must
be stable for all initial conditions. Because the system is linear this implies that its
eigenvalues lie inside the unit circle, which in turn implies asymptotic stability.

Lemma 4 The evolutive system (12)-(13) is asymptotically stable if and only if

� < 4��1 � 2:

Proof: The system can be written as�
dKt+1

dK̂e
t+1

�
=

�
1 ��
� 1� �(1 + �)

��
dKt

dK̂e
t

�
: (14)

Let A denote the 2 � 2 matrix that governs the dynamics. For asymptotic stability
we need both eigenvalues within the unit circle. Equivalently we require jdet(A)j < 1
and jtr(A)j < j1 + det(A)j. Since det(A) = 1�� the �rst condition is satis�ed for all
0 < � < 1. Using tr(A) = 2� �(1 + �) leads to the stated condition.

Lemma 4 implies asymptotic stability for all 0 < � < 1 if � < 2 and for some
0 < � < 1 if � � 2. Asymptotic stability implies that jdKtj; jdK̂e

t j � " for t su¢ ciently
large. However this is only a necessary condition for weak stability under adaptive
learning. Based on Section 4 we already know that � < 1 is a requirement for weak
stability under adaptive learning, since this gives the condition for K1 to satisfy B1,
for K0 = �K and all possible beliefs that satisfy B1, as � ! 1; and in fact for � < 1
weak stability under adaptive learning holds for � < 1 su¢ ciently close to one.22

We can summarize the results in the following Theorem.

Theorem 6 Under adaptive learning the weak and asymptotic stability properties of
(12)-(13) are as follows:

1. For 0 < � < 1; the steady state is weakly stable under adaptive learning for all
� 2 (
(�); 1]; where 
(�) is an increasing function from (0; 1) onto (0; 1):

2. For 1 < �; the steady state is not weakly stable under adaptive learning, although:

3. For 1 � � < 2; the learning process is asymptotically stable whatever �.
22Based on the proof of Theorem 5 given in the Appendix, it can be shown that � < 1 implies

weak stability under adaptive learning. For � < 1 near one, the eigenvalues �1; �2 of A are real and
negative and tend to f0; �g as �! 1. For dK0 = 0 and dK̂e

0 = e we have dK1 = ��e and the path
of Kt is given by

dKt = �(�1 � �2)�1�e(�t1 � �t2)
from which it can be seen that jdKtj reaches a maximum at t = 1, which implies the stated result.
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4. For 2 � �; the learning process is asymptotically stable for � < 4
2+�
.

This theorem emphasizes the relevance of what we earlier called weak eductive sta-
bility for the understanding of real-time learning. Indeed, the coe¢ cient �; stressed
in Theorem 1, plays a key role either in the understanding of stability under adaptive
learning or in the analysis of the plausibility of the asymptotic stability of the adaptive
learning process. Whatever the viewpoint taken, a higher � signals higher expecta-
tional fragility. If � < 1; if the learning rule reacts quickly enough to information on
the path, i.e. � > 
(�); and the more quickly the higher � , then the trajectory neces-
sarily remains in the cylinder de�ning the collective belief. If � > 1;then the path may
eventually go away and falsify the initial belief, whatever the speci�c (asymptotically
stable or not) adaptive earning rule used by the agents

Finally, we remark that while for given � the asymptotic stability condition � <
4��1 � 2 is easier to satisfy when � > 0 is small, it is small values of � that generate
the failure of strong stability under adaptive learning. Small � > 0 under adaptive
learning leads to a cumulative movement of aggregate capital away from the steady
state value, which over �nite time periods, as � ! 0, track the possible Kt paths
deduced by agents in our eductive setting.23

7 A �nite-horizon model with capital

In the introduction we stated that the strong instability results of this paper result
from the long planning horizon of agents in the RBC model. This is re�ected in our
proofs, which show that the violation of the CK assumption arises not because dK1

is too large, but because, eventually, dKt is too large. However, one might still ask
whether strong instability would arise in a model with capital in which agents are
short-lived but the economy is in�nitely-lived. To answer this question, we contrast
our eductive stability results with those for an overlapping generations model with
capital. This model can also be interpreted as a variant of our model in which agents
are myopic (i.e. they only consider next period as the relevant horizon) instead of
being far-sighted and envisaging the whole future. The previous analysis stresses that
farsighted agents �nd it very di¢ cult to coordinate expectations. The next analysis
shows that indeed myopia, makes expectational coordination easier.

23An interesting feature of the instability under adaptive learning, which can be seen in the proof
of Theorem 5 given in the Appendix, is that the instability is associated with long cyclical movements
in Kt.
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7.1 The OLG Model

We stick here to the standard overlapping generations (OLG) terminology, although
we keep in mind the just evoked dimension of myopia versus farsightedness of the
problem.

Consider a two-period OLGmodel with capital, along the lines of Diamond (1965).
Population is constant and normalized to one, and all markets are competitive. Let
!t be an agent born at time t. He is endowed with one unit of labor, which he
supplies inelastically for real wage qt. He then allocates his income between savings
s(!t) = k(!t) and consumption c1(!t). In period t+1, this agent is now old: he rents
his savings for net real return rt+1, consumes the gross return plus pro�ts and dies.
Thus agent !t solves the following problem

max E(!t) u (c1(!t); c2(!t))

s.t. c1(!t) + s(!t) = qt (15)

c2(!t) = (1 + r
e
t+1(!t))s(!t) + �(!t) (16)

Notice that when agent !t makes his savings decision, he does not know the value of
rt+1. Below we assume constant returns to scale production so that � = 0.

The agent !t�s �rst-order condition is given by

uc1 (c1(!t); c2(!t)) = �(1 + r
e
t+1(!t))uc2 (c1(!t); c2(!t)) : (17)

Equations (15)�(17) may be used to compute the savings decision of agent !t based
on current and expected future factor prices:

s(!t) = s(qt; r
e
t+1(!t)):

Firms hire workers and rent capital in competitive factor markets, and employ
constant returns to scale technology to manufacture goods: Y = f(K;L); thus pro�ts
are zero and factors prices are given by the respective marginal products. Capital
is inelastically supplied �in the morning� by the old and depreciation is zero: the
capital accumulation equation is given accordingly by

Kt+1 =

Z
s(!t)d!t =

Z
s(qt; r

e
t+1(!t))d!t:

Assuming agents know the relationship between real interest rates and marginal prod-
ucts, and so form expectations of aggregate capital instead of real interest rates, we
have

Kt+1 =

Z
s
�
fL(Kt; 1); fK(K

e
t+1(!t); 1)

�
d!t; (18)

where Ke
t+1(!t) is agent !t�s forecast of aggregate capital tomorrow. Equation (18)

captures the dynamics of the economy: given aggregate capital today and forecasts
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of aggregate capital tomorrow, the actual value of aggregate capital tomorrow can
be determined. It also highlights a key di¤erence between the OLG model and the
RBC model: in the OLG model aggregate capital depends only on one period ahead
forecasts; in the RBC model, aggregate capital depends on forecasts at all horizons.

7.2 Common Knowledge and Eductive Stability

To motivate the de�nition of eductive stability, we consider the following thought ex-
periment at time t = 0: Let �K be a steady state of (18): �K = s

�
fL( �K; 1); fK( �K; 1)

�
:

Assume that at time t = 0 every old household has capital k0(!) = �K. This deter-
mines the wage, and therefore the income, of the young, as given by �q. Each young
agent !t forecasts capital stock tomorrow, Ke(!t), and determines his savings deci-
sion s(�q; fK(Ke(!t); 1)). He then contemplates the savings decisions of other agents.
We again make the common knowledge CK1:

CK1: It is common knowledge that for some " > 0 su¢ ciently small, Kt 2 D(") �
[ �K � "; �K + "] for all t:

These CK beliefs are assumed held by all agents at all times, i.e. for all !t for all t:

The de�nitions of weak and strong eductive stability under CK1 are identical to
the de�nitions given in Sections 4 and 5. We have the following results:

Lemma 5 The steady state �K is weakly eductively stable if and only if��@s=@r �fL( �K; 1); fK( �K; 1)� � fKK � �K; 1��� < 1: (19)

Proof: To see this, note that (19) holds if and only if there is � 2 (0; 1) such that
for small " > 0, whenever jKe(!t)� �Kj � " it follows that��s �fL( �K; 1); fK(Ke(!t); 1)

�
� �K

�� < �":
CK1 implies in particular that K1 2 D("): If (19) holds this implies that s(!̂0) 2
D(�") for all !̂0. Because each agent !0 knows thatKe(!̂0) 2 D("), he concludes that
s(!̂0) 2 D(�") for all !̂0 and hence that K1 2 D(�"). Thus it is common knowledge
that K1 2 D(�"). Iterating the argument it follows that K1 2

T1
n=1D(�

n") = f �Kg:
In contrast if (19) fails then for some beliefs compatible with CK1, the aggregate
capital stock at t = 1 implied by the agents�optimal plans fails to satisfy K1 2 D("):

Theorem 7 The steady state �K is strongly eductively stable if and only if condition
(19) holds.
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Proof: From the Lemma it follows that it is common knowledge that K1 = �K
if and only if (19) holds. For agents at time t = 1 the situation is identical to the
situation at time t = 0. Thus at t = 1 agents will conclude that K2 = �K and this
implies that it will be the case that K2 = �K and this will also be common knowledge
for agents at t = 0. By induction it follows that the fact that the equilibrium path
will be Kt = �K, all t, is common knowledge.

Because in general OLG models can have multiple steady states, further analytic
results at this level of generality are not available.24 Therefore, to apply our results,
we specify particular functional forms and conduct numerical analysis. Assume utility
is time separable and takes the constant relative risk-aversion form

u(c1; c2) =
1

1� �
�
c1��1 + c1��2 � 2

�
;

for 0 < � < 1; and assume that production is Cobb-Douglas, f(K;L) = K�L1��.
In this case there is a unique positive steady-state level of capital, and parameter
values for � and � completely characterize the model. For all parameters examined �
� 2 (0; 1) and � 2 (0; 100) �the steady state is strongly eductively stable.
This example provides a striking contrast to the coordination problems we have

demonstrated for the RBC model with in�nitely-lived agents.

8 Conclusions

The di¢ culties of expectational coordination can be ascertained from two sides, the
�eductive�one and the �evolutive�one. In both cases, farsighted agents are sensi-
tive to the whole path of expectations and long-run expectations signi�cantly matter.
Long-run concerns do unsurprisingly in�uence present decisions and future plans. But
the sensitivity to expectations of long-run plans envisaged today is extreme. And this
is at the heart of the impossibility of strong �eductive�stability. Indeed, in the educ-
tive framework there is negative short-run feedback, which may be destabilizing, and
positive long-run feedback, which will be destabilizing. That is, an expectation that
aggregate K will persistently exceed �K will lead agents to reduce their capital in the
coming period, which, if the e¤ect is strong enough, can be destabilizing. But, in
addition, the optimal dynamic plans of agents call for them to eventually accumu-
late capital in excess of the conjectured level of aggregate K. Hypothetical Common
Knowledge of the equilibrium cannot trigger Common Knowledge of the equilibrium,
whatever the speci�c characteristics of the economy, an extreme form of expectational

24We remark that, when there are multiple steady states, eductive stability provides a natural
selection criterion.
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instability which has no counterpart in previously studied models25. If evolutive learn-
ing is incorporated into the model, so that expectations evolve adaptively over time,
these two sources of instability remain pivotal. If the adaptation parameter is large
then unstable overshooting can arise in the short-run, while if the adaptation rate
is small then low-frequency swings over the medium run will necessarily generate
instability.

25We do not claim however that the di¢ culty occurs in every model with in�nitely lived agents.
For example, it would not occur in the world of Lucas (1978), where the assets returns do not depend
upon �extrinsic�uncertainty, but only upon intrinsic uncertainty.
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Appendix
Proof of Lemma 1: These results follow from the envelope theorem. The La-

grangian is given by

L =
X
t�0
�t

 
U(ct) + �t

 X
s�0

Rest
�
qet+s � ct+s

�
+ (1 + ret ) kt(!)

!!
;

where

Rst =
sY
i=1

(1 + rt+i)
�1;

and Rest =
Qs
i=1(1+ r

e
t+i)

�1 is the point expectation of Rst given ~Ke(!), and similarly
for qet+s and r

e
t . The �rst result follows easily from

@L

@k0(!)
= �0(1 + r0) :

since K0 = �K it follows that (1 + r0)� = 1; and since �0 is the time zero marginal
utility of wealth, �0 = U 0(c0).

To obtain the second result, notice that because production has constant returns
to scale, it follows that @q0

@K0
+ @r0

@K0
K0 = 0: Now simply compute

@L

@K0

= �0

�
@q0
@K0

+
@r0
@K0

K0

�
:

The �nal result obtains as follows:

@L

@Ke
T (!)

=
T�1X
t=0

�t�t

 
@

@Ke
T (!)

X
s�0

Rest
�
qet+s � ct+s

�!
+ �T�T (q

e
T + (1 + r

e
T )kT (!)) :

We may compute
@

@Ke
T (!)

(qeT + (1 + r
e
T )kT (!)) = 0:

Also, for t � T � 1, we have

@

@Ke
T (!)

Rest =

�
��s+1f 00 t+ s � T
0 else

@

@Ke
T (!)

qes+t =

�
� �Kf 00 t+ s = T
0 else
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Thus

@

@Ke
T (!)

X
s�0

Rest
�
qet+s � ct+s

�
= ��T�t �Kf 00 � (�q � �c) f 00�

X
s�T�t

�s

= �Kf 00

 
��T�t + ��r�T�t

X
s�0

�s

!

= �Kf 00�T�t
�

�

1� � �r � 1
�
= 0:

Proof of Lemma 2: The individual Euler equation (3) implies

ct(!) = c0(!)
�
�t=�

Qt
s=1(1 + r

e
s(!))

1=�
�
:

Taking logs gives

log(ct(!)) = log(c0(!)) + (t=�) log � + (1=�)
tX
s=1

log(1 + res(!)):

Taking small changes, as argued above, we have

dct(!)
�C

=
dc0(!)
�C

+
�

�

 
tX
s=1

dres(!)

!

Using the welfare corollary we obtain

0 =
1
�C

X
t�0
�tdct(!) =

1

1� �
dc0(!)
�C

+ (
�

(1� �)� )
 
+1X
s=1

�sdres(!)

!
;

where we have used the identity
P1

t=1 �
tPt

s=1 dr
e
s(!) = (1 � �)�1�

P1
s=1 �

sdres(!).
The result follows.

Discussion and statement of Lemma 6

Let dK1(d ~K
e) be the deviation of aggregate capital in period one given an ar-

bitrary beliefs pro�le d ~Ke. Weak eductive stability implies that if d ~Ke satis�es B1
then dK1(d ~K

e) 2 (�"; ") � I("). To establish conditions su¢ cient for weak eductive
stability, it is useful to identify the beliefs pro�le(s) d ~Ke that satisfy B1 and that
maximize the magnitude of dK1(d ~K

e). Some additional notion is helpful: denote by
d ~Se(�) an agent speci�c constant beliefs time path: dKe

t (!) = � for all times t. Abus-
ing notation slightly, we will also use d ~Se(�) to indicate a constant and homogeneous
beliefs pro�le: dKe

t (!) = � for all agents ! and times t.

32



Lemma 6 (A.1) Let d ~Ke be any beliefs pro�le consistent with B1. Then

dK1

�
d ~Se(")

�
� dK1

�
d ~Ke

�
� dK1

�
d ~Se(�")

�
:

The proof follows fairly straightforwardly from the previous Lemma.

Constructive proof of Theorem 5: We consider dK0 = 0 and dKe
0(!) = e,

with e = �", for all !. This implies dK1 = ��e. The dynamics of the system are
then given by (14), which can equivalently be written as

dKt+2 = (2� �(1 + �))dKt+1 � (1� �)dKt

with dK0 = 0 and dK1 = ��e. The eigenvalues of the dynamics are complex if
�(1 + �)2 < 4�, and therefore for � > 0 su¢ ciently small and are given by

�; �� =
1

2

n
2� �(1 + �)� i

p
�
p
4� � �(1 + �)2

o
or

�; �� = r(cos(�)� i sin(�)), where
r2 = 1� � and

r sin � =
1

2

p
�
p
4� � �(1 + �)2:

When the roots are complex the solution meeting the initial conditions is given by

dKt = �
�e

r sin �
rt sin(�t).

At t = T = �
2�
we have

dKT = � 2�e
p
�
p
4� � �(1 + �)2

(1� �)�=(4�), where

� = sin�1

s
4��� �2(1 + �)2

4(1� �) :

Taking the limit as � > 0 tends to zero it can be veri�ed that

lim
�!0

dKT (�(�)) = �1

where the sign is opposite to the sign of e. It follows that for � > 0 su¢ ciently small
we have jdKtj > " for values of t near T (�(�)), and hence the equilibrium is not
strongly stable under adaptive learning.
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