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Abstract

This paper attempts to provide a synthetic view of varied techniques available for per-
forming inference on income distributions. Two main approaches can be distinguished:
one in which the object of interest is some index of income inequality or poverty, the
other based on notions of stochastic dominance. From the statistical point of view,
many techniques are common to both approaches, although of course some are specific
to one of them. I assume throughout that inference about population quantities is to
be based on a sample or samples, and, formally, all randomness is due to that of the
sampling process. Inference can be either asymptotic or bootstrap-based. In principle,
the bootstrap is an ideal tool, since in this paper I ignore issues of complex sampling
schemes, and suppose that observations are IID. However both bootstrap inference,
and, to a considerably greater extent, asymptotic inference can fall foul of difficulties
associated with the heavy right-hand tails observed with many income distributions.
I mention some recent attempts to circumvent these difficulties.
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1. Introduction

In this paper, I survey many of the statistical techniques used in order to perform
inference on income-distribution data. By interspersing the review with a few new
results, I hope to show to what extent the problems that arise still provide an active
research agenda. Questions relating to income inequality and poverty have been of
interest to economists for a long time. One of the earliest analyses of inequality dates
back to Gini (1912), in which Gini proposes the celebrated index that bears his name.
More recently, Atkinson (1970) is a pioneering paper on the measurement of inequality,
and Sen (1976) extends ideas to the measurement of poverty.

Whereas Gini’s focus was statistical, the approach of Atkinson, Sen, and their many
followers is instead axiomatic and normative. They attempt to characterise indices of
inequality and poverty, including Gini’s of course, by their properties with respect to
various axioms thought to be desirable on ethical grounds. Canadians have contributed
importantly to this literature: here I may cite Blackorby and Donaldson (1978) and
(1980), papers that have had a profound impact on our subsequent thinking about the
ethics of income distribution.

With the notable exception of early work by Gastwirth and his co-authors, in partic-
ular Gastwirth (1974), little attention was paid to statistical issues, and in particular
statistical inference, in the analysis of income distribution until a paper by Beach and
Davidson (1983), in which the asymptotic distribution of estimated Lorenz curve ordi-
nates was worked out. After that, a very abundant literature followed. The references
I give here constitute at best a representative sample: Bishop, Chakraborti, and This-
tle (1989). Chow (1989), Cowell (1989), McFadden (1989), Preston (1995), Anderson
(1996), Dardanoni and Forcina (1999), Davidson and Duclos (2000). These papers
trace something of the history of statistical research on income distribution.

There are two rather different strands to this literature. One is concerned with in-
ference on particular indices of inequality and poverty; the other with inference on
stochastic dominance. The techniques required are considerably different for the two
strands. In both, though, the usual approach is to assume that the object of inference
is some aspect of a population distribution or distributions, and that inference is to
be performed on the basis of a random sample drawn from the population(s). The
sole source of randomness is that of the sampling process. A few recent papers deal
with the intricacies of complex sampling designs — a notable example is Bhattacharya
(2007) — but the vast majority of papers assume that the sample is drawn completely
at random from the population. Issues relating to measurement error seem not so far
to have attracted attention, despite their obvious importance in practice.

A statistical tool that is showing its worth in income distribution studies is the boot-
strap. I will have a good deal to say about that in this paper, for it has become abun-
dantly clear that bootstrap-based inference is capable of yielding much more reliable
results than conventional asymptotic inference. The latter is by no means rendered
useless by the bootstrap, since the bootstrap works best with statistics of which the
asymptotic variance is known; see, among many other sources, Horowitz (1997).

-1-



In the next section, I look at three approaches that are commonly used in the study of
the asymptotic distributions of inequality and poverty indices, and give a few examples
of how they work, and the tradeoffs involved in selecting a suitable method for any
given problem. In Section 3, I develop further one of the three approaches, namely
that based on empirical process theory. I illustrate its virtues and its disadvantages
relative to other methods. Section 4 discusses the role of the bootstrap in inference,
and points out that our best efforts often fail when the distributions we work with
have heavy right-hand tails. In Section 5, I discuss some of the literature on inference
on stochastic dominance, mentioning in particular the relative virtues of testing a
null hypothesis of dominance or non-dominance. Some very recent work is presented
in Section 6, where I look at measures of the divergence between two distributions.
An important application of this is to measure the goodness of fit of a sample to
a specified distribution or parametric family of distributions. The empirical-process
approach turns out to be crucial here, and is used to study the asymptotic distributions
of various goodness-of-fit measures. A few concluding remarks are found in Section 7.

2. Inequality and Poverty Indices

Inference on the Gini index and related indices, such as the S-Gini and E-Gini indices,
has become a rather popular topic in the literature of the last five years. See, among
others, Barrett and Pendakur (1995), Zitikis and Gastwirth (2002), Deltas (2003), Xu
(2007), Barrett and Donald (2009), and Davidson (2009a). As far as I can tell, no
two of these papers adopt the same technical approach to find an expression for the
asymptotic variance of the sample indices, and to obtain computable estimates of it.
By sample indices, I mean plugin estimators of the population quantities, in which the
population cumulative distribution function (CDF) is systematically replaced by the
sample empirical distribution function (EDF).

The approaches used falls roughly into three categories: those based on the delta
method, on influence functions, or on empirical process theory. My preferred approach
until now has been based on the delta method, which seems intuitive and tractable.
However, it is clear that different methods are best adapted to different problems, as I
will illustrate. In this section, I extend the approach used in my 2009 paper (reference
2009a) for the usual Gini index to the case of the family of S-Gini indices. I hope
thereby to illustrate the virtues of the method for the many indices that share the
same basic properties with the Gini index.

Throughout, I denote by F the population CDF , and by F' the EDF, defined for an
IID sample of size n as

n
F(x) :nflzl(yi <z), x>0, (1)
i=1
where the y;, ¢ = 1,...,n are the observations of the sample, and I is the indicator

function. The value of F (z) is just the proportion of incomes in the sample that are
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less than or equal to . Note that according to this definition, Fis cadlag (continue a
droite avec limite & gauche), which, although arbitrary, is the usual convention. The
argument x is restricted to non-negative values. Negative incomes do occur, especially
in times of financial crisis, and at any time for some self-employed people. But their
presence is excluded by the very definitions of some indices, and it may render the
interpretation of others counter-intuitive, including those of the extended Gini family.
For instance, a Gini index greater than 1 can arise with negative incomes.

There are several ways in which the Gini index can be expressed as a functional of
the distribution F. The one I use here (slightly different from that used in my 2009a

paper) is

G=1-2 [yl Fw)aro) 2)

where p is mean income. This is a relative Gini index; the absolute index is this
times p. The relative index is thus scale invariant, and measures pure inequality,
while the absolute index takes account of the overall income level. The S-Gini indices
are parametrised by a positive parameter «, and reduce to the usual Gini index when
a = 2. The relative index is defined as

Ro-1-2 / Ty - Py AR W),

the absolute index once again being this times p. The greater the value of o, the more
weight is given to the bottom of the distribution. The sample indices have exactly the
same expression, with F' replaced by F' and p by ji.

Consider the integral
> a—1
H, = a/ y(1—F(y)) dF(y)
0

and its plugin estimate

_ —/Oooyd[(l _E(y))].

The integrator function (1 — F(y))a is a step function, with discontinuities at the
observed incomes y;, ¢ = 1,...,n, and so the integral in the second line above becomes
a sum of contributions from each of these discontinuities. Let the order statistics of
the sample be denoted by y(;), i = 1,...,n, with 0 < y1) < yp) < ... < Yp). (For
ease I ignore the possibility of ties.) The value of F at Y@y is just i/n. Thus the
discontinuity of the integrator at y; is

(- (=) (=)~ i 1)), (3)
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Consequently,

H,=n"¢ Z yiy(n—i+1)* = (n—14)). (4)
i=1

This shows that H, is an L-statistic, that is, a linear combination of the order statistics.

Clearly, Ro = 1 — Hy/pu, and so we define Ry, = 1 — H,/ji, where ji is the sample
mean, that is, the expectation of the empirical distribution. We then have

A~

. H, H, 1 . 2
Ra_Ra:__T:_AHa/«L_M _,UHa_Ha .
2 2 NN( ( ) ( ))

If R is to be consistent, then, as n — 0o, the above expression must tend to zero. The
asymptotic variance is by definition, the variance of the limiting distribution of the
sequence with typical element n'/ 2(]% — R,). This sequence has the same limiting
distribution as that with element

p 2 (Hon (o — p) — pn*(H, — Hy)),

since, with very mild regularity, n'/?(ji — ) and n'/?(H, — H,) are both O,(1) as
n — oo.

Now for the delta method. Trivially, we see that
p—p=n"" zn:(yz- — ).
i=1
For the other small quantity, we find that
0 Mo~ Ho) = [y = F)) T - )
+ /OOO y[(1-F) - (1-F(y)" '] dF(y)
w [Tl EG)T - (- )T A - P

The first two terms on the r.h.s are O,(n~'/2), while the last is O,(n~'), and so is
ignored for the purposes of the asymptotic distribution. The first term is

n~t Z[yz-(l — F(y))" ™" = Ha/a],

while the second can be seen by a little algebra to be

n

n (o —1)3 " [my:) — Hafol.

=1
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where we have defined
m(y) = /0 z(1— F(z)) ~dF(z). (5)

It can be seen that E(m(Y)) = H, /o, where Y denotes the random variable of which
the observations are realisations.

We end up with the result that, to leading order asymptotically,

nl/Q(Ra —R,) = nil/Q/LiQ Z [Ha(yi — 1)
=1
— poe{ (oo = L)m(ys) + v (1 — F(yi))a_l - Ha}]

This can be rewritten as follows so as to see that the expectation of the limiting
distribution is zero:

2Ry = Ra) = 0722 3 [ Halys = 1) (6)
=1

— pa{(a = 1) (m(y:) = Hafa) + (3i(1 = F(y:))" ™ = Ha/a) }].

Thg summands in the above expression are IID, from which the asymptotic normality
of R, follows immediately. Replacing y; in the expression of the summand by Y yields
the influence function of the index R,. What we have seen here is that the delta
method provides a convenient way to compute the influence function in a form that is
useful for inference, as we will now see. Make the following definition of the random
variable Z:
a—1
Z =HY —pof(a—1)m(Y)+Y(1-F(Y))" "}

The summands in (6) are clearly IID realisations of Z minus its expectation. Thus the
asymptotic variance of R, is =% times the variance of Z.

The summands in (6) are not directly observable, because the functions m and F' are
unknown. However, it is easy enough to estimate them. In particular, we can use
F to estimate F. For m, the easiest approach is to estimate m(y(;)) for each order
statistic y;). From (5),

a—2

m(y) =B(Y (1 - F))" 1Y <y)).

The estimator F' that is most convenient here is not (1), for which F (Y@)) = i/n, but
rather

A

Flyay) = (20 =1)/(2n),
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which “splits the difference” between a right- and left-continuous EDF. With this, we
can make the definition

n— ] + 1\x—2
m(ye)) Z YG) ( ) (7)
This allows us to compute estimates of the realisations of Z, as follows:

2 = Aoy — o (o~ Dyifyeo) + v (225 22T 0

Although the estimate Z; depends on the i*® order statistic, and the order statistics
are by no means mutually independent, each Z; is an estimate of the corresponding Z;,
and the Z; are IID. Thus, if Z is the mean of the Zl, the estimate of the variance of R,

n~tut Z(Z - 7). (9)

This estimate is easy to compute on the basis of the sorted sample:

Compute [i as the sample mean;

Compute H, by the formula (4);

For each i = 1,...,n, compute m(y;)) using (7);

With the results thus obtained, compute the Z; using (8);

Finally, compute the estimated variance of R, from (9).

3. The Empirical Process Approach

We have seen that the approaches based on the delta method and influence functions
are closely related. The other popular approach is based on empirical process theory.
Many examples of the use of empirical process theory in econometrics can be found
in the Handbook article of Andrews (1994). It usually gives results in a different form
from those of the other approaches. In addition, it is often a good deal harder to
implement estimates of the expressions found for asymptotic variances. This can be
illustrated poignantly by the case of the sample mean.

Suppose that the random variables U;, ¢ = 1,...,n, are IID with common distribu-
tion the uniform distribution U(0,1). The corresponding order statistics are denoted
by U(;), and their joint distribution is well known. Under the assumption that F'is an
absolutely continuous distribution, the order statistics Y(;) of a set of IID variables with
common distribution F' have the same distribution as the set of variables F' _1(U(Z-)),
or, to state this result in a form that is usually more useful, the random variables
F(Y(;)) follow the same joint distribution as the uniform order statistics U;). The key
result concerning the U(;) is that their joint distribution tends to a Brownian bridge
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as n — oo. Specifically, the following stochastic process, indexed by the continuous
variable t € [0, 1],

0 (U = )

tends in distribution (converges weakly to) the Brownian bridge process B(t). Here,
the notation [z] means the smallest integer not smaller than z. It corresponds to
“rounding up” z to the next integer. The Brownian bridge is a mean-zero Gaussian
process with covariance function

cov(B(s),B(t)) =s(1—1t), s<t. (10)

The variables F(Y(;)) have the same distribution as the U(;), and so the process

n*2(F (Y1) — [nt]/(n + 1)) also converges weakly to a Brownian bridge. Let
[nt] = i. Then, by Taylor expansion,

F(Y([ntl))_F(F_l<m>> = (P [nt] )) (Y([nﬂ)—F—l(M))-l—op(n_l/?)’

n+1 n+1 n+1

where f = F' is the density corresponding to F'. Thus

22 (Y - F_l(n“fﬁ) - f(F_qugi e (11)

where the symbol ~~» represents the weak convergence of a stochastic process to a
limiting process.

The sample mean f is n= 1> 1, Y(;) — no harm is done by summing over the order

statistics. As a random variable, rather than as a realisation, i can thus be written
-1 n

asn”" Y ., Yy, so that

nl/z(ﬂ_u):n—1/2i[F—1(nil>+n—1/2 B(t) } — i
i=1

But

uz/oo de(y)Z/olF‘l(t)dt,

— 00

and this last integral is the limit of the Riemann sum

)

=1

which lets us see that n'/2(ji — ju) converges to the same limit as

R ()
2 T D)
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This expression can also be interpreted as a Riemann sum, which converges to

/1 B(t)dt

o f (F 71(75)) '

This random variable, which has the same distribution as the limiting distribution of
n'/2(fi — 1), has expectation zero, and, from (10), variance

Lot s(1—1t) .
[ FE ) F () P

By changing variables by the relations s = F(y) and ¢ = F(x), this double integral
becomes

2/_00 ) /_oo o) dF(y)dF(m)—2/_oo(1 F(x)) /_mp(y)dyd . (12)

A messy calculation, which interested readers can find in the Appendix, shows that
this last expression is actually the variance of the distribution F'.

The approach has given the right answer! But it can hardly be accused of taking
the shortest road to it. Further, suppose I wish to estimate the rightmost expression
in (12) by replacing F' by F. The resulting double integral can be evaluated, of course,
but it is far from obvious that its value is the sample variance, although the proof
in the Appendix shows that it must be. This example highlights the pitfalls of the
empirical process approach, although it does not display another important property
of the approach, namely its generality. Later, we will see another circumstance in
which it is invaluable.

I now give a more substantive illustration of the empirical process approach, no more
complicated than the one above for the mean, and one that allows us to make contact
with the literature. The object of interest is the absolute Gini index, that is, the
relative Gini (2) times the mean u. The plugin estimator is

A

e ﬂ—zfomy(l ~ F(y)) dE(y) =/:e+/oooyd[(1 _Fw)Y).

From the result (3) with a = 2, we obtain a suitable expression for the discontinuity
of the integrator function in the last expression above, and we find that

A e 2 — 1
=t S (M)
=1

Using (11), we can approximate this by

-1 — (2i — -1 i 12 B0+ 1)
n ;(2n1‘1>[F <n+1>+” /f(F‘(l(i/(:+i>))]’
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which, interpreted as a Riemann sum, is an approximation to the integral

/01(27: ~p[Fr e e PO

It is easy to check that

MGZu—Q/Owy(l—F(y))dF(y)z/o (2t = HF~H(t) dt,

where the last step follows on changing the integration variable by ¢t = F'(y). Thus

. Y2t —1)B(t
n1/2(uG — uG) ~ /0 —<f(F—1)(t)())

The variance of this integral is the asymptotic variance of ﬂé. From (10), we see that

the variance is
L@t-1)(1—t) [* s(25s—1) )
2| Sy Ty

The same change of variables as used to give (12) converts this expression to

2/0 (2F(z) — 1) (1 — F(x)) /01‘ F(y)(2F(y) — 1) dydz.

This expression has already appeared in the literature; see Zitikis and Gastwirth
(2002), theorem 2, where the expression is generalised to teh case of the S-Gini index.
Implementing it by replacing F by F is possible, but not as simple as the procedure
of the previous section.

4. The Bootstrap

All the approaches we have considered so far lead to more or less tractable expres-
sions for the asymptotic variances of a wide variety of inequality and poverty indices.
Thus they make it possible to perform asymptotic inference. This fact suggests that
the well-known deficiencies of asymptotic inference in finite samples can be alleviated
by use of the bootstrap. Suppose we are interested in an index I with sample coun-
terpart I. Bootstrap inference can be based on the asymptotically pivotal function
r=UI-1)/ (\//a}(f ))1/2, and such inference should benefit from the asymptotic refine-
ments that come with the use of asymptotic pivots; see Beran (1988) and Horowitz
(1997). A pivot is a statistic the distribution of which does not depend on unknown
parameters; if this is true only of the asymptotic distribution, we have an asymptotic
pivot. Since 7 is asymptotically standard normal, it is an asymptotic pivot.

It may be useful to be a bit more specific about two bootstrap procedures, the first the
construction of a confidence interval, the second a hypothesis test. Since the sample

-9 —



is assumed to be IID, the most obvious non-parametric bootstrap DGP to use is a
straightforward resampling DGP. Thus the CDF of the bootstrap “population” is the
EDF, for which the true value of the index is I. For the jt resample, j = 1,..., B,
we compute the index I and its estimated variance Var* (I ]*), and form the approxi-

mately pivotal quantity 77 = (I — 1)/ (Var*(1 ;‘))1/ ?. The empirical distribution of the
B bootstrap realisations 77 is our estimate of the distribution of (I-1)/ (\//a\r(f ))1/ 2,

A confidence interval with nominal coverage 1 —« is the set of values Iy for which a test
of the hypothesis that I = I is not rejected at nominal level a. A two-tailed equal-
tailed test based on the statistic 7 and the bootstrap estimate of its distribution rejects
if 7 lies outside the interval between the /2 and 1 — «/2 quantiles of the bootstrap
distribution. These quantiles are estimated by the order statistics |a(B + 1)/2] and
[(1 —a/2)(B +1)] of the ;. (For a an integer percentage, we want to choose B so
that (B + 1)/200 is an integer. The smallest suitable value is thus B = 199.) Denote
these quantiles by ¢ /2 and ¢7_ /2 Then the confidence interval is the set

{Io| 4%n < (I = Io)/ (Var(D)'? < g7 _o 0}

If we let 6; denote the square root of \//a\l"(f ), we can write this set as the interval

[f — 61qf_a/2,f — 61q;/2}.

This is the standard percentile-t bootstrap confidence interval; see for instance Hall
(1988).

Next, consider a test of the hypothesis that I = I. This can clearly be implemented
by computing the statistic 7 = (I—1I,)/ (\//a\r(f))l/Q and using the same bootstrap DGP

as for the confidence interval in order to obtain B bootstrap statistics 77, j = 1,..., B.
A bootstrap P value for a two-tailed test is then given by the formula

Z ]7’]>T

which is just the proportion of bootstrap statistics that are more extreme than 7; see,
among many other possible references, Davidson and MacKinnon (2006).

But this approach ignores the second Golden Rule of Bootstrapping, as formulated
in Davidson (2007), which requires that the bootstrap DGP should be as good as
possible an estimate of the true DGP wunder the assumption that the null is true.
However, the true value of I for the usual resampling bootstrap DGP is not Iy, but I.
One way to obtain a bootstrap DGP for which the true I is indeed I is to use weighted
resampling. In drawing resamples, the observations no longer have equal probabilities
of being resampled. Instead, observation 7 is assigned a weight p;, which can be found
by solving the empirical likelihood maximisation problem

maleogpl subject to sz =1, p; >0, and I(Fp) = I. (13)

=1
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A

The notation I(F}) means the value of the index for the discrete distribution with sup-
port at the observations, with probability p; assigned to observation ¢. This technique
of weighted resampling is explored in Brown and Newey (2002).

Problem (13) sometimes has no solution. This is a pretty sure indicator that any
reasonably reliable test would reject the null. Sometimes there is a solution, but with
one or more of the probabilities p; equal to zero. This would correspond to the log of
the empirical likelihood function being equal to minus infinity, and, again, it indicates
a rejection of the null.

How reliable is inference based on plugin estimators and estimates of their asymp-
totic variance? Heavy-tailed distributions are notorious for causing problems for both
asymptotic and bootstrap inference, and income distributions are notoriously heavy-
tailed. I cite here some evidence taken from Davidson (2009a).

In Figure 1 are shown empirical distributions for the statistic 7 for the ordinary relative
Gini index, with data generated by the Pareto distribution, of which the CDF is
Fpareto(z) = 1 — ™, x > 1, A > 1. The second moment of the distribution is
A/(A = 2), provided that A > 2, so that, if A < 2, no reasonable inference about the
Gini index is possible. If A > 1, the true Gini index is 1/(2A — 1). The plots in the
figure are for n = 100 and A = 100,5,3,2. For values of A greater than about 50,
the distribution does not change much, which implies that there is a distortion of the
standard error with the heavy tail even if the tail index A is large.

---=- A =100 0.9

T T T
0.5 1.5 2.5

Figure 1. Distribution of 7 for the Pareto distribution

Table 1 shows how the bias of 7, its variance, and the greatest absolute deviation of
its distribution from standard normal vary with A.

It is plain that the usual difficulties with heavy-tailed distributions are just as present
here as in other circumstances.

The lognormal distribution is not usually considered as heavy-tailed, since it has all
its moments. It is nonetheless often used in the modelling of income distributions.

— 11 —



A Bias Variance Divergence from N(0,1)
100 -0.1940 1.3579 0.0586

20 -0.2170 1.4067 0.0647

10 -0.2503 1.4798 0.0742

5 -0.3362 1.6777 0.0965

4 -0.3910 1.8104 0.1121

3 -0.5046 2.1011 0.1435

2 -0.8477 3.1216 0.2345

Table 1. Summary statistics for Pareto distribution

Since the Gini index is scale invariant, we consider only lognormal variables of the
form eV, where W is standard normal. In Figure 2 the distribution of 7 is shown for
n = 100 and o0 = 0,5,1.0,1.5. We can see that, as o increases, distortion is about as
bad as with the genuinely heavy-tailed Pareto distribution. The comparison is perhaps
not entirely fair, since, even for the worst case with A = 2 for the Pareto distribution,
G = 1/3. However, for o = 1, the index for the lognormal distribution is 0.521, and for
o = 1.5 there is a great deal of inequality, with G = 0.711. For a Pareto distribution
and a lognormal one with similar values of GG, the distortion is greater with the Pareto.

| | |
0.5 1.5 2.5

Figure 2. Distribution of 7 for the lognormal distribution

What of the bootstrap? In Table 2, coverage rates of percentile-t bootstrap confidence
intervals are given for n = 100 and for nominal confidence levels from 90% to 99%.
The successive rows of the table correspond, first, to the (normally well-behaved)
exponential distribution, then to the Pareto distribution for A = 10, 5,2, and finally
to the lognormal distribution for ¢ = 0.5,1.0,1.5. The numbers are based on 10,000
replications with 399 bootstrap repetitions each.
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Level 90% 92% 95% 97% 99%
Exponential 0.889 0.912 0.943 0.965 0.989
A =10 0.890 0.910 0.942 0.964 0.984
A=5H 0.880 0.905 0.937 0.957 0.982
A=2 0.831 0.855 0.891 0.918 0.954
oc=0.5 0.895 0.918 0.949 0.969 0.989
oc=10 0.876 0.898 0.932 0.956 0.981
oc=15 0.829 0.851 0.888 0.914 0.951

Table 2. Coverage of percentile-t confidence intervals

Apart from the expected serious distortions when A = 2, and when o = 1.5, the
coverage rate of these confidence intervals is remarkably close to nominal. Given the
large distortions reported in Table 1 for small A\ or large o, it seems that, unless the
tails are very heavy indeed, or the Gini index itself large, the bootstrap can yield
acceptably reliable inference in circumstances in which the asymptotic distribution
does not.

5. Stochastic Dominance

Indices are very specific things. Any particular index can be thought of as a welfare
index, or alternatively may rank populations in the same way as some social wel-
fare function. This index or welfare function may or may not have desirable ethical
properties, however. People have tried to get around this by looking at entire income
distributions, or distributions restricted to the poor, rather than focusing on one in-
dex or even any finite number of indices. The best-known example of this is when one
chooses to study a Lorenz curve rather than just a Gini index.

If we consider two distributions, A and B, say, then we can compute any of the Gini
family of indices for both, and determine which is greater. For many purposes, this is
enough for an investigator to declare than there is more inequality in the distribution
with the greater Gini. But other indices might well lead to the opposite conclusion.
If, however, we see that one distribution Lorenz-dominates the other, by which we
mean that the Lorenz curve of the dominating distribution is everywhere (weakly)
above that of the dominated one, then this fact implies that the ranking of the two
distributions is unanimous over a wide class of indices.

The notion of stochastic dominance embodies these ideas. We have numerous theo-
rems telling us what class of indices is such that its members unanimously rank two
distributions in the same way, under the condition that one stochastically dominates
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the other at some given order. For instance, generalised Lorenz dominance, which dif-
fers from conventional Lorenz dominance in the same way that an absolute Gini index
differs from the corresponding relative index, is equivalent to second-order stochastic
dominance, as was shown in Foster and Shorrocks (1988).

The issues that have to be faced when performing statistical inference on stochastic
dominance are quite different from those that arise with a single index. What has to be
estimated from a given sample is an entire function, in a way perfectly analogous to the
estimation of a CDF by an EDF. First-order stochastic dominance of a distribution A
by another distribution B is the requirement that

Fa(y) = Fp(y) forall y>0. (14)

The theoretical literature distinguishes weak from strong dominance, but in the sta-
tistical context the distinction is meaningless, and so I write all inequalities as weak.

Sample dominance is defined analogously to (14): it requires that F4(y) > Fg(y)
for all y > 0. What inferences can be drawn about population dominance or non-
dominance from the corresponding sample properties? A first point is that one can
never reject a hypothesis of dominance in the population if there is dominance in
the sample, and, conversely, sample non-dominance can never lead to rejection of
population non-dominance. To reject dominance in the population, therefore, the
sample non-dominance must be statistically significant, and analogously for a rejection
of non-dominance.

In order to clarify these issues, it may be useful to consider a very simple case with two
distributions A and B with the same support, consisting of three points, y; < y2 < y3.
Since Fa(ys) = Fp(ys) = 1, inference on stochastic dominance can be based on
just two quantities, d; = FA(yi) — FB(yi), for ¢ = 1,2. Distribution B dominates
distribution A if, in the population, d; > 0.

Figure 3 shows a two-dimensional plot of dy and do. The first quadrant corresponds
to dominance of A by B in the sample. In order to reject a hypothesis of dominance,
therefore, the observed d; and d» must lie significantly far away from the first quad-
rant, for example, in the area marked as “B does not dominate A” separated from the
first quadrant by an L-shaped band. For a rejection of non-dominance, on the other
hand, the observed sample point must lie “far enough” inside the first quadrant that
it is significantly removed from the area of non-dominance, as in the area marked “B
dominates A”. The zone between the rejection regions for the two possible null hy-
potheses of dominance and non-dominance corresponds to situations in which neither
hypothesis can be rejected. We see that this happens when one of the czz is close to
zero and the other is positive. Note also from the figure that inferring dominance by
rejecting the hypothesis of non-dominance is more demanding than failing to reject
the hypothesis of dominance, since, for dominance, both statistics must have the same
sign and be statistically significant.

Tests for dominance and non-dominance can thus be seen as complementary. Positing
a null of dominance cannot be used to infer dominance; it can however serve to infer
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B dominates A

B does

not dominate A

Figure 3: Tests of dominance and non-dominance

non-dominance. Positing a null of non-dominance cannot serve to infer non-dominance;
it can however lead to inferring dominance.

In Kaur, Prakasa Rao, and Singh (1994), a test is proposed based on the minimum of
the t statistic for the hypothesis that F4(z) — Fg(z) = 0, computed for each value of
z in some closed interval contained in the interior of the union of the supports of A
and B. The minimum value is used as the test statistic for the null of non-dominance
against the alternative of dominance. The test can be interpreted as an intersection-
union test. It is shown that the probability of rejection of the null when it is true is
asymptotically bounded by the nominal level of a test based on the standard normal
distribution.

When the null is dominance, a technique originally designed by Richmond (1982) can
be used; see also Beach and Richmond (1985). It provides simultaneous confidence
intervals for a set of variables asymptotically distributed as multivariate normal with
known or consistently estimated asymptotic covariance matrix. It was extended by
Bishop, Formby, and Thistle (1992), who suggested a union-intersection test of the
hypothesis that one set of Lorenz curve decile ordinates dominates another. For a
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test of stochastic dominance, one can use the t statistics for the hypotheses that the
individual differences d;, j = 1,...,m, for a set of m points are zero. The null hypoth-
esis, which implies that they are all non-negative, is rejected against the alternative
if any of the ¢ statistics is significant with the wrong sign (that is, in the direction of
dominance of B by A), where significance is determined asymptotically by the critical
values of the Studentised Maximum Modulus (SMM) distribution with m and an infi-
nite number of degrees of freedom. If the distributions being compared are continuous,
empirical-process methods can be used to find the asymptotic distribution of the most
extreme t statistic, or of the maximum difference between the two CDFs; see among
others Linton, Maasoumi, and Whang (2005). Usually, though, simulation is needed
to obtain asymptotic critical values.

Both the intersection-union and union-intersection tests rely on conventional ¢ statis-
tics for their implementation. Asymptotic inference makes use of their asymptotic
distributions, which may be poor approximations in finite samples, and so one is led
to consider bootstrap tests of dominance or non-dominance. Most, but by no means all,
empirical studies of stochastic dominance adopt a distribution-free approach, with no
parametric specification of the distributions studied. This fact implies that one wants
a non-parametric bootstrap DGP. The Golden Rules of bootstrapping assert that, for
reliable inference, the bootstrap DGP must satisfy the null, and that it should be as
good an estimate as possible of the true DGP, assuming that the latter itself satisfies
the null. It can be somewhat of a challenge to satisfy these rules in tests of stochastic
dominance.

Suppose first that the null is dominance. If there is dominance in the sample, we
cannot reject the null, and we are finished. If not, then we cannot use an ordinary
resampling DGP for the bootstrap, since it does not satisfy the null. A similar situation
arises with a test of non-dominance. Once again, a viable solution is to solve an
empirical-likelihood problem in order to obtain unequal probabilities that put the
weighted resampling DGP back into the null. But the nulls of either dominance or
non-dominance are huge. General considerations show that, in order to maintain
asymptotic control of Type I error, the bootstrap DGP should lie on the frontier
of the set of DGPs that represents the null. A frontier DGP is one where there is
dominance of one function by the other except at one point, at which the two functions
touch. Which one of the frontier DGPs can then be determined by maximising the
empirical likelihood. This problem is extensively explored in an as yet unpublished
paper, available as a working paper: Davidson and Duclos (2006), and in Davidson
(2009b).

Duclos and I have strongly advocated using a null of non-dominance, since, when
it is rejected, we can draw the strong conclusion of dominance. But here again the
possibility of heavy tails limits our ability to carry out tests of unrestricted non-
dominance, on account of the phenomenon of micronumerosity, a term invented by the
late Arthur Goldberger; see Kiefer (1989). In an extended right-hand tail, observations
are few and far between, and so it is most unlikely that any statistically significant
effect can be found there. But an intersection-union test looks at the least extreme
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of the set of statistics on which it is based, and so can never reject if any of them
is insignificant. The way out of this impasse, if one wishes to have the possibility of
inferring some sort of dominance, is to limit attention to some interval in the middle
of the distributions. Restricted dominance or non-dominance is defined only on this
interval. Of course, if a hypothesis of restricted non-dominance is rejected, all we can
infer is dominance restricted to the chosen interval. Another approach is to estimate
the interval over which dominance can be inferred.

There is an important relation between stochastic dominance and measures of poverty.
For a full discussion of the statistical issues involved, see Davidson and Duclos (2000),
and the copious bibliography in that paper.

6. Measures of Divergence

A question still more general than that of stochastic dominance is whether two distri-
butions differ significantly in any way. In addition to questions relating to differences
in distributions across time and space, it is often useful to compare an empirical distri-
bution with a parametric family of distributions, as a sort of goodness-of-fit test. More
than a quarter of a century ago, Frank Cowell proposed a measure of the divergence
between two distributions on the basis of an axiomatic approach; see Cowell (1980a)
and Cowell (1980b). It can be written as

=1

where  and y are vectors the elements of which are observations from the two pop-
ulations to be compared, the z(;) and y(;) are the order statistics, i1 and iz are the
means of the elements of  and y respectively, and the parameter a takes any real
value. Note that J,(x,y) > 0 for arbitrary  and y.

In this section, I limit attention to a comparison of a sample, the observations of which
are the elements of x, and a single specified distribution F'. The “order statistics”
Yy(i) are the non-random quantities F_l(z'/ (n+ 1)), and [i2 is not the expectation of
distribution F', but rather the mean of the y(;) so defined. The question now is: what
is the distribution of J,(x,y) when « is indeed an IID sample from F?

The delta method gives no immediate answer to the question, because it turns out that
Jo 18 quadratic in F — F, and so the first derivatives used by the conventional form of
the delta method vanish. A second-order expansion can be worked out, and it shows
that the asymptotic null distribution of J,, if it exists, depends on F. This means that
Jo 18 not an asymptotically pivotal quantity, and so is ill-adapted to bootstrapping.
Further, it is not at all clear how to deduce the asymptotic distribution on the basis
of the second-order expansion.

Re-enter the empirical process approach, which does give us something useful. It is
not surprising that what it gives us is not at all the asymptotically normal distribution
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that we found with the Gini indices, but rather something that requires simulation in
order to be evaluated. It also makes clear that the very existence of the asymptotic
distribution of J, is not guaranteed. In fact, even if F' is the well-behaved exponential
distribution, the distribution of J, diverges as n — oco. With heavy-tailed distribu-
tions, things are still worse. Only when a distribution has compact support is one sure
of the existence of the asymptotic distribution.

Let x(;y = y@) + 2, where, under the null, z; = Op(nfl/Q). Specifically,

12, B(i/(n+1))
b f(F/(n+ 1))

n (16)

where f = F' is the density. Now

ZJJ( )y(z Zy(l) + Zl/y(z)) .

Let pu=n"1%" Y(i) — this corresponds to p2 in (15). Then
D (yuin” =) = Y v+ #/vw) = nn(1+ u) Y s )

By the binomial theorem,

oy 1+ 2 o — ~ ala-1) g~ 7 O (n=3/2
" Zy(i)( +Zl/y(i)) —,u+OéZzZ+n —Z +O0,(n ),
i=1

2 S

n=1
and

1 —1
(Ao e e S 0,000

Then, since 4%u'~® = p + O, (n~/2), we see that

nla = 5 (S22 /) - i(z 4)) + op(1). (1)

2u np

It appears that it is nJ, that is O,(1) as n — oo, not J, itself. This is due to the
vanishing of all first-order terms in the expansions that lead to (17).

Expression (17) could be considered as the result of an unconventional, second-order,
application of the delta method. But now we need the result (11) from the empirical-
process approach in order to study the asymptotic distribution of (17). From (16), we

see that
! B2(t)dt
2 5o = / FH(0)f2(F1(1))
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and

nlu( /f
[ g;(z() T / 1) ] 1)

It is clear that this asymptotic expression depends on F'. Interestingly, it does not
depend on . However, it is not clear that the integrals are convergent. Indeed, for
the exponential distribution, for which F(y) =1 —e~Y, y > 0, it can be seen that the
expectation of (18), which does not in fact exist, would involve a divergent integral.
On the other hand, the uniform distribution U(0,1), with F'(y) =y, 0 <y < 1, which
has compact support, leads to a well-defined limiting variable for n.J,.

so that
1
W E—
2p

ndy

When heavy tails are a problem, a recommendation that is sometimes made is to
base all inference not on moments, but on quantiles. That turns out to solve the
problem we have just encountered. If the x; are drawings from the distribution F',
then the quantities F'(x;) follow the U(0,1) distribution, and the F'(x(;)) have the joint
distribution of the order statistics of an IID sample from U(0,1). We can modify the
definitions so far made as follows. Instead of the x(;), we use the quantities F'(x(;).
The sample mean i becomes the mean of the F(x(;)). The “order statistic” y;,
previously defined as F~'(i/(n + 1)) now becomes simply ¢; = i/(n + 1), since the
CDF of U(0,1) is the identity function on [0, 1]. The density f is uniformly equal to 1
on [0,1], and F~!is, like F, the identity function. Finally, u, the mean of the Yy, 18

-1 < 1 nn+1) 1
Z n+1)22_(n(n+1) 2 2

With these modifications, what we can call the quantile version of the statistic becomes

=1

where i = n~1 Y, F(x(;). Its distribution converges to that of (18) with our modifi-

cations, which is
L B2(t)dt ! 2
/ B)dt 2(/ B(t) dt) . (20)
0 t 0

Although the first integral above looks as though it might diverge at 0, it does not,
since EB?(t) = t(1 — t). Thus

"B2)ydt (1 B 1
E/O T_/o(l i =
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The integral fol B(t)dt is normally distributed with expectation 0 and variance

1 t 1
2/ l—t)/sdsdt:—.
o( 0 12

Thus the expectation of the distribution of (20) is 1/2 — 2/12 = 1/3. The quantile
version of the statistic is now asymptotically pivotal, with an asymptotic distribution
that can be evaluated by simulation using (20). In fact, more is true. Since under the
null the quantities F'(z(;)) are IID from U(0,1), /i being their mean, the distribution
of (19) depends only on «, although that of (20) does not. Thus, for given «, j, is ac-
tually an exact pivot in finite samples. The finite-sample distribution can therefore be
estimated with arbitrary accuracy by simulation, and so exact finite-sample inference
is possible. Simulation-based testing using a pivotal statistic is in fact much older than
bootstrapping. Such tests are called Monte Carlo tests, and were introduced back in
the 1950s; see Dwass (1957), and also Dufour and Khalaf (2001) for a more recent
discussion. They are implemented in exactly the same way as a parametric bootstrap;
see Davidson and MacKinnon (2006).

This fact is less useful than one might hope, because in practice, one usually wants
a measure of divergence from a parametric family of distributions rather than from
a single distribution. The appropriate modification of the test is to estimate the
parameters of the family, preferably but not necessarily by maximum likelihood, and
to use the parametric estimate in place of the single distribution F'. The result may
be asymptotically pivotal, but is not pivotal in finite samples. Now the existence of
the asymptotic distribution justifies the use of the bootstrap for testing. Since the
null is constituted by a parametric family of distributions, a parametric bootstrap is
appropriate — a valid resampling bootstrap would be hard to design. The procedure
is as follows for a parametric family F(-; ).

e Use the sample x to obtain an estimate 0 of the parameter vector.
e Sort the elements of & and transform them to obtain the order statistics F'(z;); é)
o Compute the statistic j, using the F(x(;; é) as the F'(z().

For each of B bootstrap repetitions:

~

Generate a bootstrap sample x* of size n of IID drawings from F'(-;8).

Obtain the estimated parameters 8* from the sample x*.

Construct the set F (f("i); 0*) of order statistics just as with the original data.

Compute the bootstrap statistic j* as with the original data.
Then:
e The bootstrap P value is the proportion of the j> greater than j,.

It makes sense, of course, to use a one-sided test, since j, is non-negative and rejects
only to the right.
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The behaviour of this quantile version of the divergence measure when it is boot-
strapped is ongoing research joint with Sanghamitra Bandyopadhyay, Frank Cowell,
and Emmanuel Flachaire.

7. Concluding Remarks

The empirical study of income distribution calls for the use of a wide panoply of
statistical techniques. In this paper, I have reviewed some of these, stressing the roles
of three main approaches to the development of asymptotic results, namely the delta
method, the use of influence functions, and the empirical-process approach. Regarding
the implementation of inferential techniques, I emphasise the role of the bootstrap in
obtaining reliable results, and discuss the details of a couple of bootstrap procedures.
It is necessary in any empirical investigation, though, to be aware that the presence
of heavy right-hand tails may pose serious problems for any statistical inference. I
propose one quantile-based method that can to some extent alleviate this problem.

It is my hope that this paper illustrates convincingly the potential of present-day
techniques for inference on income distributions, and to point out the numerous as yet
unsolved research problems that await us.

Appendix

We show here that the expression on the right-hand side of (12) is the variance of
the distribution F'. If X is a random variable that follows this distribution, then the
variance is EX? — (EX)?, which can be written explicitly as

/Ooo 22 dF(z) — (/OOO a:dF(a:)>2 (21)

I consider only a distribution defined on the positive real line. For a distribution on
the whole real line, the following proof would require separate consideration of the
positive and negative parts of the distribution. The treatment of the negative part is
quite similar to that of the positive part, and so is omitted.

The second term in (21) is

/OooxdF@) /Ooode(y) :2/Ooox/0$de(y)dF(x),

by the symmetry of x and y. Thus the variance is

/OOO (2 2/; ydF(y))edF () (22)

/OOOxQdF(x) = —/Ooogc2d(1—F(a:)) :2/000(1—F(x))a:dac, (23)
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where the second equality results from an integration by parts. Another integration
by parts shows that

| vdrw) = ok - [ F)dy (24)
0 0
Putting (23) and (24) into (22) gives for the variance 2 times

/Oooa;(l — F(z)) dz - /Ooox<a:F(x) - /033 F(y) dy) dF(z). (25)

Consider the remaining double integral in the above expression. It is

/ / y) dy dF(z / / y)dy d(1 — F(x))

:/0 (1-F(x ))d[x/o F(y )dy} (integration by parts)
:/000(1_F(x))/OmF(y)dde/ooo(l—F(x))xF(x)dx. (26)

The first term in the last line above times 2 is exactly expression (12).

Adding the first term in (25) to the second term in (26) gives

/Ooox(1 ~F(2)) (1 + F(x)) de = /Oooxu ~P(2)) da. (27)

In (25), we still need to take account of the term

- [ #r@are = 4 [T - re) = - [ (- Pw)ean

with another integration by parts. But this cancels with (27), and so the variance is

indeed just
2/ (1—F(:E))/ F(y)dydz,
0 0

as we wished to show.
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