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Abstract

We propose an estimator for the α fractional derivative of a
distribution function. Our estimator, based on finite differences of
the empirical df generalizes the estimator proposed by Maltz (1974)
for the nonnegative real case. The asymptotic bias, variance and the
consistency of the estimator are studied. Finally, the optimal choice
for the ”smoothing parameter” proves that even in the fractional
case, the Stone’s rate of convergence is achieved.
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1 Introduction

From the conceptual point of view, historically, it appears that a number of
theoretical results in many different disciplines were obtained by considering
only the integer order derivatives. In consequence, the statistical analysis of the
correspondent models was limited to estimate (by direct or indirect inference)
only “classical” derivatives as parameters of interest.

On the other hand, the evolution of knowledge in all these domains,
pushed the theoretical studies to emphasize models dealing with the concept
of fractional derivative. In fact, note that this concept is not a recent one at all,
it dates back to 1695 when, in a letter to L’Hôpital, raised the question if the
meaning of derivatives with integer order can be generalized to derivatives with
non-integer orders. This question was an ongoing topic for more than 300 years
and mathematicians such as Lagrange, Laplace, Fourier, Liouville, Riemann,
Weyl, Abel, Lacroix, Leibnitz brought their co ntribution to this field. For
a historical survey, see [12]. For a comprehensive introduction to fractional
derivatives see [18].

In the last twenty years, fractional calculus operators were used in different
statistical contexts: computation of the fractional moments of distributions ([6]),
finding the exact distribution of the Wald statistic, or the SUR estimator ([14]
and [15]), deriving the moments of OLS and 2SLS estimators ([5]); continuous
time random walks and its applications in finance ([19]), the fractional brownian
motion and its applications in finance ([1] and [7]). We can also mention
numerous developments in mechanics and engineering based on the fractional
differential equations ([8], [16]), in physics ([4] and [10]), nonlinear dynamics
([3] and [11]).

In this paper, we will use a generalization of the numerical derivative
operator in order to give an estimator for the fractional derivative of a
distribution function. This allows a broad range of applications where the
parameters of interest are in particular, densities or distribution functions.
Despite the fact that the mathematical tools needed for this development were
available and in the literature enough applications of the concept appeared, the
estimator of the fractional derivative was never considered from a statistical
point of view.

2 Nonparametric estimators of the derivatives

Let X1, X2 ... Xn be a random sample distributed according to a distribution
function F. [9] gave an estimator for the kth derivative F(k) at a point x, where k
is a natural number. This estimator is based on a symmetrized finite difference
approximation of the derivative of the function:

F̃(k)
n (x, h) = (2h)

−k
k∑
j=0

(−1)jF̂n(x̃j)

(
k

j

)
(1)

where the knots are x̃j = x+(k−2j)h, F̂n is the empirical distribution function
based on the random sample, and h = hn is a sequence of positive numbers
converging to zero.
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In his paper, Maltz proved the following results:

Theorem 1. Assume that F(k) (or F(k+2)) exists at x. Then:

E
[
F̃(k)
n (x, h)

]
= F(k)(x) + o(1)

= F(k)(x) +
k

6
h2F(k+2)(x) + o(h2)

Proof. See [9].

Theorem 2. Assume that F(1) exists at x. Then:

Var
[
F̃(k)
n (x, h)

]
= n−1(2h)1−2kF(1)(x)

(
2k − 2

k − 1

)
+ o(n−1h1−2k)

Proof. See [9].

Their immediate consequences are the following corollaries:

Corrolary 1. If F(k) exists at x and the sequence {hn} satisfies the conditions

hn → 0 and nh2k−1n →∞ as n→∞ then F̃
(k)
n (x, h)

P−→
n→∞

F(k)(x).

Corrolary 2. If F(k+2) exists at x, then the mean square error (MSE) of

F̃
(k)
n (x, h) is given by:

MSE
[
F̃(k)
n (x, h)

]
=

k2h2

36

[
F(k+2)

]2
+ n−1(2h)1−2kF(1)(x)

(
2k − 2

k − 1

)
+o(h4 + n−1(2h)1−2k)

This estimator has the same rate of convergence as the ”smoothed” version
based on the Parzen-Rosenblatt kernel, that is of order

√
nh2k−1. Moreover,

the “optimal” order (in the sense of minimizing the MSE) of the “smoothing

parameter” is proportional to n−
1

2k+3 .
Before the development of the definition of our estimator, let us make some

remarks about Maltz’s estimator.
First, note that (1) uses only differences between the values of the empirical

distribution (which is not a differentiable function) in order to compute
an approximation for the k derivative of the true distribution function F.
The estimations based on simulated data proved us that it is a powerful
nonparametric estimator which can reveal very well the structure of a derivative.
Just like the classical smoothed version of Parzen-Rosenblatt based on a kernel,
it has a smoothing parameter h which may be assimilated to a classical
“bandwidth” making the trade-off between the bias and the variance.

Moreover, the first order derivative computed with Maltz’s formula coincides
with the Parzen-Rosenblatt density estimator with an uniform kernel. So the
smoothing parameter has the same interpretation in both estimators.

All these facts convinced us to generalize this estimator to the fractional case,
given that in the literature of numerical analysis there exists an equivalent for
the numerical approximation of the fractional derivative based on generalized
differences.
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We start by taking a look at the estimator as functional operator acting
on F. The key role of the paper will be played by the operator ∆k

δ , defined

as
∑k
i=0(−1)i

(
k

i

)
F(x+ (k/2− i)δ), which performs the transformation used

in the definition (1) of the estimator studied by Maltz. In the literature of
numerical analysis it is called the symmetric δ-shifted difference operator of
order k, because of the “shifted” knots x+ (k/2− i)δ used as arguments for the
function F.

From the numerical perspective, this class of operators is intimately related
to the approximation of the classical kth derivative operator F(k), because we
can find a functional norm that verifies

∥∥[∆k
δF
]

(x)−δkF(k)
∥∥ < η (δ) .

More exactly, for every x ∈ supp(F ) (such that. F(1)(x) 6= 0), there is an
order r such that :

F(k)(x) = δ−k
[
∆k
δF
]

(x) +O (δr)

Using the translation operator τδ defined by [τδF] (x) = F(x+ δ) , if we look
at the estimator (1), we can write:

F̃(k)
n (x, h)

def
= (2h)

−k
(∆k

2hF̂n)(x) = δ−k (τδ − 1)
k
τk−δ/2F̂n (x)

for δ = 2h, here F̂n being the empirical distribution function. This is not only
a numerical approximation for the kth derivative for F. Given the random
character of F̂n, Maltz proved that it is a very appealing nonparametric
estimator for F(k) too, which has all the classical properties desired by

statisticians. The strong convergence of F̃
(k)
n to F(k) comes from translation

of the convergence of F̂n (a
√
n-convergent estimator for the true cumulative

distribution function F) made by the continuous linear operator ∆k
δ .

The next step is to take Maltz’s definition that works only for the integer
values of the order k, and to generalize it to a non-integer order.

Definition 1. For a positive scalar α, and a real function F, let us define ∆α
δ

as the class of generalized symmetric δ-shifted difference operator indexed by
some positive parameter δ:[

∆α
δF
]

(x)
def
= (τδ − 1)

α
τα−δ/2F(x) (2)

where (τ−δ − 1)
α

is computed using the generalized binomial formula.

In a more explicit way, we can write:[
∆α
δF
]

(x) =
∑
l ≥0

(−1)l
(
α

l

)
F(x+ (δ/2− l)δ)

The binomial coefficients

(
α

l

)
are seen in the generalized sense

Γ(α+ 1)

l!Γ(α− l + 1)
and involve the Gamma function (which extends the classical factorial function).
It is easy to prove that for any bounded function F, this infinite alternate series
is convergent.

Remark: If α is a positive integer then all the binomial coefficients for
l > α become zero and we have Maltz’s estimator as a special case.
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This formula defines a natural approximation for the derivative of order α
as a generalization of the integer case, and its limit when δ goes to 0 is called
the Grünwald-Letnikov derivative, denoted here by F(α)(x).

In the same spirit as below,given x, for each α it exists some positive integer
m for which locally:

δ−α
[
∆α
δF
]

(x) = F(α)(x) +O (δm)

This is a natural generalization of a classical result involving numerical
approximation of the true derivative of integer order.

Using the plug-in technique, in order to obtain a nonparametric estimator
of the fractional derivative of a distribution function F, we propose to replace
in (2) the unknown F by its nonparametric estimator F̂n.

Definition 2. Given a positive scalar α, the estimator of the α−fractional
derivative of a distribution function F is given by:

F̃(α)
n (x, δ)

def
= δ−α (τδ − 1)

α
τα−δ/2F̂n(x) (3)

where the parameter δ = δn is a sequence of positive numbers converging to zero
as n→∞.

Other conditions will be imposed on δ in the next sections.
This estimator will be studied in the remaining of the paper. The next

section deals with the asymptotic bias, section 3 presents the asymptotic
variance. The convergence is proven in section 4. Finally, the last section
outlines the optimal choice of the smoothing parameter.

3 Asymptotic Bias

The derivation of the asymptotic bias cannot be carried out by the usual
technique applied in the case of nonparametric estimators, in particular the
one Maltz used in his paper. In order to compute the bias, he performs a Taylor
development of order k around x, obtains a polynomial formula with respect to
δ and uses some identities involving binomial coefficients to obtain the result
(see his paper for details). We cannot use this simple technique directly, because
there is no equivalent of the Taylor development of a fractional order.

Instead, there exist some results used in the context of the numerical
analysis for computing the extrapolation to the limit for the numerical fractional
differentiation (see [20]), which provide a Taylor-like development for the
differential operators, and which follow the same lines as our proof. Roughly
speaking, using the Fourier transform applied to some functionals, we can
deduce an equivalent Taylor expansion for the numerical differential operators.
However, these results are written for general functions lying in R and which
don’t have the behaviour of a distribution function. Consequently, necessary
conditions must be imposed in order to prove a Taylor-like development for the
class of shifted generalised difference operators ∆α

δ . More exactly, F must verify
some very restrictive regularity conditions (the classical derivatives of order up
to [α] + 6 must be in L1 (R)) which is a drawback in our context, unless the
probability distribution function verifies F ∈ C∞ (R) (like the Gaussian, Student
or Gamma distribution etc).

5



For any g in L1(R), the space of absolute integrable functions, we consider
the following definition for the Fourier transform of g :

F(g)(x)
def
=

∫
R

g(t) exp(itx)dt

and can be extended to the generalised shifted central difference operator.
We will use it in order to prove that the bias of the fractional estimator has

the same order of magnitude with respect to δ as the one for integer case, i.e.
is of order O(δ2) under some regularity conditions on F.

Theorem 3. If the true cumulative distribution function F ∈ C[α]+5 (R) and
F(s) ∈ L1(R) for all integer s up to [α] + 6, then the asymptotic bias of the
estimator (3) is given by:

B
[
F̃(α)
n (x, δ)

]
=

1

4!
αδ2F(α+2)(x) + o(δ2) (4)

Proof. Let’s start by writing the mean of the estimator. For any x in the support
of F we have:

E
[
F̃(α)
n (x, δ)

]
= E

[
δ−α (τδ − 1)

α
τα−δ/2F̂n(x)

]
The linearity of the expectation operator E and respectively of the translation
operator τδ gives:

E
[
F̃(α)
n (x, δ)

]
= δ−α (τδ − 1)

α
τα−δ/2E

[
F̂n(x)

]
= δ−α (τδ − 1)

α
τα−δ/2F(x)

In an equivalent manner, using the generalised symmetric δ-shifted difference
operator defined in (2) we can write:

E
[
F̃(α)
n (x, δn)

]
= δ−α(∆α

δF)(x)

We can easily show that 1:

F(∆α
δF)(t) = (−itδ)α

[
sin( tδ2 )

tδ
2

]α
F(F)(t)

Now for all u 6= 0, plugging the Taylor series representation for
sin(u)

u
in the

previous equation we find:

δ−αF(∆α
δF)(t) = (−it)α

[ ∞∑
k=0

(−1)k( tδ2 )2k

(2k + 1)!

]α
F(F)(t).

Formally, given that the series is convergent, by the multinomial formula that
generalises Newton’s binomial theorem, it can be written as :

δ−αF(∆α
δF)(t) = (−it)α

[
b0 + b2(tδ)2 +O(t4δ4)

]
F(F)(t) (5a)

1Remember that here the cumulative distribution F /∈ L1(R) but can be seen as a tempered
distribution, so it has a Fourier transform.
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We are only interested in the coefficients of order up to 2. By identification of
the coefficients we have b0 = 1 and b2 = 1

4!α, the other computable coefficients
b2k are not relevant for our proposal, being stored into the O(·) term.

Let us define a reminder r2(t) ensuring that we can rewrite the previous
result as:

δ−αF(∆α
δF)(t) = (−it)α

[
1∑
k=0

b2k(tδ)2k +

∞∑
k=2

b2k(tδ)2k

]
F(F)(t)

= (−it)α
[
b0 + b2(tδ)2

]
F(F)(t) + (−it)αr2(t)F(F)(t)

and let ρ be the inverse Fourier Transform of (−it)αr2(x)F(F)(t), i.e.:

F(ρ)(t, δ) = (−it)α
( ∞∑
k=2

b2k(tδ)2k

)
F(F)(t)

Using the classical property of the Fourier transform:

(−it)α+k F(F)(t) = F
(
F(α+k)

)
(t) k = 0, 1, 2

this allows us to write that:

δ−αF
(
∆α
δF
)
(t) =F

(
F(α)

)
(t) + b2F

(
F(α+2)

)
(t)δ2+F(ρ)(t, δ) (6)

After applying the inverse Fourier transform to the above identity, we have:

δ−α
(
∆α
δF
)

(x) = F(α)(x) +
1

4!
αδ2F(α+2)(x)+ρ(x, δ)

provided that F(ρ)(t, δ) is in L1(R). We will see in the following lines that this
condition is verified. Moreover, in order to prove the result (4), we need to show
that ρ(x, δ) = o

(
δ2
)
.

First, observe that:

F(ρ)(t, δ) = (−it)αO(t4δ4)F(F)(t) = O(δ4)(−i)αtα+4F(F)(t)

Under the assumptions on the derivatives of F, one can prove that

(1 + |t|)[α]+6 |F(F)(t)| is bounded by some constant C1. Implicitly, after some
simple algebraic calculus we deduce that [F(ρ)] (t, δ) is in L1(R). Applying the

inverse Fourier transform, we obtain that |ρ(x, δ)| ≤ C̃δ4 i.e. ρ(x, δ) = o
(
δ2
)
.

Thus, if we retain the terms up to O(δ2) we have shown that:

E
[
F̃(α)
n (x, δ)

]
= F(α)(x) +

1

4!
αδ2F(α+2)(x) + o(δ2)

and the theorem follows.

4 Asymptotic variance

In our framework, the parameter δ can be seen as a smoothing parameter, just
like the bandwidth h for the Parzen-Rosenblatt kernel estimator. Moreover,
the computation of the variance will emphasise its dependence on the order of
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magnitude of δ and his exponent. This will affect the rate of convergence of
our estimator, but given that the fractional derivative is a generalization of the
standard concept of derivative, we will find a theoretical result which will act
like a generalization of Maltz’s and respectively Parzen-Rosenblatt’s results.

Indeed, for the first order derivative of F, [13] and [17] proved that the
asymptotic variance of the estimator of f(x) = F(1)(x), under the appropriate
conditions on hn is:

lim
n→∞

(nh)Var(f̂n(x)) = f(x)

∫
k2(u)du = λ1F

(1)(x)

On the other hand, Maltz pointed out that the estimator he proposed, under
the appropriate conditions on hn, verifies:

lim
n→∞

(nh2k−1)Var(F̃(k)
n (x, h)) = F(1)(x)

(
2k − 2

k − 1

)
In the following we will generalise these two results to the fractional case.

We begin by stating the main result and then we will prove it.

Theorem 4. Assume that F(1)(x) exists and δ = δn is a sequence converging
to zero which verifies lim

n→∞
nδ2α−1 =∞. Then for α > 1/2 :

Var
[
F̃(α)
n (x, δ)

]
= n−1δ1−2αF(1)(x)

Γ(2α− 1)

[Γ(α)]
2 + o(n−1δ1−2α)

Proof. We have successively

δ2αVar
(
F̃(α)
n (x, δ)

)
=

=

∞∑
i=0

∞∑
j=0

(−1)i+j
(
α

i

)(
α

j

)
Cov

(
F̂n(x̃i), F̂n(x̃j)

)
= n−1

∞∑
i=0

∞∑
j=0

(−1)i+j
(
α

i

)(
α

j

)
[F(x̃i ∧ x̃j)− F(x̃i)F(x̃j)]

where x̃i ∧ x̃j denotes the minimum of x̃i and x̃j . Now, assuming that F′(x)
exists, by applying Taylor’s rule we get:

F(x̃i) = F(x+ (α/2− i)δ) = F(x) + (α/2− i)δF(1)(x) + o(δ)

as δ → 0. Consequently:

δ2αVar
(
F̃(α)
n (x, δ)

)
= (7)

= n−1
∞∑
i=0

∞∑
j=0

(−1)i+j
(
α

i

)(
α

j

)[
F(x)− F2(x)+

{(α/2− i) ∧ (α/2− j)} δF′(x)− (α− i− j)δF(x)F(1)(x) + o(δ)
]

The identity
∑∞
i=0(−1)i

(
α
i

)
= 0 will reduce the right part to : δ2αVar

(
F̃

(α)
n (x, δ)

)
=

−n−1F′(x)δ
∑∞
i=0

∑∞
j=0(−1)i+j

(
α
i

)(
α
j

)
(i∨ j) + o(n−1δ), where i∨ j denotes the
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maximum of i and j. Let’s compute the double sum from (7), which will be a
function depending on the value of α :

S (α) =

∞∑
i=0

∞∑
j=0

(−1)i+j
(
α

i

)(
α

j

)
(i ∨ j)

After some algebraic calculus, the same previous identity allows us to obtain:

S (α) =

∞∑
i=0

(−1)i
(
α

i

)
[i

i∑
j=0

(−1)j
(
α

j

)
−

i∑
j=0

(−1)j
(
α

j

)
j]

On the other hand, the classical identities relative to the generalised binomial
coefficients simplify even more the double series as being the difference between
two simple series:

S (α) =

∞∑
i=0

[
i (1 + i)

(
α

i

)(
α

1 + i

){
1

α
− 1

α− 1

}]

= − 1

α (α− 1)
[α

∞∑
i=0

i

(
α

i

)2

−
∞∑
i=0

i2
(
α

i

)2

]

We can decompose the previous sum in two parts: S1 (α) =
∑∞
i=0 i

(
α
i

)2
and

respectively S2 (α) =
∑∞
i=0 i

2
(
α
i

)2
. Both of them are functional series and the

parameter α determines wether each of the two series is convergent or divergent.
In order to study the convergence of the two previous series we use Kummer’s
test (see [2]). It is easy to see that:

lim
n→∞

(n+ 1)
−2

[n3
(
α

n

)2(
α

n+ 1

)−2
− (n+ 1)

3
] = 2α− 1

so we can conclude that S2 (α) will be divergent or convergent as 2α− 1 will be
negative or positive. So for 0 < α ≤ 1/2, S2 (α) is divergent, and for α > 1/2,
S2 (α) is convergent. Using the same criterion, we can verify that S1 (α) is
convergent for α > 0 (the correspondent limit is infinite). On the other hand,
for any α > 0, we have the identity:

∞∑
i=0

i

(
α

i

)2

=
α2Γ(2α)

Γ2(α+ 1)

and
∞∑
i=0

i2
(
α

i

)2

=
α2Γ(2α− 1)

Γ2(α)
for any α > 1/2

these identities being generalizations of the equivalent identities for the classical
binomial coefficients extended to the Gamma function. In conclusion, if α > 1/2,
both series are convergent and using the previous results we can write:

S (α) = − 1

α (α− 1)

[
αΓ(2α)

Γ2(α)
− α2Γ(2α− 1)

Γ2(α)

]
= −Γ(2α− 1)

Γ2(α)
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so the variance of the estimator is:

δ2αVar
[
F̃(α)
n (x, δ)

]
= n−1δF′(x)

Γ(2α− 1)

[Γ(α)]
2 + o(n−1δ)

and the theorem follows.

This result points out that the rate of convergence of our estimator will be
of order

√
nδ2α−1. For α = 1 we find the classical result related to the kernel

density estimator with uniform kernel. For an integer α we find Maltz’s result.
The next section will briefly discuss the convergence in probability of the

estimator.

5 Convergence

Theorem 5. If F(α) exists at x and the sequence δn satisfies the conditions
δn → 0 and nδ2α−1n → ∞ as n → ∞ then for all x in the support of the
distribution F we have:

F̃(α)
n (x, δ)

P−→
n→∞

F(α)(x)

Proof. Using Chebyshev’s Inequality, we can write:

Pr(
∣∣∣F̃(α)
n (x, δn)−E

(
F̃(α)
n (x, δn)

)∣∣∣ < ε

2
) > 1−

4Var
(
F̃

(α)
n (x, δ)

)
ε2

With the mean and the variance we computed before, we have :

Pr(
∣∣∣F̃(α)
n (x, δ)− F(α)(x)− 1

4!αδ
2F(α+2)(x)− o(δ2)

∣∣∣ < ε
2 ) >

> 1−
4F ′(x)Γ(2α−1)

[Γ(α)]2
+ o(n−1δ1−2α)

nδ2α−1ε2
Let us re-write the inequality between the brackets:

−ε
2
− 1

4!
αδ2F(α+2)(x) + o(δ2) < F̃(α)

n (x, δ)− F(α)(x)

<
ε

2
− 1

4!
αδ2F(α+2)(x) + o(δ2)

Given that δn is a sequence converging to zero, one can find a rank nε ∈ N such
that for all n ≥ nε we have:∣∣∣∣ 1

4!
αδ2F(α+2)(x)− o(δ2)

∣∣∣∣ < ε

2

So we can write respectively :

Pr(
∣∣∣F̃(α)
n (x, δn)− F(α)(x)

∣∣∣ < ε) > 1−
4F ′(x)Γ(2α−1)

[Γ(α)]2
+ o(n−1δ1−2α)

nδ2α−1ε2

or equivalently,

Pr(
∣∣∣F̃(α)
n (x, δ)− F(α)(x)

∣∣∣ < ε) > 1− cn(x, α)

where lim
n→∞

cn(x, α) = 0, and the convergence in probability follows.
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6 Mean Square Error and the optimal choice of
δn

Let’s study the asymptotic behaviour of the estimator in terms of its mean
square error. Using the precedent theorems, we can give the following result:

Theorem 6. If F(1)(x) and F(α+2) exists, for α > 1/2 the asymptotic mean
square error is given by:

MSE
[
F̃

(α)
n (x, δ)

]
= n−1δ1−2αF(1)(x)Γ(2α−1)

[Γ(α)]2
+ 1

242α
2δ4
[
F(α+2)(x)

]2
+

o(δ4 + n−1δ1−2α)

Proof. The result is obtained by direct computation using the previous results
from Theorem 3 and Theorem 4.

Under the assumptions (i) δ → 0 as n→∞ (ii) nδ2α−1 →∞ as n→∞ we

have that MSE
[
F̃

(α)
n (x, δ)

]
→ 0 as n→∞.

Note that we have the same pattern as for the kernel estimation, our
parameter acts in the same way as the bandwidth. If we choose a very small δn
then the bias will be small but the variance will be large. A larger δn will give
a smaller variance but a larger bias. Thus δ must be chosen in order to achieve
the best trade-off between the two. We can choose an ”optimal” smoothing
parameter δn in order to minimise the AMSE, which allows a trade off between
the bias and the variance.

Theorem 7. The optimal smoothing parameter δ∗ which ensures a pointwise

trade off between the bias and the variance is given by δ∗ = Cn−
1

2α+3 , where the
constant C (F, α, x) can be estimated separately. For this value of δ, we have
AMSE = O(n−4/2α+3)

Proof. Notice that [Bias]
2

= O(δ4) and Var = O(n−1δ1−2α). Thus the order of
MSE is max(O(δ4), O(n−1δ1−2α)). So heuristically, the optimal value of δ will
have to be such that the bias and variance have the same order of magnitude.

Let δn be a sequence of the form kn−β . Therefore the asymptotic optimal
choice of β (such that the two terms in the previous sum are of the same order)
is given by

δ4 = n−1δ1−2α ⇔
n−4β = n−1n−(1−2α)β

β =
1

2α+ 3

A more formal proof can be obtained by differentiating the AMSE with respect
to δn.

δ∗ = arg min
δn

AMSE
[
F̃(α)
n (x, δ)

]
The first order condition is :

(1− 2α)n−1δ−2αF(1)(x)
Γ(2α− 1)

[Γ(α)]
2 + 4

1

242
α2δ3

[
F(α+2)(x)

]2
= 0

11



that gives

δ∗ = Cn
−

1

2α+ 3

where the constant C depends on α and the unknown values F′(x) and F(α+2)(x)

C (F, α, x) =

[
144

(2α− 1)

α2
F(1)(x)

Γ(2α− 1)

[Γ(α)]
2

1[
F(α+2)(x)

]2
] 1

2α+ 3

With this choice of δ we have:
MSE

[
F̃

(α)
n (x, δ∗)

]
=

=

[
Cn
− 1

2α+3

]1−2α
n−1F(1)(x)Γ(2α−1)

[Γ(α)]2
+ 1

242α
2C4n

−4
2α+3

[
F(α+2)(x)

]2
+o(δ4+

n−1δ1−2α)

= C1−2αn

−4

2α+ 3 F(1)(x)Γ(2α−1)
[Γ(α)]2

+ 1
242α

2C4n

−4

2α+ 3
[
F(α+2)(x)

]2
+o(n−4/2α+3)

So we have AMSE = O(n−4/2α+3) and the theorem follows.

The choice of this measure implies that one wishes to estimate the derivative
in a single point x. If the goal is to estimate the derivative over a range of values
x than the minimization of the AMISE must be performed. This means that
we must integrate the expression above and obtain the equivalent order with
respect to the powers of δn.

We have the following result:

Theorem 8. Let F(α+2)(x) be bounded continuous function that is square
integrable. The following asymptotic expression holds:

MISE
[
F̃(α)
n (·, δ)

]
= n−1δ1−2α

Γ(2α− 1)

[Γ(α)]
2 +

+
1

242
α2δ4

∫ [
F(α+2)(x)

]2
dx+ o(δ4 + n−1δ1−2α)

The optimal choice of δ as a function of n is in this case:

δ∗ = Cn
−

1

2α+ 3

where the constant is in this case:

C (F, α) =

[
144

2α− 1

α2

Γ(2α− 1)

[Γ(α)]
2

1∫ [
F(α+2)(x)

]2
dx

] 1

2α+ 3

Again, with this choice we have

MISE
[
F̃(α)
n (·, δ)

]
= C1−2αn

−
4

2α+ 3 Γ(2α− 1)

[Γ(α)]
2 +

+
1

242
α2C4n

−
4

2α+ 3
∫ [

F(α+2)(x)
]2
dx+ o(n−4/2α+3)

= O(n−4/2α+3)
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There exists a large literature on choosing the bandwidth for the kernel
estimator and all the proposed approaches might be adapted and used in this
context.

7 Conclusion

We presented a theoretical estimator for the fractional derivative of the
distribution function. There is no unique way to define the fractional derivative,
and implicitly a nonparametric estimator, here we have chosen the Grunwald-
Letnikov’s definition, based on finite differences because it generalises an existing
estimator for the case of integer order of differentiation. This definition is
actually the one that is widely used in numerical computations for the fractional
calculus, given its simplicity. Its bias, variance and convergence were studied.
We found that the parameter δ can be seen as a ”smoothing parameter”, in
the same way as the bandwidth h for the kernel estimator. We found that the
convergence rate for our estimator with respect to δ, in the case of an integer α is
the same as the convergence rate for kernel based density derivative estimation.

This estimator will allow us to perform nonparametric estimation as a useful
tool for resolving some mathematical problems involving differential equations
arising in finance, physics, dynamic systems, optimal controlled systems and
others. Today, in many fields, theoretical models obtained for some integer
value of k (order of differentiation) tend to be generalised to the fractional case,
and this ask to review, in particular, the derivative of a functional parameter of
interest in this context.

Given the multitude of the theoretical and numerical applications existing
in the literature in the field of fractional calculus (fluid mechanics, material
resistance, electrical behaviour of materials, optimal control, partial differential
equations of fractional order etc.), we think that this work can be extended in
different contexts that need a statistical study of the respective physical systems.
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