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Abstract

Sharpe-like ratios have been traditionally used to measure the performances of portfolio
managers. However, they are known to suffer major drawbacks. Among them, two are intricate:
(1) they are relative to a peer’s performance and (2) the best score is generally assumed to cor-
respond to a “good” portfolio allocation, with no guarantee on the goodness of this allocation.
Last but not least (3) these measures suffer significant estimation errors leading to the inability
to distinguish two managers’ performances. In this paper, we propose a cross-sectional measure
of portfolio performance dealing with these three issues. First, we define the score of a portfolio
over a single period as the percentage of investable portfolios outperformed by this portfolio.
This score quantifies the goodness of the allocation remedying drawbacks (1) and (2). The new
information brought by the cross-sectionality of this score is then discussed through applica-
tions. Secondly, we build a performance index, as the average cross-section score over successive
periods, whose estimation partially answers drawback (3). In order to assess its informativeness
and using empirical data, we compare its forecasts with those of the Sharpe and Sortino ratios.
The results show that our measure is the most robust and informative. It validates the utility
of such cross-sectional performance measure.

Keywords: Performance Measure, Portfolio Management, Relative-Value Strategy, Large Port-
folios, Absolute Return Strategy, Multivariate Statistics, Generalized Hyperbolic Distribution

Early versions of this paper have been presented in an invited session at the Computational and
Financial Econometrics conference in Limassol, Cyprus, in October 2009, and at the XI Workshop
on Quantitative Finance in Palermo, Italy, in January 2010. We thank Marco Nicolosi and the
participants of the conferences for their comments and feedback. The authors are also grateful to
Stephen Brown for his very helpful comments.
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I Introduction

In this paper, we propose a cross-sectional measure of portfolio performance which deals with three
issues encountered by its Sharpe-like ratio counterparts: (1) Sharpe-like ratios are relative to a
peer’s performance, (2) the portfolio providing the best score is generally assumed to correspond to
a “good” allocation, with no guarantee on the goodness of this allocation and (3) these measures
suffer significant estimation errors leading to the inability to distinguish two managers’ perfor-
mances.

During the last two decades, the explosive growth of the asset management industry came with an
increasing interest in the analysis of investment performance. The research in this area is axed on
Sharpe-like ratios proposed in the 60’s [Sharpe (1966), Treynor (1965), Jensen (1968)] and it is
expanding by developing the notion of performance as a reward counter-balanced by some risk. The
main innovations focused on the definition and modeling of risk [Shadwick and Keating (2002),
Darolles et al. (2009)]. Practically, the performance of a portfolio manager, over a given period,
is usually computed as the ratio of his excess return over a risk measure [Grinblatt et al. (1994)].
The managers are then ranked according to these ratios, and the manager providing the highest
and steadiest returns receives the best score. These measures are convenient because they require
no assumption on the strategy of the portfolio managers. However, they suffer major drawbacks.
First, these measures are relative to a peer’s performance and irrelevant if no peer is found. We
generally assume that the best score corresponds to a “good” portfolio allocation, with no guaran-
tee on the goodness of this allocation. Secondly, as they are a ratio of two random variables, they
suffer significant estimation errors [Lo (2002) and Christie (2007) among others] which prevent
any performance comparison to be significant. In this paper, we propose a new measure based on
cross-section which deals these issues.

First, we introduce a score which quantifies the quality of an allocation over a single period. For
a given investment strategy, this score provides the percentage of investable portfolios which are
outperformed by the portfolio in consideration. By construction this score is independent of the
period considered. In addition, for a given set of investable portfolio defined by the investment
strategy, it reflects the goodness in the choice of an allocation. Thus, it quantifies the ability of
the portfolio manager to choose his portfolio. At the authors’ knowledge, such a score is new in
the literature despite its intuitiveness. This may be due to the difficulty to consider the set of the
investable portfolios which is a combinatorial problem.

Secondly, we study in details the computation and the properties of the score for the Zero-Dollar
Long/Short Equally Weighted (LSEW) strategy especially in the case of a very large number of
assets. Dealing with combinatorial issue inherent to the enumeration of the investable portfolios,

2

 
Documents de Travail du Centre d'Economie de la Sorbonne - 2010.70



we introduce an exchangeability assumption in the asset returns. The validity of this assumption
is verified empirically in Section III. In the general framework of returns characterized by gener-
alized hyperbolic distributions, as in Eberlein et al. (1995) and Prause (1999), we show that the
score is independent of the mean, the variance and the covariance of the returns. In other words, it
depends only on the shape parameters of the distribution and justifies to work with this class of dis-
tributions. Then, through examples, we show how this score can be used to control one’s allocation.

Thirdly, this score is designed for an allocation over a single period while Sharpe-like ratios deal
with the performance of investment methods over multiple periods. So, in order to assess the in-
formativeness of our score, we build a performance measure as the average score over a sample.
As stated in Sharpe (1994), ”most performance measures are computed using historic data but
justified on the basis of predicted relationship”. So, we motivate our measure by showing through
empirical implementations that its predictive ability is superior to those of the other main per-
formance measures, based on Sharpe and Sortino ratios. The results show that our measure is
more robust and more informative that the classical Sharpe and Sortino indices. Our score being
cross-sectional, these results are supporting the use of cross-sectional data in the design of optimal
portfolios as suggested in Brandt et al. (2009).

The paper is organized as follows. In Section II, we introduce the score which quantifies the
quality of an allocation over a given period. In Section III, we study and compute this score under
fair assumptions. Considering the LSEW investment strategy and assuming that the returns are
characterized by generalized hyperbolic distributions, we detail the influence of the distribution
parameters on the score. Section IV is devoted to three applications of this score. The first one
investigates the relevance of the assumptions. The second one shows how to close the positions of a
LSEW portfolio using the methodology developed in the previous sections. The last one monitors
a LSEW portfolio in real time. In Section V, we build a performance index based on our score.
We show through examples that the choice of portfolio obtained using our index outperforms those
using the Sharpe and Sortino ratios. Section VI concludes.

II A Cross-Sectional Score of Portfolio Performance

In this section, we introduce a score quantifying the quality of an allocation. This is achieved by
differentiating three elements affecting the performance of a manager: the set of investable port-
folios offered to this manager, the period of interest and the allocation method in use. Then, by
fixing the two first elements, we aim to measure the performance of an allocation method. First,
let focus on the set of investable portfolios. It is usually defined through a set of constraints on
the portfolio positions which are stated by the investment policy of the manager. For instance,
such constraints might be introduced by short-sale or diversification restrictions. Secondly, over
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two different periods, the use of the returns in order to compare the performance of two managers
is delicate. Indeed, two managers using the same allocation method would provide different returns
while they are strictly equally performant. In the following, we propose an alternative way to deal
with this issue. Finally, the performance of an allocation method should only reflect the correctness
of an allocation choice. It is the subject of this section and we aim to assert it by fixing the first
two elements.

Let introduce our score. Consider a portfolio manager whose investment policy defines a finite set
of portfolios. To provide an objective measure of his allocation performance, we compare the return
of his portfolio with the returns of all other investable portfolios. If his portfolio outperforms S%
of all portfolios, we say that it scores S, S ∈ [0, 1]. This score S will be the measure of the manager
performance that we investigate in details. Because each investable portfolio has a score, the score
is cross-sectional over this set. Moreover, this score is interesting because it is independent of the
period considered, and thus of the market conditions. In addition, because the set of portfolios is
already defined and the period identical to all portfolios, it focuses only on the goodness of the
allocation choice. Remark that the score does not need to be compared to a peer’s portfolio per-
formance.

Let formalize our score. Denote Γ the set of the investable portfolios γ induced by the man-
ager’s strategy. In a market of n assets, we represent a portfolio as a vector of weights, i.e.
γ = (γ(1), . . . , γ(n))′ where γ(i) is the weight associated with asset i, i = 1, . . . , n. In practice,
the assets are indivisible and any endowment is finite, so the number of investable portfolios is
finite. Moreover, in this paper, we focus on the case where Γ is a closed set under taking additive
inverses. Such a proceeding leads to a set of portfolios which enables a manager to bet on a market
direction as well as on its inverse. This feature is typical of absolute return funds which invest in
long and short positions to adapt any market condition. In addition, this proceeding provides a
simple interpretation of the score as a score of 50% corresponds to a return of 0% and a portfolio
with a score S1 has an inverse portfolio with a score 1 − S1. We propose now a way to compute
the performance measure S. Given an invested portfolio γ ∈ Γ, if N(γ) is the number of portfolios
outperformed by γ, then the performance S associated with γ is

(1) S(γ) =
N(γ)
|Γ|

.

The computation of S(γ) requires the identification of all investable portfolios outperformed by γ.
As soon as |Γ| is large, this computation is not direct. To deal with this issue, we introduce the
relevant theoretical framework.
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We consider a market of n assets whose returns X = (X1, . . . , Xn)′ have the joint density f and
where Y ′ is the transpose of Y . The marginal density of Xi, i ∈ {1, . . . , n} is denoted fi, and the
vector of order statistics induced by X is X(n) =

(
X(1), X(2), ..., X(n)

)′. Let be a portfolio γ ∈ Γ, it
returns γ′X, then for any realization x = (x1, x2, ..., xn)′, x(n) being a permutation of the elements
of x, it exists a portfolio γ̃ ∈ Γ such that

γ′x = γ̃′x(n).

In the following, we denote g the density of γ′X and uγ̃ the density of γ̃′X(n). As Γ is finite, there
exists an optimal portfolio γo which provides the highest return for a given realization x. Its order
statistic is denoted γ̃o and its return is equal to

(2) γ′ox = γ̃o
′x(n).

It is helpful to remark that the return of any portfolio γ ∈ Γ can be expressed relatively to the
return of the optimal portfolio γ̃o. This means that there exists a parameter k ∈ [−1, 1] such that:

(3) γ′x = kγ̃o
′x(n).

By definition, the optimal portfolio γo scores S = 1 and its opposite - which is the worst portfolio
- scores S = 0.

Back to the computation of S, we use the parameter k introduced in (3) which can be associated
to any portfolio γ ∈ Γ. Thus, to obtain an approximation of S(γi) for a given portfolio γi, we
approximate the number of portfolios N(γi) by the expected number of portfolios returning less
than ki times the return of the optimal portfolio. We denote this expected number N̄(ki):

N̄(ki) = E
(∣∣{γ ∈ Γ|γ′X ≤ kiγ̃o′X(n)

}∣∣)
=

∑
γ∈Γ

P (γ′X ≤ kiγ̃o′X(n))

=
∑
γ∈Γ

∑
γ̃∈Γ

P
(
γ̃′X(n) ≤ kiγ̃′oX(n)

)
P
(
γ′X = γ̃′X(n)

)
=

∑
γ̃∈Γ

P
(
γ̃′X(n) ≤ kiγ̃′oX(n)

)∑
γ∈Γ

P
(
γ′X = γ̃′X(n)

) .

(4)
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Observing that
∑

γ∈Γ P
(
γ′X = γ̃′X(n)

)
= 1, we obtain

N̄(ki) =
∑
γ̃∈Γ

P
(
γ̃′X(n) ≤ kiγ̃′oX(n)

)
=

∑
γ̃∈Γ

P
(
(γ̃′ − kiγ̃′o)X(n) ≤ 0

)
=

∑
γ∈Γ

P
(
(γ′ − kiγ̃′o)X(n) ≤ 0

)
.(5)

If we denote fγ,ki
the density of (γ′ − kiγ̃o′)X(n), the relationship (5) becomes:

(6) N̄(ki) =
∑
γ∈Γ

∫ 0

−∞
fγ,ki

(y) dy.

Plugging relationship (6) in equation (1) provides an approximation of the score for any portfolio
γi returning ki times the return of the optimal portfolio γo:

(7) S̄(ki) =
N̄(ki)
|Γ|

=
1
|Γ|
∑
γ∈Γ

∫ 0

−∞
fγ,ki

(y) dy.

As soon as the number of assets is large, the enumeration of the portfolios of Γ is laborious and
the computation of (7) remains difficult. To achieve this computation, we introduce a technical
assumption on the returns and provide the resulting expression of S̄ in the next proposition.

A0 : The asset returns are exchangeable.

We recall that a sequence of random variables is exchangeable if, for any permutation of these ran-
dom variables, the joint probability distribution of the rearranged sequence is the same as the joint
probability of the original sequence, Arellano-Valle and Genton (2007). In particular, a sequence
of independent and identically distributed (i.i.d.) random variables is exchangeable. The validity
of assumption (A0) is verified empirically in Section IV-A.

Proposition 1: Let X be an exchangeable random vector. Denote X(n) its corresponding vector
of order statistics, γo the optimal portfolio and γ a portfolio returning k times the return of γo,
then the approximated score S̄ for a portfolio γ is equal to

(8) S̄(k) =
∫ 0

−∞
(g ∗ hk) (y) dy
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where ∗ stands for the convolution product; g is the density of γ′X and hk the density of −kγ̃o′X(n),
where γ̃o is the ordered representation of the optimal portfolio γo.

Proof: The proof of this proposition is postponed in Appendix B.

III Estimation of the Score

In this section, we thoroughly study the score S in the case of the zero-dollar long/short equally
weighted strategy (LSEW). Assuming the generic case where the assets’ returns follow a multivariate
generalized hyperbolic distribution, we investigate the effects of the distributions parameters on the
score. Next, we illustrate the cases of the 130/30 and Hamming strategies.

A The case of the LSEW Strategy

First of all, let introduce the LSEW strategy. This strategy consists in investing in portfolios which
are long/short (i.e. include both long and short positions), zero-dollar (the value of the long po-
sitions is equal to the value of the short positions) and equally weighted (each position has the
same value in absolute value). In addition, the leverage of these portfolios is fixed to 2:1. The
notation 2:1 means that the amount of capital backing the portfolio represents 50% of the portfolio
value. It is the minimum amount required under the U.S. Regulation (namely Regulation T). As
a consequence, in our case, the sum of the absolute values of the weights of the portfolio equals 2.
The LSEW strategy is particularly interesting because it is the one used to track the momentum
effect in most of the literature [Jeegadeesh and Titman (1993), Rouwenhorst (1998), Chan et al.
(2000), Okunev and White (2003), Kazemi et al. (2009) and Billio et al. (2009) among others].
This LSEW strategy is also the base of most of the relative value strategies (arbitrage) which take
advantage of the mispricing between two assets [see Gatev et al. (1999) for the case of pair trad-
ing]. Note that the consideration of equal weights is not as limiting as it seems in the choice of the
portfolio. On the contrary, as shown in Demiguel et al. (2009), the errors in estimating the means
and covariances of the assets’ returns penalize the mean-variance optimization enough to erase the
diversification gain and provide portfolios with a lower out-of-sample Sharpe ratio than the naive
equally weighted portfolio.

For instance, in a market of 4 assets (A,B,C,D), there are 6 LSEW portfolios. We represent them
in Table 1. Note that there are |Γ| = n!

(n
2

!)2 LSEW portfolios in a market of n assets. So, the

number of portfolios increases exponentially with n. As an illustration of the combinatorial issue,
a market of 30 assets leads to 1.55 108 portfolios which would require 4.33 Go of memory to be
stocked and prevent any enumeration.
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γ1 γ2 γ3 γ4 γ5 γ6

Asset A 1/2 −1/2 1/2 −1/2 1/2 −1/2

Asset B 1/2 1/2 −1/2 1/2 −1/2 −1/2

Asset C −1/2 −1/2 −1/2 1/2 −1/2 1/2

Asset D −1/2 1/2 1/2 −1/2 1/2 1/2

Table 1: The set {γ1, γ2, γ3, γ4, γ5, γ6} is the set of the LSEW portfolios that can be built in a
market of 4 assets, here {A,B,C,D}.

In addition, the optimal portfolio is then long the n
2 assets which perform the best and is short the

n
2 assets which perform the worst:

γ̃o(i) =

{
−2/n , if i ≤ n/2

2/n , if i > n/2

In practice, the computation of S̄ using the expression (8) requires to determine the density g

corresponding to a linear combination of n random variables, the density hk corresponding to the
linear combination of n order statistics and the convolution product between g and hk. For the
computation of hk, we use the methodology developed by Arellano-Valle and Genton (2007). Nev-
ertheless, their result is difficult to apply as soon as n is large. In that case Monte Carlo simulations
are appropriate. Through an example, we carry out the computation of S̄.

Let consider a simulated market of 10 assets - inducing |Γ| = 252 LSEW portfolios - whose returns
are i.i.d., and follow a Gaussian distribution with mean 0 and variance 0.01. Then, the density
g is the sum of 10 independent Gaussian densities, and we calculate the density hk using Monte
Carlo simulations, computing γ′x− kγ̃o′x(n) for each realization x, with γ ∈ Γ and γ̃o the optimal
portfolio obtained by ranking the 10 returns. In Figure 2, we represent S̄ as a function of k. We
remark that the score S̄ of a portfolio γi providing ki = 60% of the return of the optimal portfolio
is S̄ = 92%. This means that only 8% of the LSEW portfolios provide an higher return than γi, on
average.

Financial asset returns are well known to have distributions which are asymmetric and leptokurtic.
Thus, it is important to be able to compute S̄ when the asset returns are modeled by distributions
more complex than the Gaussian one. As shown in Eberlein et al. (1995), Prause (1999) and
Fajardo et al. (2009), among others, a multivariate generalized hyperbolic distribution can be
considered due to its flexibility and its good fitting for financial asset returns. We exhibit such an
example in Section IV-A showing the superiority of the fit obtained with the generalized hyperbolic
distribution over the Gaussian distribution. Thus, in the following, we assume that the observations
X = (X1, . . . , Xn) are characterized by a multivariate generalized hyperbolic distribution and we
identify the distribution’s parameters which affect S̄.
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Figure 1: Representation of S̄ with respect to k, the approximation of the score of an LSEW
portfolio whose return is k times the return of the optimal portfolio, as introduced in (8), in a
simulated market of 10 assets whose returns are independent and identically distributed according
to a Gaussian distribution with mean 0 and standard deviation 1%. We recall that, by definition,
the optimal portfolio scores 1 and the worst portfolio scores 0. In this example, the approximated
score of a portfolio returning 60% of the return of the optimal portfolio is 92%, i.e. with such a
return this portfolio outperforms in average 92% of the LSEW portfolios.

A multivariate generalized hyperbolic distributions GHn (λ, χ, ψ, µ,Σ, κ) can be represented as a
normal mean-variance mixture [Barndorff-Nielsen et al. (1982)], and is characterized by six pa-
rameters: the mean µ ∈ Rd, the variance-covariance matrix Σ ∈ Rd×d, the skewness parameter,
κ ∈ Rd, and the shape parameters λ, χ and ψ. In the following, we use this very flexible class of
distributions to characterize the assets on a market since it contains a lot of well known distribu-
tions (Laplace, Student-t, normal inverse Gaussian, inverse Gaussian, etc.). We introduce now a
new assumption which permits to extend the results of the Proposition 1.

A1 : The asset returns are characterized by a multivariate generalized hyperbolic distribution
GHn (λ, χ, ψ, µ,Σ, κ).

Under the assumptions (A0) and (A1), the vector X is an exchangeable random vector character-
ized by a multivariate generalized hyperbolic distribution, and Σ = σ2 [(1− ρ)In + ρ1n1n

′] where
σ is the variance of X and ρ is the correlation between Xi and Xj , i, j ∈ {1, . . . , n}, [Arellano-Valle
and Genton (2007)].
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Proposition 2: Let X be an exchangeable random vector distributed according to a multivariate
generalized hyperbolic distribution GHn (λ, χ, ψ, µ,Σ, κ), X(n) being the random vector of its order
statistics and γo the optimal portfolio, then

(9) S̄(k) =
∫ 0

−∞
vk (y) dy

with vk the density function of Z − kγ̃o′U(n) where Z is an elliptically contoured random variable
EC1

(
0, 4

n , φ
(1)
)
, and U(n) is the vector of order statistics induced by Un ∼ ECn

(
0, In, φ(n)

)
with

the density generator φ(m) given by

(10) φ(m)(u) = Cm
Kλ−m

2
(
√
ψ(χ+ u))

(
√
χ+ u)

m
2
−λ

with Cm a normalizing constant, and Kν the modified Bessel function of the third kind.

Proof: The proof of this proposition is postponed in Appendix C.

We remark that the score S̄ depends only on the shape parameters λ, χ and ψ which confirms
the limitations implied by working in the Gaussian framework. Therefore, in the case of Gaussian
i.i.d. returns as presented in Figure 2, different means and different variances and correlations
would lead to the same function S̄(k). In Section IV-B, figure 4, we compare the score S̄Gaussian
obtained with a Gaussian distribution of the returns and the score S̄GHD obtained with a generalized
hyperbolic distribution (GHD) fitted on market data. We observed that investing in a market where
the returns follow a GHD distribution is slightly more risky than in a market where the returns
follow a Gaussian distribution because S̄GHD(k) > S̄Gaussian(k) for k < 0. In the other hand,
S̄GHD(k) < S̄Gaussian(k) for k > 0, so an investment in the GHD market is more likely to provide
higher scores than an investment in the Gaussian market.

B The case of the 130/30 and ’Hamming’ Strategies

The score presented in the previous section is used with the LSEW strategy and it can be applied to
any other strategy. In this section, we present the score obtained with two other equally weighted
strategies: the 130/30 strategy and the Hamming strategy. The 130/30 strategy is long (or short)
130% of the portfolio and short (or long) 30%. All the portfolios generated have a leverage of
1.6 : 1. The Hamming strategy is long or short any position without constraint. The weights of
the portfolios are adjusted in a way such that they all have a leverage of 2 : 1. In Figure 2, we
represent S̄ as a function of k for these two strategies along with the LSEW strategy.
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Figure 2: Representation of S̄ with respect to k, as defined in (8), for three different investment
strategies: the LSEW strategy, the 130/30 strategy and the Hamming strategy. For each of these
strategy, S̄(k) is the approximation of the score of a portfolio (within the set of the portfolios
generated by the strategy) whose return is k times the return of the optimal portfolio, in a simu-
lated market of 10 assets whose returns are independent and identically distributed according to a
Gaussian distribution with mean 0 and standard deviation 1%. By definition, the optimal portfolio
scores 1 and the worst portfolio scores 0.

We observe that:

• for k < 0, S̄130/30 > S̄LSEW > S̄Hamming: so, by choosing randomly a portfolio, the prob-
ability to obtain a low score is higher for the 130/30 strategy, next followed by the LSEW
strategy and finally by the Hamming strategy.

• for k > 0, S̄Hamming > S̄LSEW > S̄130/30: so, by choosing randomly a portfolio, the prob-
ability to obtain a high score is higher for the 130/30 strategy, next followed by the LSEW
strategy and finally by the Hamming strategy.

The symmetry of the strategies implies that the probability to get a high score (k > 0) by choosing
randomly a portfolio is off-set by the probability to get a low score (k < 0). An investor who is
concerned by the scores of his invested portfolio would prefer the Hamming strategy if he is risk
averse and the 130/30 if he is risk lover.
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IV Applications and Empirical Validation

We provide now three applications showing the interest of our methodology. The first one
investigates the impact of assumptions (A0) and (A1); the second one proposes a new exit strategy
for managers willing to close their positions and the third one illustrates the usefulness of this
measure for monitoring portfolios in real time.

A Empirical relevance of the assumptions (A0) and (A1)

Let consider a market whose returns follow an arbitrary random vector X. In order to ver-
ify that the assumptions (A0) and (A1) are not too strong to be relevant, we compare the score
S̄ computed assuming (A0) and (A1) and the score S̆(k) computed as the average percentage of
portfolios returning less than k times the return of the optimal portfolio, using the relationship (1).
Practically, to obtain S̆(k), we need to enumerate all the LSEW portfolios. In our example, we
restrict ourselves to a market of 10 assets, corresponding to 252 LSEW portfolios. The market is
composed by the 10 DatastreamTMsectorial world indices, with their monthly returns, from Jan-
uary 1975 to May 2008. The DatastreamTMcodes of the indices are reported in Appendix A. To
compute S̄, we assume that the asset returns are stationary, exchangeable and characterized by a
generalized hyperbolic (GH) distribution. Here, we fit the assets’ returns with a Normal Inverse
Gaussian (NIG) distribution (λ = −0.5). Because the assets returns are assumed to be exchange-
able, they all have the same distribution which is estimated through a fit over the concatenation
of all the assets returns. Such a proceeding does not allow to estimate the correlation between the
assets which in any way is irrelevant to the computation of the score as shown in Proposition 2.
The estimation has been performed using the Matlab package developed by Saket Sathe which is
available on-line in the Matlab c©Central web site: http://www.mathworks.com.

In order to illustrate the accuracy of our choice, we propose in Figure 3 the Q-Q plots corresponding
to the adjustments of a Gaussian distribution and a NIG one over the distribution of the pooled
assets returns. The Q-Q plots clearly show the superiority of the fit obtained using the NIG dis-
tribution. In Table 2, we exhibit the p-values of the Kolmogorov-Smirnov test considering our
empirical sample of 4010 returns (10 (assets)× 401 (months)). Under the null hypothesis, we first
assume that the empirical sample is drawn from the Gaussian distribution, and next from the NIG
distribution.

Gaussian dist. NIG dist.

p-value 2.0175 10−5 0.7846

Table 2: P-values obtained with the Kolmogorov-Smirnov tests between the empirical distribution
of the returns of the 10 Datastream world sectorial indices pooled all together and a fitted Gaussian
distribution, and between the same empirical distribution and a fitted NIG distribution.
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Figure 3: Comparison of the Q-Q plots obtained by plotting the empirical distribution of the
returns of the 10 Datastream world sectorial indices pooled all together against a fitted Gaussian
distribution (in the left plot) and against a fitted NIG distribution (in the right plot). It shows the
superiority of the fit obtained using the NIG distribution.

The test validates the choice of the NIG distribution for the returns (p-value higher that 0.05).
In order to illustrate the impact of the distribution’s choice for the returns, we provide the scores
S̄ issued from the Gaussian hypothesis denoted S̄N , and from the NIG hypothesis denoted S̄NIG.
Both scores are computed using Monte Carlo simulations using the 4010 returns. In Figure 4, we
represent S̄NIG with the blue line, S̆ with the red line, and S̄N with the black dot line.

We observe that S̄NIG and S̆ coincide. The blue line covers the red one almost everywhere. Thus,
it seems that the assumptions (A0) and (A1) used to compute S̄NIG(k) do not create any relevant
bias in the computation of the score. When we assume that the data set comes from a Gaussian
random vector - which is invalidated in Table 2 - we observe a difference between S̄N (black dashed
line) and S̆ (red line). The score S̄N underestimates S̆ for negative k and overestimates it for
positive k. Thus, S̄NIG can be considered as a better approximation of S̆ than S̄N .
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Figure 4: Representations of S̆(k), S̄NIG(k) and S̄N (k), three different approximations of the score
of an LSEW portfolio whose return is k times the return of the optimal portfolio, in the market of
the 10 Datastream world sectorial indices. S̆(k) is the average percentage of portfolios returning
less than k times the return of the optimal portfolio as observed in the market. S̄NIG is the
approximated score of a portfolio returning k times the return of the optimal portfolio obtained
by fitting a NIG distribution on the returns and assuming (A0) and(A1). S̄N is identical to S̄NIG
except for the fitting of the distribution which is Gaussian.

B Application to exit positions

An interesting application of the score S is to use it to appreciate the opportunity to close
positions. Indeed, this new measure quantifies the goodness of an allocation for given market con-
ditions. We consider a manager whose portfolio is invested, and we assume that, due to fluctuating
market conditions, the knowledge of his portfolio’s return is not sufficient to decide to close his
positions. Suppose now that the portfolio provides a high score, S = 90%, then its return is among
the highest possible ones for a given time and given market conditions. Roughly speaking, the
manager has achieved the most it was possible to perform. Consequently, a reasonable decision is
to close the positions and try to do his best over the next period. As an illustration, we consider
the following LSEW portfolio γ invested on the 10 DatastreamTMworld sectorial indices, and in
Table 3 we report the weights of this portfolio.
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Oil&Gas Basic Mat. Industry Consumer Gds Health Care
-0,2 -0,2 -0,2 -0,2 0,2

Consumer Svs Telecom Utilities Finance Techno
0,2 -0,2 0,2 0,2 0,2

Table 3: Weights of the invested LSEW portfolio γ in the 10 sectorial indices. The sum is 2 because
the leverage used is 2:1.

Suppose that this LSEW portfolio has been invested the 31/07/2009 at the closing time. Then, the
portfolio manager can follow the score of his portfolio over the next days. We give the evolution
of the score S(γ) in Figure 5 from July 31, 2009 to September 30, 2009. We observe that the first
days the score of the portfolio is poor: indeed it is starting below 30%. However after few days, it
performs particularly well because it is above 80%. Finally, after 30 days it drops to the median
score (around 50%). Note that thanks to the symmetry of the LSEW strategy a score below 50%
corresponds to a negative return and respectively a score above 50% corresponds to a positive
return. The example shows that it would have been timely for the manager to close his positions
between the 15th of August and the 04th of September.

Figure 5: Observed score of the invested LSEW portfolio defined in Table 3 from the 31/07/2009
at the closing and over the 42 following days. This score is obtained by enumeration over all the
LSEW portfolios and corresponds to the real score of the invested portfolio.
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C Monitoring with the Estimated Score

Given a portfolio γ invested at date t = 0 we compare its scores (S̄t)t>0 defined in (9) with its
scores (St)t>0 defined in (1) at the dates t ≥ 1. We assume that the assets’ log-returns are governed
by a strictly stationary process (Xt)t>0 characterized by a NIG distribution. Given the realizations
(xt)t>0, the log return of the portfolio γ is approximatively γ′

(∑
i∈{1,..,t},t≥1 xi

)
at each time t.

From relationship (3) we compute the sequence (kt)t>0 associated with γ at the dates t, t > 0.
The stationarity property implies that S̄t(kt) = S̄(kt) for all t. Therefore, the scores (S̄(kt))t>0 de-
rive from the previous sub-sections and the scores (St)t>0 are directly computed as the percentage
numbers of outperformed portfolios for the given realizations. To illustrate our purpose, we use the
same portfolio and data set introduced in Sub-section IV-B. The values of (S̄(kt))t>0 and (St)t>0

are reported in Figure 6. We observe that S̄ correctly fits S.

Figure 6: Observed score St and approximated score S̄t of the invested LSEW portfolio defined in
Table 3 from the 31/07/2009 at the closing and over the 42 following days. The score St is obtained
by enumeration over all the LSEW portfolios and thus is the real score of the invested portfolio.
S̄t is the approximated score of the invested portfolio obtained by fitting with a NIG distribution
and assuming (A0) and(A1).

Now, we provide a quantitative criteria for the estimation of S based on the mean absolute error,
computing the errors produced by S̄ and S̆. As S̄(k) is invariant over time, we focus on one-step
daily periods, over the whole sample, from 01/02/1973 to 09/24/2009 (N=9262 observations), and
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we compute the error for each portfolio γ ∈ Γ. We obtain

Ē =
1

N |Γ|
∑

γ∈Γ,n∈{1,...,N}

|S̄(kn)− Sn(γ)| = 2.90%

and

Ĕ =
1

N |Γ|
∑

γ∈Γ,n∈{1,...,N}

|S̆(kn)− Sn(γ)| = 2.22%.

Even though Ĕ < Ē, the two errors are of the same order. Because S̄ is computed under the
assumptions (A0) and (A1), it has the advantage to avoid any enumeration and thus it can be used
in large markets. So, in small markets Ĕ might be preferred but in large markets Ē is an acceptable
alternative. Note that under stationarity condition and a correct choice for the distribution of the
returns X, the score S̄ is obtained only through the computation of the parameter k. Thus, this
score is suitable for real time applications as opposed to S̆ which requires a complete enumeration
for each realization.

V Comparison with the Main Performance Measures

In this section, we assess the informativeness of our score by building a performance index based
on this score and comparing its predictive ability with those of the main performance indices. The
performance index in consideration is the average score of a portfolio over a training period. The
measure is called average cross-section (ACS) score and the period over which the index is computed
is called training period. As this measure contains cross-sectional information on the assets, it might
be of some interest in order to allocate efficiently in one of investable portfolios. In Demiguel et al.
(2009), the authors conclude with: ”exploiting information about the cross-sectional characteristics
of the assets may be a promising direction to pursue” in the design of optimal portfolios which is
traditionally achieved using Sharpe-like ratios. In the following, we compare the forecasts of our
measure with those obtained with the Sharpe and Sortino indices. We proceed as follows. In a
given market, we first rank the LSEW portfolios according to different performance measures in a
training period. Then, we study the returns of the selected portfolios after an holding period. The
performance measures considered are defined as follows:

• the Sharpe ratio: for a given portfolio, we compute its in-the-sample Sharpe ratio over the
training period as its average excess return (over the risk free asset) divided by the sample
standard deviation of its excess returns.

• the Sortino ratio: for a given portfolio, we compute its in-the-sample Sortino ratio over the
training period as its average excess return (over the risk free asset) divided by the standard
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deviation of its negative excess returns. In the case no negative excess return is observed,
only those portfolios are ranked using their average excess returns.

• the ACS Score: for a given portfolio, we compute its ACS score over the training period. The
ranking of this performance measure provides the highest performer in average.

Our results are obtained using two samples. The first one is the market of the 10 U.S. sectorial
DatastreamTMindices from January 1973 to May 2010 and we use the 3-month U.S. T-Bill as a
risk-free rate. The second one is the market of the 10 European sectorial DatastreamTMindices
from November 1992 to May 2010 and we use the synthetic 3-month euro rate of Datastream as a
risk-free rate. The Datastream codes of the indices and interest rates are reported in Appendix A.
We consider daily, weekly and monthly frequencies in the data. For the monthly data, the periods
of training are 12 and 24 months long and the holding period lasts 1 month. For the weekly data,
the periods of training are 8, 16 and 24 weeks long (corresponding approximatively to 2, 4 and 6
months) and the holding period lasts 1 week. For the daily data, the periods of training are 10,
20 and 40 days long (corresponding approximatively to 1, 2 and 4 months) and the holding period
lasts 1 day. The results are presented below in Tables 4, 5 and 6.

The results for the monthly data are provided in Table 4. We observe that for the 12-month
training period, the ACS score provides the highest and most significant returns both in the U.S.
and European markets. It also provides the highest Sharpe ratio, lowest turn-over and highest
ACS score. For the 24-month training period, no performance measure provides significant returns
in the U.S.market while, in the European market, the Sharpe ratio provides the highest and most
significant returns. It also provides the highest Sharpe ratio and the highest ACS score. We remark
that, for any market and training period, the ACS score provides the lowest turn-over.

The results for the weekly data are provided in Table 5. In the U.S. market, the three measures
are equivalent for the 8-week training period. The Sharpe ratio provides the highest and most
significant returns for the 16-week training period while the ACS score provides the highest and
most significant returns for the 24-week training period. In the European market, the Sortino ratio
and the ACS score are tied and outperform the Sharpe ratio for the 8-week training period. The
ACS score outperforms both the Sharpe and the Sortino ratio for the 16-week and 24-week training
periods. As for the monthly data, the ACS score provides the lowest turn-over for any market and
any training period.

18

 
Documents de Travail du Centre d'Economie de la Sorbonne - 2010.70



Panel A: U.S. Market

Performance Measure Training Period Mean (T-Stat) Sharpe Ratio Turn-Over ACS Score

Sharpe Ratio 12 Mths 0.2332% (1.98) −0.3093 69.49% 53.37%
Sortino Ratio 12 Mths 0.1360% (1.06) −0.4091 78.16% 51.94%
ACS Score 12 Mths 0.2814% (2.05) −0.2069 62.30% 54.17%

Sharpe Ratio 24 Mths 0.1156% (0.99) −0.4793 49.86% 52.57%
Sortino Ratio 24 Mths 0.0517% (0.42) −0.5379 56.11% 51.27%
ACS Score 24 Mths 0.1361% (1.06) −0.4068 41.90% 52.43%

Panel B: European Market

Performance Measure Training Period Mean (T-Stat) Sharpe Ratio Turn-Over ACS Score

Sharpe Ratio 12 Mths 0.4170% (2.42) 0.1571 71.43% 55.43%
Sortino Ratio 12 Mths 0.5640% (2.95) 0.3330 73.06% 58.87%
ACS Score 12 Mths 0.6990% (3.22) 0.4470 46.12% 59.05%

Sharpe Ratio 24 Mths 0.4478% (2.73) 0.2390 48.70% 57.04%
Sortino Ratio 24 Mths 0.2995% (1.67) 0.0083 50.00% 55.65%
ACS Score 24 Mths 0.3439% (1.57) 0.0582 37.83% 55.02%

Table 4: Basic statistics and performance measures (Sharpe ratio, Turn-Over and ACS score) of the 1-month
forecasts obtained with the Sharpe ratio, the Sortino ratio and the ACS score after training periods of 12 and 24
months. This training period is the period over which the portfolio used as forecast is selected. The markets are the
U.S. (panel A) and European (Panel B) markets made of the 10 sectorial Datastream indices considering monthly
end-of-the-month prices. The U.S. data is from January 1973 to May 2010. The European data is from November
1992 to May 2010.

Panel A: U.S. Market

Performance Measure Training Period Mean (T-Stat) Sharpe Ratio Turn-Over ACS Score

Sharpe Ratio 8 Weeks 0.0734% (3.06) −0.2153 92.08% 52.42%
Sortino Ratio 8 Weeks 0.0783% (2.58) −0.1446 80.99% 52.67%
ACS Score 8 Weeks 0.0711% (2.39) −0.1878 69.78% 52.74%

Sharpe Ratio 16 Weeks 0.0804% (3.22) −0.1620 59.47% 52.45%
Sortino Ratio 16 Weeks 0.0458% (1.69) −0.3596 62.08% 51.88%
ACS Score 16 Weeks 0.0544% (1.87) −0.2862 50.41% 52.50%

Sharpe Ratio 24 Weeks 0.0086% (0.34) −0.6272 53.03% 50.22%
Sortino Ratio 24 Weeks 0.0184% (0.67) −0.5154 49.87% 50.92%
ACS Score 24 Weeks 0.0571% (1.82) −0.2506 40.73% 52.28%

Panel B: European Market

Performance Measure Training Period Mean (T-Stat) Sharpe Ratio Turn-Over ACS Score

Sharpe Ratio 8 Weeks 0.0556% (1.55) −0.1315 94.87% 52.19%
Sortino Ratio 8 Weeks 0.1447% (3.05) 0.3506 78.50% 54.21%
ACS Score 8 Weeks 0.1411% (2.98) 0.3328 70.18% 54.00%

Sharpe Ratio 16 Weeks 0.0351% (0.98) −0.2643 64.29% 52.00%
Sortino Ratio 16 Weeks 0.1183% (3.13) 0.2804 59.29% 54.02%
ACS Score 16 Weeks 0.1494% (3.07) 0.3718 48.39% 55.31%

Sharpe Ratio 24 Weeks 0.0159% (0.43) −0.3713 58.20% 51.55%
Sortino Ratio 24 Weeks 0.0589% (1.47) −0.0872 50.18% 52.71%
ACS Score 24 Weeks 0.1109% (2.24) 0.1838 40.72% 54.17%

Table 5: Basic statistics and performance measures (Sharpe ratio, Turn-Over and ACS score) of the 1-week forecasts
obtained with the Sharpe ratio, the Sortino ratio and the ACS score after training periods of 8, 16 and 24 weeks. This
training period is the period over which the portfolio used as forecast is selected. The markets are the U.S. (Panel
A) and European (Panel B) markets made of the 10 sectorial Datastream indices considering weekly end-of-the-week
prices. The U.S. data is from January 1973 to May 2010. The European data is from November 1992 to May 2010.
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In Table 6, we provide the results for the daily data. In the U.S. market, the ACS score provides
the highest and most significant returns as well as the highest Sharpe ratio, lowest turn-over and
highest ACS score for all the training periods. In the European market, we observe the same result
with the ACS score outperforming the two other performance measures.

Panel A: U.S. Market

Performance Measure Training Period Mean (T-Stat) Sharpe Ratio Turn-Over ACS Score

Sharpe Ratio 10 Days 0.0217% (4.53) −0.0078 81.65% 52.30%
Sortino Ratio 10 Days 0.0296% (5.57) 0.2374 76.65% 52.94%
ACS Score 10 Days 0.0349% (6.20) 0.3767 61.59% 53.24%

Sharpe Ratio 20 Days 0.0244% (5.20) 0.0886 54.11% 52.25%
Sortino Ratio 20 Days 0.0242% (4.76) 0.0735 52.88% 52.20%
ACS Score 20 Days 0.0392% (6.78) 0.4883 43.46% 53.45%

Sharpe Ratio 40 Days 0.0160% (3.32) −0.2003 36.63% 51.86%
Sortino Ratio 40 Days 0.0192% (3.75) −0.0871 35.24% 52.02%
ACS Score 40 Days 0.0258% (4.40) 0.1092 30.83% 52.82%

Panel B: European Market

Performance Measure Training Period Mean (T-Stat) Sharpe Ratio Turn-Over ACS Score

Sharpe Ratio 10 Days 0.0196% (3.08) 0.1380 80.71% 51.60%
Sortino Ratio 10 Days 0.0264% (3.54) 0.3319 79.47% 51.60%
ACS Score 10 Days 0.0387% (4.41) 0.6125 60.81% 52.60%

Sharpe Ratio 20 Days 0.0154% (2.40) −0.0162 56.74% 51.47%
Sortino Ratio 20 Days 0.0203% (2.89) 0.1515 53.52% 51.57%
ACS Score 20 Days 0.0314% (3.60) 0.4202 44.76% 52.47%

Sharpe Ratio 40 Days 0.0235% (3.65) 0.2877 38.13% 52.04%
Sortino Ratio 40 Days 0.0207% (2.88) 0.1639 34.90% 51.61%
ACS Score 40 Days 0.0386% (4.14) 0.5797 31.81% 52.76%

Table 6: Basic statistics and performance measures (Sharpe ratio, Turn-Over and ACS score) of the 1-day forecasts
obtained with the Sharpe ratio, the Sortino ratio and the ACS score after training periods of 10, 20 and 40 days. This
training period is the period over which the portfolio used as forecast is selected. The markets are the U.S. (Panel
A) and European (Panel B) markets made of the 10 sectorial Datastream indices considering daily prices. The U.S.
data is from January 1973 to May 2010. The European data is from November 1992 to May 2010.

Over the different frequencies considered, we observe that the ACS score is the performance mea-
sure which offers the most frequently the highest and most significant returns. With the daily data,
it systematically outperforms the Sharpe and Sortino ratios. It is interesting to remark that this
measure has constantly provided the lowest turn-overs which means that the portfolios selected are
”stable” in time and shows its ability to capture a trend.

In order to further assess the superiority of a performance measure over another one, we compare
the cumulative distribution functions of the score of the different performance measures. For in-
stance, in Figure 7, we represent the cumulative distribution functions (CDF) of the scores obtained
by the portfolios selected by the Sharpe ratio, the Sortino ratio and the ACS score, in the U.S.
market with a training period of 20 days. In addition, an interesting use of the score is that it
allows to plot the CDF of a random allocation as well. This allocation consists in giving the same
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probability to each investable portfolio. We observe that the Sharpe and Sortino ratios dominate
stochastically the random allocation while the ACS score does not. Indeed, the ACS score has the
same probability to provide a portfolio with a score inferior to 20% than the random allocation.
However, it also provides the highest probability to get a score higher that 50%, i.e. in our case a
positive return, and it clearly outperforms the Sharpe and Sortino ratios in the high scores. As a
consequence, the ACS score would be prefered by risk-lover managers and the Sharpe and Sortino
ratios would suit to risk-averse investors.

Figure 7: Cumulative Distribution Function of the scores obtained by the portfolios selected by
the Sharpe ratio, the Sortino ratio, the ACS Score and a random allocation. The performance
measures are used as investment method in the U.S. market with a training period of 20 days and
an holding period of 1 day. The scores of the forecasts are computed by enumeration over the set
of the LSEW portfolios.

Figure 8 represents the performances of the Sharpe ratio, the Sortino ratio and the ACS score in
the U.S. market with a training period of 20 days and an holding period of 1 day and confirms
the previous analysis. The initial investment has a value of 1 on the 01/02/1973 and we represent
the value of the investments from 01/02/1973 to 27/05/2010. In order to identify the effect of the
recent crisis on the performances, we zoom in over the period 1992-2010 as represented in Figure 9
and we plot the crisis in shaded areas. We use the dating of the crisis proposed in Rigobon (2003)
and Billio et al. (2009) which is reported in Table 7. We observe that the ACS score is the best
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performer and that it is also proner to draw-back during crisis than the two other performance
measure. It is in line with the previous observation stating that the Sharpe ratio better suits a
risk-averse investor than the ACS score.

Figure 8: Performances obtained with an investment of value 1 on the 01/02/1973 investing in
the forecasts obtained using the Sharpe ratio, the Sortino ratio and the ACS Score as investment
method. The results presented are from the U.S. market with a training period of 20 days and an
holding period of 1 day. Financial crisis are represented in shaded areas.

Crisis Begin End
Mexican Crisis December 1994 March 1995

Asian Crisis June 1997 January 1998
Russian Crisis and LTCM August 1998 October 1998

Brazilian Crisis January 1999 February 1999
Internet Crash March 2000 May 2000

Argentinean Crisis October 2000 December 2000
September 11, 2001 September 2001 September 2001

Worldcom, Merger dry-up June 2002 October 2002
Mortgage Crisis August 2007 January 2008

Global Financial Crisis September 2008 November 2008

Table 7: Dating of the financial crisis as they appear in Figures 8 and 9.

Finally, we have seen that the new measure based on the score is globally more informative than the
Sharpe and Sortino ratios for any frequency. It is proner to draw-backs but this is largely off-set by
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Figure 9: Zoom of Figure 8. Performances obtained with an investment of value 1 on the 01/02/1973
investing in the forecasts obtained using the Sharpe ratio, the Sortino ratio and the ACS Score as
investment method. The graph focuses on the performances over the period 1992-2010. The results
presented are from the U.S. market with a training period of 20 days and an holding period of 1
day. Financial crisis are represented in shaded areas.

its capacity to provide high returns as shown by the significance of its forecasts. In addition, these
forecasts have a low turn-over which is interesting as a high turn-over in often a major drawback in
long/short investment, Lesmond et al. (2004) and Korajczyk and Sadka (2004). These properties
are very interesting for investors and encourage the study of cross-sectional effects in the markets
as an alternative to the classical mean-variance optimization.

VI Conclusion

This paper proposes a way to quantify the goodness of an allocation through a cross-sectional
score. While most of the previous works on performance measure require a peer system to appre-
ciate a manager’s performance, this approach permits to be free of this constraint. It opens new
possibilities such as a nice and simple way to monitor the performance of an invested portfolio in
real time and the ability for a manager to appreciate the opportunity to close his positions. In
addition, it releases new information which is valuable in asset allocation. Indeed, a performance
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measure based on this score provides higher returns than the Sharpe and Sortino ratios along with
a lower turnover. These results are encouraging the study of cross-sectional effects in the markets
as an alternative to the classical mean-variance optimization.

Appendix

A Datastream codes of the data used in this paper

The DatastreamTMcodes of the World sectorial DatastreamTMindices are: OILGSWD, BMA-
TRWD, INDUSWD, CNSMGWD, HLTHCWD, CNSMSWD, TELCMWD, UTILSWD, FINANWD,
TECNOWD. The DatastreamTMcodes of the European sectorial DatastreamTMindices are: OIL-
GSEU, BMATREU, INDUSEU, CNSMGEU, HLTHCEU, CNSMSEU, TELCMEU, UTILSEU, FI-
NANEU, TECNOEU. The DatastreamTMcodes of the U.S. sectorial DatastreamTMindices are:
OILGSUS, BMATRUS, INDUSUS, CNSMGUS, HLTHCUS, CNSMSUS, TELCMUS, UTILSUS,
FINANUS, TECNOUS. The DatastreamTMcode of the 3-month U.S. T-Bill is FRTBS3M and the
code the synthetic 3-month euro rate of Datastream is EMINT3M.

B Proof of Proposition 1

Let X be an absolutely continuous exchangeable random vector, X(n) be the corresponding
random vector of its order statistics. Let be γi ∈ Γ any portfolio, γo the optimal portfolio and g

the density of γ′iX, then we have

(A-1) P (γ′iX = y) =
∑
γ∈Γ

P (γ′X(n) = y)P (γ′iX = γ′X(n)).

As X is an exchangeable random vector, then γ has the same probability to be the representation
of γi in terms of order statistics, thus

(A-2) P (γ′iX = γ′X(n)) =
1
|Γ|
.

Plugging relationship (A-1) in expression (A-2) leads to

(A-3) P (γ′iX = y) =
1
|Γ|
∑
γ∈Γ

P (γ′X(n) = y).

Denoting uγ the density function of γ′X(n), we remark that
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(A-4) g =
1
|Γ|
∑
γ∈Γ

uγ .

From (7), we know that if the portfolio γi returns ki times the return of the optimal portfolio γo,
we have

(A-5) S̄(ki) =
1
|Γ|
∑
γ∈Γ

∫ 0

−∞
fγ,ki

(y) dy

where fγ,ki
is the density function of (γ − kiγ̃o)′X(n). Denoting hki

the density of −kiγ̃′oX(n), we
obtain

(A-6) S̄(ki) =
1
|Γ|

∫ 0

−∞

∑
γ∈Γ

(uγ ∗ hki
) (y) dy.

Using the property of distributivity of the convolution product, the relationship (A-6) can be
rewritten as follows:

(A-7) S̄(ki) =
1
|Γ|

∫ 0

−∞

∑
γ∈Γ

uγ

 ∗ hki

 (y) dy.

Now, from (A-4), we have
∑

γ∈Γ uγ = |Γ|g, and the relationship (A-7) becomes:

S̄(k) =
1
|Γ|

∫ 0

−∞
(|Γ|g ∗ hki

) (y) dy

=
∫ 0

−∞
(g ∗ hki

) (y) dy.(A-8)

The proof of Proposition 1 is complete.

C Proof of Proposition 2

Let X = (X1, X2, ..., Xn)′ be an absolutely continuous exchangeable random vector distributed
according to the multivariate generalized hyperbolic distribution GHn (λ, χ, ψ, µ,Σ, κ), X(n) be
the random vector of its order statistics, γ ∈ Γ be a portfolio and γo the optimal portfolio. In
Proposition 1, we established that S̄ depends on (g ∗ hk). Here, we need to study separately g, the
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distribution of γ′X, and hk, the distribution of γ̃o′X(n). We begin with the study of g in Corollary 1.

Corollary 1: Let X = (X1, X2, ..., Xn)′ be an absolutely continuous exchangeable random vector
distributed according to the multivariate generalized hyperbolic distribution GHn (λ, χ, ψ, µ,Σ, κ)
and γ ∈ Γ be any LSEW portfolio, then γ′X is distributed according to an elliptically contoured
distribution such that

(B-1) γX ∼ EC1

(
0, σ2(1− ρ)

4
n
, φ(1)

)
where the density generator φ(1) is given by

(B-2) φ(1)(u) = C1

Kλ− 1
2
(
√
ψ(χ+ u))

(
√
χ+ u)

1
2
−λ

with C1 a normalizing constant and Kν the modified Bessel function of the third kind.

�

Proof of Corollary 1:

From McNeil et al. (2005), we know that the generalized hyperbolic distributions are
closed under linear transformation. So, if X ∼ GHn (λ, χ, ψ, µ,Σ, κ) and Y = γ′X where γ ∈ Rn,
then

(B-3) Y ∼ GH1

(
λ, χ, ψ, γ′µ, γ′Σγ′, γ′κ

)
.

In our case, we have

• γ is a LSEW portfolio, so γ′1n = 0, thus γ′µ = 0 and γ′κ = 0

• the random variables are exchangeable, so Σ = σ2 [(1− ρ)In + ρ1n1n
′], where σ is the scale

and ρ is the correlation

Consequently, γ′X is distributed as follows

(B-4) γ′X ∼ GH1

(
λ, χ, ψ, 0, σ2(1− ρ)

4
n
, 0
)
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i.e. γ′X follows a symmetric generalized hyperbolic distribution.

From Schmidt (2003) (p.54, definition 3.2.12), we know that the symmetric generalized
hyperbolic distribution GHn (λ, χ, ψ, µ,Σ, 0) is the elliptically contoured distribution ECn (µ,Σ, φ)
where the density generator φ(n) is given by

(B-5) φ(n)(u) = Cn
Kλ−n

2
(
√
ψ(χ+ u))

(
√
χ+ u)

n
2
−λ

with Cn a normalizing constant defined in Schmidt (2003) (formula 5.3) and Kν the modified
Bessel function of the third kind. So, in our case, we have

(B-6) γ′X ∼ EC1

(
0, σ2(1− ρ)

4
n
, φ(1)

)
where

(B-7) φ(1)(u) = C1

Kλ− 1
2
(
√
ψ(χ+ u))

(
√
χ+ u)

1
2
−λ

.

The proof of Corollary 1 is complete.

�

Now, we investigate the distribution of γ̃o′X(n):

Corollary 2: Let X = (X1, X2, ..., Xn)′ be an absolutely continuous exchangeable random vector
distributed according to the multivariate generalized hyperbolic distribution GHn (λ, χ, ψ, µ,Σ, κ),
X(n) be the random vector of its order statistics and γ̃o ∈ Γ be the order statistics representation of
the optimal portfolio, then γ̃o′X(n) is distributed according to an elliptically contoured distribution
such that

(B-8) γ̃o
′X(n) =d σ

√
1− ργ̃o′U(n)

where ρ ∈ [0, 1) and U(n) is the vector of order statistics induced by the spherically contoured
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random vector U ∼ ECn
(
0, In, φ(n)

)
with φ(n) given by

(B-9) φ(n)(u) = Cn
Kλ−n

2
(
√
ψ(χ+ u))

(
√
χ+ u)

n
2
−λ

with Cn a normalizing constant and Kν the modified Bessel function of the third kind.

�

Proof of Corollary 2:

From Arellano-Valle and Genton (2007) (Corollary 1), we have

(B-10) γ̃o
′X(n) =d

(
γ̃o
′X|∆X ≥ 0

)
where ∆ is such that ∆X = (X2−X1, X3−X2, . . . , Xn−Xn−1)′. We note that ∆∆′ = (δi,j), δ being
the Kronecker product, with δi,i = 2, δi−1,i = δi+1,i = −1 and δi,j = 0 otherwise. The generalized
hyperbolic distributions are closed under linear transformation and X is an exchangeable random
vector, so we have

(B-11) ∆X ∼ GHn−1

(
λ, χ, ψ, 0, σ2(1− ρ)∆∆′, 0

)
.

Thus, from Schmidt (2003) as seen in Corollary 1, ∆X follows an elliptically contoured distribution

(B-12) ∆X ∼ ECn−1

(
0, σ2(1− ρ)∆∆′, φ(n−1)

)
where

(B-13) φ(n−1)(u) = Cn−1

Kλ−n−1
2

(
√
ψ(χ+ u))

(
√
χ+ u)

n−1
2
−λ

.

Since γ̃o is a LSEW portfolio, relationship (B-6) holds. So, from expression (B-6) and expression
(B-12), we have

(B-14)

{
γ̃o
′X ∼ EC1

(
0, σ2(1− ρ) 4

n , φ
(1)
)

∆X ∼ ECn−1

(
0, σ2(1− ρ)∆∆′, φ(n−1)

)
which are the intermediary results obtained in the proof of Corollary 3 in Arellano-Valle and Genton
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(2007). Thus, Corollary 3 can be used here, and we extend it to generalized hyperbolic distributions.
It follows

(B-15) γ̃o
′X(n) =d σ

√
1− ργ̃o′U(n)

where U(n) is the vector of order statistics induced by the spherically contoured random vector
U ∼ ECn

(
0, In, φ(n)

)
and ρ ∈ [0, 1).

The proof of Corollary 2 is complete.

�

Now, we prove Proposition 2. From Corollary 1 and denoting Z ∼ EC1

(
0, 4

n , φ
(1)
)
, we

have

(B-16) γ′X =d σ
√

1− ρZ.

Then, from Corollary 2 and relationship (B-16), we have

(B-17) γ′X− kγ̃o′X(n) =d σ
√

1− ρ
(
Z − kγ̃o′U(n)

)
.

Let denote vk the density function of Z − kγ̃o′U(n). From (B-17), we have the following expression
of S̄(k):

(B-18) S̄(k) =
∫ 0

−∞
(g ∗ hk) (y) dy =

∫ 0

−∞
vk (y) dy.

So, S̄(k) is independent of µ, σ, ρ and κ.

The proof of Proposition 2 is complete.
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