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Abstract

The aim of this paper is to identify the fundamental factors that drive the allowances

market and to built an APT-like model in order to provide accurate forecasts for CO2.

We show that historic dependency patterns emphasis energy, natural gas, oil, coal and

equity indexes as major factors driving the carbon allowances prices. There is strong

evidence that model residuals are heavily tailed and asymmetric, thereby generalized hy-

perbolic distribution provides with the best fit results. Introducing dynamics inside the

parameters of the APT model via a Hidden Markov Chain Model outperforms the results

obtained with a static approach. Empirical results clearly indicate that this model could

be used for price forecasting, that it is effective in and out of sample producing consistent

results in allowances futures price prediction.

Keywords: Carbon, EUA, Energy, Arbitrage Pricing Theory, Switching regimes, Hidden

Markov Chain Model, Forecast.

1 Introduction

At the dusk of the post-subprime crisis investors are searching for new yield sources less

dependent of classic economic factors. Carbon allowances market appeared as an attractive

option due to its original framework and to its row model in environmental investment. The

carbon emission permits market raised in early 2005 as a key solution in the fight against the

global warming.

Human activities, in particular the population growth and the development of industry over

the last 200 years, have caused an increase in the emission and atmospheric concentration of

certain gases, called ”greenhouse gases” - primarily carbon dioxide and methane. These gases

intensify the natural greenhouse effect that occurs on Earth, which in itself allows life to exist.

The man-induced enhanced greenhouse effect leads to an increase in the average temperature
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of the planet that, would potentially cause increasingly severe and perhaps even more ex-

treme disruptions to the Earth’s climate, and consequently human activity. As a consequence

several governments, firms and individuals have taken steps to reduce their greenhouse gas

(GHG) emissions either voluntarily, or, increasingly, because of current or expected regula-

tory constraints. According to its provisions, the industrialized countries have to reduce in

the period 2008-2012 the greenhouse gas emissions by 5 percent with respect to the 1990

year levels. The protocol dictates the trading of emission allowances as one of the primary

mechanisms through which greenhouse gas emission reduction should be achieved. Thus, the

right to pollute is considered to be a tradable asset, with its price determined by the market

forces of supply and demand.

The carbon market encompasses both project-based emission reduction transactions and trad-

ing of emission permits. The first one concerns the purchase of carbon emission reductions

from a project that reduces greenhouse gases emissions compared with what would have hap-

pened otherwise. The second one concerns the allowances that are allocated under existing

or upcoming cap-and-trade regimes.

In this paper, we define carbon transactions as contracts whereby one party pays another

party in exchange for a given quantity of GHG emissions permits that the buyer can use to

meet its objectives vis-à-vis climate mitigation. Carbon transactions can be grouped in two

main categories:

• Trades of emission allowances, such as, for example, Assigned Amount Units (AAUs)

under the Kyoto Protocol, or allowances under the EU Trading Scheme (EUAs). These

allowances are created and allocated by a regulator, usually under a cap-and-trade

regime;

• Project-based transactions, that is, transactions in which the buyer participates in the

financing of a project which reduces GHG emissions compared which what would have

happened otherwise, and get emission credits in return. Unlike allowance trading, a

project-based transactions can occur even in the absence of a regulatory regime: an

agreement between a buyer and a seller is sufficient.

In some recent works, few authors including Paolella and Taschini [2006], Ulrih-Homburg

and Wagner [2007], Benz and Truk [2008], Daskalakis, Psychoyios and Markellos [2008] and

Frunza and Guégan(2009) focused on the econometric modelling of the emission allowances

prices, underlining the particularities of this market like the non-Gaussian behavior, the

auto-regressive phenomena and the presence of the convenience yield. They focus mainly on

continuous time modelling and Extreme value approach. Most of their works are based on

data concentrated on the period 2005 - 2007.

On the other hand other researches as Alberola et al. [2008], Bataller et al. [2009] and Kep-

pler et al. [2009] showed the influence of different factors as oil, coal and gas in carbon market

behavior. Thus Bataller et al. [2009] emphasize that CO2 volatility is directly and indirectly
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(through the covariance) affected by the oil and natural gas volatility. Additionally, they

show that shocks originated in the CO2 and oil markets have an impact on CO2 volatility

and the behavior of oil volatility is similar to CO2 volatility in what concerns volatility trans-

mission. On the same topic Keppler et al. [2009] showed, using causality problematic that

during Phase I coal and gas prices, through the clean dark and spark spread, impacted CO2

futures prices, which in return were correlated to electricity prices. Furthermore it underlines

that during the first year of the Phase II, electricity prices influenced CO2 prices. In order

to have a complete picture Alberola et al. [2008] showed that CO2 spot prices react not only

to energy markets but also to temperatures and to economic activity within the main sectors

covered by the EU ETS such as proxied by sectoral production indices.

The objectives of the present paper are both: to enrich the actual econometric and financial

literature on the carbon emission market, and to built a factorial model in order to explain

the CO2 behavior. After a deep analysis to retain the more pertinent factors which can

explain the behavior of the CO2, we built a static APT model in the way described by Ross

[1976], and we extend it in a dynamic way in order to be close to the real behavior of the CO2

and its factors. Then, we compare the capability of these two models in terms of forecasting.

Their capacity and accuracy to forecast are considered with appropriate criteria.

Our approach does not focus on volatility behavior of carbon and in that sense differs of

Battaler et al. [2009] work. On the other hand we do not follow Keppler [2009] work whose

approach is based on causality concept, and we focus on the detection of the most impor-

tant fundamentals for CO2, and their capacity to provide with robust forecasts. In order to

identify the relevant drivers for CO2 forecasts, we rely on two techniques, namely the PCA

and the Pearson-correlation analysis between the different factors. Finally our work retains

as main factors oil, gas, coal, power, dark spread, spark spread and stocks to explain the

evolution of carbon prices. After this identification step, we introduce the APT model and

its extension to explain and forecast the behavior of the CO2.

Our results are based on EUA prices. Nevertheless, the EUA market is linked to the CER

market which is source mainly by China and the other Asian countries. On one hand recent

initiatives are made to develop carbon exchanges in Asian countries, mainly in Hong Kong;

in the other hand, the European cap and trade framework is supposed to be deployed in the

future in United States under the supervision of the actual American government. Thus,

the present work could be relevant to have an apprehension of the future behavior in these

different countries.

After describing in Section two the main features of the emission allowances market and the

main factors (oil, dark spread, clean spread and equities) that influence its behaviors, we

introduce the APT static modelling using several classes of distributions for residuals, in

Section three. In Section four we extend our study introducing a new APT modelling with

switches in the parameters modelled with a Markov chain. Section five emphasizes the appli-
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cations of the previous sections on the price forecasting of the CO2 based on the prediction

of the other underlying factors. We benchmark the different approaches in order to identify

the strengths and the weaknesses of each modelling. Section six concludes.

2 Data sets and factors

Our dataset contains daily closing prices for the EUA 2009 (EUA09) future contract, between

2006 and 2009, as quoted on Intercontinental Exchange (ICE)1. On Exhibit 1, EUA 2008 and

2009 historical prices exhibit high variability regimes and discontinuities in offer/demand

equilibrium. Actually the EUA market is very liquid, with a good depth and a significant

open interest. Even so for a certain number of trading days2 the exchanged volumes of con-

tracts are very small or even zero. In those particular days the prices are marked by the

auction trading systems, therefore in our present work we adjust this bias with a moving

window average. Looking at the sample autocorrelation function (ACF) based on the most

recent 990 daily negative log return data of EUA09, we observe small correlation on the prices

(Exhibit 2), while the ACF of squared return series does show evidence of serial dependence.

On Exhibit 3 we give the distribution function of the EUA09: it shows negative skewness

and fat tails also revealed by the QQplot diagram. Thus, This preliminary statistical study

rejects the normality hypothesis of EUA09 daily returns.

It is now well admitted that the main factors followed by carbon traders are commodities

like oil, gas, coal, power, dark spread, spark spread, economical activity (equities, index) and

political news (UN and EU announcements), and also weather forecasts. We provide now a

statistical study which permits to identify the ”‘actual”’ main fundamentals for CO2 prices.

We paid a special attention to Dark Spread and Spark Spread as they seem to explain some

particularities of emission prices. In fact in periods of high demands of electricity the con-

sumption surplus is covered by the fossil power plants turning mainly on coal and gas, hence

influencing both the gas and coal price on one hand and power price on the other hand. As

the Spreads show the difference between energy and fossiles prices we consider that spreads

are more efficient fundamental factors than pure fossile prices form the economic point of view.

In order to provide a robust approach in the choice of the factors, we focus on contracts

available on the same period as our CO2 data set, that are liquid enough, that are collected

with the same frequencies and are relevant for Europe. First we consider oil3, gas4, coal5,

1We used the 2009 EUA futures given by the Reuters ticker CFI2Z9
2We took in account the fact that the market dealt with low volumes at its very beginning in 2006 and

that the exchange (ICE) is closed during holidays
3Brent crude future given by the Reuters ticker LCOc1; the contract is denominated in US dollars and

adjusted in terms of euros
4Natural gas given by the Reuters ticker NGLNMc1; the contract is denominated in British pounds and

adjusted in terms of euros
5Coal forward given by the Reuters ticker RTRAP2Mc1; the contract is denominated in US dollars and

adjusted in terms of euros
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power 6, dark spread7, spark spread8 and equities 9. To distinguish between all these factors

we use a Principal Component Analysis (PCA) approach as described by Chamberlain and

Rothschild [1983] and Connor and Korajczyk [1985].

After doing a decomposition in principal component analysis using the previous mentioned

factors, we observed that oil, dark spread, spark spread and equities explain the most part

of CO2 returns variance. Moreover in the following graph, we observe that these four factors

are concentrated on the first axis corresponding to the first eigen-value and the gas and the

spark spread have a different behavior explained by the second factor.

Figure 1: Results of Principal Components Analysis

Therefore, our analysis provided in the previous figure confirms that dark spread, spark

spread, oil and equity pear as major drivers of CO2 over the last two years. Thus, in the

following we decide to work with these four factors.

3 Static APT modelling

In order to show the impact of the mentioned factors on the CO2 prices we choose to use

an extended APT modeling generated by more flexible noises than the Gaussian and also

through a dynamic on beta parameters. We make this calibration using EUA prices on the

period 2006 - 2009. Based on the historical time series we consider some models based on

6German calendar baseload power contract given by the Reuters ticker BY1DE-1Y
7German dark spread given by the Reuters ticker DB1DE-1Y
8German spark spread given by the Reuters ticker SB1DE-1Y
9We considered the equities market through the French index CAC40, given by the Reuters ticker FCHI.

Actually CAC40 provided with better results than other possible competitors as MSCI Europe or FTSE
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residuals that go from the classical Brownian diffusion to more sophisticated models based

on generalized hyperbolic distributions. Our aim is not to find the ”‘true”’ model that would

explain the behavior of the carbon market but to detect models permitting to provide accu-

rate forecasts.

The model supposes that a risky asset return follows a factor structure and has the following

representation:

r̃ = E(r) + β1F1 + β2F2 + . . .+ βkFk + ε (1)

where

• E(r) : id the expected return of Carbon Allowance

• Fk :is a systematic factor (assumed to have mean zero)

• βi : is the sensitivity of the asset to factor i

• ε : is the idiosyncratic component

• E(Fi) = 0 ∀i

• E(ε) = 0

The APT states that if asset returns follow a factor structure as described then the following

dependence exists between expected returns and the factor sensitivities:

E(r) = rf + β1(E(F1)− rf ) + β2(E(F2)− rf ) + . . .+ βk(E(Fk)− rf ) + ε (2)

where

• rf is the risk free rate

• E(Fk)− rf is the risk premium of the factor k.

Described by Ross [1976] and based on the underlying hypothesis that the markets are effi-

cient the APT model assumes a Gaussian distribution for the residuals. Given the atypical

nature of the CO2 , the assumptions of the APT model are in some cases broken. Hence the

residuals do not follow a Normal distribution and the dependencies are not stationary over

the time. In Exhibit 4 the QQ plot of the APT residuals shows clearly that the residuals

of the multiple regression are asymmetric and fat tailed. In this paper, in order to overpass

this issue we use different distributions to replace the classic Gaussian modeling for residuals.

The candidate functions t-Student, GED and Normal Inverse Gaussian (NIG) retained our

attention for their capacity to take in account heavy tails. The NIG distribution (detailed in

Annexe) is part of the generalized hyperbolic distributions, which show also asymmetry and

are able to integrate the skewness.

The Table 3 synthesize the results of our static calibration over the considered dataset using

a weekly timestep, for different residual distributions. The discriminator element is the log
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likelihood: the higher it is, the best is the modeling. It appears that the level of dependencies

of CO2 price are generally close for the different models. But the degree of fitness depends

highly of the chosen model. Hence the NIG distribution for residuals captures better the

behavior of the residuals.

The Ljung-Box test of residuals autocorrelation show no presence of persistence at 99 percent

of significance for all the distributions. As already noticed the NIG-based regression provides

globally with a better fitting also with the t-Student distribution. One more interesting fea-

tures of both NIG and t-Student model is the relevance of calibrated beta parameters from

the angle of trust intervals. Hence we observe that for NIG residuals all four fundamen-

tals factors are accepted but for classical Normal and GED distributions some factors are

rejected. It appears clearly that NIG’s capacity of taking into account skewness and heavy

tails represents a real leverage factor for the model. Seen from another angle NIG distribution

represents a Levy process that includes jumps, so in order to improve our forecasting model

we oriented our work on a dynamic modeling searching for switching regimes proofs.

Gaussian GED T-Student NIG

Oil 0.131 0.103 0.122 0.116

[0.055 0.205] [-0.149 0.352] [0.070 0.174] [0.063 0.169]

Dark Spread 0.262 0.2115 0.261 0.260

[0.231 0.349] [0.014 0.468] [0.221 0.304] [0.221 0.302]

Spark Spread 0.002 0.0020 0.002 0.002

[-0.001 0.003] [-0.009 0.033] [0.000 0.004] [0.001 0.004]

Equity 0.12 0.157 0.160 0.168

[0.017 0.242] [-0.213 0.543] [0.088 0.247] [0.097 0.250]

R2 0.24 0.24 0.23 0.24

Log Likelihood 2054 2087 2092 2094

Table 3: Modelling results

4 Dynamic APT modelling

The particularities of the CO2 market described in the first part, also as the strong regulatory

influence suggest that different regimes govern the behavior of allowances. In a previous work

(Frunza et Guégan [2009]) upon the econometrics of the CO2 prices the authors underlined

the existence of switching regimes in the CO2 yields and the presence of jumps. Using this

guideline we introduce a dynamic factor analysis for the allowances prices based on the find-

ings of the previous section.

In order to sustain the switching regime hypothesis we estimated the data process described in

the previous section on moving windows with the intention to underline the non-stationarity

in dependency structure. We calibrate the APT models from the previous section on moving

temporal windows of 90 trading days. The purpose is to emphasize that the dependencies are

varying over the time. Exhibits 5 and 6 shows the evolutions of the beta parameters p-values
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for each factor described in the previous sections. We apprehend that the values of the beta

parameters face important variations over times and these parameters become non relevant

over some periods for the carbon price. As a conclusion not only the level of dependencies is

non-stationary but also the drivers of the CO2 prices. We observe that at different moments

equities, oil and gas are offset from the model. The presence of power as a factor is more

homogeneous and yet there are periods when this factor switched off from the model.

In order to take in account this dynamic behavior two solutions can be studied:

• Dynamic Factor Calibration of the APT model over a shorter horizon of 90 trading

days taking in account only factors that are relevant at that time;

• Switching Regimes Calibration of a Hidden Markov Switching model that has few states

and that allows the flip-flops of factors.

If the first solution is pretty common given the fact that the multi-regression has to be re-

peated on a regular basis, we test this alternative for forecasting purpose in the next section.

The second alternative is more delicate and needs a more laborious econometric work. The

idea behind consists to affirm that there are several states in the CO2 price that switch fol-

lowing a transition matrix which is determined by a hidden factor. This ”hidden” factor

could be determined by regulatory announces, legislations or interventions of new dealers on

the market. Nevertheless as the purpose of this paper stays mainly around prices modeling,

we do not study the relevance of exogenous regulatory-like factors on the switching regimes,

and we consider the existence of a Markov chain to explain these switches.

Following Hamilton [1990] we assume that a 2-regime switching model explain the CO2

allowances behavior. Using the same model as introduced in (1), we assume now that

the parameter βi associated to each factor fi, i = 1, · · · , 4 has the following dynamics:

βi = β1i (St) + β2i (1− St) where St follows a 2 state Markov chain as shown in Figure 1, and

St = 1 if St is in State 1 and St = 0 if St is in State 2.

Figure 2: Switch Markov Chain

To get the results of the calibration of the 2-states Markov Switching model of rt provided

in Table 4, we use respectively a Normal, t-Student and GED distribution for the residuals.

The log-likelihoods (LL) and the Transition probabilities (TP) form State 1 to State2 are

also given. We observe also that the R2 for the switching model is higher for static mod-

els than for dynamic ones and the use of t-Student and GED distributions provide with the

better fits for residuals. Finally we exhibit the dynamic of the switching regimes in Exhibit 7.
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Gaussian t-Student GED NIG

Oil State 1 0.0961 0.1524 0.1056 0.075

[0.0369 0.1553] [0.0774 0.2274] [-0.085 0.2962] [0.035 0.105]

State 2 0.2869 0.0763 0.1056 -0.519

[-0.1265 0.7003] [-0.0711 0.2237] [0.0018 0.0022] [-0.619 -0.419]

Dark Spread State 1 0.3107 0.298 0.1337 0.220

[-0.1265 0.7003] [0.239 0.357] [0.0555 0.2119] [0.201 0.239]

State 2 0.256 0.1697 0 -0.504

[0.2595 0.3619] [0.0259 0.3135] [-0.0006 0.0006] [-0.526 -0.482]

Spark Spread State 1 -0.0001 -0.0002 0.1727 0.004

[-0.0015 0.0013] [-0.0026 0.0022] [-0.1353 0.4807] [-0.0026 0.0030]

State 2 0.0019 0.0022 0.3738 0.314

[-0.0033 0.0071] [0.0002 0.0042] [-0.1932 0.9408] [-0.190 0.808]

Equity Spread State 1 0.1838 0.1582 0.2967 0.2708

[0.0946 0.273] [0.0532 0.2632] [0.2431 0.3503] [0.240 0.301]

State 2 -0.195 0.2374 0.1393 0.048

[-0.9054 0.5154] [-0.0042 0.479 [0.0723 0.2063] [0.028 0.068]

LL 686 686 688 690

R2 0.25 0.25 0.25 0.25

TP 0.04 0.04 0.04 0.05

Table 4: Calibration results of the Hidden Markov Model

5 Discussion

The final purpose of the present work is to use the previous models in order to provide robust

forecasts for the CO2 prices using the foreseeable variations of the underling factors. Consid-

ering the markets are efficient, and taking the equation (1) under a risk neutral framework

we could write

E(r∗) = rf + β1(E(F ∗1 )− rf ) + β2(E(F ∗2 )− rf ) + . . .+ βk(E(F ∗k )− rf ) + ε (3)

where

• E(r∗) is the forecasted expected return

• E(F ∗1 )− rf is the forecasted risk premium of the factor k.

In order to validate the pertinence of this application we first consider the true variations of

the factors as input for the model and we compare the forecast price of the CO2 allowances

with the realized price of the next period. We use weekly data and our predictions are over

one week horizon. We break the dataset in two parts in-sample and out-of-sample. We cali-

brate the model over an in-sample period and we use it to predict the prices for an out-sample

period. As we backtest the prediction power of the model over the past history our in-sample

and out-of-sample breakpoint moves over the whole dataset. As an example we calibrate the
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model over the first 6 months of the time series and we predict the value of the next week,

then we include the in-sample data with one week and we predict the value again until we

attend the end of the dataset. This technique of moving in-sample window is more adapted

to dynamic factor analysis as it allows to take in account the variation of the factors.

In order to compare the quality of each model we use two metrics: the prediction capacity

which represents the proportion of good predictions of the moving sense of the market (up or

down) and the forecast accuracy which represents a distance between the predicted prices and

the realized ones. The Table 5 shows the results for the two categories of dynamic models:

Static Factor Calibration (SFC), Dynamic Factor Calibration (DFC) and Switching Regimes

Calibration (SR).

We benchmarked our results with a simple forecasting model based on a technical momentum

approach. Hence we estimate that momentum is given by a 20 days moving average and if

the actual price is superior to the average th market is bullish.

Prediction capacity =
Number of good predictions of variation

Total number of predictions
(4)

Forecast accuracy =

√∑
i(Forecast price(i)−Realized price(i))2

Total of forecasts
, (5)

where i is the number of forecasts.

Distribution Framework Prediction capacity(%) Forecast accuracy

Gaussian SFC10 50 0.232

DFC11 65 0.241

SRC12 68 0.261

t-Student SFC 50 0.223

DFC 65 0.237

SRC 69 0.271

GED SFC 52 0.252

DFC 65 0.235

SRC 68 0.283

NIG SFC 53 0.238

DFC 64 0.235

SRC 70 0.361

Technical Momentum - 53 0.376

Table 5: Forecast model benchmark

Generally speaking for all the models the prediction power is bigger than 50 % which confirms

that the model has a discriminative capacity. Compared to the benchmark approach the

dynamic and swithcing model provides with better prediction capacities. The dynamic models

outperform the static models in term of prediction capacity, because the static approach fails

to capture the non-stationarity of the dependency pattern. It appears that switching regimes
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with NIG innovation have a better prediction power, but are less accurate. The NIG modeling

is less robust due the fact that a lot of information is kept in the residuals and less explained

by the factors. Accross this work we observe that there is a trade off between the information

modelled by the dependencies and the information kept in the residuals, as the factors seems

not to be exhaustive for describing CO2 behaviour. The dynamic models with t-Student

innovation offer the best compromise between prediction capacity and accuracy (Exhibit 8).

6 Conclusions

Understanding the emission allowances market goes beyond the classic stochastic apprehen-

sion of the financial assets like commodities and enters in a more subjective area of the

behavioral finance. The present paper might be completed by considering the influence of

temperature and of the Gross Domestic Product (GDP). These topics will constitute the

focus of a future paper.

Thus, the main topic of this paper is to search for an extended APT or APT modelling

that could fit the best the historical time series, using the likelihood function and R2 as a

discriminant factor to rank models relevance. The CO2 allowances prices show a pronounced

non-Gaussian behavior with fat tails and negative skewness. The NIG distribution outper-

forms the classic Brownian models in terms of quantity of information, but lacks to give

accurate forecasts. The main reason is the ability of the GH models to be customized in

same time to different skews and tails forms. In our case the carbon market is far from being

Gaussian. It appears clearly that dynamic factors are a necessary hypothesis for an accurate

modeling of the CO2 prices.

In terms of forecast both proposed models Dynamic Factor Calibration and Switching Regimes

Calibration provide with a good prediction capacity, hence making the model eligible for

trading and management strategies. But more simple Dynamic Factor models fail to give

an accurate forecast for the CO2 prices and only the Markov Chain Modeling allows for a

reasonable forecast.

Indeed, in the perspective of this work, natural further developments will include Markov

switching models with Bilinear terms and memory effects in the model calibration Diongue,

Guégan and Wolff (2009), and also the econometric study of the EUA - CER spread.
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Exhibits

Exhibit 1: EUA08 and EUA09 prices history
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Exhibit 2: Autocorrelation for EUA09 negative daily returns

Exhibit 3: Distributions of EUA09 daily yields and QQ Plots
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Exhibit 4: Residuals of Gaussian APT

Exhibit 5: Evolution of β

15

 
Documents de Travail du Centre d'Economie de la Sorbonne - 2010.62



Exhibit 6: Evolution of β p-value
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Exhibit 7: Evolution of β p-value
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Exhibit 8: Forecast backtesting with a t-Student based dynamic model
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Annexe 1 : Distributions

T-Student Distribution

Probability density function :

ft(x) =
Γ(ν+1

2 )
√
νπ(ν2 )

(1 +
x2

ν
)
ν+1
2 (6)

The moments (mean, variance, skewness and kurtosis) are respectively equal to:

E(X) = 0 for ν > 1undefined otherwise (7)

V(X) =
ν

ν − 2
for ν > 2, +∞ for ν = 2undefined otherwise (8)

S(X) = 0 for ν > 3 (9)

K(X) =
6

ν − 4
for ν > 4 (10)

(11)

GED Distribution

Probability density function :

ft(x) =
β

2αΓ( 1
β )
e
−

 |x− µ|
α

β

(12)

The moments (mean, variance, skewness and kurtosis) are respectively equal to:

E(X) = µ (13)

V(X) =
α2Γ( 3

β )

Γ( 1
β )

(14)

S(X) = 0 (15)

K(X) = 3 +
Γ( 5

β )Γ( 1
β )

Γ( 3
β )2

− 3 (16)

(17)

Generalized Hyperbolic Distribution

First we make a brief review of the Generalized Hyperbolic distribution functions focusing on

the Normal Inverse Gaussian. The generic form of a Generalized Hyperbolic model is given

by :

f(x;λ;χ;ψ;µ;σ; γ) =
(
√
ψχ)−λψλ(ψ + γ2

σ2 )0.5−λ
√

2πσKλ(
√
ψχ)

×
Kλ−0.5(

√
(χ+ (x−µ)2

σ2 )(ψ + γ2

σ2 ))e
γ(x−µ)
σ2

(
√

(χ+ (x−µ)2
σ2 )(ψ + γ2

σ2 ))λ−0.5
,
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where Kλ(x) is the modified Bessel function of the third kind:

Kλ(x) =
1

2

∫ ∞
0

yλ−1e−
x
2
(y+y−1)dy. (18)

Among the Generalized Hyperbolic family, we will focus on the Normal Inverse Gaussian

distribution obtained by setting λ = −1
2 in the previous equation. Thus:

f(x;−1

2
;χ;ψ;µ;σ; γ) =

χ
1
2 (ψ + γ2

σ2 )

πσe
√
−ψχ

×
K1(

√
(χ+ (x−µ)2

σ2 )(ψ + γ2

σ2 ))e
γ(x−µ)
σ2

(
√

(χ+ (x−µ)2
σ2 )(ψ + γ2

σ2 ))
.

By changing the variables of the previous equation c = 1
σ2 ; β = γ

σ2 ; δ =
√

χ
c ; α =

√
ψ
σ2 + β2

we obtain a more popular representation, and the density of a random variable X following

the NIG(α,β,µ, δ) distribution is equal to:

fNIG(x;α;β;µ; δ) =
δα · exp(δγ + β(x− µ))

π ·
√
δ2 + (x− µ)2

K1(α
√
δ2 + (x− µ)2).

The moments (mean, variance, skewness and kurtosis) are respectively equal to:

E(X) = µ+ δ
β

γ
(19)

V(X) = δ
α2

γ3
(20)

S(X) = 3
β

α ·
√
δγ

(21)

K(X) = 3 + 3(1 + 4(
β

α
)2)

1

δγ
. (22)

Thus, the NIG distribution allows behavior characterized by heavy tail and strong asymme-

tries, depending on the parameters α, β and δ.
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