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1 Introduction

I think our growth will end at only two or three times the current scale once
we undertake to increase routines. I think the biggest reason we don’t see
“mega ventures” emerging in Japan is that every firm starts organizing and
routinizing their processes too early. When I worked with American firms
such as Microsoft or Apple, I was always surprised to see disorder in many
aspects of their operations. They wouldn’t be called “firms” if they were
in Japan. Their processes are not very routinized, but that is exactly why
they can continue to grow. Their workplaces are full of chaos, especially
compared to their Japanese counterparts. However, creative people who can
make breakthroughs prefer working in such places. So it is with our com-
pany. We are paying the cost of disorganization and mistakes caused by
the chaos. . .But, it is impossible to have both creative workers and routine
workers in the optimal mix.

- Masayuki Makino, CEO, Works Applications, Inc.1

Tension between exploration and exploitation has been a central theme in the liter-

ature of organizational learning since March (1991). The issue is not a mere perception

held only by academics, but a real problem faced by many business executives, includ-

ing the above-quoted CEO of one of Japan’s fast-growing business software companies.

Nevertheless, too few theories have been offered to analyze the trade-offs that are

creating this tension at the organizational level. In this article, we develop an agent-

based model that formulates what we believe are four important steps of organizational

learning: search, knowledge sharing, evaluation, and alignment, through which orga-

nizational knowledge is updated. The model is useful for examining the origin of the

primary tension between exploration and exploitation.

We identify organizational congruency as a main driver of knowledge exploitation

rather than its result. Organizational congruency is formulated as the degree of align-

ment in knowledge base imposed on individuals. Higher congruency facilitates the

upgrading of organizational knowledge, which in turn accelerates exploitation in our

model. Key to our theory is the idea that knowledge diversity makes exploration more

effective even as it impedes the updating of organizational knowledge, thus creating

1“Works Applications, Inc. (A)”by Hideo Owan, Aoyama Business School case, November 2009.
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an obstacle to exploitation. Although March (1991) has already argued that efforts to

exploit existing knowledge eventually suppress exploration by reducing the diversity

of knowledge, he does not illustrate the mechanism by which more exploration leads

to less exploitation or the reason the diversity of knowledge can discourage efforts to

exploit it. The mechanism we illustrate in this paper goes beyond the usual argument

that exploration and exploitation compete for scarce resources (March, 1991; Roberts,

2004). Our theory suggests that the tension between exploration and exploitation

comes not necessarily from resource constraint, but rather from the substitutability

between initiatives and alignment.

Crossan, Lane, and White (1999) have expressed a view similar to ours: “This

tension (between exploration and exploitation) is seen in the feedforward and feedback

processes of learning across the individual, group, and organization levels.” According

to them, feedforward is the transference of learning from individuals and groups to

the organizational levels where ideas are embedded in the form of systems, structures,

strategies, and procedures. Feedback is the way in which this embedded or institution-

alized learning affects individuals and groups. Note that the feedback process relates

to exploitation where developing organizational knowledge assimilates learning and ac-

tions at the individual level. Although our view is similar to that of Crossan et al.

(1999), the tension arises endogenously in our model, whereas it is assumed as one of

the four key premises in their frameworks (Crossan et al. 1999: 523).

There are two important assumptions that drive the key results in our theory. First,

we assume that updating organizational knowledge requires a certain level of consensus.

In our model, organizational knowledge is successfully updated only when a majority

of high performers agree with the proposal to change it. This means that the mere

showing of new ideas to others is not enough for implementation at the organizational

level. Many others must have a similar view of the world and see common meaning in

the idea. This means that a certain level of organizational congruency is required to

promote organizational learning.

Second, we assume that the organization’s management influences individuals’ time
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allocation between exploration (i.e. experimenting with new ideas) and exploitation

(i.e. copying organizational knowledge) at the individual level. The famous story of

3M’s mandatory rule that its technical people should be able to devote 15 percent

of their time to any projects of their own choice rather than those they are officially

assigned to is a classic example. Management uses its authority and techniques for

control, such as process management, to affect the way people achieve their targets.

Furthermore, individuals engaging in exploitation do not have the option of ignoring or-

ganizational knowledge. Each kind of monitoring and incentive mechanism encourages

individuals to take in institutionalized knowledge as their own knowledge base.

One important implication of our model is non-concavity in the optimization prob-

lem. As argued, for example, by Levinthal and March (1993) and Ghemawat and

Ricart i Costa (1993) among others, firms tend to end up with the “extremes” in the

presence of such non-concavities. According to our theory, successful firms tend to

bifurcate into two types: those that always promote individual initiatives and build or-

ganizational strengths on individual learning and those good at aligning the individual

knowledge base and exploiting shared knowledge. Let us call the former high-initiative

organizations and the latter high-alignment organizations.

Straddling between the two types often fails. This bifurcation arises when the op-

eration is sufficiently complex (in other words, the interdependency is high enough)

or the business environment is sufficiently uncertain. The intuition is that an equal

mixture of individual search and knowledge alignment slows down learning through

individual search compared to the high-initiative organization while making it diffi-

cult to update institutionalized knowledge because individuals’ knowledge base is not

sufficiently aligned. In such organizations, once members get stuck with locally best

solutions at the individual level, they cannot agree on how to improve the organiza-

tional knowledge. We find that the resultant inefficiency is especially large when tasks

are interdependent or when the environment continuously changes.

More formally, we develop a model of organizations that undertake tasks of varying

degrees of complexity. The complexity of a task is formulated as interdependency
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among tasks in determining functional performance following the NK landscape model

(Kauffman, 1993). We also introduce environmental uncertainties by allowing the

performance function to be redefined randomly from time to time.

Each organization consists of several members who search independently for better

practices and also learn from the organizational knowledge. The organizational knowl-

edge evolves over time as proposals from the members of the organization to modify it

are constantly evaluated by high-performing members. Specifically, in each period each

member of an organization either conducts an individual search for a better configura-

tion (with probability λ) or adopts the configuration from the organizational knowledge

(with probability 1−λ). After all the agents have either conducted individual searches

or learned from the organizational knowledge, each agent proposes, with probability

p, to modify the organizational knowledge. Each proposal will be evaluated by the

members of organization whose performance at the time of evaluation is higher than

the average one in the organization. If the majority of high-performing members agree

on a proposed modification, the organizational knowledge is changed.2

The two parameters of the model, λ and p, represent the degree of organizational

congruency and the frequency of knowledge sharing within the organization, respec-

tively. The lower λ is, the higher is the degree of organizational congruency. In other

words, when λ is low, it is more likely that members of the organization follow practices

or procedures that embody the organizational knowledge, regardless of whether or not

adopting them results in higher performance. When p is high, every agent attempts to

change the organizational knowledge more frequently.

Through extensive simulations of the model, we find that (1) frequent knowledge

sharing within an organization has positive influences on its performance and (2) there

exist non-monotonic relationships between the degree of organizational congruency

and the organizational performance, especially when tasks are either complex or the

environment is uncertain. Namely, the performance of an organization is high when

there is a substantial, but not overly strong, degree of congruency (λ ≈ 0.2) or no

2In case of a tie, a proposal is approved with probability 1/2.
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congruency at all (λ ≈ 1.0).

It is rather intuitive that too much congruency is counter-productive, since agents

do not search for better practices and since without such individual searches it is not

possible to improve the organizational knowledge from which agents learn. However,

more detailed analyses may be required in order to understand the non-monotonisity

of the relationship between congruency and performance. Our analyses reveal that the

performance of an organization with no congruency (i.e. λ = 1.0) is always better than

that of any other organization in early periods. When the task is sufficiently complex,

however, on average, the performance of an organization with a substantial degree of

congruency and frequent knowledge sharing catches up with and exceeds that of the

former organization in later periods. This reversal of performance comes from the

difference in the rate at which the organizational knowledge improves. When a task

is complex, each member of an organization may arrive at distinct but locally best

practices and may fail to agree on how to change the organizational knowledge. As

long as agents rarely follow the organizational knowledge, this is not a problem (just

as in the case of an organization without congruency). However, an organization with

a moderate degree of congruency suffers from such disagreements because they result

in its agents adopting practices that are not proven to generate high value.

The same phenomenon arises when environmental uncertainty is high. In such an

environment, an organization needs to keep up with the changing environment by con-

tinuously modifying the organizational knowledge. However, when agents are equally

likely to be conducting individual searches and adopting practices from the organiza-

tional knowledge, they fail to agree on how to adjust the organizational knowledge and,

as a consequence, organizational performance suffers.

When congruency is high but not overly strong (λ ≈ 0.2), such disagreements about

how to modify the organizational knowledge do not arise as frequently. Most members

of the organization share the same ideas and search in similar directions. Hence, orga-

nizational knowledge will improve continuously as long as there is sufficient knowledge

sharing within the organization. And, the performance of such organizations eventually
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exceeds that of organizations with a low or an intermediate level of congruency.

The rest of the paper is structured as follows: in Section 2 we present the model

studied in this paper, in Section 3 we present and discuss the results of simulation, and

in Section 4 we conclude the discussion.

2 Model

Consider an organization that consists of M agents. Each agent undertakes an

identical task having N dimensions. The value that an agent generates depends on how

the agent configures each dimension of the task. The performance of the organization

depends on the values generated by the agents therein.

Let xi
j(t) ∈ {0, 1} be agent i’s configuration of dimension j in period t,3 and X i(t) ∈

{0, 1}N = {xi
1(t), x

i
2(t), ..., x

i
N (t)} be i’s configuration of the task in period t. The

corresponding value agent i generates, or the performance of agent i in period t, is

Πi(t) = π(X i(t)). The performance of the organization, Π(t), is defined simply as the

mean performance of its members, i.e., Π(t) = 1
M

∑
i Π

i(t).

We formulate the performance function π(·) based on the NK Landscape model

(Kauffman, 1993), which allows us to parameterize the interdependencies among N

dimensions with a parameter K. Namely, the ideal configuration for dimension j

depends on i’s configurations of K other dimensions.4 Let Γj = {l1, l2, ..., lK} be

the set of these K dimensions that affect the effectiveness of xi
j(t), and X i

j(t) =

{xi
l1
(t), xi

l2
(t), ..., xi

lK
(t)} ∈ {0, 1}K be i’s configurations of these K dimensions in pe-

riod t. Then,

π(Xi(t)) =
1
N

N∑
j=1

qj(xi
j(t), X

i
j(t))

3The assumption that each dimension can be either zero or one is made for the sake of simplicity. One
can easily extend the model so that a dimension can be configured in many ways. If the number of possible
configurations of a dimension is c, then the number of possible configurations of the task becomes cN .

4We assume that these K dimensions are chosen randomly from N − 1 other dimensions. One can also
consider many other possible structures of interdependencies. Rivkin and Siggelkow (2007) demonstrate that
the structure of interdependencies, even controlling for K, affects the complexity of the environment and the
effectiveness of various search strategies.
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where qj(xj , Xj) is defined by assigning values drawn randomly from U [0, 1] to each

possible xj and Xj . Every agent faces the same performance function π(·) or {qj}.

When modeled in this way, the number of possible configurations of the task is

2N , a potentially large space in which agents must search for better configurations.

The parameter K captures the complexity of the task. When K = 0, there is no

interdependency among dimensions; thus, changing the configuration of one dimension

results in smooth changes in performance. The larger K is, the more interdependencies

there are among different dimensions. When K is large, changing the configuration of

one dimension has a non-additive effect on the value generated by the agent.

To capture the uncertainty of the environment in which organizations operate,

we introduce a parameter µ ∈ [0, 1] such that, in each period and for each possible

configuration of the task X, qj(xj , Xj) is redefined randomly to a value drawn from

U [0, 1] with probability µ. When µ is zero, the values associated with each possible

configuration of the task remain constant over time. When the value of µ is higher,

these values can change quite drastically from period to period.

The NK landscape has been applied in the literature on organization theory. In their

series of papers, Rivkin and Siggelkow have considered how to design a decision-making

process in hierarchical (or multi-level) organizations undertaking complex projects in

uncertain environments (Rivkin and Siggelkow, 2003, 2007; Siggelkow and Rivkin, 2005,

2006). In particular, one of their foci has been to understand the relationship between

the levels of decision making when lower layers of hierarchy have narrower scope. Other

applications of NK landscape in management literature include, for example, Gavetti

and Levinthal (2000). Gavetti and Levinthal (2000) consider the interplays between

a forward-looking “off-line” search and a backward-looking “on-line” search and their

implications to organizational performance. Our analysis departs from the existing

literature in the following two respects: (1) we do not consider hierarchical organi-

zation, and (2) the focus of our analysis is on organizational congruency, which has

not been considered formally in the literature. We now turn to how the behaviors of

organizations are modeled.
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2.1 Search, learning, and organizational congruency

We assume that each agent receives a randomly configured task initially; i.e.,

xi
j(0) ∈ {0, 1} are randomly set for all i and j. Agents modify their configurations

over time by conducting individual searches and by learning from the organizational

knowledge. Let Ω(t) = {o1(t), o2(t), ..., oN (t)} where oj(t) ∈ {0, 1} represents the orga-

nizational knowledge at period t. We assume that Ω(0) is randomly set. We allow the

organizational knowledge itself to evolve over time as agents in the organization con-

tribute their knowledge in the manner described below. Note that knowledge sharing

improves organizational performance because agents face the same {qj}.

In each period, each agent either conducts an individual search for a better config-

uration (with probability λ) or learns from the organizational knowledge (with proba-

bility 1 − λ). The individual searches are conducted as follows: an agent chooses one

of the N dimensions randomly and ascertains whether changing its configuration gen-

erates a greater value. If it does, he adopts the change. Otherwise, his configuration

remains as before.

When an agent learns from the organizational knowledge, he randomly chooses a

dimension such that his current configuration differs from that of the organizational

knowledge and adopts the organizational knowledge for the chosen dimension. Copying

a part of the organizational knowledge in this manner gradually assimilates the individ-

ual knowledge base to the organizational knowledge if λ is sufficiently low. We call this

process alignment because the assimilated knowledge base facilitates upgrading of the

organizational knowledge as explained later. When adopting the configuration from

the organizational knowledge, the agent does not check whether doing so generates a

higher value. We assume that the organization’s management institutes a monitoring

and incentive mechanism to enforce the alignment of the organizational base.

On the one hand, when λ is low, agents tend to follow the configurations of the

organizational knowledge; thus, their practices are all aligned with each other. When λ

is high, on the other hand, since agents pursue individual searches, their configurations

may remain diverse. Therefore, we can interpret the parameter λ to represent the level
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of organizational congruency (i.e., high λ indicates low organizational congruency).

It is of our interest to discover the relationship between the degree of organizational

congruency represented by λ and organizational performance under various levels of

complexity and uncertainty.

At the end of each period, with probability p, each agent proposes to modify the

organizational knowledge. When an agent proposes to modify the organizational knowl-

edge, he randomly chooses one dimension such that his configuration differs from that

of organizational knowledge. And, he proposes to change the configuration of the cho-

sen dimension in the organizational knowledge so that it will be the same as his current

configuration. Whether the proposal is accepted or not depends on voting by agents in

the organization. It is accepted if the majority of the agents whose performance is no

less than the performance of the organization5 configure the dimension as proposed.6

The parameter p can be interpreted as the frequency of knowledge sharing within the

organization. The higher the value of p is, the more quickly organizational knowledge

improves.

The model presented here is similar to that of March (1991), which studies the rela-

tionship between exploitation of existing knowledge and exploration of new knowledge

in an abstract model. In particular, both our model and that of March (1991) consider

interactions between individual search and learning within an organization through

communications among its members. Our model differs, however, from that of March

(1991) in its assumption of the underlying configuration space. While the latter as-

sumes the existence of a unique configuration that an organization needs to discover,

our model employs the NK landscape so that there can be many distinct locally-best

configurations when a task is complex. We are not aware of existing research that

formally attempts to understand the effect of organizational congruency in the face of

such multiplicities of locally-best configurations.

5That is, we consider the majority of those agent k such that Πk(t) ≥ Π(t).
6In the case of a tie, a proposal is approved with probability 1/2.
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1. Set parameter values, and give a random seed
2. Initialize NK landscape, agents, and organizational knowledge
3. for 1 ≤ t ≤ 1000

(a) for each agent 1 ≤ i ≤ M
(i) Search (λ) or Copy (1 − λ)
(ii) update the agent’s configuration and performance

(b) Update performance of organization
(c) for each agent 1 ≤ i ≤ M (in random orders)

(i) Propose (with prob. p) or not.
(ii) If proposes, evaluate the proposal
(iii) update organizational knowledge

(c) if µ > 0, update NK landscape, the performances of agents and the organization
(d) Back to (a)

Table 1: Pseudo Code

3 Results

There are six parameters in our model. The task is defined by its size N and its

complexity K. The environmental uncertainty is captured by µ. The organization is

characterized by the number of agents, M , the frequency of knowledge sharing among

them, p, and the level of organizational congruency, λ. In all the simulations, we fix

N and M to be 100 and 20, respectively, and vary other parameters to investigate the

effect of congruency and communications on the performance of organizations under

various degrees of complexity and uncertainty.7

For each set of parameter values, the payoff function, π(·), initial configuration for

individual task X i(0), and organizational knowledge, Ω(0), are generated. Then, we

allow organizations to operate in the manner described in the Model section for 1000

periods. Table 1 shows the pseudo code of the simulations.

To summarize the performance of an organization over time, we mainly focus on

present discounted values (PDVs) of organizational performance over these 1000 pe-

riods: namely, Π =
∑1000

t=1 δtΠ(t) where δ is a discount factor. Below, we will set the

discount factor to be δ = 0.999.8 This discount factor gives the payoff for the last

7The appendix shows the results from M = 10 and M = 30, which are similar to the results from M = 20.
8If we set the discount factor too low, the payoff at t = 1000 will be given a negligible weight compared

to those for earlier periods. For example, if δ = 0.95, the weight for the payoff at t = 1000 will be less than
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(A) K = 0 and µ = 0.0 (B) K = 8 and µ = 0.0
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(C) K = 0 and µ = 0.005 (D) K = 8 and µ = 0.005
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Figure 1: Average PDVs of organizational performances for various p and λ in four combina-
tions of complexities (K = 0 (left) and K = 8 (right)) and uncertainties (µ = 0.0 (top) and
µ = 0.005 (bottom)). Discount factor is δ = 0.999. Data are generated by taking average
over 100 simulation runs for each set of parameter values.

period a weight that is 0.37 of that for the first period. We also take the average over

100 simulation runs based on varying random seeds.

3.1 Effect of p and λ

Figure 1 shows the PDV (shown by height) for various degrees of activeness of

communication p (the horizontal axis) and of control λ (the vertical axis) under four

combinations of complexities, K ∈ {0, 8}, and uncertainties, µ ∈ {0.0, 0.005}. Recall

that a higher λ represents weaker organizational control (or congruency).

0.01% of the payoff at the period t = 1. Since it is possible for performance to take a long time to level off,
we would like the payoff at t = 1000 to have enough weight compared to the initial payoffs.
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In all four panels in Figure 1, one can see that organizational performance measured

by PDV becomes higher as we move along the horizontal axis from left to right. That

is, the more frequently individuals engage in knowledge sharing, the higher their orga-

nizational performance, regardless of task complexity and environmental uncertainty.

While the figure exhibits a monotonic relationship between PDV and frequency

of knowledge sharing, p, the relationship between PDV and level of organizational

congruency, λ, is not monotonic in three out of four cases shown in Figure 1. Except

for cases in which the task is simple and there is no environmental uncertainty (Panel

(A)) or the level of knowledge sharing in the organization is very low (low p), the

performance of the organization has two peaks: (1) when organizational congruency is

very low, i.e, λ ≈ 1.0; and when there is a substantial, but not overly strong, degree of

congruency, λ ≈ 0.2. We call the former, a high-initiative organization and the latter

a high-alignment organization. When λ is very small (so that individual searches

are seldom conducted) or has intermediate values of around 0.5 or 0.6, performance

becomes low.

The non-monotonic relationship between λ and organizational performance can be

better seen in Figure 2. For the same four combinations of K and µ as in Figure 1,

Figure 2 plots PDVs against various values of λ for three values of p: p = 0.0 (solid

black), p = 0.5 (solid gray), and p = 1.0 (dashed black). One can see from the figure

that for λ ≈ 0.2 to generate as high a level of performance as λ ≈ 1.0, the efforts to

share knowledge must be persistent (i.e., high p). Another point indicated by Figure 2 is

that in the case of complex tasks (K = 8), organizational performance declines sharply

as one moves away from the state of full individual search, i.e., λ = 1.0, while there

is a wider range of λ with values around λ = 0.2 that maintains high performance.

This suggests that when knowledge sharing activities are sufficient, any shift from

full exploration (i.e., λ = 1.0) may require a substantial leap toward a state of high

congruency.9

9Figure 2 also shows that when the task is simple (K = 0), the introduction of a small degree of congruency
can improve performance compared to the case of no congruency.
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(A) K = 0 and µ = 0.0 (B) K = 8 and µ = 0.0
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(C) K = 0 and µ = 0.005 (D) K = 8 and µ = 0.005
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Figure 2: Average PDVs of organizational performances for various λ in four combinations
of complexities (K = 0 (left) and K = 8 (right)) and uncertainties (µ = 0.0 (top) and
µ = 0.005 (bottom)). In each figure, results for three distinct ps are reported: p = 0.0 (solid
black), p = 0.5 (solid gray), and p = 1.0 (dashed black). Discount factor is δ = 0.999. Data
are generated by taking average over 100 simulation runs.

Why do successful organizations, in the face of complex tasks and uncertain en-

vironments, bifurcate into two types: high-initiative (λ = 1.0) vs. high-alignment

(λ ≈ 0.2)? In other words, why do we obtain non-monotonic relationships between

λ and organizational performance? To answer this question, we turn to dynamics of

performance over time.

3.2 Dynamics

Figure 3 shows the dynamics of organizational performance for four values of λ,

λ ∈ {0.0, 0.2, 0.6, 1.0} (shown in solid black, solid gray, dashed black and dashed gray,

respectively), for the four combinations of K ∈ {0, 8} and µ ∈ {0.0, 0.005} considered

in Figures 1 and 2. These four λs are chosen because they correspond approximately

to the local maxima and minima of organizational performance measured by PDV.

Knowledge sharing within an organization is assumed to be very frequent, p = 1.0,
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(A) K = 0 and µ = 0.0 (B) K = 8 and µ = 0.0
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(C) K = 0 and µ = 0.005 (D) K = 8 and µ = 0.005
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Figure 3: Average performance over time for two levels of complexity, K = 0 (left) and
K = 8 (right), and two degrees of environmental uncertainty, µ = 0.0 (top) and µ = 0.005
(bottom). Four values of λ are considered: λ = 0.0 (solid black) ,λ = 0.2 (solid gray), λ = 0.6
(dashed black), λ = 1.0 (dashed gray). The communication is active (p = 1.0). The data
is generated by taking the average per period organizational performance for each block of
100 periods. The average from 100 simulation runs is reported.
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which corresponds to the dashed black curves in Figure 2.10 Figure 3 reports the

average per-period organizational performance for each block of 100 periods, i.e., for

t ∈ [1, 100], t ∈ [101, 200] and so on.

When the task is simple and there is no environmental uncertainty, organizations

with lower degrees of congruency (i.e., higher λs) demonstrate faster improvements in

performance (Panel (A)). When K = 0, the best configuration for the task can be found

through a local search procedure, such as the individual searches considered in this

paper. Therefore, all the agents in an organization will eventually find the unique best

configuration as long as λ > 0.0. (Note that when λ = 0.0, there is no individual search,

so that agents never find the best configuration). Once everyone in an organization

has found the best configuration, there is no further improvement in organizational

performance. When all the agents in an organization only conduct individual searches

and do not copy from organizational knowledge (i.e, λ = 1.0), each agent rapidly finds

the best configuration. Organizations that employ full individual search (λ = 1.0)

are not especially superior to organizations with higher levels of congruency (λ < 1.0)

because organizations can achieve very good performance provided knowledge sharing

takes place frequently enough and organizational knowledge is improved rapidly. As

knowledge sharing becomes less frequent (i.e., lower p), however, higher congruency

imposed on individuals (i.e, lower λ) would instead disturb individual searches and

retard organizational performance.

When the task is complex, the results are quite different, even in the complete

absence of environmental uncertainty. Panel (B) of the figure shows that a higher

value of λ corresponds to a higher performance only at early periods, namely the first

100 periods. In later periods, for example for t ∈ [101, 200], while λ = 1.0 (dashed gray)

exhibits the highest performance, the performance of λ = 0.6 (dashed black) is lower

than that of λ = 0.2 (solid gray). Eventually, the performance of λ = 0.2 exceeds that

of λ = 1.0. This case demonstrates the possible trade-off between the performances in

10As we have seen above, a lower value of p results in lower performance for an organization with λ smaller
than one.
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earlier periods and those in later periods.11 It should also be noted that the average

performance in all three cases except for λ = 0.0 converge to the same level in the final

100 periods as shown in the Panel (B) of the figure.

In the presence of uncertainty (Panels (C) and (D)), the performance of the orga-

nizations with λ = 0.2 and λ = 1.0 exhibit a similar pattern, as seen in the case shown

in Panel (B). Namely, initially, the organization with λ = 1.0 demonstrates higher

performance than the one with λ = 0.2, but in the later periods the performance of the

latter exceeds that of the former. The dynamics of the performance for λ = 0.6 (solid

black) is quite different in the face of environmental uncertainty than in its absence.

That is, when there is sufficient uncertainty, performance does not improve much over

time (in the case of a complex task, Panel (D)) or can even deteriorate (in the case of

a simple task, Panel (C)). Note that due to the environmental uncertainty organiza-

tional performance in an individual simulation run demonstrates ups and downs over

time. Such volatilities are hidden, however, in Figure 3, where we plot the averaged

performance in each block of 100 periods and further take averages across 100 simula-

tion runs. Nonetheless, deterioration of average performance appears for λ = 0.6 after

period 200. This puzzling outcome deserves more careful analyses.

Why does the reversal of relative performance between λ = 0.2 and λ = 1.0 take

place during the course of organizational learning? And, why does performance for

λ = 0.6 in an uncertain environment with a complex task deteriorate after an initial

improvement?

Looking at the dynamics of diversity of individual configurations and the dynamics

of the value of organizational knowledge, π(O(t)), helps us to answer these questions.

The former is plotted in Figure 4 and the latter in Figure 5.

The diversity of the individual configurations, D(t), is measured by the average

distance between individual configurations and their means. The mean configuration of

dimension j at period t is x̄j(t) =
∑

i x
i
j(t)/M . The distance between configurations of

11Therefore, if we set the discount factor δ too low, we pick up only performance in earlier periods and
fail to capture this trade-off.
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(A) K = 0 and µ = 0.0 (B) K = 8 and µ = 0.0
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(C) K = 0 and µ = 0.005 (D) K = 8 and µ = 0.005
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Figure 4: The diversity within an organization for two levels of complexity, K = 0 (left) and
K = 8 (right), and two degrees of environmental uncertainty, µ = 0.0 (top) and µ = 0.005
(bottom). The communication is active (p = 1.0). Four values of λ are considered: λ = 0.0
(solid black), λ = 0.2 (solid gray), λ = 0.6 (dashed black), λ = 1.0 (dashed gray). For the
clarity of exposition, only λ ∈ {0.0, 0.2, 0.6} are shown in the main figure. See the insets
for all the four λs. The extent of diversity is measured based on the discrepancy between
individual configurations and their means. The data is generated by taking the average per
period diversity for each block of 100 periods. The average from 100 simulation runs is
reported.
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(A) K = 0 and µ = 0.0 (B) K = 8 and µ = 0.0
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(C) K = 0 and µ = 0.005 (D) K = 8 and µ = 0.005
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Figure 5: The dynamics of the average value of organizational knowledge for two levels of
complexity, K = 0 (left) and K = 8 (right), and two degrees of environmental uncertainty,
µ = 0.0 (top) and µ = 0.005 (bottom). Four values of λ are considered: λ = 0.0 (solid black)
,λ = 0.2 (solid gray), λ = 0.6 (dashed black), λ = 1.0 (dashed gray). The communication
is active (p = 1.0). The data is generated by taking the average per period value of organi-
zational knowledge for each block of 100 periods. The average from 100 simulation runs is
reported.

individual i and the mean configurations at period t is therefore Di(t) =
∑N

j=1 |xi
j(t)−

x̄j(t)|/N . The diversity for an organization in period t is D(t) =
∑M

i=1 Di(t).

As in the case of organizational performance shown in Figure 3, we took the average

over each block of 100 periods.12 The results for four combinations of complexities

K ∈ {0, 8} and uncertainties µ ∈ {0.0, 0.005} are plotted. Four values of λ, λ ∈

{0.0, 0.2, 0.6, 1.0} (shown in solid black, solid gray, dashed black, and dashed gray,

respectively) are shown. p = 1.0 is assumed.

When the task is simple and there is no environmental uncertainty, the diversity

measure converges to zero for all types of organizations plotted in Figure 4 (Panel (A)).

The lower λ is, the faster is convergence. The reason even an organization with λ = 1.0

(dashed gray, shown only in the in-sets) demonstrates zero diversity in the later period

12Figure 3 reports the results obtained from taking the average of these averaged per-period diversities
across 100 simulations.
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is that, as discussed above, when K = 0 and µ = 0.0, every agent in the organization

eventually finds the unique best configuration through individual searches unless λ is

zero. And, since everyone eventually agrees on the best configuration, organizational

knowledge will also be configured accordingly. Therefore, the value of organizational

knowledge shows rapid improvement, as shown in Figure 5 (Panel (A)). When λ = 0.0

(shown in solid black), this is not the case. Although the diversity measure goes to

zero as well, the value of organizational knowledge shows little improvement. Diver-

sity disappears because everyone adopts configurations from the same organizational

knowledge. However, because agents never search for better configurations, they do

not have new information necessary to improve organizational knowledge.

When there is no uncertainty but the task is complex (K = 8, µ = 0.0), as shown

in Figure 4 (Panel (B)), diversity remains high for organizations with λ = 1.0 (dashed

gray, shown only in in-set) for long periods of time, while the diversity measures in

the organizations with λ = 0.0 and λ = 0.2 quickly converge to zero. In the case of

λ = 0.6, the diversity measure declines much more slowly than in the cases of smaller

values of λ.

The high diversity for organizations with λ = 1.0 under the complex task is due to

the existence of many distinct but locally-best configurations. And, since such locally-

best configurations vary from one another, diversity among the individual configura-

tions remains high and agents in the organizations do not agree on how to improve

organizational knowledge. As a result of the inability to aggregate information and

choose the best among many local optima, the value of organizational knowledge re-

mains low (Figure 5, Panel (B)). Although the value of organizational knowledge for

the λ = 0.0 organization also shows little improvement, this is due to the complete

absence of individual searches.

Panel (B) of Figure 5 also shows that an organization with λ = 0.6 is much slower

in improving organizational knowledge than one with λ = 0.2. Recall that, in our

model, in order to modify organizational knowledge, not only must new proposals be

submitted, they must also be approved. In the model considered here, a proposal
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is approved when a majority of better-performing agents configure the dimension as

proposed. Also, as discussed above for the case of λ = 1.0, when a task is complex,

individual searches may lead to various distinct configurations that are local optima.

If many agents search in different directions, it is more difficult for them to agree on

how to modify organizational knowledge. The insufficient alignment of the individual

knowledge base resulting from lower congruency creates a bottleneck to improvement of

organizational knowledge, which in turn slows down the improvement of organizational

performance.

The inability to improve organizational knowledge can be detrimental when the en-

vironment is changing. In such an unstable environment, the quality of organizational

knowledge itself can deteriorate over time, as one can see from Panel (C) of Figure 5.

Note that an organization with λ = 1.0 is not capable of improving organizational

knowledge when the task is complex, but it does not suffer from the bad organizational

knowledge because agents never adopt bad configurations of the organizational knowl-

edge. However, when λ = 0.6, an intermediate level, agents can still have sufficiently

different knowledge configurations, which in turn hinders organizational knowledge

from improving, as shown in Panel (C) of Figure 5. This explains why the average

performance in organizations with λ = 0.6 deteriorates, as can be seen in Panel (C) of

Figure 3.

3.3 Optimal degree of congruency

So far we have considered four combinations of complexities of task (K ∈ {0, 8})

and uncertainties of environment (µ ∈ {0.0, 0.005}). We have seen that when the

environment is uncertain or the task is complex, successful organizations bifurcate into

two types: high-initiative vs. high-alignment organizations. We have also noted that

for the latter to be successful, very frequent knowledge sharing within the organization

is required to improve and maintain the quality of organizational knowledge. We

would also like to find out the conditions under which a high-alignment organization

outperforms a high-initiative one. Figure 6 illustrates which of the organizations with
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(A) λ ∈ {0.2, 0.6, 1.0} or those with (B) λ ∈ {0.2, 0.6, 0.95} performs best under various

levels of complexity of the task (K) and various degrees of environmental uncertainty

(µ). We assume very frequent knowledge sharing p = 1.0. We introduce λ = 0.95

instead of λ = 1.0 in Panel (B) of the figure to test robustness of the results from

the comparison. As we have seen above, in the face of complex tasks, organizational

performance declines very sharply as one moves away from λ = 1.0, while there exists

a wider range of λ around 0.2 that generates high performance.

In Panel (A) of the figure, the white (black) cells in the figure show the combinations

of K and µ where an organization with λ = 1.0 (λ = 0.2) performs the best. For Panel

(B), the white cells represent the combinations where λ = 0.95 performs the best.13

The gray cells without the indication “ND” show the cases where λ = 1.0 (or λ = 0.95

in the case of Panel (B)) and λ = 0.2 perform equally well and are both better than

λ = 0.6. The gray cells with the indication “ND” are the region where all three λ

perform equally well.

One can see from Panel (A) that when uncertainty is low (µ < 0.001), a high-

initiative organization (λ = 1.0) exhibits superior performance even when the task is

quite complex.14 The advantage of a high-initiative organization disappears once a

slight degree of alignment is introduced (Panel (B)), unless the task is simple. Overall,

our results are not robust for µ < 0.005. In other words, there is not much signifi-

cant difference between high-initiative and high-alignment organizations in a relatively

stable environment.

As the environment becomes more uncertain but not overly so (µ = 0.005 or 0.01),

a high-alignment organization (λ = 0.2) demonstrates its advantage assuming that

the task is reasonably complex. When the environment becomes extremely unstable

13We have performed two-sample t-test based on PDVs generated by 100 simulations for each set of
parameter values. Depending on the results of a variance comparison test, unequal variance or equal variance
is assumed in performing t-test. One organization is said to outperform the other if the mean PDV is
significantly greater at 5% significance level in a one-tailed test.

14Note that we are measuring performance with PDVs that put higher weights on earlier periods than
later ones. As seen in the previous section, if we compare the average performance in later periods (or place
more weight on the performance of later periods by using a higher discounting factor δ), in cases of very
frequent knowledge sharing, λ = 0.2 is better than λ = 1.0.
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(A) Comparison among (B) Comparison among
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Figure 6: Comparison of PDV of (A) λ ∈ {0.2, 0.6, 1.0} and (B) λ ∈ {0.2, 0.6, 0.95} for
various degree of complexity K and uncertainty µ. p = 1.0 and discount factor is 0.999
in calculating PDVs. White and black areas indicate λ = 1.0 (λ = 0.95 in panel B) and
λ = 0.2 demonstrate the highest performance, respectively. Gray areas indicate no difference
between λ = 1.0 (λ = 0.95 in panel B) and λ = 0.2, and both are better than λ = 0.6. Gray
areas with “ND” indicate that all three λs perform equally well.
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(µ = 0.05), though, a high-alignment organization loses its relative advantage and a

high-initiative organization tends to perform better.

This exercise reveals that institutionalizing knowledge in the form of routines, pro-

cedures, strategies, and systems generally creates advantage when the business is rea-

sonably complex and uncertain. The cost of institutionalizing knowledge is the delay

caused by the aggregation of individual knowledge. Furthermore, the assimilation of the

individual knowledge base could also hinder the improvement of organizational knowl-

edge by reducing the range of individual searches when the environment changes dras-

tically. Potential costs discussed above make it suboptimal to choose a high-alignment

organization in an extremely unstable environment.

4 Conclusion

This work demonstrates the origin of the primary tension between exploration and

exploitation and conditions in which choosing an “extreme” type of organizational

learning is optimal. We identify important roles played by organizational congruency

in facilitaing organizational learning. Our results show non-concavity in the optimiza-

tion problem of organization design and imply that two types of organization with

distinct natures could emerge. A high-initiative organization promotes individual ini-

tiatives to experiment with new ideas and build its strength on individual learning. A

high-alignment organization, in contrast, assimilates the individual knowledge base and

accelerates organizational learning through frequent knowledge sharing among individ-

uals. An organization with a more equal mix of individual initiatives and knowledge

alignment tends to perform worse, and especially so when the operation is reasonably

complex (in other words, interdependency is high enough) and/or the business envi-

ronment is reasonably uncertain. Although a high-alignment organization tends to be

favored in a moderately uncertain environment, a high-initiative organization tends to

be favored when the environment becomes extremely unstable.

There are two remaining issues to be considered. First, how robust are the results
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we have illustrated in this paper to changes in the assumptions? Specific rules and

processes of updating organizational knowledge in our model must be relaxed to ex-

amine whether our bifurcation results continue to hold under different assumptions.

Second, we did not consider the possibility that the degree of organizational congru-

ency changes as time goes by. Such a question is especially formidable if parameter

values, such as complexity of operation K, were to change in the course of a firm’s

growth. We believe that these questions can be successfully addressed by extending

the basic framework we employed in this paper, but will leave them to future research.
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A Results from M = 10 and M = 30

The main text concentrated on discussion of the results for M = 20. This appendix

presents the simulation results from M = 10 and M = 30, which are qualitatively the

same as the results in the main text. Figure 7 shows, in the same format as in Figure 1,

PDV with discount factor δ = 0.999 for various values of p and λ for four combinations

of K and µ. M = 10 is on the top row and M = 30 is on the bottom row. As one

can see from comparing Figure 7 and Figure 1, the main results do not change as we

change the number of agents in the organization. What does change is the range of

values of λ < 1.0 that maximizes performance.
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Figure 7: Present Discounted Values of organizational performance for M = 10 (top) and
M = 30 (bottom) for four combinations of K ∈ {0, 8} and µ ∈ {0.0, 0.005}
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