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GDP nowcasting with ragged-edge data:

A semi-parametric modelling ∗

Laurent Ferrara†, Dominique Guégan‡, Patrick Rakotomarolahy§

Abstract

This paper formalizes the process of forecasting unbalanced monthly data sets in order to ob-

tain robust nowcasts and forecasts of quarterly GDP growth rate through a semi-parametric

modelling. This innovative approach lies on the use on non-parametric methods, based on

nearest neighbors and on radial basis function approaches, to forecast the monthly variables

involved in the parametric modelling of GDP using bridge equations. A real-time experience

is carried out on Euro area vintage data in order to anticipate, with an advance ranging from

six to one months, the GDP flash estimate for the whole zone.

Keywords: Euro area GDP - Real-time nowcasting - Forecasting - Non-parametric methods.

1 Introduction

The monetary policy decisions in real time are enlighted by the assessment of current economic

conditions based on incomplete economic data and by the anticipations of future economic fluc-
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tuations. Since most data are released with a lag and are subsequently revised, the estimation

of current and next quarters for GDP growth and other key variables is an important task for

central banks.

In short-term economic analysis and forecasting teams of central banks, monthly indicators are

routinely used to assess the current economic conditions before GDP figures are made available

by statistical offices. For example in the Euro area, the first GDP estimation, referred to as

flash estimate, is released by Eurostat around 43 days after the end of the reference quarter.

Therefore, during this interval of time, econometric models are requested in order to provide

a quantitative evaluation of the economic activity. Models able to perform this exercise must

exploit timely information, deal with mixed frequency (using monthly data to nowcast quarterly

GDP) and ragged-edge data (at the end of the sample, different variables will have missing points

corresponding to different dates in accordance with their timeliness).

A well-known particular class of models that possesses those characteristics goes under the name

of bridge equations. These are predictive equations that bridge monthly variables with quarterly

ones. More precisely, bridge equations are regressions of quarterly GDP growth on a small set

of key monthly indicators. This simple modelling strategy has been popular among policy in-

stitutions which commonly pooled several GDP forecasts from bridge equation models so as to

consider a large number of predictors.

In this paper, we develop an innovative method based on parametric bridge equations associated

with non-parametric estimation of the variables in order to nowcast and to forecast quarterly

GDP. Indeed, we forecast the monthly indicators involved in equations through non-parametric

methods, specifically the k-nearest neighbors (k-NN) method and the radial basic functions

(RBF) method. These forecasts will then be plugged inside the bridge equations, permitting

to get semi-parametric nowcasts and forecasts for the GDP growth. We validate this semi-

parametric approach by carrying out a true real-time experience on the Euro area that uses

vintage data in order to nowcast the flash estimate of the current quarter and to forecast the one

of the next quarter.
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The paper is organized as follows. Section two gives a quick review on the main approaches

used to nowcast and forecast GDP growth. Section three is devoted to the original method put

forward in this paper to provide non-parametric estimates for monthly indicators. The section

four provides the nowcast and forecast values for the GDP growth flash estimates using an

innovative semi-parametric modelling and section five concludes.

2 Nowcasting GDP: A review

GDP nowcasting and forecasting is a topic of great interest for monetary policy-makers. Indeed,

until the first publication of the GDP figures for a given quarter by national statistical institutes,

there is a strong need to assess the current economic climate in order to conduct an optimal mon-

etary policy. To nowcast or forecast GDP, forecasters need to take into account a large amount

of information which arrives sequentially. Thus, new information becomes available continously

throughout the quarter and the nowcasts and forecasts may be adjusted in response to those

changes. However, macroeconomic forecasters and analysts face several constraints inherent to

the data.

First, it is not obvious to exploit all the available information, as economic and financial indica-

tors are released in an asynchronous way. Due to these different publication lags, multivariate

datasets typically exhibit complicated patterns of missing values at the end of the sample and

imply unbalanced samples for estimation. This leads to the so-called ’ragged-edge’ data problem

in econometrics, originally pointed out by Wallis [1] and forecasting methods are thus necessary

to tackle this issue.

Second, we notice that monthly indicators are generally used to explain a quarterly variable,

namely GDP growth rate. We face therefore a mixed frequency problem. A common solution in

such cases consists in pre-filtering the data so that the left-hand and right-hand side variables

in the equation could be available at the same frequency (for example by aggregating monthly

variables into quarterly ones). An alternative way is the Mixed Data Sampling (MIDAS) regres-

sions introduced by Ghysels et al. [2].

3



Third, a part of the recent literature discusses the issue of the amount of information which is

necessary to get robust GDP estimates. After nearly ten years during which researchers have

tried to determine the optimal amount of data which is necessary to get relevant estimates of

the GDP, the answer seems mitigated: we refer to Marcellino et al. [3], Bernanke and Boivin [4],

Forni et al. [5], Boivin and Ng [6], d’Agostino et al. [7] for deep discussions on this problem.

Recently, several approaches based on dynamic factor models have been developed to tackle

those three previous issues, we refer to Forni et al. [8], Stock and Watson [9], Doz et al. [10]

[11], Kapetanios and Marcellino [12], Giannone et al. [13] or Barhoumi et al. [14], among others.

In this paper, we rather focus on linear bridge equations that link quarterly GDP growth rate

and monthly economic variables. The classical bridging approach is based on linear regressions

of quarterly GDP growth on a small set of key monthly indicators carefully selected or identi-

fied through automatic procedures. Applications to this approach are provided in Kitchen and

Monaco [15], Rünstler and Sedillot [16], Baffigi et al. [17] or Diron [18]. This simple mod-

elling strategy has been popular among policy institutions which commonly pooled several GDP

forecasts from bridge equation models so as to consider a large number of predictors. We can

distinguish several implementations of this approach. One combines a number of selected bridge

equations based on multiple regressors, (Rünstler and Sédillot [16], and Diron, [18]), while an-

other one pools forecasts of GDP based on large number of bridge equations with only one

predictor each (Kitchen and Monaco, [15]). An active strand of the literature also focuses on

bridging GDP with composite variables estimated through dynamic factor models with different

kinds of methodology, see for example Angelini et al. [19], Schumacher and Breitung [20] and

Marcellino and Schumacher [21].

In the present work, we follow the methodology proposed and developped by Diron [18] to com-

pute in fine the quarterly GDP growth for the Euro area. We use the same eight linear equations

introduced in her paper and our contribution concerns the way to forecast the auxiliary economic

indicators involved in those equations. We put forward an alternative forecasting method based

on a non-parametric approach that differs from the linear autoregressive projections generally

used in this framework. Two main advantages of this approach are respectively the facts that

we are free of the assumption of stationarity and of the knowledge of the distribution function
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of the data sets on which we work.

3 An innovative tool for GDP forecasts: A non-parametric ap-

proach

In order to provide a monthly flash estimate of the quarterly GDP, we put forward an innovative

statistical tool to complete the monthly information set used to nowcast and forecast the quar-

terly GDP growth.

Here, our approach permits to provide robust forecasts for the monthly variables via non-

parametric methods and to use the predictive linear parametric equations to bridge monthly

information with quarterly one. In fine, this approach will be referred to as a semi-parametric

modelling for quarterly GDP in the sense that we combine non-parametric methods to forecast

the monthly variables and parametric equations to estimate GDP growth rate.

In this section, we present two non-parametric methods that we use to forecast the monthly

indicators, namely the nearest neighbors method and the radial basis function method.

3.1 Why the non-parametric approach ?

Working with non-parametric approaches permits to be free from a lot of assumptions concern-

ing the datasets on which we work. First, the methods that we use in the following are close to

non-linear modelling and then appear more flexible than the classical linear regressions that are

generally used in the literature. Second, it is not necessary to make the data stationary: this

means that we can work with data presenting some trend for instance. Third, the way to estimate

parameters appearing in the various modelling does not necessitate to know the distribution of

the data sets and thus it is free from the usual Gaussian assumption.

The methods that we use to estimate the monthly indicators are based on the estimation of a

regression without using parametric modelling. We consider the simple problem which consists

to estimate the relationship between two random variables, say X and Y . Regression analysis

is concerned with the question of how Y (the dependent variable) can be explained by X (the
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explanatory or regressor variable). This means the existence of a relationship of the form:

Y = m(X), (3.1)

where m(·) is a function in the mathematical sense. We do not assume here any specific hy-

potheses on m(·). The random variables X, in the expression (3.1), can be the past values

of the random variables Yt. Given {(Y1, X1), ..., (Yt, Xt)}, a set of observations identically dis-

tributed as (X, Y ), then, the underlying principle that theoretical laws usually do not hold in

every individual case but merely on average is considered here and can be formalized as:

E[Y |X = x] = m(x), (3.2)

or as:

yi = m(xi) + εi, i = 1, ..., t. (3.3)

Equation (3.3) says that the relationship Y = m(X) does not need to hold exactly for the ith

observation but is disturbed by the random variable ε. Here, we will assume that the estimator

of m(·) has the following form:

m̂(x) =
t

∑

i=1

ωi,t(x)Yi, (3.4)

where ωi,t are weights to specify and to estimate. The choice of these weights has led to many

research papers, we refer for instance to Yakowitz [22], Girosi and Anzelatti [23] and Finkenstadt

and Kubier [24].

In this paper we focus on k-NN weights and on RBF weights. Other methods could also be

considered because of their interesting properties, namely the wavelets and the neural network

methods. We do not consider them in this paper, but this issue will be adressed in a companion

paper. Another well known weight regressor is the kernel regressor, but we do not consider it

here because of its static representation and of strong assumptions on the data set to get robust

estimates. Some references on non-parametric methods are, among others, Silverman [25], Wand

and Jones [26], Devroye et al. [27], Guégan [28], Härdle et al. [29].

3.2 Two non-parametric modelling

In the following we assume that at time t, we observe a random variable Xt and its past values

X1, · · · , Xt−1 for estimation purposes. Thus, formally our aim is to estimate the function m(·)
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such that:

Xt = m(Xt−1) + εt, (3.5)

where Xt−1 is a set of variables taken in the past values of Xt. In our framework Xt represents

a monthly economic indicator known until date t and our aim is to forecast values at time

t + 1, t + 2, ..., t + H where H is the maximum forecast horizon.

1. The k-Nearest Neighbors method

The k-nearest neighbor (k-NN) estimator of equation (3.4) can be viewed as a weighted

average of the response variables in a neighborood around x, with the important point that

the neighborood width is not fixed but variable. To be more specific, the values of Xt+1

used in computing the average estimate, are those which belong to the k observed values

of Xt that are nearest to the point x, at which we would like to estimate m(x).

To estimate m(·) given in (3.5), assuming that we are at time t, among the observations

X1, · · · , Xt−1, we are looking at the k closest neighbors of Xt. If we denote those k points

by X(i), i = 1, ..., k, then an estimate of m(·) by the k-NN method permits to compute the

one-step-ahead predictor X̂t+1 such that:

X̂t+1 =
k

∑

i=1

w(Xt − X(i))X(i)+1

where the weights w(·) are usually either exponential or uniform functions given by:

• exponential weight : w(x − X(i)) =
exp(−(x−X(i))

2)
∑

k

i=1 exp(−(x−X(i))
2)

• uniform weight :w(x − X(i)) = 1
k
.

If we estimate m(·) at a point x where the data are sparse then it might happen that the

k-nearest neigbors are rather far away from x (and each other), thus consequently we end

up with a wide neighborood around x for which an average of the corresponding values

of Xt+1 is computed. It is noteworthy that the parameter k needs to be estimated. Note

also that the variance of this estimate does not depend on the distribution of the data set,

which constitutes a great difference with the kernel method.

2. The Radial Basis Function method
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The radial basis function (RBF) method is a particular case of what we call the spline

smoothing. Spline smoothing provides a natural and flexible approach to curve estimation,

which copes well whether or not the design points are regurlarly spaced. The smoothing

spline’s behaviour is intermediate between fixed kernel smoothing and smoothing on an

average of a fixed number of neighboring values. Such intermediate behavior is desirable

because, in a certain sense, moving from fixed kernel to nearest neighbors method over-

compensates for effects caused by the variability in density of design points.

The motivation of this last method is based on the estimation of m(x) by minimizing the

residuals sum of squares (RSS) error, such that RSS =
∑t

j=d(Xj+1 −m(Xj))
2, interpolat-

ing the data without exploiting any structure that might be present in the data. Generally

we use spline estimator having good properties like to be twice differentiable with boundary

conditions on the second derivatives.

Here, we consider, as spline estimator, the radial basis functions which are defined in the

following way. A radial basis function φ is an application defined from R
d × R to R

d and

is characterized by its centroid c and its width r. This means that the observations Xt

are embedded in a space of dimension d, in which the parameters which characterized this

function will be estimated. Using the same information set as before, the estimation of m

by a set of k clusters through a radial basis functions φ is given by:

X̂t+1 = w0 +
k

∑

i=1

wiφ(‖Xt − ci‖ , ri),

where Xt = (Xt, Xt−1, · · · , Xt−(d−1)) ∈ R
d, φ is the radial basis function and || · || is the

Euclidean norm. The parameters to estimate are ci, ri and wi. The radial basis function

can be chosen, for instance, among the following functions:

• Spline function : φ(x, r) = x2

r2 log(x
r
),

• Gaussian function : φ(x, r) = exp(− x2

2r2 ),

• Multiquadric function : φ(x, r) =
√

x2 + r2,

• Inverse multiquadric : φ(x, r) = 1√
x2+r2

.
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The procedure to estimate the parameters follows the k-means cluster method. k-means

method corresponds to a partition of the individuals into clusters such that each indivual

belongs to the cluster whose center is closest in Euclidean distance. Then, the centroids

are the centres of each cluster. To determine all these parameters, we first embed the data

set in a space of dimension d, as the embedding dimension d is not known a priori, we

proceed step by step, beginning at d = 1, .... Then given a d-dimensional space, we use

a k-means clustering method to partition the points such that each one belongs to the

cluster whose centre is the closest in the Euclidean distance sense (the procedure is done

for a given function φ). Thus, the centroids are the centres of each cluster. At this step,

the observations in R
d are organized around k clusters with their centres ci, i = 1, ..., k.

Then, we estimate the width ri using the r centers cj (r ≤ k) which are closest to ci, such

that, i = 1, ..., k :

ri =
1

r

√

√

√

√

r
∑

j=1

‖ci − cj‖2
.

This choice permits to avoid that the clusters overlap. As soon as the function φ and the

parameters (ci, ri), i = 1, ..., k are known, then φ(‖Xt − ci‖ , ri) is known and the function

m(x) is linear in wi, so we can estimate wi by ordinary least squares method. Finally the

one-step-ahead value obtained with the RBF method is given by:

X̃t+1 = ŵ0 +
k

∑

i=1

ŵiφ(Xt − ĉi, r̂),

where φ(x, r) is one of the previous radial basis function.

4 Semi-Parametric Modelling for GDP growth

In this section we put forward a semi-parametric modelling to estimate nowcasts and one-quarter-

ahead forecasts for the Euro area GDP growth, based on the parametric equations proposed by

Diron [18] in which we have plugged the non-parametric estimates of the monthly indicators

obtained using the two previous methods.

4.1 The principle

In order to nowcast and forecast the quarterly GDP quarter-over-quarter growth rate, we assume

that the indicators have already been chosen and we forecast them using the non-parametric
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methods presented above. We select the parametric GDP modelling proposed in the paper of

Diron [18] and we marginally adapt it in order to take new values into account. This approach

has been developed and used by the ECB in their monthly assessment of the GDP in the Euro

area [30].

In table 1, we provide the name and the period of the thirteen indicators that we use in this

study, as well as their source. To compute the GDP, we use eight equations provided in section 6.

The first two bridge equations are close to simple accounting the industrial production in order to

reproduce GDP computations. The other bridge equations rely on more indirect indicators, such

as opinion surveys or financial data. The equations are various combinations of a small set of

selected indicators for the Euro area: industrial production in the manufacturing industry and in

construction, retail sales, new car registrations, the European Commission confidence indicators,

the OECD leading indicator and the CEPR-Bank of Italy coincident indicator for the Euro area,

referred to as EuroCoin. These indicators are used in the individual eight equations that are

described in the Annex.

4.2 The monthly data set

4.2.1 Description

The real-time information set starts in January 1990 when possible (exceptions are the confi-

dence indicator in services, that starts in 1995, and EuroCoin, that starts in 1999) and ends in

November 2007. We use the real-time data base provided by EABCN through their web site 1.

The vintage series for the OECD composite leading indicator are available through the OECD

real-time data base 2. The EuroCoin index is taken as released by the Bank of Italy. As un-

derlined previously in the paper, the vintage data base for a given month takes the form of an

unbalanced data set at the end of the sample. To solve this issue, we apply the non-parametric

methodology to forecast the monthly variables in order to complete the values until the end of

the current quarter for GDP nowcasts and until the end of the next quarter for GDP forecasts,

then we aggregate the monthly data to quarterly frequencies.

1www.eabcn.org
2http://stats.oecd.org/mei/
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4.2.2 Forecasting procedures

We use three various ways to forecast the monthly variables: an ARIMA approach, the k-NN

procedure with exponential weights and the radial basis function method with various couples

(d, k), and various functions φ(·, ·). Following Diron’s approach [18], we have retained for all the

indices an ARIMA(6,1,0) model.

Concerning the k-NN procedure, we look after the best value for k where k = 1, ..., 5, for each

monthly indicator, in the sense of minimizing the mean root mean squared error (RMSE) for a

forecast horizon varying from h = 1 until h = 6. We retain the following values : k = 1 for

the indicators I4; k = 2 for the indicator I1; k = 3 for the indicators I7 and I11; k = 4 for

the indicators I5, I10 and I13; k = 5 for the indicators I2, I3, I6, I8, I9 and I12. It is note-

worthy that significantly more accurate results are obtained for the series I1, I2 and I4, namely

IPI, IPI in construction and retail sales, when differencing the data. Indeed, those latter series

are clearly non-stationary and k-NN forecasting based on data in differences improves the results.

Considering the RBF method, for each monthly indicator, we search for the best couple (d, k)

varying d = 2, ..., 5 and k = 3, ..., 7, in order to minimize the mean root mean squared error

, and finally we retain the following sets of values: (d = 4, k = 4) and multiquadric radial

function for the indicator I1; (d = 2, k = 4) and Gaussian radial function for indicators I2

and I10; (d = 5, k = 4) and Gaussian radial function for the indicator I3; (d = 4, k = 7)

and Gaussian radial function for indicators I5, I4, and I6; (d = 3, k = 4) and Gaussian radial

function for indicators I7 and I9; (d = 2, k = 7) and Gaussian radial function for the indicator

I8; (d = 2, k = 3) and Gaussian radial function for the indicator I11; (d = 4, k = 3) and Gaussian

radial function for the indicator I12; (d = 3, k = 7) and Gaussian radial function for the indicator

I13. Using RBF method, there is no need to make the series stationary which constitutes a great

advantage of this method in comparison with the others.

4.3 The real-time GDP growth modelling

Our aim is to estimate the GDP flash estimates that were released in real-time by Eurostat from

the first quarter of 2003 to the third quarter of 2007 using the non-parametric forecasts of the

monthly indicators that we have previously introduced.
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In this paper, we provide a true real-time analysis. We assume that GDP nowcasts and forecasts

are computed at each end of the month, as soon as the opinion surveys are released by the Eu-

ropean Commission, that is around the last working day of the month. Thus, for a given month,

we assume that we have only access to the information available at this time. Moreover, GDP

values are those that were available at this exact date. For a quarter Qi, i = 1, 2, 3, 4, of a given

year six GDP estimates are provided, namely 3 nowcasts and 3 forecasts. The first nowcast is

estimated at the end of the second month of this quarter, the second at the end of the third

month of this quarter and the last at the the end of first month of the next quarter. It turns out

that the last nowcast is done around 13 days before the flash estimate release. It is worth noticing

that the last nowcast can also be seen as a backcast in the sense that the estimation is done once

the quarter is finished (end of April for Q1, end of July for Q2, end of October for Q3 and end

of January of next year for Q4). For this given quarter Qi, the first forecast is done at the end

of the second month of the previous quarter, the second is done at the end of the third month of

the previous quarter and the last one is done at the end of the first month of the quarter. Techni-

cally, this last forecast could be called a nowcast in the sense that the quarter has already started.

According to this scheme, the monthly series have to be forecast for an horizon h varying between

3 and 6 months in order to complete the data set at the end of the sample. Note that the h-

step-ahead predictor for h > 1 is estimated recursively starting from the one-step-ahead formulas.

4.4 Empirical results

Using five years of vintage data, from the first quarter 2003 to the third quarter 2007, we provide

RMSEs for the Euro area flash estimates of GDP growth in genuine real-time conditions. We

have computed the RMSEs for the quarterly GDP flash estimates, obtained with the three

forecasting methods used to complete adequately in real-time the monthly indicators, that is

ARIMA, k-NN and RBF. More precisely, we provide the RMSEs of the combined forecasts based

on the arithmetic mean of these eight equations. Thus, for a given forecast horizon h, the RMSE
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criterion is defined as follows:

RMSE(h) =

√

√

√

√

1

n

n
∑

t=1

(X̂t(h) − Xt)2, (4.1)

where n is the number of quarters between Q1 2003 and Q4 2007 (n = 20), Xt is the Euro

area flash estimate for quarter t and X̂t(h) is the h-months ahead predictor of Xt for a given

forecasting method (ARIMA, k-NN or RBF) such that:

X̂t(h) =
1

8

8
∑

j=1

X̂
j
t (h), (4.2)

where X̂
j
t (h) is the predictor stemming from equation EQj, j = 1, . . . , 8. The result is presented

in table 2. The following comments point out the main results:

1. As expected, the precision increases as well as the information set is getting bigger. Indeed,

for all the three methods, as the forecast horizon reduces from h = 6 to h = 1, the RMSEs

tend be lower. Few days before the publication of the flash estimate (around 13 days with

h = 1), the lowest RMSE is obtained with the RBF method (RMSE=0.170).

2. The non-parametric RBF method permits to improve kindly the ARIMA projection method

as regards the accuracy of the GDP nowcasts (from h = 1 to h = 4), while the results

obtained with the k-NN method are less conclusive. GDP forecasts for longer horizon

(h = 5 and h = 6) are less accurate with k-NN and RBF methods than with ARIMA

model and need therefore improvement. While we systematically implement an integrated

model of order one for the ARIMA method, we let the series unchanged with the RBF

approach. It turns out that for equations 1 and 2 involving only non-stationary variables,

forecasting with ARIMA models provide lower quadratic errors for all equations.

3. If we make differentiation on some indicators in order to achieve stationarity, we obtain

slightly better results with the k-NN approach, while results are roughly similar with the

RBF approach.

5 Conclusion

A key feature of this paper is that we examine the forecast performance taking into account the

real-time data flow, that is, the non-synchronous release of monthly information throughout the
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quarter. In this paper we combine bridge equations, developed to link monthly economic vari-

ables with quarterly GDP growth, and non-parametric forecasting of those monthly variables.

Using vintages data on activity of the Euro area, this paper assesses the impact of new data

release on short-term forecasts of the Euro area quarter-over-quarter GDP growth.

The main contribution of this paper is a new way to complete ragged-edge monthly data which

appear in the estimation of the quarterly GDP growth, using non-parametric methods based on

nearest neighbors and radial basis function approaches. We show that this new approach provides

forecasts whose errors are smaller than errors’ forecasts based on linear modelling. The interest

of the method is to obtain relevant forecasts being free of classical assumptions of Gaussianity

and stationarity.

A number of questions arise from this exercise: the main point is the choice of the model that

we use, say the bridging equations. This latter assumption is very important. We observe that

the averaging procedure generally enables to get more precise results than each of the individual

equation, underlying the interest of this approach for forecasting purposes in spite of its simplic-

ity. This empirical result has been pointed out in many empirical studies. It would be interesting

consider more refined statistical procedures to combine the forecasts. Thus, we need to develop

further models in order to improve and robustify the model itself: number of equations, choice

of indicators, characteristic of the model like for instance the linearity.

Another aspect of this work is to point the influence of non-stationarity for some indicators and

to open the discussion on the best way to take this feature into account.

Finally, the non-parametric estimates that we used are consistent (Yakowitz [22]) and then the

forecasts too, being obtained through linear equations containing these estimates. Now, if the

almost surely consistency and L2 consistency of these estimates have been obtained in the de-

pendence case, their asymptotic normality has to be proved for any weight. This work is actually

in progress and will permit to provide, in the future, confidence intervals for GDP forecasts.
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6 Annex: Regression equations

Let us define Xt as:

Xt = (log GDPt − log GDPt−1) × 100.

1. EQ1. The first equation combines indicators of production in the main sectors of activity:

industrial production index (I1) and construction production index (I2) as well as the

confidence index in the services (I3) as a proxy for the production in this sector :

Xt = a1
0 + a1

1(log I1
t − log I1

t−1) + a1
2(log I2

t − log I2
t−1) + a1

3 log I3
t−1 + εt. (6.1)

2. EQ2. The second equation uses monthly information on private consumption which in-

cludes retail sales (I4) and new passenger registrations (I5). No monthly data are available

on consumption of services. We add the industrial production index (I1) and construction

production index (I2):

Xt = a2
0+a2

1(log I1
t −log I1

t−1)+a2
2(log I2

t −log I2
t−1)+a2

3(log I4
t −log I4

t−1)+a2
4(log I5

t −log I5
t−1)+εt.

(6.2)

3. EQ3. The third equation relates real GDP growth to the European Sentiment Index (I7),

which is an average of 5 confidence indexes:

Xt = a3
0 + a3

1I
7
t + a3

2I
7
t−1 + εt. (6.3)

4. EQ4. The fourth equation relates GDP growth to industry and services confidence indexes

(respectively, I6 and I3):

Xt = a4
0 + a4

1(I
6
t − I6

t−1) + a4
2I

3
t + εt. (6.4)

5. EQ5. The fifth equation uses survey data including consumer confidence index (I8), which

aims at capturing developments in consumption, and manufacturing and retail trade con-

fidence index ((I6 and I9) :

Xt = a5
0 + a5

1(I
6
t − I6

t−1) + a5
2I

9
t + a5

3I
8
t + εt. (6.5)

6. EQ6. The sixth equation uses financial variables: effective exchange rate (I10) and stock

market price index deflated by the HICP inflation (I11). Note that in opposition to the
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paper of Diron (2008), the yield spread between 10-year government bond rates and 3-

months interest rates has not been found significant.

Xt = a6
0 + a6

1(log I10
t−2 − log I10

t−3) + a6
2(log I11

t−1 − log I11
t−2) + εt. (6.6)

7. EQ7. The seventh and the eighth equations make use of the composite indicators for growth

in the Euro area, the OECD leading indicator (I12) and the EuroCoin (I13) respectively:

Xt = a7
0 + a7

1(log I12
t − log I12

t−1) + a7
2(log I12

t−2 − log I12
t−3) + a7

3Xt−1 + εt. (6.7)

and

8. EQ8.

Xt = a8
0 + a8

1I
13
t + εt. (6.8)
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Short Notation Notation Indicator Names Sources Period

I
1 IPI Industrial Production Index Eurostat 1990-2007

I
2 CTRP Industrial Production Index in Eurostat 1990-2007

Construction

I
3 SER-CONF Confidence Indicator in Services European Commission 1995-2007

I
4 RS Retail sales Eurostat 1990-2007

I
5 CARS New passenger registrations Eurostat 1990-2007

I
6 MAN-CONF Confidence Indicator in Industry European Commission 1990-2007

I
7 ESI European economic sentiment index European Commission 1990-2007

I
8 CONS-CONF Consumers Confidence Indicator European Commission 1990-2007

I
9 RT-CONF Confidence Indicator in retail trade European Commission 1990-2007

I
10 EER Effective exchange rate Banque de France 1990-2007

I
11 PIR Deflated EuroStock Index Eurostat 1990-2007

I
12 OECD-CLI OECD Composite Leading Indicator, OECD 1990-2007

trend restored

I
13 EUROCOIN EuroCoin indicator Bank of Italy 1999-2007

Table 1: Summary of the thirteen economic indicators of Euro area used in the eight GDP bridge

equations.
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h ARIMA(6,1,0) RBF k-NN

6 0.190 0.194 0.198

5 0.191 0.196 0.203

4 0.190 0.186 0.202

3 0.181 0.178 0.186

2 0.177 0.175 0.176

1 0.171 0.170 0.174

Table 2: RMSE for the estimated mean quarterly GDP, using AR, k-NN and RBF predictions

for the monthly indicators.
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Figure 1: Evolution of RMSEs for the mean of the 8 forecasts according to the forecasting methods for monthly

variables.
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