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1. Introduction

Consider two probability distributions, A and B, characterised by cumulative distri-
bution functions (CDFs) F4 and Fp. In practical applications, these distributions
might be distributions of income, before or after tax, wealth, or of returns on financial
assets. Distribution B is said to dominate distribution A stochastically at first order
if, for all z in the union of the supports of the two distributions, Fia(z) > Fgp(z). If B
dominates A, then it is well known that expected utility and social welfare are greater
in B than in A for all utility and social welfare functions that are symmetric and
monotonically increasing in returns or in incomes, and that all poverty indices that
are symmetric and monotonically decreasing in incomes are smaller in B than in A.
These are powerful orderings of the two distributions! and it is therefore not surprising
that a considerable empirical literature has sought to test for stochastic dominance at
first and higher orders in recent decades.

Testing for dominance, however, requires leaping over a number of hurdles. First,
there is the possibility that population dominance curves may cross, while the sample
ones do not. Second, the sample curves may be too close to allow a reliable ranking
of the population curves. Third, there may be too little sample information from
the tails of the distributions to be able to distinguish dominance curves statistically
over their entire theoretical domain. Fourth, testing for dominance typically involves
distinguishing curves over an interval of an infinity of points, and therefore should also
involve testing differences in curves over an infinity of points. Finally, dominance tests
are always performed with finite samples, and this may give rise to concerns when the
properties of the procedures that are used are known only asymptotically.

Dominance and nondominance

Until now, the most common approach to test whether there is stochastic dominance,
on the basis of samples drawn from the two populations A and B, is to posit a null
hypothesis of dominance, and then to study test statistics that may or may not lead to
rejection of this hypothesis?. This is arguably a matter of convention and convenience:
convention in the sense that it follows the usual practice of making the theory of interest
the null and seeking evidence contrary to it, and convenience in that the null is then
relatively easy to formulate.

Rejection of a null of dominance can, however, sometimes be viewed as an inconclu-
sive outcome since it fails to rank the two populations. Further, in the absence of
information on the power of the tests, non-rejection of dominance does not enable

1 See Levy (1992) for a review of the breadth of these orderings, and Hadar and Russell
(1969) and Hanoch and Levy (1969) for early developments.

2 See, for instance, Beach and Richmond (1985), McFadden (1989), Klecan, McFadden
and McFadden (1991), Bishop, Formby and Thistle (1992), Anderson (1996), Davidson
and Duclos (2000), Barrett and Donald (2003), Linton, Maasoumi and Whang (2005),
and Maasoumi and Heshmati (2005).
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one to accept dominance, which is nevertheless often the outcome of interest. Hence,
under this first approach, stochastic dominance merely remains either contradicted or
uncontradicted, but cannot be established.

From a logical point of view, it may thus seem desirable in some settings to posit
instead a null of nondominance. If we succeed in rejecting this null, we may indeed then
legitimately infer the only other possibility, namely dominance. This is the approach
that we develop in this paper.

In order to clarify the above, it may be useful to consider a very simple case with two
distributions A and B with the same support, consisting of three points, y; < y2 < y3.
Since Fa(ys) = Fp(ys) = 1, inference on stochastic dominance can be based on just
two quantities, d; = FA(yi) — FB(yi), for i = 1,2. The hats indicate estimates of the
CDFs at the two points. Distribution B dominates distribution A if, in the population,
d; > 0.

Figure 1 shows a two-dimensional plot of d, and dy. The first quadrant corresponds
to dominance of A by B in the sample. In order to reject a hypothesis of dominance,
therefore, the observed d; and d» must lie significantly far away from the first quadrant,
for example, in the area marked as “B does not dominate A” separated from the first
quadrant by an L-shaped band. This is essentially the procedure followed by the first
approach described above, which is based on testing a null of dominance.

For a rejection of nondominance, on the other hand, the observed sample point must
lie “far enough” inside the first quadrant that it is significantly removed from the area
of nondominance, as in the area marked “B dominates A”. One of this paper’s primary
objectives is to assess what is “far enough”. The zone between the rejection regions
for the two possible null hypotheses of dominance and nondominance corresponds to
situations in which neither hypothesis can be rejected. We see that this happens when
one of the d; is close to zero and the other is positive. Note also from Figure 1 that
inferring dominance by rejecting the hypothesis of nondominance is more demanding
than failing to reject the hypothesis of dominance, since, for dominance, both statistics
must have the same sign and be statistically significant.

The two approaches described above can thus be seen as complementary. Positing a
null of dominance cannot be used to infer dominance; it can however serve to infer
nondominance. Positing a null of nondominance cannot serve to infer nondominance;
it can however lead to inferring dominance.

Objectives of the paper

In this paper, we pursue the approach of testing the null of nondominance. We find that
it leads to testing procedures that are actually simpler to implement than conventional
procedures in which the null is dominance. A simple procedure for testing nondom-
inance was proposed originally by Kaur, Prakasa Rao, and Singh (1994) (henceforth
KPS) for continuous distributions A and B, and a similar test was proposed in an
unpublished paper by Howes (1993a) for discrete distributions.



Here, we develop an alternative procedure, based on an empirical likelihood ratio
statistic. It turns out that this statistic is always numerically very similar to the
KPS statistic in all the cases we consider. However, the empirical likelihood approach
produces as a by-product a set of probabilities that can be interpreted as estimates of
the population probabilities under the assumption of nondominance.

These probabilities make it possible to set up a bootstrap data-generating process
(DGP) which lies on the frontier of the null hypothesis of nondominance. We show that,
on this frontier, both the KPS and the empirical likelihood statistics are asymptotically
pivotal, by which we mean that they have the same asymptotic distribution for all
configurations of the population distributions that lie on the frontier. A major finding
of this paper is that bootstrap tests that make use of the bootstrap DGP we define
can yield more satisfactory inference than tests based on the asymptotic distributions
of the statistics.

The paper also shows that it is not possible with continuous distributions to reject
nondominance in favour of dominance over the entire supports of the distributions.
Accepting dominance is empirically sensible only over restricted ranges of incomes or
returns. Indeed, this is implicit in the KPS paper, where the test statistic is computed
only over a restricted range. Here we make this point explicit, and explore its conse-
quences. This necessitates a recasting of the usual theoretical links between stochastic
dominance relationships and orderings in terms of poverty, social welfare and expected
utility. It also highlights better why a failure to reject the usual null hypothesis of unre-
stricted dominance cannot be interpreted as an acceptance of unrestricted dominance,
since unrestricted dominance can never be inferred from continuous data.

In Section 2, we investigate the use of empirical likelihood methods for estimation of
distributions under the constraint that they lie on the frontier of nondominance, and
develop the empirical likelihood ratio statistic. The statistic is a minimum over all
the points of the realised samples of an empirical likelihood ratio that can be defined
for all points z in the support of the two distributions. In Section 3 we recall the
KPS statistic, which is defined as a minimum over z of a t statistic, and show that
the two statistics are locally equivalent for all z at which Fa(z) = Fpg(z). Section 4
shows why it turns out to be impossible to reject the null of nondominance when
the population distributions are continuous in their tails. In Section 5, the concept
of restricted stochastic dominance is introduced, and justified by reference to ethical
considerations that have been discussed in the literature on poverty. The relevance of
the concept to analyses of financial and insurance data is also explored.

In Section 6, we discuss how to test the null hypothesis of restricted stochastic nondom-
inance, developing procedures in which we are obliged to censor the tails of continuous
distributions. In that section, we also show that, for configurations of nondominance
that are not on the frontier where the CDF's touch at exactly one point, the rejection
probabilities of tests based on either of our two statistics are no greater than they are
for configurations on the frontier. This allows us to restrict attention to the frontier,
knowing that, if we can control Type I error there by choice of an appropriate signifi-
cance level, then the probability of Type I error in the interior of the null hypothesis
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is no greater than that on the frontier. We are then able to show that the statistics
are asymptotically pivotal on the frontier.

Section 7 presents the results of a set of Monte Carlo experiments in which we inves-
tigate the rejection probabilities of both asymptotic and bootstrap tests, under the
null and under some alternative setups in which there actually is dominance. We find
that bootstrapping can lead to very considerable gains in the reliability of inference.
Section 8 illustrates the use of the techniques with data drawn from the Luxembourg
Income Study surveys, and finds that, even with relatively large sample sizes, asymp-
totic and bootstrap procedures can lead to different inferences. Possible extensions of
the methods of the paper are described in Section 9, and conclusions and some related
discussion are presented in Section 10.

2. Stochastic Dominance and Empirical Likelihood

Let two distributions, A and B, be characterised by their cumulative distribution
functions (CDFs) F4 and Fp. Distribution B stochastically dominates A at first
order if, for all z in the union U of the supports of the two distributions, Fa(z) >
Fp(x). In much theoretical writing, this definition also includes the condition that
there should exist at least one x for which F4(x) > Fp(x) strictly. Since in this paper
we are concerned with statistical issues, we ignore this distinction between weak and
strong dominance since no statistical test can possibly distinguish between them. We
therefore want to test the null hypothesis of non-dominance of distribution A by B

riag(FB(z) — Fa(z)) >0, (1)

against the alternative that B dominates A

r&ag(FB(z) — Fa(2)) <0. (2)

Suppose now that we have two samples, one each drawn from the distributions A
and B. We assume for simplicity that the two samples are independent. Let N4y
and Npg denote the sizes of the samples drawn from distributions A and B respectively.
Let Y4 and Y? denote respectively the sets of (distinct) realisations in samples A
and B, and let Y be the union of Y4 and YB. If, for K = A, B, yX is a point in Y'X,
let the positive integer n be the number of realisations in sample K equal to yf¥.
This setup is general enough for us to be able to handle continuous distributions, for
which all the nf* = 1 with probability 1, and discrete distributions, for which this is
not the case. In particular, discrete distributions may arise from a discretisation of
continuous distributions. The empirical distribution functions (EDFs) of the samples
can then be defined as follows. For any z € U, we have

Nk

= — IK<Z,
NKt:1 (yt > )

Fre(z) = —
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where I(-) is an indicator function, with value 1 if the condition is true, and 0 if not.
If it is the case that Fu(y) > Fp(y) for all y € Y, we say that we have first-order
stochastic dominance of A by B in the sample.

In order to conclude that B dominates A with a given degree of confidence, we require
that we can reject the null hypothesis of nondominance of A by B with that degree
of confidence. Such a rejection may be given by a variety of tests. In this section we
develop an empirical likelihood ratio statistic on which a test of the null of nondom-
inance can be based; see Owen (2001) for a survey of empirical likelihood methods.
As should become clear, it is relatively straightforward to generalise the approach to
second and higher orders of dominance, although solutions such as those obtained
analytically here would then need to be obtained numerically.

For a given sample, the “parameters” of the empirical likelihood are the probabilities
associated with each point in the sample. The empirical loglikelihood function (ELF)
is then the sum of the logarithms of these probabilities. If as above we denote by n;
the multiplicity of a realisation y;, the ELF is ZyteY n¢ log py, where Y is the set of
all realisations, and the p; are the “parameters”. If there are no constraints, the ELF
is maximised by solving the problem

max 1 j =1.
12 Z nslogp;  subject to Z pr =1 (3)
Yyt €Y €Y

It is easy to see that the solution to this problem is p; = n;/N for all ¢, N being the
sample size, and that the maximised ELF is —Nlog N + >, n;logn;, an expression
which has a well-known entropy interpretation.

With two samples, A and B, using the notation given above, we see that the proba-
bilities that solve the problem of the unconstrained maximisation of the total ELF are
pK = nf /Ng for K = A, B, and that the maximised ELF is

—NylogNg — Nplog Np + Z ni logni* + Z nP lognf. (4)
yitey4 yBeyB
Notice that, in the continuous case, and in general whenever n® = 1, the term

n¥ lognf vanishes.

The null hypothesis we wish to consider is that B does not dominate A, that is, that
there exists at least one z in the interior of U such that F4(z) < Fp(z). We need z to
be in the interior of U because, at the lower and upper limits of the joint support U,
we always have Fa(z) = Fpg(z), since both are either 0 or 1. In the samples, we
exclude the greatest point in the set Y of realisations, for the same reason. We write
Y for the set Y without its upper extreme point. If there is a y € Y° such that
Fy (y) < Fg (y), there is nondominance in the samples, and, in such cases, we plainly
do not wish to reject the null of nondominance. This is clear in likelihood terms, since
the unconstrained probability estimates satisfy the constraints of the null hypothesis,
and so are also the constrained estimates.
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If there is dominance in the samples, then the constrained estimates must be different
from the unconstrained ones, and the empirical loglikelihood maximised under the
constraints of the null is smaller than the unconstrained maximum value. In order to
satisfy the null, we need in general only one z in the interior of U such that F(z) =
Fg(z). Thus, in order to maximise the ELF under the constraint of the null, we begin
by computing the maximum where, for a given z € Y°, we impose the condition that
Fa(z) = Fp(z). We then choose for the constrained maximum that value of z which
gives the greatest value of the constrained ELF.

For given z, the constraint we wish to impose can be written as
A By, B
> opMt <z = Y plIl <2), (5)
yteyA yBey B
where the I(+) are again indicator functions. If we denote by FX (p;.) the cumulative
distribution function with points of support the yX and corresponding probabilities

the p, grouped in the vector p’, then it can be seen that condition (5) imposes the
requirement that F4(p?,2) = FB(p?, 2).

The maximisation problem can be stated as follows:

max Z n log pit + Z n% log p?

pt 7Ps

subject to Z pt =1, Z pP =1, Z Myl <2) = Z pPI(yP < 2).
yiey4 yPey B yreyA yPey”B

The Lagrangian for this constrained maximisation of the ELF is
Sonitosal + o oest (120t ) 20 (1002
t s t s
—p (prl(yf‘ <z) - ) pPIP < Z)> :
t s

with obvious notation for sums over all points in Y4 and YZ, and where we define
Lagrange multipliers A4, Ap, and p for the three constraints.

The first-order conditions are the constraints themselves and the relations

A e A B e B
A_ni/Qat+p) iy <z B_Jns/(Ap—p) ify’ <z
Py {nf/)\A if y > 2, and - p; nB/\p if y2 > 2. (6)

Using these relations, we can write the constraints as

Na(z) | Ma(2) Np(z) | Mgp(2) Na(z)  Np(2)
+ =1= + , and = , 7
Aa+p A4 AB — b AB Aa+tp A —p @)
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where Na(z) = >, nl(y* < 2) and Ng(z) = >, nPI(y? < 2) are the numbers
of points less than or equal to z in samples A and B respectively, and we define
Ma(z) = Ng — Na(z) and Mp(z) = Ng — Np(z).

On multiplying the first two constraints in (7) by A4 and Ap respectively, we see that

N N

Aa=N )
4 AT At AB —

From the third constraint, it then follows that
Aa+Ag =Ny + Ng=N. (8)

The constraints (7) along with (8) imply that Ma(2)/Aa = Mp(2)/(N — Aa), from

which we see that
NMA (Z)

= Male) + Mp(a) 9)

If we define v = A4 + pu, and note that A\g — u = N — v, the third constraint can be
solved for v, with the result

Aa

NNA(Z)

V= NA(Z)—}—NB(Z).

(10)
The relations (6), along with (9) and (10), allow us to write the probabilities p;' and
pZ explicitly as

4 nf(NA(z)—i-NB(z)) nf(MA(z) +MB(Z))

— : A < : A
D; NNAG) if y* <z and NMaA(2) if y;* > z and
B B
5 no(Na(z)+ Np(2)) £ B < ny (Ma(z) + Mp(z)) £ B
Py = NNp() it y7 <z and N Mp (=) it yo > z.

(11)
Thus the constrained maximisation of the empirical likelihood leads to four probabili-
ties, assigned to observations according to whether they are from sample A or B, and
to whether their value is less or greater than z.

We may use (11) in order to express the value of the ELF maximised under constraint
as

an log nt +ZnSB log n?
t s
—Ny(z)logy — My(z)logAa — Np(z)log(N —v) — Mp(z)log(N — Xa). (12)

Twice the difference between the unconstrained maximum (4), which can be written
as

z:nflogn,‘f4 —|—an logn? — Nylog Ny — Nplog N,
t s
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and the constrained maximum (12) is an empirical likelihood ratio statistic.

Use of (10) and (9) for v and A4 shows that the statistic satisfies the relation

SLR(z) = Nlog N — Nalog Na — Nplog N + Na(2)log Na(2) + Np(2) log Np(2)
+Ma(z)log Ma(z) + Mp(2)log Mp(2) — (Na(z) + Np(2)) log(Na(z) + Np(z))
—(Ma(z) + Mp(2)) log(Ma(2) + Mp(2)). (13)

We will see later how to use the statistic in order to test the hypothesis of nondomi-
nance.

The methods and results of this section can be extended to tests for second- and
higher-order dominance. The only slight practical difficulty in doing so is that there do
not seem to exist closed-form solutions, like (10) and (9), for the Lagrange multipliers
needed to solve the problem of maximising the ELF subject to the relevant constraints.
An efficient numerical solution can be found by applying Newton’s method to a non-
linear system of two equations, with computing times that will of course be somewhat
longer compared to those needed for first-order dominance; see Davidson (2007).

3. The Minimum t Statistic

In Kaur, Prakasa Rao, and Singh (1994), a test is proposed based on the minimum of
the t statistic for the hypothesis that F4(z) — Fp(z) = 0, computed for each value of z
in some closed interval contained in the interior of U. The minimum value is used as the
test statistic for the null of nondominance against the alternative of dominance. The
test can be interpreted as an intersection-union test. It is shown that the probability
of rejection of the null when it is true is asymptotically bounded by the nominal level
of a test based on the standard normal distribution. Howes (1993a) proposed a very
similar intersection-union test, except that the ¢ statistics are calculated only for the
predetermined grid of points.

In this section, we show that the empirical likelihood ratio statistic (13) developed in
the previous section, where the constraint is that Fa(z) = Fp(z) for some z in the
interior of U, is locally equivalent to the square of the t statistic with that constraint
as its null, under the assumption that indeed Fa(z) = Fg(2).

Since we have assumed that the two samples are independent, the variance of
Fy4(z) — Fp(z) is just the sum of the variances of the two terms. The variance of
Fx(z), K = A,B, is Fi(z)(1 — Fk(z))/Nk, where Ng is as usual the size of the
sample from population K, and this variance can be estimated by replacing Fx (z) by
Fi(z). Thus the square of the ¢ statistic is

B NaNp (Fa(z) ~ F(2))
NBFA(z)(l — FA(z)) + NAFB(Z)(l - FB(Z)) ‘

t*(2) (14)



Suppose that Fa(z) = Fg(z) and denote their common value by F(z). Also define
A(z) = Fa(z) — Fp(2). For the purposes of asymptotics, we consider the limit in
which, as N — oo, Na/N tends to a constant 7, 0 < r < 1. It follows that FK(Z) =
F(z) 4+ O,(N71/2) and that A(z) = O,(N~1/2?) as N — 0.

The statistic (14) can therefore be expressed as the sum of its leading-order asymptotic
term and a term that tends to 0 as N — oc:

r(l—r)

*O = o =re)

NA%(2) + 0,(N~Y?), (15)

It can now be shown that the statistic LR(z) given by (13) is also equal to the right-
hand side of (15) under the same assumptions as those that led to (15). The algebra
is rather messy, and so we state the result as a theorem.

Theorem 1

As the size N of the combined sample tends to infinity in such a way that
Nao/N — 7, 0 < r < 1, the difference between the statistic LR(z) defined
by (13) and the statistic ¢?(2) of (15) is of order N~'/2 for any point z in the
interior of U, the union of the supports of populations A and B, such that

Fu(z) = Fp(2).
Proof: In Appendix A. |

Remarks:

e It is important to note that, for the result of the above theorem and for (15) to
hold, the point z must be in the interior of U. As we will see in the next section,
the behaviour of the statistics in the tails of the distributions is not adequately
represented by the asymptotic analysis of this section.

e It is clear that both of the two statistics are invariant under monotonically increas-
ing transformations of the measurement units, in the sense that if an income z is
transformed into an income 2’ in a new system of measurement, then ¢2(z) in the
old system is equal to t2(2’) in the new, and similarly for LR(z) .

Corollary

Under local alternatives to the null hypothesis that Fa(z) = Fp(z), where
Fa(z) — Fp(2) is of order N™'/2 as N — oo, the asymptotic equivalence of
t2(2) and LR(2) continues to hold.

Proof:

Let Fa(z) = F(2) and Fg(z) = F(z) — N=Y2§(2), where §(z) is O,(1) as N — oo.
Then A(z) is still of order N~'/2 and the limiting expression on the right-hand side
of (15) is unchanged. The common asymptotic distribution of the two statistics now
has a positive noncentrality parameter. |
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4. The Tails of the Distribution

Although the null of nondominance has the attractive property that, if it is rejected, all
that is left is dominance, this property comes at a cost, which is that it is impossible
to infer dominance over the full support of the distributions if these distributions
are continuous in the tails. Moreover, and as we shall see in Section 6, the tests of
nondominance that we consider can be used to delimit the range over which restricted
dominance can be inferred.

The nondominance of distribution A by B can be expressed by the relation
max (Fip(z) — Fa(z)) 2 0, (16)

where U is as usual the joint support of the two distributions. But if 2z~ denotes the
lower limit of U, we must have Fp(z~) — Fa(z~) = 0, whether or not the null is true.
Thus the maximum over the whole of U is never less than 0. Rejecting (16) by a
statistical test is therefore impossible. The maximum may well be significantly greater
than 0, but it can never be significantly less, as would be required for a rejection of
the null.

Of course, an actual test is carried out, not over all of U, but only at the elements
of the set Y of points observed in one or other sample. Suppose that A is dominated
by B in the sample. Then the smallest element of Y is the smallest observation,
y{', in the sample drawn from A. The squared ¢ statistic for the hypothesis that
Fa(yi") — Fp(yi') = 0 is then
NaNp(F} - F§)?

NpF}(1—F}) + NaFL(1 - F})’
where Fl. = Fx(yi), K = A, B; recall (14). Now FL =0 and F} = 1/N, so that

NaoNg/N% ~ Na
(Ng/Na)(1=1/Na) Na-1
The t statistic itself is thus approximately equal to 1 4+ 1/(2/N4). Since the minimum
over Y of the ¢ statistics is no greater than ¢, and since 1 + 1/(2N4) is nowhere near
the critical value of the standard normal distribution for any conventional significance
level, it follows that rejection of the null of nondominance is impossible. A similar,

more complicated, calculation can be performed for the test based on the empirical
likelihood ratio, with the same conclusion.

2
tl

2
t1:

If the data are discrete or censored in the tails, it is no longer impossible to reject the
null if there is enough probability mass in the atoms at either end or over the censored
areas of the distribution. If the distributions are continuous but are discretised or
censored, then it becomes steadily more difficult to reject the null as the censoring
becomes less severe, and in the limit once more impossible. The difficulty is clearly
that, in the tails of continuous distributions, the amount of information conveyed by
the sample tends to zero, and so it becomes impossible to discriminate among different
hypotheses about what is going on there. Focussing on restricted stochastic dominance
is then the only empirically sensible course to follow.
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5. Restricted stochastic dominance and distributional rankings

An empirical focus on restricted dominance might seem to demand some motivation,
however, since the theoretical normative literature is (almost) exclusively couched in
terms of unrestricted dominance.

There nevertheless does exist in welfare economics and in finance a limited strand
of the normative literature that is concerned with restricted dominance — see for in-
stance Chen, Datt and Ravallion (1994), Bishop, Chow, and Formby (1991) and Mosler
(2004). One reason for this concern is the suspicion formalised above that testing for
unrestricted dominance is too statistically demanding, since it forces comparisons of
dominance curves over areas where there is too little information (a good example is
Howes 1993b). This insight is interestingly also present in Rawls’s (1971) practical
formulation of his famous “difference” principle (a principle that leads to the “max-
imin” rule of maximising the welfare of the most deprived), which Rawls defines over
the most deprived group rather than the most deprived individual:

In any case, we are to aggregate to some degree over the expectations of the
worst off, and the figure selected on which to base these computations is to
a certain extent ad hoc. Yet we are entitled at some point to plead practical
considerations in formulating the difference principle. Sooner or later the capacity
of philosophical or other argument to make finer discriminations is bound to run
out. (Rawls 1971, p.98)

As we shall see below, a search for restricted dominance is indeed consistent with a
restricted aggregation of the plight of the worst off.

A second motivation for restricted dominance is the normative view that unrestricted
dominance does not impose sufficient limits on the ranges over which certain ethical
principles must be obeyed. It is often argued, for instance, that the precise value of
the living standards of those that are abjectly deprived should not be of concern: the
number of such abjectly deprived people should be sufficient information for social
welfare analysts. It does not matter for social evaluation purposes what the exact
value of one’s income is when it is clearly too low. Said differently, the distribution
of living standards under some low threshold should not matter: everyone under that
threshold should certainly be deemed to be in very difficult circumstances. This comes
out strongly in Sen (1983)’s views on capabilities and the shame of being poor:

On the space of the capabilities themselves — the direct constituent of the stan-
dard of living — escape from poverty has an absolute requirement, to wit, avoid-
ance of this type of shame. Not so much having equal shame as others, but just
not being ashamed, absolutely. (Sen 1983, p.161)

Bourguignon and Fields (1997) interpret this as

the idea that a minimum income is needed for an individual to perform ‘normally’

in a given environment and society. Below that income level some basic function
of physical or social life cannot be fulfilled and the individual is somehow excluded
from society, either in a physical sense (e.g. the long-run effects of an insufficient
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diet) or in a social sense (e.g. the ostracism against individuals not wearing the
proper clothes, or having the proper consumption behavior). (Bourguignon and
Fields 1987, p.1657)

Such normative views militate in favour of the use of restricted poverty indices, indices
that give equal ethical weight to all those who are below a survival poverty line. The
same views also suggest an analogous concept of restricted social welfare.

To see this more precisely, consider the case in which we are interested in whether there
is more poverty in a distribution A than in a distribution B. Consider for expositional
simplicity the case of additive poverty indices:

P(z) = / r(y: 2) dF(y) (17)

where z is a poverty line, y is income, F'(y) is the cumulative distribution function, and
7(y; z) > 0 is the poverty contribution to total poverty of someone with income y, with
7(y; z) = 0 whenever y > z. This definition is general enough to encompass many of
the poverty indices that are used in the empirical literature. Also assume that 7(y; 2)
is non-increasing in y and let Z = [27, 2], with 2~ and 2™ being respectively some
lower and upper limits to the range of possible poverty lines. Then denote by IT'(Z)
the class of “first-order” poverty indices that contains all of the indices P(z), with
z € Z, whose function 7(y; z) satisfies the conditions

is non-increasing in y, and (18)

equals 0 whenever y > z,
m(y; 2) {
is constant for y < z7.

We are then interested in checking whether AP(z) = P4(z) — Pp(z) > 0 for all of the
poverty indices in IT'(Z). It can be shown that this can be done using the following
definition of restricted first-order poverty dominance:

(Restricted first-order poverty dominance)
AP(z) >0 for all P(z) € I1'(Z) iff AF(y) >0 for ally € Z, (19)

with AF(y) = Fa(y) — Fg(y). Note that the IT*(Z) class includes discontinuous
indices, such as some of those considered in Bourguignon and Fields (1997), as well
as the headcount index itself, which would seem important given the popularity of
that index in the poverty and in the policy literature. Traditional unrestricted poverty
dominance is obtained with Z = [0, 27].> The indices that are members of IT'(Z) are
insensitive to changes in incomes when these take place outside of Z. This eliminates
concern with the precise living standards of the most deprived — for some, a possibly
controversial ethical procedure, but unavoidable from a statistical and empirical point
of view.

3 See for instance Foster and Shorrocks (1988a).

- 12 —



A simple member of IT1(z) is obtained by using in (17) the specification 7(y;2) = 1
for all y < z. The index so defined is then given by

P(z) = max(F(z7), F(z)) for z < z*.

This index, obviously closely related to the conventional headcount ratio, can be sup-
ported by a view that a poverty line cannot sensibly lie below z7: anyone with 2z~
or less should necessarily be considered as being in equally abject deprivation. The
popular FGT (see Foster, Greer and Thorbecke 1984) indices are defined (in their
un-normalised form) for v > 0 as

P(za) = / 9(y; 2)*dF(y) (20)

where the poverty gap g(y; z) = max(z—y,0). If we redefine g so that g(y, z) = g(z™7, 2)
for all y < z7, the index becomes, for z > 27,

P(i0) = (: = =) F() + [ (2 —y)" dF(y).

and it now belongs to IT*(Z). It is the same as the traditional FGT index when all
incomes below 2z~ are lowered to 0, again presumably because everyone with z~ or
less is deemed to be in complete deprivation.

A setup for restricted social welfare dominance can proceed analogously. For ex-
ample, welfare W can be defined using weakly increasing utilitarian functions as
W = [u(y) dF(y), where u can be strictly increasing only over some restricted range
of income Z. Verifying whether AF(y) > 0 for all y € Z is then the corresponding
test for restricted first-order welfare dominance. Fixing Z = [0, oo yields traditional
first-order welfare dominance.*

These ideas can also be applied to the fields of finance and insurance. “Value at risk”
(VaR), for instance, is often used by security houses and investment banks to measure
the market risk of their asset portfolios®. VaR represents the maximum amount to
be lost from an investment over a given holding period and with a given probability.
A bank might expect, for instance, that, with a probability of 95%, the value of
its portfolio will decrease by at most $1 million during some period. Let F' be the
distribution of changes in the market value of a portfolio. Then F~!(p) is the VaR at
a 1 — p confidence level.

A related indicator, “probability of ruin” (PoR), serves to capture the risk of insol-
vency or ruin when negative positions in some business lines cannot be offset by capital

4 See for instance Foster and Shorrocks (1988b).

® See inter alia Holton (2003) and Jorion (2001).
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transfers. In insurance, for example, PoR is the probability that claims exceed pre-
miums by some time ¢t. If F' is the distribution of the difference between premiums
and claims, then PoR is given by F'(0), and the probability of premiums not exceeding
claims by at least z is F'(z). PoR is a key parameter in the theory of risk and insurance
and has received considerable attention over the years — see for example Feller (1971),
Beard, Pentikainen and Pesonen (1984), Gerber (1979) and Buhlmann (1970).

In the spirit of the poverty and welfare analysis sketched above, VaR and PoR dom-
inance tests can be performed by comparing their values across two distributions of
portfolio returns and business positions over ranges of p and z, respectively. That
could help check whether these distributions can be “robustly” ordered, and could
also help address regulatory concerns that VaR and PoR measures can be subject to
manipulation by firms. If a distribution shows a lower VaR or a lower PoR over a wide
range of p or z, then a firm’s financial or insurance position can be shown to be better
under that distribution for a broad class of evaluation measures.

As above, however, the immediate difficulty is that, in the tails of such distributions,
the amount of available empirical information will almost always inevitably tend to
zero as z and p approach their lower and upper bounds. It will therefore be generally
impossible to rank two distributions of returns or net positions over their entire un-
restricted support. Checking for restricted VaR and PoR dominance will then again
emerge as the only empirically sensible course to follow.

6. Testing the hypothesis of restricted nondominance

Suppose that we wish to base inference on two random samples drawn from the pop-
ulations A and B of interest. As before, we denote by yi', t = 1,..., N4, and yZ,

s =1,...,Ng, the observations in the samples. Empirical distribution functions F4
and Fp, say, can be computed for the two samples. If FB(y) < FA(y) for all v,
then we say that there is dominance of A by B in the sample. If we are interested
in a prespecified interval [z, 2%], B dominates A in the sample over that interval if
Fg(y) < Fa(y) for all y € [z~,2zT]. In what follows, we assume that we have chosen
an interval [27,27] and that our null hypothesis is nondominance restricted to this
interval. With continuous distributions, the interval is contained in the interior of the
joint support of the distributions. With discrete distributions, it is not always neces-
sary for the interval to be restricted, although it may be. Obviously, it is only when
there is restricted dominance in the sample that there is any possible reason to reject
the null of restricted nondominance. It is impossible, therefore, to reject restricted
nondominance of A by B and also reject restricted nondominance of B by A with one
and the same data set.

We have at our disposal two test statistics to test the null hypothesis that distribu-
tion B does not dominate distribution A, the two being locally equivalent in some
circumstances. Let us redefine the set Y° to be the set of those y;* and yZ that lie
in [27,27]. Then the minimum ¢ statistic of which the square is given by (14) can
be found by minimising #(z) over z € Y°. There is no loss of generality in restricting
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the search for the maximising z to the elements of Y°, since the quantities Nk (z) and
M (=) on which (12) depends are constant on the intervals between adjacent elements
of Y°. Thus the element Z € Y° which maximises (12) can be found by a simple search
over the elements of Y°.

Since the EDFs are the distributions defined by the probabilities given by the uncon-
strained maximisation of the empirical loglikelihood function, they define the uncon-
strained maximum of that function. For the empirical likelihood ratio test statistic,
we also require the maximum of the ELF constrained by the requirement of nondom-
inance. This constrained maximum is given by the ELF (12) for the value Z that
maximises (12). Like Z, Z can be found by search over the elements of Y°.

The constrained empirical-likelihood estimates of the CDFs of the two distributions
K = A, B can be written as

Fr(s)= 3 pln, (21)

yK <z

where the probabilities pX are given by (11) with z = 2. Normally, 7 is the only point
in Y° for which F4(z) and Fp(z) are equal. Certainly, there can be no z for which
FA(z) < Fp(z) with strict inequality, since, if there were, the value of the ELF could
be increased by imposing Fa(z) = Fp(2), so that we would have ELF(z) > ELF(%),
contrary to our assumption. Thus the distributions FA and FB are on the frontier of
the null hypothesis of nondominance, and they represent those distributions contained
in the null hypothesis that are closest to the unrestricted EDFs, for which there is
dominance, by the criterion of the empirical likelihood.

For the remainder of our discussion, we restrict the null hypothesis to the frontier of
nondominance, that is, to distributions such that Fa(z0) = Fp(z9) for exactly one
point zg in [z, 2], and Fa(z) > Fp(z) with strict inequality for all z # zy in that
interval. These distributions constitute the least favourable case of the hypothesis of
nondominance in the sense that, with either the minimum ¢ statistic or the minimum
EL statistic, the probability of rejection of the null is no smaller on the frontier than
with any other configuration of nondominance. This result follows from the following
theorem.

Theorem 2

Suppose that the distribution F4 is changed so that the new distribution is
weakly stochastically dominated by the old at first order. Then, for any z in
the interior of the joint support U, the new distribution of the statistic ¢(z) of
which the square is given by (14) and the sign by that of F4(2)— F5(2) weakly
stochastically dominates its old distribution at first order. Consequently, the
new distribution of the minimum ¢ statistic also weakly stochastically domi-
nates the old at first order. The same is true for the square root of the statistic
LR(z) given by (13) signed in the same way, and its minimum over z. If Fig
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is changed so that the new distribution weakly stochastically dominates the
old at first order, the same conclusions hold.

Proof: In Appendix A. |

Remarks:

The changes in the statement of the theorem all tend to move the distributions in the
direction of greater dominance of A by B. Thus we expect that they lead to increased
probabilities of rejection of the null of nondominance. If, as the theorem states, the
new distributions of the test statistics dominate the old, that means that their right-
hand tails contain more probability mass, and so they indeed lead to higher rejection
probabilities.

We are now ready to state the most useful consequence of restricting the null hypothesis
to the frontier of nondominance.

Theorem 3

The minima over z of both the signed asymptotic ¢ statistic ¢(z) and the
signed empirical likelihood ratio statistic LR'/?(z) are asymptotically pivotal
for the null hypothesis that the distributions A and B lie on the frontier of
restricted nondominance of A by B. The frontier is such that there exists
exactly one zg € [z7, 2] for which F4(z0) = Fp(20), while Fa(z) > Fp(z)
strictly for all 2z # 2 in [z, 27].

Proof: In Appendix A. |

Remarks:

e Theorem 3 shows that we have at our disposal two test statistics suitable for
testing the null hypothesis of restricted nondominance of A by B stochastically at
first order, namely the minima of #(z) and LR/2(z). For configurations that lie
on the frontier of this hypothesis, as defined above, the asymptotic distribution of
both statistics is N(0,1). By Theorem 2, use of the quantiles of this distribution
as critical values for the test leads to an asymptotically conservative test when
there is nondominance inside the frontier.

e It is clear from the remark following the proof of Theorem 1 that both statistics
are invariant under monotonic transformations of the measuring units of income.

e The fact that the statistics are asymptotically pivotal means that we can use
the bootstrap to perform tests that should benefit from asymptotic refinements
in finite samples; see Beran (1988). Specifically, the difference between the true
rejection probability under the null hypothesis and the nominal level of the tests
should converge to zero faster when the bootstrapped statistic is asymptotically
pivotal than otherwise. We study this possibility by means of simulation experi-
ments in the next section, where the bootstrap DGP generates bootstrap samples
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of the same size for each population as in the original sample, using the constrained
empirical-likelihood estimates (21).

When there is dominance in the sample, another approach is to seek the longest interval
[27, 27] for which the hypothesis

max (Fp(z) — Fa(z)) >0 (22)

z€[27,27]

can be rejected. For simplicity, we concentrate in what follows on the lower bound 2.
Since it is estimated from the sample, 2~ is random. It is useful to conceive of it in
much the same way as the limit of a confidence interval. Consider a nested set of null
hypotheses, parametrised by z—, of the form

max (Fp(z) — Fa(z)) >0, (23)

z€[z7,z7]

for some given upper limit 2. As 2~ increases, the hypothesis becomes progressively
more constrained, and therefore easier to reject. For a given nominal level o, 27 is
the smallest value of 2z~ for which the hypothesis (23) can be rejected at level . This
definition is analogous to that of the upper limit 3, of a confidence interval for some
parameter 3. Just as 27 is the smallest value of z~ for which (23) can be rejected,
so B4 is the smallest value of 3y for which the hypothesis 8 = (y can be rejected at
(nominal) level «, where 1 — « is the desired confidence level for the interval.

The analogy can be pushed a little further. The length of a confidence interval is
related to the power of the test on which the confidence interval is based. Similarly,
27 1is related to the power of the test of nondominance. The closer is 2~ to the
bottom of the joint support of the distributions, the more powerful is our rejection of
nondominance.

It is important to realise that the empirically determined 2~ is quite distinct from any
ethically suggested 2~ of the sort discussed in Section 5 above. 2~ depends on, among
other things, the sample sizes, and so, if there truly is dominance in the populations,
2z~ will depend negatively on sample size. The value of 27—, however, is unrelated to
properties of any given samples. Consequently, 2~ is determined by how informative
the data are, while 2™ is determined by a priori considerations, which may be of an
ethical nature in poverty analysis, and, in analyses of financial or insurance data, may
have to do with risk aversion or the regulatory environment.

7. Simulation Experiments

The main purpose of this section is to compare the performance of the bootstrap
test we have proposed with that of the asymptotic version, which is to all intents and
purposes the KPS test. There are various things that we wish to vary in the simulation
experiments discussed in this section and presented in greater detail in Appendix B.
First is sample size. Second is the extent of censoring by the choice of 2z~ and z™T.
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Third is the way in which the two populations are configured. In those experiments in
which we study the rejection probability of various tests under the null, we wish most
of the time to have population A dominated by population B except at one point,
where the CDF's of the two distributions are equal, When we wish to investigate the
power of the tests, we allow B to dominate A to a greater or lesser extent.

Although we could compare the bootstrap test with tests for which the null is domi-
nance of A by B, there is little interest in doing so, since, as we saw in the introduction,
when there is dominance in the underlying distributions, it is easier to fail to reject
the null of dominance of A by B than to reject nondominance of A by B. The lat-
ter permits a stronger conclusion, and so it is quite normal that it should occur less
frequently.

Stochastic dominance to first order is invariant under increasing transformations of
the variable z that is the argument of the CDFs F4 and Fz. It is therefore without
loss of generality that we define our distributions on the [0, 1] interval. We always let
population A be uniformly distributed on this interval: F4(z) = z for z € [0,1]. For
population B, the interval is split up into eight equal segments, with the CDF being
linear on each segment. In the base configuration, the cumulative probabilities at the
upper limit of each segment are 0.03, 0.13, 0.20, 0.50, 0.57, 0.67, 0.70, and 1.00. This is
contrasted with the evenly increasing cumulative probabilities for A, which are 0.125,
0.25, 0.375, 0.50, 0.625, 0.75, 0.875, and 1.00. Clearly B dominates A everywhere
except for z = 0.5, where F)4(0.5) = F(0.5) = 0.5. This base configuration is thus
on the frontier of the null hypothesis of nondominance, as discussed in the previous
section. In addition, we consider nondominance restricted to the interval [z7,27] =

0.1,0.9].

In Table 1, we give the rejection probabilities of two asymptotic tests, based on the
minimised values of #(z) and LR'/?(z), as a function of sample size. The samples
drawn from A are of sizes N4 = 16, 32, 64, 128, 256, 512, 1024, 2048, and 4096. The
corresponding samples from B are of sizes N = 7, 19, 43, 91, 187, 379, 763, 1531, and
3067, the rule being Ng = 0.75N4 — 5. The results are based on 10,000 replications.
Preliminary experiments showed that, when the samples from the two populations
were of the same size, or of sizes with a large greatest common divisor, the possible
values of the statistics, which depend on the quantities Nx(z) and Mk (z), K = A, B
that may have large common factors, were so restricted that their distributions were
lumpy. For our purposes, this lumpiness conceals more than it reveals, and so it seemed
preferable to choose sample sizes that were relatively prime.

As is evident in Table 1, the two test statistics turn out to be very close indeed in
value when each is minimised over z. It is clear from both Table 1 and Figure 4
in Appendix B that the asymptotic tests have a tendency to underreject, a tendency
which disappears only slowly as the sample sizes grow larger. This is hardly surprising.
If the point of contact of the two distributions is at z = zg, then the distribution of
t(20) and LRY?(zy) is approximately standard normal. But minimising with respect
to z always yields a statistic that is no greater than one evaluated at z;. Thus the
rejection probability can be expected to be smaller, as we observe.
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Table 1

Ny a=0.01 a=0.01 a = 0.05 a = 0.05 a=0.10 a=0.10

tmin LRmin tmin LRmin tmin LRmin
16 0.001 0.000 0.005 0.005 0.013 0.017
32 0.000 0.000 0.004 0.004 0.017 0.015
64 0.001 0.001 0.009 0.010 0.026 0.030
128 0.003 0.003 0.021 0.021 0.048 0.047
256 0.001 0.006 0.033 0.033 0.070 0.069
512 0.010 0.010 0.039 0.039 0.082 0.082
1024 0.007 0.007 0.042 0.042 0.087 0.087
2048 0.010 0.010 0.043 0.043 0.087 0.087
4096 0.009 0.009 0.044 0.044 0.092 0.092

Rejection probabilities, asymptotic tests, base case, @ = nominal level

We now consider bootstrap tests based on the minimised statistics. In bootstrapping, it
is essential that the bootstrap samples are generated by a bootstrap DGP that satisfies
the null hypothesis, since we wish to use the bootstrap in order to obtain an estimate
of the distribution of the statistic being bootstrapped under the null hypothesis. Here,
our rather artificial null is the frontier of nondominance, on which the statistics we are
using are asymptotically pivotal, by Theorem 3.

Since the results we have obtained so far show that the two statistics are very similar
even in very small samples, we may well be led to favour the minimum ¢ statistic on
the basis of its relative simplicity. But the procedure by which the empirical likelihood
ratio statistic is computed also provides a very straightforward way to set up a suitable
bootstrap DGP. Once the minimising z is found, the probabilities (11) are evaluated
at that z, and these, associated with the realised sample values, the yf‘ and the yZ,
provide distributions from which bootstrap samples can be drawn.

The bootstrap DGP therefore uses discrete populations, with atoms at the observed
values in the two samples. In this, it is like the bootstrap DGP of a typical resampling
bootstrap. But, as in Brown and Newey (2002), the probabilities of resampling any
particular observation are not equal, but are adjusted, by use of the probabilities (11),
so as to satisfy the null hypothesis under test. In our experiments, we used bootstrap
DGPs determined in this way and generated bootstrap samples from them. For each
bootstrap sample, then, we compute the minimum statistics just as with the original
data. Bootstrap P values are then computed as the proportion of the bootstrap
statistics that are greater than the statistic from the original data.

In Table 2, we give results like those in Table 1, but for bootstrap tests rather than
asymptotic tests. For each replication, 399 bootstrap statistics were computed. Results
are given only for the empirical likelihood statistic, since the ¢ statistic gave results
that were indistinguishable.
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Table 2

Ng a=0.01 a=0.05 o =0.10
32 0.001 0.018 0.051
64 0.003 0.033 0.082
128 0.006 0.049 0.104
256 0.013 0.053 0.106
512 0.010 0.049 0.102
1024 0.010 0.051 0.100

Rejection probabilities, bootstrap tests, base case, @« = nominal level

It is not necessary, and it would have taken a good deal of computing time, to give
results for sample sizes greater than those shown, since the rejection probabilities are
not significantly different from nominal already for N4 = 128.

We see that, like the asymptotic tests, the bootstrap test suffers from a tendency to
underreject in small samples. However, this tendency disappears much more quickly
than with the asymptotic tests. Once sample sizes are around 100, the bootstrap
seems to provide very reliable inference. This is presumably related to the fact that
the bootstrap distribution, unlike the asymptotic distribution, is that of the minimum
statistic, rather than of the statistic evaluated at the point of contact of the two
distributions.

The property whereby bootstrap tests reject more than asymptotic ones is seen in the
results of Appendix B to be quite general. Configurations can be found in which both
tests underreject quite severely in small samples, but the bootstrap test underrejects
less than the asymptotic test. In configurations in which the alternative of restricted
dominance is true, the tendency to underreject leads to very poor power for the asymp-
totic test in samples of size up to around 500, while the bootstrap test has meaningful
power already with a sample size of 64. Details of the simulations leading to these
conclusions are in Appendix B.

8. Illustration using LIS data

We now illustrate briefly the application of the above methodology to real data using
the Luxembourg Income Study (LIS) data sets® of the USA (2000), the Netherlands
(1999), the UK (1999), Germany (2000) and Ireland (2000). The raw data are treated
in the same manner as in Gottschalk and Smeeding (1997), taking household income
to be income after taxes and transfers and using purchasing power parities and price

6 See http://lissy.ceps.lu for detailed information on the structure of these data.
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indices drawn from the Penn World Tables” to convert national currencies into 2000
US dollars. As in Gottschalk and Smeeding (1997), we divide household income by
an adult-equivalence scale defined as h"-®, where h is household size. All incomes are
therefore transformed into year-2000 adult-equivalent US dollars. All household obser-
vations are also weighted by the product of household sample weights and household
size. Sample sizes are 49,600 for the US, 5,000 for the Netherlands (NL), 25,000 for
the UK, 10,900 for Germany (GE) and 2,500 for Ireland (IE).

This illustration abstracts from important statistical issues, such as the fact that the
LIS data, like most survey data, are actually drawn from a complex sampling structure
with stratification and clustering. (Note, however, that in any case the sampling design
information of the LIS data is not available in the publicly accessible datasets.) Note
also that negative incomes have been set to 0 (this affects no more than 0.5% of the
observations), and that we ignore the possible presence of measurement errors in the
data.

Figure 2 graphs the P values of tests of the null hypothesis that F'a(z) < Fp(z) against
the alternative that F4(z) > Fp(z) at various values of z over a range of $1500 to
$7500, for various pairs of countries, and for both asymptotic and bootstrap tests.
(Distribution A is the first country that appears in the legends in the Figure.) In all
cases, bootstrap tests were based on 499 bootstrap samples. We set z~ to $1500 and
2T to $7500 since these two bounds seem to be reasonable enough to encompass most
of the plausible poverty lines for an adult equivalent. This “ethically suggested” $1500
is also where we are able to start ranking the UK and the US. The asymptotic and
bootstrap P values are very close for the comparisons of the US with either Germany
or the UK. The bootstrap P values are slightly lower than the asymptotic ones for the
NL-US comparison and somewhat larger for the US-IE one. These slight differences
may be due to the smaller NL and IE samples. Although the differences are not
enormous, they are significant enough to make bootstrapping worthwhile even if one
is interested only in point-wise tests of differences in dominance curves.

Figure 3 presents the results of similar tests but this time over intervals of the
form [$1500, 21| for various values of z*. The null hypothesis is therefore that
Fa(z) < Fp(2) for at least some z in [$1500, 2] against the alternative hypothesis
that Fa(z) > Fp(z) over the entire range [$1500,2"]. For the NL-US comparison,
note first that Fys(z) is always lower than Fyp(z) but that the difference between
the two empirical distribution functions is small for z between around $4800 to about
$10000. Although it is therefore difficult to reject the null hypothesis of nondominance
for much of the range of z* values, the bootstrap P values are significantly lower than
their asymptotic counterparts, as is to be expected, given the greater power of the
bootstrap test procedure seen in the simulation experiments. A similar result is found
for a US-UK nondominance test. The US-GE comparison yields very close asymptotic
and bootstrap P values, and both procedures would reject at a level of 5% the null

" See Summers and Heston (1991) for the methodology underlying the computation of
these parities, and http://pwt.econ.upenn.edu/ for access to the 1999-2000 figures.

— 921 —



hypothesis of nondominance of Germany over the US for a range of approximately
[$1500, $6750]. A US-IE test of nondominance generates bootstrap P values that are
larger than the asymptotic ones. Again, this is in contrast with the other compar-
isons, and it also brings back to mind that bootstrap and asymptotic results can differ
somewhat with small samples and tests covering the tails of distributions.

Table 3 illustrates how the differences in the power of the asymptotic and bootstrap
tests can influence the ranges over which we may reject nondominance of UK over
the US. The P values of the first two reported tests are both equal to 5%, but the
asymptotic test is over the range Z = [$1550, $5577] and the bootstrap test is over
the wider range Z = [$1550, $5680]. Thus, using a bootstrap test extends by about
$100 the range Z of poverty lines over which we can declare — at a level of 5% — the
UK to have less poverty than the US for all of the poverty indices that belong to
II'(Z) (recall (19)), and it is therefore more powerful than the asymptotic test. A
similar result applies for a test level of 10%: the range over which we can reject that
IT'(Z) poverty is no lower in the UK is Z = [$1068, $5698] for the asymptotic test and
Z = [$1068, $5784] for the bootstrap test. Almost as importantly, given the prevalence
of the use of the poverty headcount index in policy and poverty analysis circles, the
bootstrap procedure extends the range of poverty lines over which we can confidently
and jointly declare the headcount to be lower in the UK than in the US.

Table 3
Type of tests Range of z P values
Asymptotic [$1550, $5577] 5%
Bootstrap [$1550, $5680] 5%
Asymptotic [$1068, $5698] 10%
Bootstrap [$1068, $5784] 10%

P values of four tests of the null hypothesis that the UK does not dominate the US

9. Possible Extensions

In the literature on testing the null of dominance, the paper that deals with the widest
set of conditions that we know of is Linton, Maasoumi, and Whang (2005), henceforth
LMW. There, the samples may be serially correlated, and, if the observations in two
samples can be paired, correlation between the paired observations is allowed for. In
addition, this paper considers hypotheses about more than two samples, and also treats
samples of “generated” data, where the observations depend on parameters that are
estimated using the same data as those used for testing for dominance. Finally, orders
of stochastic dominance higher than the first are taken into account. In this section,
we briefly discuss how one may test for restricted nondominance in situations of this
sort, and how the procedures of this paper can be extended in order to do so.
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One of the hypotheses considered by LMW is that, among a set of distributions, or
prospects as they call them, there is at least one that stochastically dominates at least
one of the others. From the point of view of testing for nondominance, the analogous
hypothesis is that no distribution dominates any other. For, if this hypothesis is
rejected, all that remains is the null hypothesis of LMW, although, in practice, with
continuous distributions, the hypothesis of nondominance must be replaced by one of
restricted nondominance. The hypothesis that no distribution dominates any other
can be rejected only if one distribution dominates another in the sample. In this case,
we can perform a pairwise test of the sort we have developed. If there is more than one
pair with restricted dominance in the sample, the intersection-union principle allows us
to use the most significant pairwise rejection to determine the P value for the overall
hypothesis.

If the samples to be compared are, for instance, generated as residuals from the linear
regression of some directly observed variables on other directly observed covariates, or,
more generally, if the samples depend on estimated parameters, the empirical likelihood
problem can be posed in such a way as to include these parameters in the maximisation
problem. Solving this problem simultaneously gives parameter estimates and a set of
probabilities that implicitly define weighted EDF's that satisfy the null of restricted
nondominance. In this way, the parameter estimates are obtained under the null, and
so, when the null is true, are in general more efficient than unrestricted estimates.

Higher orders of stochastic dominance can be dealt with by using an order-s constraint
in (5) (s =1,2,...) of the form (for given z)

oyt <G -yt) T = > PRIl <2)—yl) (24)

yfeyA yBeyB

A possible correlation within paired observations can also be taken into account by
considering the joint ELF of A and B in the constrained and unconstrained maximisa-
tion problem. The details are shown in Davidson (2007), which extends the approach
of this paper. For both the higher-order and the dependence extensions, it can inter
alia be shown that the appropriately redefined ¢ and LR statistics are asymptotically
pivotal on the frontier of the null hypothesis of nondominance.

Serially correlated data pose a harder problem, unless one is prepared to model the
serial dependence parametrically, but it may be possible to adopt a modified version
of the LMW approach and use a subsampling bootstrap for inference. This remains a
problem for future work.

10. Discussion and Conclusions

In this paper, we have adopted the point of view that, if we really wish to demon-
strate statistically that the distribution of population B stochastically dominates that
of population A at first order, then it is appropriate to use a null hypothesis of non-
dominance, since, if we reject it, all that is left is dominance. However, we show that
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it is impossible to reject this null at any conventional significance level if we have con-
tinuous distributions and test for nondominance at all of the observations in samples
drawn from them. With discrete distributions, this problem does not necessarily arise,
and indeed, in practice, many investigators explicitly or implicitly discretise their sam-
ples by setting up a grid of points and agglomerating observations in the samples on
to atoms at the points of the grid.

If we are ready in the case of continuous distributions to censor the tails of the distri-
butions, and thus to seek restricted dominance, then we have seen that it is easy to set
up both asymptotic and bootstrap tests for the null of nondominance. Note that such
censoring will also protect at least partially against measurement errors and outliers
in the tails of the distributions. We consider two seemingly different statistics, one
the minimum ¢ statistic of KPS, the other an empirical likelihood ratio statistic. We
show that the two statistics typically take on very similar values in practice, and that
inference using one of them is indistinguishable from inference using the other. The
advantage of the empirical likelihood ratio statistic is that, in order to compute it, we
compute a set of probabilities that estimate the probabilities of the populations under
the hypothesis that they are at the frontier of nondominance, that is, that they are
such that there is dominance of A by B everywhere except at exactly one point in the
interior of the common support of the distributions.

This fact makes it possible to use the bootstrap in order to estimate the distributions
of either one of the two statistics under data-generating processes that are on the
frontier of nondominance. In fact, we show that the statistics are asymptotically
pivotal on the frontier, so that we can expect that the bootstrap will provide more
reliable inference than the asymptotic distributions of the statistics. This turns out
to be the case in a selection of configurations that we study by means of simulation
experiments. Our preferred testing procedure is thus a bootstrap procedure, in which
the bootstrap samples are generated using the probabilities computed in the process of
evaluating the empirical likelihood ratio statistic. It does not seem to matter whether
the minimum ¢ statistic or the likelihood ratio statistic is used.

Most of the literature on testing relations between a pair of distributions deals with
tests for which the null hypothesis is dominance. It is plausible to suppose that these
tests too can be dealt with by the methods of empirical likelihood, but it is less simple
to do so. For this sort of test, we do not reject the null of dominance unless there
is nondominance in the sample. In that case, we wish to find the distributions that
respect the null of dominance and are closest, by the criterion of the empirical like-
lihood, to the unrestricted estimates that exhibit nondominance. These distributions
must of course lie on the frontier of the null hypothesis. In general, however, it is not
enough to require that there should be just one point y € Y at which the restricted
estimates coincide. In Wolak (1989), this matter is considered for the case of discrete
distributions, and it is shown that locating the pair of distributions on the frontier of
the null closest to a pair of sample distributions which display nondominance involves
the solution of a quadratic programming problem. Further, the asymptotic distribu-
tion of the natural test statistic, under a DGP lying on the frontier, is a mixture of
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chi-squared distributions that is not as simple to treat as the standard normal asymp-
totic distributions found in this paper. It remains for future research to see whether
empirical likelihood methods, used with continuous distributions, can simplify tests
with a null of dominance.

The empirical likelihood methods of this paper could also prove useful for tests of
a general intersection-union type, for which, as in this paper, the null hypothesis is
formulated as a union of multiple hypotheses and the alternative is the intersection
of the contraries of these multiple hypotheses. There are numerous examples of this
in economics, such as when we want to check whether a ranking is valid for a range
of parameter values (for instance, of equivalence scales, prices indices, behavioural
elasticities), or for an array of measurement procedures, or for a set of socio-economic
groups or environments.
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Appendix A
Proof of Theorem 1:
For K = A, B, Ng(z) = NgFg(z) and Mg (z) = Ng (1 — Fx(z)). Therefore

Ng(2)log Nk (z) + Mk (2) log Mk (z)
=Nk log Ng + NK(FK(Z) lOgFK(Z) + (1 — FK(Z)) log(l — FK(ZD) (25)

Further,
( NK(z)> log< Z NK(z)> + ( MK(2)> log( Z MK(Z)> =
K=A,B K=A,B K=A,B K=A,B
NlogN+< 3 NKFK(z)) log( %FK(z)>+
K=A,B K=A,B
( Y Nk —FK(z))) 1og( 3 %(1 —FK(z))) (26)
K=A,B K=A,B

From (13), we see that LR(z) is equal to twice the expression

Z (NK(z) log Nk (z) + Mk (z)log Mk (z) — Nk logNK) + Nlog N
K=A,B

(X Ne@)os( X Nk() - (X Mil=)log( D Mx(2))
K=A,B K=A,B K=A,B K=A,B

From (25) and (26), this expression can be written as

NAFA(Z) + NBFB(Z)>
N — (NAFA(Z) + NBFB(Z))>
N(1 - Fg(2)) '

— Z NKFK(Z) log(

K=A,B

- Y Ng(1- FK(z))log(

K=A,B

Consider now the first sum in the above expression, which can be written as
—~(NaFa(2) + NpEp(z)) log(NaFa(2) + NpFp(z))
+NaFa(2)log NFa(2) + NpFg(z)log NFp(z). (28)

Define A(z) = F4(z) — Fp(2). Then we see that NaF4(2) + NpFp(z) = NEg(z) +
N4 A(z). Making these substitutions lets us write expression (28) as

_(NFB(Z) + NAA(z)) (10g NFB(z) + 10g<1 + ng(z)>)
+NA(FB(Z) + A(Z))(log NFB(Z) + log(l + A(z)/FB(z))) 4 NBFB(Z) log NFB(Z).

— 926 —



Taylor expanding up to second order in A(z) then gives

1 N3A%(2)

(=N + Na+ Np)Fp(2)log NFp(2) = NaA(2) + N (o) — NAA(2)log NFg(2)
B\Z

_Nf‘AQ(z) B _lNAAQ(z) Mo b NAA%(2) 12

Nin() + N4 A(2) S E() + N4 A(z)log NEg( )+—F3<z) + O, (N7,

since, under our assumptions, Nx = O,(N) and A(z) = Op(N~'/2). The term
independent of A(z) in the above expression and the terms linear in A(z) all cancel,
and so what remains is just a term of order unity and a remainder that tends to zero
as N — oo:

NA(N — NA)AQ(Z)

l NANBAQ(Z’)
2 NFB(Z)

1
2 NFg(z)

+Op(NTY2) = +Op(NTH2).

Since Fip(z) = F(z) 4+ O,(N~1/?), this expression is equal to NyNpA?(z)/2NF(z) to
the same order. An exactly similar calculation for the second line of (27) shows that,
to the same order of approximation, it is equal to NaNpA?(2)/2N(1 — F(2)). The
entire expression (27) is therefore

lNANBA2(Z) 1 1 . l NANBAZ(Z)
(F > 2

—1/2
2N () T1-FG) NF1—F(z)) TOW ) (29)

Finally, since No/N — r as N — oo and Ng/N — 1 —r, we see that the large-sample
limit of LR(z), which is twice that of (29), is

r(l—r) ) 5
plim NA=(z),
FE0 - F) S
which is the leading-order term on the right-hand side of (15), as required. |

Proof of Theorem 2:

The proof relies on the following construction, based on that in the proof of Lemma 1
on page 84 of Lehmann (1986).

Consider two CDFs F; and F5 defined on the real line such that F; weakly stochasti-
cally dominates Fy at first order, and a random variable V distributed uniformly on
[0,1]. As in Lehmann, define the quantile functions f;, i = 1,2, by the relation

fily) = inf{z| Fi(z—) <y < Fi(z)}.

Clearly the f; are weakly increasing and such that f;(F;(z)) < z and F;(fi(y)) >y
for all real x and y for which the functions are defined. In addition, the inequalities
fi(y) < x and y < F;(z) are equivalent. Thus

Pr(fi(V) <) =Pr(V < Fi(z)) = Fy(=),
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so that the random variable f;(V') has CDF F;. Since Fi(z) < Fy(z) for all real x
by the hypothesis of weak stochastic dominance, it follows that fi(y) > fao(y) for all
real y.

Let {u;}, i = 1,...,N be a sequence of IID “random numbers”, each distributed
uniformly on [0,1]. These random numbers can generate two IID random samples,
Y={y;} and Z ={z},i=1,...,N, with y; = fi1(u;) and z; = fa(u;). The sample
{y;} is a sample drawn from the distribution Fy, while {z;} is drawn from F». Since
fi(u) > fa(u) for all u, the EDF of ) stochastically dominates that of Z at first order.

Consider now two random samples of N IID draws, generated by the same set of
random numbers, the first from distribution F'4, the second from a new distribution Fla
that is weakly stochastically dominated by F4. The above result demonstrates that
the EDF F4 of the first sample is nowhere greater than the EDF F 4 of the second.

We show below that the square root statistics ¢(z) and LR(z) defined in the statement
of the theorem are non-decreasing functions of F4(z) for all z. Thus, for each z,
t(z) < t/(z) where t(z) is the statistic computed using the first sample and ¢’(z) is that
computed using the second sample. It follows that the minimum statistic for the first
sample, t, say, is no greater than the minimum statistic ¢, for the second sample.

Let U denote the set of random numbers {u; } for which ¢/, < x for a given real value x.
Then t, < z for all sets of random numbers in U. Thus Pr(t, < z) > Pr(t, < x),
which means that the distribution of ¢/, weakly stochastically dominates that of t,, as
stated by the theorem.

The same arguments apply to the minimum LR statistic, and also to changes in F'p
as described in the statement of the theorem, since, as seen below, ¢(2) and LR(z) are
non-increasing functions of Fp(z2).

We compute the derivative with respect to F)4(z) of t(z) as given by the square root
of expression (14). This square root can be written in the form

c— =Y
(e(1-a) + k)1/2 (30)

where & = Fa(2), y = F(2), k = (N4/Np)Eg(2)(1 — Fp(z)), and C is a positive
constant. The derivative of expression (30) with respect to x is C' times

2¢(1 —x) + 2k — (x — y)(1 — 2x)
2(z(1— ) + k)3/2 .

This expression is certainly positive unless x —y and 1—2z have the same sign. Suppose
first that z < 1/2 and x —y > 0. Then, since y > 0, x > x — y and so

20(1—2z) — (x —y)(1 —22) > 2z(1 —z) —z(1 — 22) = x > 0.
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Similarly, if x > 1/2 and z —y < 0, we see that |z —y| <1 —z. Then
2ec(l—z)—(y—2)2z—1)>22(1—2)—(1—2)2z—-1)=1—2 > 0.

Thus the derivative is positive in all cases. The proof that the derivative of ¢(z) with
respect to Fg(z) is negative is exactly similar.

The statistic LR(z) is given by twice the expression (27). The first line of (27) is in
turn equal to (28), of which the derivative with respect to Fl4(z) is

~Nalog(NaFa(z) + NgFp(2)) — Na+ Nalog NFs(2) + (Na/N)N
NpA
=—Ngy log(l — BA—(Z))
NFA(Z)
Since Np/(NE4(z)) is positive, this expression has the same sign as A(z). Similarly,
the derivative of the second line of (27) with respect to Fa(z) is

NpA

Natog(1 4 220y
N(1 = Fa(z))

of which the sign is also the same as that of A(z). Since the square root statistic is

defined to have the same sign as A(z), its derivative with respect to F'4(z) is everywhere

nonnegative. This completes the proof. [

Proof of Theorem 3:

Under the restricted null hypothesis of the statement of the theorem, the statistic
t(zg) is distributed asymptotically as N(0,1). The probability that t(zg) < z1_q,
where z1_,, is the (1 — a) quantile of N(0, 1), therefore tends to 1 — a as N — oc.
The probability that the minimum over z € Y° of ¢(z) is less than z;_, is therefore
no smaller than 1 — a asymptotically. Thus the probability of rejecting the null of
nondominance on the basis of the minimum of #(z) is no greater than «. This is the
standard intersection-union argument used to justify the use of the minimum of ¢(z)
as a test statistic.

In Theorem 2.2 of KPS, it is shown that, if the distributions A and B belong to the
restricted null hypothesis, then the probability of rejecting the null is actually equal
to a asymptotically. We conclude therefore that the asymptotic distribution of the
minimum of #(z) is N(0,1). Since this is a unique distribution, it follows that this
statistic is asymptotically pivotal for the restricted null. The local equivalence of (z)
and LR'/?(z) shown in Theorem 1 then extends the result to the empirical likelihood
ratio statistic. [
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Appendix B

Comparison of asymptotic and bootstrap tests

In Figure 4, we graph P value plots for the minimised values of ¢(z) and LR'/?(z) over
the full range from 0 to 1. A P value plot is of the CDF of the P value of a test. See
Davidson and MacKinnon (1998) for a discussion of P value plots.

Two sample sizes are shown: Ny = 32 and N4 = 256. In the latter case, it is hard
to see any difference between the plots for the two statistics, and even for the much
smaller sample size, the differences are plainly very minor indeed.

In the experimental setup that gave rise to Figure 2, it was possible to cover the
full range of the statistics, since, even when there was nondominance in the sample,
we could evaluate the statistics as usual, obtaining negative values. This was for
illustrative purposes only. In practice, one would stop as soon as nondominance is
observed in the sample, thereby failing to reject the null hypothesis.

In Figure 5, P value plots are given for Ny = 32 and 128, for the asymptotic and
bootstrap tests based on the empirical likelihood statistic. This time, we show results
only for P values less than 0.5. In the bootstrap context, if there is nondominance in
the original samples, no bootstrapping is done, and a P value of 1 is assigned. If there
is dominance in the original samples, an event which under the null has a probability
that tends to one half as the sample sizes tend to infinity, then bootstrapping is
undertaken; each time the bootstrap generates a pair of samples without dominance,
since the bootstrap test statistic would be negative, and so not greater than the positive
statistic from the original samples, this bootstrap replication does not contribute to
the P value. Thus a bootstrap DGP that generates many samples without dominance
leads to small P values and frequent rejection of the null of nondominance.

Effect of censoring

We now look at the effects of censoring in the tails of the distributions. In Figure 6
are shown P value plots for the base case with N4 = 128, for different amounts of
censoring. Results for the asymptotic test are in the left panel; for the bootstrap test
in the right panel. It can be seen that, for the asymptotic test, the rejection rate
diminishes steadily with z~ over the range [0.01, 0.10], where the null is restricted
nondominance over the interval [z~,1 — z7]. This behaviour is entirely as expected,
in accord with the discussion in Section 4. For values of 2™~ in the range 0.10 to 0.16,
the P value plots are essentially identical.

With the bootstrap, dependence on the extent of censoring is considerably less: for
P values up to around 0.3, and 2z~ greater than 0.03, the dependence is very slight.
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Other configurations that satisfy the null

The base case we have considered so far is one in which B dominates A substantially
except at one point in the middle of the distribution. We now consider two other
configurations, the first in which the two distributions still touch in the middle, but
the dominance by B is less elsewhere. The cumulative probabilities at the upper limits
of the eight segments in this case are 0.1, 0.2, 0.3, 0.5, 0.6, 0.7, 0.8, and 1.0. The second
configuration has the two distributions touching twice, for values of z equal to 0.25
and 0.75. The cumulative probabilities are 0.10, 0.25, 0.35, 0.45, 0.55, 0.75, 0.85, and
1.00. Results are shown in Figure 7, with 2z~ set to 0.1, and N4 = 64 and Np = 43.
The tests are based on the minimum ¢ statistic. As usual, the empirical likelihood
statistic gives essentially indistinguishable results.

For both configurations, all the tests are conservative, with rejection probabilities well
below nominal in reasonably small samples. In the second configuration, in which the
distributions touch twice, the tests are more conservative than in the first configuration.
In both cases, it can be seen that the bootstrap test is a good deal less conservative
than the asymptotic one. However, in all cases, the P value plots flatten out for
larger values of P, because the P value is bounded above by 1 minus the proportion of
bootstrap samples in which there is nondominance. In these two configurations, the
probability of dominance in the original data, which is the asymptote to which the
P value plots tend, is substantially less than a half.

Another configuration that we looked at needs no graphical presentation. If both
populations correspond to the uniform distribution on [0, 1], rejection of the null of
nondominance simply did not occur in any of our replications. Of course, when the
distributions coincide over their whole range, we are far removed from the frontier of
the null hypothesis, and so we expect to have conservative tests.

Power

We now turn our attention to considerations of power. We study two configurations
in which population B dominates A. In the first, we modify our base configuration
slightly, using as cumulative probabilities at the upper limits of the segments the values
0.03, 0.13, 0.20, 0.40, 0.47, 0.57, 0,70, and 1.00. There is therefore clear dominance in
the middle of the distribution. The second configuration uses cumulative probabilities
of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 1.0. This distribution is uniform until the last
segment, which has a much greater probability mass than the others.

In Figure 8, various results are given, with those for the first configuration in the
upper left-hand panel and for the second in the other two panels. Both asymptotic and
bootstrap tests based on the minimum ¢ statistic are considered, and z~ is set to 0.1.
There is nothing at all surprising in the left-hand panel. We saw in Figure 4 that,
with the base configuration, the asymptotic test underrejects severely for N4 = 32
and Np = 19. Here, the rejection rate is still less than the nominal level for those
sample sizes. With the base configuration, the bootstrap test also underrejects, but
less severely, and here it achieves a rejection rate modestly greater than the significance

~ 31—



level. For Ny = 64 and Np = 43, the increased power brought by larger samples is
manifest. The asymptotic test gives rejection rates modestly greater than the level,
but the bootstrap test does much better, with a rejection rate of slightly more than
14% at a 5% level, and nearly 28% at a 10% level.

In the second configuration, power is uniformly much less. If we were to change
things so that the null of nondominance was satisfied, say by increasing the cumulative
probability in population B for z around 0.25, then the results shown in Figure 5
indicate that the tests would be distinctly conservative. Here we see the expected
counterpart when only a modest degree of dominance is introduced, namely low power.
Even for N4 = 128, the rejection rate of the asymptotic test is always smaller than the
significance level. With the larger sample sizes of the right-hand panel, some ability
to reject is seen, but it is not at all striking with N4 = 256. In contrast, the bootstrap
test has some power for all sample sizes except N4 = 64, and its rejection rate rises
rapidly in larger samples, although rejection rates comparable to those obtained with
the first configuration with N4 = 64 are attained only for N4 somewhere between 256
and 512.

The possible configurations of the two populations are very diverse indeed, and so
the results presented here are merely indicative. However, a pattern that emerges
consistently is that bootstrap tests outperform their asymptotic counterparts in terms
of both size and power. They are less subject to the severe underrejection displayed by
asymptotic tests even when the configuration is on the frontier of the null hypothesis,
and they provide substantially better power to reject the null when it is significantly
false.

Conventional practice often discretises data, transforming them so that the distribu-
tions have atoms at the points of a grid. Essentially, the resulting data are sampled
from discrete distributions. A few simulations were run for such data. The results were
not markedly different from those obtained for continuous data censored in the tails.
The tendency of the asymptotic tests to underreject is slightly less marked, because
the discretisation means that the minimising z is equal to the true (discrete) zy with
high probability. However, the lumpiness observed when the two sample sizes have a
large greatest common divisor is very evident indeed, and prevents simulation results
from being as informative as those obtained from continuous distributions.
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Figure 1: Tests of dominance and non-dominance
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Figure 2: P values for dominance at given points
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Figure 3: P values for restricted dominance over interval
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Figure 4: P value plots for asymptotic tests
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Figure 5: P value plots for asymptotic and bootstrap tests

40 —



Rejection rate
0.5

0.0 -z : | !
0.1 0.2 0.3 0.4 05

Nominal level

0.5

0.4

0.3 1

0.2 1

0.1

0.0 & : | !
0.1 0.2 0.3 0.4 0.5

Nominal level

Figure 6: Varying amounts of censoring; base case, N4 = 128
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Figure 7: Alternative configurations, N4 = 64, z= = 0.1

49 -



0.7

0.6

0.5

Ny = 32, asy
Ny = 64, asy
Ny = 32, l,)o(}{',
Ny = 64,1126&

0.7

0.6

0.5

Ny = 64, asy
Ny =128, asy

N 4 = 64, boot
N = 128, boot

0.7 Jitad
...... Na =256, asy
06 [ NA = 512, asy,/’
...... Na = 256, héot e
05—+ ----- Na = 512 boot " .
0.4
0.3
0.2
0.1+
0.0 == T T I I

0.3

0.4

0.5

Rejection rate on vertical axis, nominal level on horizontal
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