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1 Introduction

Contrary to models with a finite number of infinitely-lived agents in which

the competitive equilibrium is Pareto efficient and locally unique, Pareto inef-

ficiency and local multiplicities arise whithin models with an infinite number

of finitely-lived agents.1 The possibility of dynamic inefficiency in the over-

lapping generations (OLG) model with production has been initially demon-

strated by Diamond [12]. It is related to the over-accumulation of the capital

stock with respect to the Golden Rule. In other words, it is associated with

too high a saving rate, and a Pareto-improvement can be achieved by al-

lowing the current generation to devour a portion of the capital stock while

leaving the consumption of all future generations intact.

In spite of the sub-optimality of the competitive equilibrium in the Dia-

mond [12] OLG model, it is well-known that, under gross substitution in con-

sumption, endogenous business cycle fluctuations cannot occur. In contrast,

in two-sector models, endogenous fluctuations arise when the consumption

good sector is capital intensive even under a gross subtitutability assump-

tion. The input allocations across sectors, which are driven by Rybczinsky

and Stolper-Samuelson effects, then generate oscillations of the capital ac-

cumulation path.2 Moreover, local indeterminacy and expectations-driven

fluctuations may also arise.

Interestingly, and as this was shown by Reichlin [22], local indeterminacy

and endogenous fluctuations can occur under dynamic inefficiency in a two-

sector OLG model with Leontief technologies. However, a clear understand-

ing of the relationship between dynamic efficiency and local determinacy with

positive elasticities of capital-labor substitution is still missing.

The central question raised in this paper is then whether the dynamic

1See Kehoe et al. [19] and Woodford [24].
2See Galor [15] and Venditti [23].
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efficiency of the intertemporal allocation of capital may be a strong enough

property of the competitive equilibrium to prevent the occurrence of endoge-

nous fluctuations. The answer is positive: we prove that the conditions for

dynamic efficiency rule out aggregate volatility derived from local sunspot

equilibria, and that local indeterminacy arises when the steady state is dy-

namically inefficient.3 Our conclusions appear to be at odd with previous

analysis of OLG models in which it is claimed that there is no general con-

nection between determinacy of equilibrium and Pareto efficiency. But, all

the known examples of the co-existence of local indeterminacy and Pareto

efficiency are based either on pure exchange economies or on production

economies in which the standard assumption of gross substitutability is vio-

lated (see for instance Kehoe and Levine [18], Woodford [24]).

We consider a formulation of the two-sector OLG model based upon stan-

dard sectoral technologies. We also assume a life-cycle utility function which

is linearly homogeneous with respect to young and old consumptions so that

the propensity to consume, or equivalently the share of first period con-

sumption over the wage income, only depends on the gross rate of return

on financial assets and the saving function is linear with respect to wage.

Building on this property, we provide simple conditions on the propensity to

consume for the existence of a steady state.

Our analysis first focuses on the dynamic efficiency properties of compet-

itive equilibria. We show that the steady state is lower than the Golden Rule

capital stock if and only if the share of first period consumption over the wage

income is large enough. We also prove that under this condition, any com-

petitive equilibrium converging to the steady state is dynamically efficient.

The dynamic efficiency properties of the two-sector OLG model has not been

3Considering an aggregate OLG model augmented to include endogenous labor, Caz-

zavillan and Pintus [8, 9] also show that local indeterminacy is ruled out if the steady

state is characterized by an under-accumulation of capital.

2



studied until the recent contribution by Cremers [10]. She shows, as in the

current paper, that it is associated with a stationary capital stock lower than

the Golden Rule level. However, her results are based upon the assumption

of a globally unique monotonically converging perfect foresight equilibrium,

and she does not provide any conditions on the fundamentals that ensure the

existence of a steady state which is exceeded by the Golden-Rule. In opposi-

tion to her contribution, our dynamic efficiency condition applies even in the

case of a non-monotonic convergence process of the competitive equilibrium.

On this basis, our aim is not to provide an exhaustive analysis of the

relationships between dynamic efficiency and local determinacy, but to focus

on reasonable restrictions on the fundamentals. Under the standard assump-

tions of gross substitution in consumption and of a capital intensive consump-

tion good, we prove in a first step that dynamic efficiency holds under three

conditions: i) the share of first period consumption over the wage income is

large enough, ii) the elasticity of intertemporal substitution in consumption

is low enough, and iii) the sectoral elasticities of capital-labor substitution

are large enough. But at the same time, we show that these conditions, which

are compatible with plausible parameterizations of the fundamentals, imply

the local determinacy of the generically unique steady state and thus rule out

local sunspot fluctuations. In a second step, we consider the configuration

with a low enough share of first period consumption over the wage income

which implies that the steady state is larger than the Golden Rule capital

stock and thus that the equilibrium is dynamically inefficient. We then prove

that local indeterminacy easily arises without requiring strong technological

restrictions but provided the elasticity of intertemporal substitution in con-

sumption is large enough.

This paper is organized as follows: the next section sets up the basic

model. In Section 3 we prove the existence of a steady state and we give con-

ditions for dynamic efficiency of the intertemporal competitive equilibrium.
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Section 4 provides a new result on the joint occurrence of dynamic efficiency

and local determinacy. Section 5 contains some concluding comments. All

the proofs are given in a final Appendix.

2 The model

2.1 Consumption and savings

The economy is populated by finitely-lived agents. In each period t, Nt

persons are born, and they live for two periods. In their first period of

life (when young), the agents are endowed with one unit of labor that they

supply inelastically to firms. Their income directly results from the real

wage. They allocate this income between current consumption and savings

which are invested in the firms. In their second period of life (when old),

they are retired. Their income is given by the return on the savings made at

time t. As they do not care about events occurring after their death, they

consume their income entirely. The preferences of a representative agent

born at time t are thus defined over his consumption bundle (ct, when he is

young, and dt+1, when he is old) and are summarized by the utility function

u(ct, dt+1/B), with B > 0 a scaling constant.

Assumption 1. u(c, d/B) is C2 over R
2
+, increasing with respect to each

argument (u1(c, d/B) > 0, u2(c, d/B) > 0), concave over R
2
++ and homo-

geneous of degree one. Moreover, for all c, d > 0, limd/cB→0 u1/u2 = 0 and

limd/cB→+∞ u1/u2 = +∞, where u1/u2 stands for u1(1, d/cB)/u2(1, d/cB).4

Each agent is assumed to have 1 + n > 0 children so that population is

increasing at constant rate n, i.e., Nt+1 = (1+n)Nt. Under perfect foresight,

4Note that with homothetic preferences such that U(c, d/B) = f(u(c, d/B)), with f(x)

monotone increasing and u(c, d/B) linear homogeneous, all our results still holds.
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and considering wt and Rt+1 as given, a young agent maximizes his utility

function over his life-cycle as follows:

max
ct,dt+1,φt

u(ct, dt+1/B)

s.t. wt = ct + φt, Rt+1φt = dt+1, and ct, dt+1, φt ≥ 0
(1)

Assumption 1 implies the existence and uniqueness of interior solutions for

optimal saving φt. Using the homogeneity of u(ct, dt+1/B), the first order

conditions state as:

u1(1,dt+1/ctB)
u2(1,dt+1/ctB)

≡ g(dt+1/ctB) = Rt+1/B (2)

ct + dt+1

Rt+1
= wt (3)

φt = wt − ct (4)

The normality of ct implies g′(d/cB) > 0 and we get under Assumption 1:

ct = u1(1,g−1(Rt+1/B))
u(1,g−1(Rt+1/B))

wt ≡ α(Rt+1/B)wt (5)

with α(R/B) ∈ (0, 1) the propensity to consume of the young, or equivalently

the share of first period consumption over the wage income. We also conclude

that the first order condition (4) becomes:

φt = φ(wt, Rt+1/B) ≡ (1 − α(Rt+1/B))wt (6)

In the rest of the paper we introduce the following standard Assumption:

Assumption 2. The consumption levels ct and dt+1 are gross substitutes.

Such a restriction implies that the saving function (6) is increasing with

respect to the gross rate of return R. Note also that Assumption 2 is satisfied

if and only if the elasticity of intertemporal substitution in consumption

γ(R/B), as given by:5

γ(R/B) = u1(1,g−1(R/B))u2(1,g−1(R/B))
u(1,g−1(R/B))u12(1,g−1(R/B))

, (7)

is larger than 1.

5Taking the elasticity of (2), and considering the Euler identity applied to u1, i.e.,

u11(1, g−1(R/B)) + u12(1, g−1(R/B))g−1(R/B) ≡ 0, generate γ(R/B) as the elasticity of

g−1(R/B).
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2.2 Production

There are two produced goods, one consumption good y0 and one capital

good y. The consumption good, which cannot be used as capital, is entirely

consumed, and the capital good cannot be consumed. There are two inputs,

capital and labor. We assume complete depreciation of capital within one

period and also that labor is inelastically supplied. Each good is produced

with a standard constant returns to scale technology:

y0 = f 0(k0, l0), y = f 1(k1, l1)

with k0 + k1 ≤ k, k being the total stock of capital, and l0 + l1 ≤ ℓ, ℓ being

the total amount of labor.

Assumption 3. Each production function f i : R
2
+ → R+, i = 0, 1, is C2,

increasing in each argument, concave, homogeneous of degree one and such

that for any x > 0, f i
1(0, x) = f i

2(x, 0) = +∞, f i
1(+∞, x) = f i

2(x, +∞) = 0.

By definition we have y ≤ f 1(k, ℓ). The monotonicity properties and the

Inada conditions in Assumption 3 then imply that there is k̄(ℓ) > 0 solution

of k − f 1(k, ℓ) = 0 such that f 1(k, ℓ) > k when k < k̄(ℓ), and f 1(k, ℓ) < k

when k > k̄(ℓ). It follows that it is not possible to maintain stocks beyond

k̄(ℓ). The set of admissible 3-uples (k, y, ℓ) is thus defined as follows

K̃ =
{

(k, y, ℓ) ∈ R
3
+|0 < ℓ, 0 ≤ k ≤ k̄(ℓ), 0 ≤ y ≤ f 1(k, ℓ)

}

(8)

There are two representative firms, one for each sector. For any given

(k, y, ℓ), profit maximization is equivalent to solving the following problem

of optimal allocation of productive factors between the two sectors:

T (k, y, ℓ) = max
k0,k1,l0,l1

f 0(k0, l0)

s.t. y ≤ f 1(k1, l1)

k0 + k1 ≤ k

l0 + l1 ≤ ℓ

k0, k1, l0, l1 ≥ 0

(9)
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The social production function T (k, y, ℓ) describes the frontier of the produc-

tion possibility set associated with interior temporary equilibria (k, y, ℓ) ∈ K̃,

and gives the maximal output of the consumption good. Under Assumption

3, for any (k, y, ℓ) ∈ K̃, T (k, y, ℓ) can be shown to be homogeneous of degree

one, concave and twice continuously differentiable.6 Denoting w the wage

rate, r the gross rental rate of capital and p the price of investment good,

all in terms of the price of the consumption good, we may formulate the

aggregate profit maximization problem as follows

max
(k,y,ℓ)∈K̃

T (k, y, ℓ) + py − rk − wℓ (10)

and we derive that for any (k, y, ℓ) ∈ int(K̃), the first-order derivatives of the

social production function give

r = T1(k, y, ℓ), p = −T2(k, y, ℓ), w = T3(k, y, ℓ) (11)

2.3 Perfect-foresight competitive equilibrium

Total labor is given by the number Nt of young households, i.e., ℓt = Nt,

and is thus increasing at rate n, i.e., ℓt+1 = (1 + n)ℓt. We then define a

perfect-foresight competitive equilibrium:

Definition 1. A sequence {kt, yt, ℓt, ct, dt, rt, wt, pt}
∞
t=0, with (k0, ℓ0) =

(k̂0, ℓ̂0) given, is a perfect-foresight competitive equilibrium if:

i) (kt, yt, ℓt) solves (10) for any t ≥ 0 and (rt, wt, pt) is given by (11) with

Rt+1 = rt+1/pt,
7

ii) ct = α(Rt+1/B)wt,

iii) ℓt(1 − α(Rt+1/B))wt = ptyt,

6See Benhabib and Nishimura [2].
7Starting from the equality ℓt[ct + dt/(1 + n)] = T (kt, yt, ℓt) and using the budget

constraints in (1) with the homogeneity of T (k, y, ℓ) we get ℓt+1(wt+1 −φt+1 + Rt+1φt) =

rt+1kt+1 − pt+1yt+1 + wt+1ℓt+1. The result is obtained after obvious simplifications.

7



iv) yt = kt+1,

v) ℓt+1 = (1 + n)ℓt,

vi) ℓt[ct + dt/(1 + n)] = T (kt, yt, ℓt).

Let us denote κt = kt/ℓt the capital-labor ratio at time t ≥ 0 and let κ̄ ≡

k̄(ℓ)/ℓ be the maximal admissible value of κ. We can then redefine the set

of admissible paths given by (8) as follows

K =
{

(κt, κt+1) ∈ R
2
+|0 ≤ κt ≤ κ̄, 0 ≤ κt+1 ≤ f 1(κt, 1)/(1 + n)

}

(12)

Using the linear homogeneity of T (k, y, ℓ), we derive from Definition 1 that

a perfect-foresight competitive equilibrium satisfies the following equation:

(1 + n)κt+1 + T3(κt,(1+n)κt+1,1)
T2(κt,(1+n)κt+1,1)

[

1 − α
(

−T1(κt+1,(1+n)κt+2,1)
T2(κt,(1+n)κt+1,1)B

)]

= 0 (13)

with (κt, κt+1) ∈ int(K) and κ0 = κ̂0 = k̂0/ℓ̂0 given.

3 Steady state and dynamic efficiency

3.1 Existence

A steady state is defined as κt = κ∗, pt = p∗ = −T2(κ
∗, (1 + n)κ∗, 1), rt =

r∗ = T1(κ
∗, (1 + n)κ∗, 1), wt = w∗ = T3(κ

∗, (1 + n)κ∗, 1) and R∗ = r∗/p∗ for

all t with κ∗ solution of the following equation

(1 + n)κ∗ + T3(κ∗,(1+n)κ∗,1)
T2(κ∗,(1+n)κ∗,1)

[

1 − α
(

− T1(κ∗,(1+n)κ∗,1)
T2(κ∗,(1+n)κ∗,1)B

)]

= 0 (14)

We will consider in the following a family of economies parameterized by

the elasticity of intertemporal substitution in consumption γ(R/B). The

steady state κ∗ clearly depends on the characteristics of technologies and

preferences. As a result, varying γ(R/B) generates modifications of the value

of the stationary capital-labor ratio and thus implies variations of all the

other shares and elasticities characterizing the technologies and preferences.

This property significantly complicates the local stability and bifurcation

analysis. To simplify, we follow the same procedure as in Lloyd-Braga et
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al. [20]: building on the homogeneity property of the utility function, we

use the scaling parameter B in order to give conditions for the existence

of a normalized steady state κ∗ ∈ (0, κ̄) which will remain invariant as the

elasticity of intertemporal substitution in consumption is varied. Therefore,

for a given set of parameters characterizing the technologies and preferences,

we will be able to isolate the role of γ(R/B) on the local stability properties

of competitive equilibria.

Let us denote z = R/B. Under Assumption 2, the share of first period

consumption α(z) is a monotone decreasing function with limz→0 α(z) = αsup

and limz→+∞ α(z) = αinf . By definition, we have (αinf , αsup) ⊆ (0, 1). Now

let us define from (13):8

Φκ∗ = 1 + (1 + n)κ∗T2(κ∗,(1+n)κ∗,1)
T3(κ∗,(1+n)κ∗,1)

∈ (0, 1)

By choosing appropriately the value of κ∗ ∈ (0, κ̄), we may derive a corre-

sponding Φκ∗ ∈ (αinf , αsup). We then get:

Proposition 1. Under Assumptions 1-3, let κ∗ ∈ (0, κ̄) be such that Φκ∗ ∈

(αinf , αsup). Then there is a unique value B(κ∗) > 0 for the scaling parameter

solution of

α
(

− T1(κ∗,(1+n)κ∗,1)
T2(κ∗,(1+n)κ∗,1)B

)

= Φκ∗ (15)

such that κ∗ is a steady state if and only if B = B(κ∗).

Proof : See Appendix 6.1.

In the rest of the paper we will assume that the scaling parameter B

adjusts to B = B(κ∗) in order to guarantee the existence of one normalized

steady state (NSS in the sequel). Indeed, as γ(R/B) is made to vary, the

NSS and thus the share of first period consumption α(R/B) remain constant.

8From Definition 1, we indeed derive 1 + (1 + n)κ∗T2(κ
∗, (1 + n)κ∗, 1)/T3(κ

∗, (1 +

n)κ∗, 1) = 1 − py/wl = 1 − φ/w ∈ (0, 1).

9



3.2 Dynamic efficiency

Our aim is to analyze the dynamic efficiency properties of the competitive

equilibrium around the NSS. From (5), (7), (16), and B = B(κ∗), let α =

α(−T1(κ
∗, (1 + n)κ∗, 1)/T2(κ

∗, (1 + n)κ∗, 1)B(κ∗)) and γ = γ(−T1(κ
∗, (1 +

n)κ∗, 1)/T2(κ
∗, (1 + n)κ∗, 1)B(κ∗)). Using definition 1 and the homogeneity

of T (k, y, ℓ), we get κ∗T2/T3 = (T2/T1)(κ
∗T1/T3) = −s/R∗(1 − s), with

s = s(κ∗, (1 + n)κ∗, 1) the share of capital in total income as given by

s(κ∗, (1 + n)κ∗, 1) = rκ∗

T (κ∗,(1+n)κ∗,1)+p(1+n)κ∗
∈ (0, 1), (16)

and we derive from (15) the stationary gross rate of return along the NSS:

R∗ = (1+n)s
(1−α)(1−s)

(17)

It is well-known since Diamond [12] that if too much capital is accumu-

lated in the long run, the economy is dynamically inefficient. Such a situation

occurs if the population growth factor 1+n exceeds the steady state marginal

product of capital. Following Phelps [21], it is then said that the capital-labor

ratio exceeds the Golden Rule level. In a two-sector OLG model, the Golden

Rule level of capital-labor ratio, denoted κ̂, is characterized from the total

stationary consumption which is given by the social production function:

c + d/(1 + n) = T (κ, (1 + n)κ, 1) (18)

Along a stationary path of capital, the highest utility is defined as the max-

imum of u(c, d) subject to (18). There is no other restriction than the non-

negativity of capital and consumptions, and the maximum of utility implies

the maximum of the consumption good’s output T (κ, (1 + n)κ, 1). As in the

aggregate Diamond formulation [12], the Golden-Rule capital-labor ratio κ̂

is independent of the intertemporal allocation of consumption:

Proposition 2. Under Assumptions 1-3, there is a unique optimal station-

ary path (κ̂, ĉ, d̂) which is characterized by the following conditions:

R(κ̂) ≡ R̂ = 1 + n, ĉ + d̂
1+n

= T (κ̂, (1 + n)κ̂, 1), u1(ĉ, d̂) = (1 + n)u2(ĉ, d̂)

with κ̂ the Golden-Rule capital-labor ratio.
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Proof : See Appendix 6.2.

We now characterize the dynamic efficiency properties of equilibrium

paths. Building on Proposition 2, they are appraised through the comparison

of the NSS with respect to the Golden Rule. Indeed, the concept of efficiency

is introduced following Cass [7]. Obviously, any efficient path needs to be

feasible. Hence, a path of capital stocks per capita {κt}t≥0 is called feasible

if, for all t ≥ 0, (κt, κt+1) ∈ K and T (κt, (1 + n)κt+1, 1) ≥ 0. A feasible

path of capital stocks per capita {κt}t≥0 is inefficient if there is another fea-

sible path {κ′
t}t≥0 such that, on the one hand, κ′

0 = κ0 and for any t ≥ 0,

T (κ′
t, (1 + n)κ′

t+1, 1) ≥ T (κt, (1 + n)κt+1, 1), and, on the other hand, there is

t ≥ 0 such that T (κ′
t, (1 + n)κ′

t+1, 1) > T (κt, (1 + n)κt+1, 1). As a result, a

feasible path is efficient if it is not inefficient.

Considering the stationary gross rate of return as defined by (17), we

then derive a condition on the share of first period consumption over the

wage income α to get a NSS lower than the Golden Rule level and to ensure

the dynamic efficiency of equilibria:

Proposition 3. Under Assumptions 1-3, let α̂ = 1 − s/(1 − s). Then:

i) the NSS is characterized by an under-accumulation of capital if and only

if the share of first period consumption over the wage income is sufficiently

large, namely α ≥ α̂, i.e., if and only if R∗ ≥ R̂ = 1 + n;

ii) an intertemporal competitive equilibrium converging towards the NSS is

dynamically efficient if α ∈ (α̂, 1) and dynamically inefficient if α ∈ (0, α̂).9

Proof : See Appendix 6.3.

Proposition 3 shows that if the labor income is relatively lower than the

capital income, i.e., s ≥ 1/2, then a young agent does not have enough wage

9Dynamic efficiency in the exceptional case when the stationary capital-labor ratio is

just equal to the Golden Rule is a difficult problem that has been analyzed by Cass [7].
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resources to provide a large amount of savings so that an under-accumulation

of capital is obtained without additional restriction. On the other hand, if

the labor income is relatively larger than the capital income, i.e., s < 1/2,

then a young agent receives enough wage resources to be able to provide a

large amount of savings. In this case, over-accumulation of capital can be

avoided provided his share of first period consumption over the wage income

is large enough. Note also that our condition for an under-accumulation of

capital α ≥ α̂ can be equivalently reformulated as in Phelps [21], namely the

aggregate saving rate ς ≡ (1 − α)w/(w + rk) = (1 − α)(1 − s) needs to be

lower than the share of capital in total income s, i.e., ς ≤ s.

The criterion for dynamic efficiency provided in Proposition 3 is first

based upon a NSS which is characterized by an under-accumulation of cap-

ital, i.e., a large enough amount of first period consumption. Second, it

is based upon a NSS which is stable. Our model consists in one predeter-

mined variable, the current capital stock, and one forward variable, the next

period capital stock. Therefore, stability of the NSS can be understood in

two different ways: if the dimension of the stable manifold is equal to one,

then the NSS is saddle-point stable. For a given initial capital stock, there

is a unique converging equilibrium path. In such a case, the NSS is locally

determinate.10 If, on the contrary, the dimension of the stable manifold is

equal to two, there exists a continuum of equilibrium paths starting from the

same initial capital stock and converging to the NSS. In this case, the NSS

is locally indeterminate. The dynamic efficiency property of the NSS will be

appraised through these two types of stability.

10If the dimension of the stable manifold is equal to zero, the NSS is totally unstable

but we still call it locally determinate as there exists no equilibrium path converging to it.
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4 Dynamic efficiency and local determinacy

4.1 The approach

Let us introduce the relative capital intensity difference across sectors

b ≡ l1

y

(

k1

l1
− k0

l0

)

(19)

and the elasticity of the rental rate of capital

εrk = −T11(κ
∗, (1 + n)κ∗, 1)κ∗/T1(κ

∗, (1 + n)κ∗, 1) (20)

evaluated at the NSS. Note that the elasticity εrk is introduced for analytical

tractability. However, as shown in Drugeon [13], we can relate εrk to the

sectoral elasticities σ0 and σ1 of capital-labor substitution, namely:

εrk = (l0/y0)
2 wpyky0

pyk0l0σ0+y0k1l1σ1
(21)

It follows that εrk is a decreasing function of σ0 and σ1.

Proposition 1 shows that when the scaling parameter satisfies B = B(κ∗),

the NSS κ∗ and the share of first period consumption over the wage α = Φκ∗

remain constant as the elasticity of intertemporal substitution γ is made

to vary. As in Grandmont et al. [16], and under the gross substitutability

Assumption 2, we will then study the variations of the trace T (γ) and the de-

terminant D(γ) in the (T ,D) plane as γ varies continuously within (1, +∞).

Assuming that b 6= 0, linearizing the difference equation (13) around the NSS

and solving T and D (as given in Appendix 6.4) with respect to α(γ − 1)

yields the following linear relationship ∆(T ):

D = ∆(T ) = ST − εrks[1−α+α(1+n)b]−s(1+n)b
(1+n)b[(1−α)(1−s)+εrks(1+n)b(1−α+α(1+n)b)]

(22)

where the slope S of ∆(T ) is

S = εrks[1−α+α(1+n)b]
(1−α)(1−s)+εrks(1+n)b[1−α+α(1+n)b]

. (23)

As γ spans the interval (1, +∞), T (γ) and D(γ) vary linearly along the line

∆(T ). When different values for s, α, b and εrk are considered, the location

of ∆(T ) on the (T ,D) plane is modified so that all the possible configurations

for the stability properties of the NSS can be derived.
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4.2 The determinacy properties of the steady state

Under gross substitutability, i.e., γ > 1, the NSS is locally determinate as

soon as b ≥ 0 since in this case D > 1 (see Appendix 6.4). Therefore, local

indeterminacy of the NSS, which is necessarily based on D < 1, requires a

capital intensive consumption good, i.e., b < 0. In the rest of the paper

we will then focus on this configuration and we will also restrict the share

of capital in total income in order to get a positive value for the bound

α̂ = 1 − s/(1 − s):

Assumption 4. b < 0 and s ∈ (0, 1/2).

4.2.1 Dynamic efficiency and local uniqueness

Let us start with a simple configuration in which we assume a slightly stronger

condition than the one ensuring an under-accumulation of capital.

Proposition 4. Under Assumptions 1-4, let the NSS be characterized by

an under-accumulation of capital with α > max{α̂, 1/2}. Then the NSS is

locally determinate.

Proof : See Appendix 6.5.

In two-sector models with a gross substitutability assumption, the ex-

istence of endogenous fluctuations is fundamentally based upon a capital-

intensive consumption good sector. The input allocations across sectors,

which are driven by Rybczinsky and Stolper-Samuelson effects, indeed gen-

erate oscillations of the capital accumulation path which may be large enough

to be propagated in the economy through the savings behavior of the agents.

However, when α > max{α̂, 1/2}, the propensity to save is too low so that

the amount of capital accumulated is not sufficient to lead to amplified fluc-

tuations based upon self-fulfilling expectations. Such a mechanism is also

based upon a trade-off between the value of the share of capital in total

14



income s and the value of the share of first period consumption in wage

income α. Indeed, when s ≤ 1/3, we get α̂ ≥ 1/2 and the condition of

Proposition 4 simply becomes α > α̂. On the contrary, when s ∈ (1/3, 1/2),

local indeterminacy is ruled out if α > 1/2(> α̂).

Proposition 4 provides a link between under-accumulation of capital and

local determinacy. However, Proposition 3 shows that dynamic efficiency

is related to the stability of the equilibrium path. As local determinacy is

compatible with a saddle-point stable or a totally unstable NSS, we need to

find conditions for the saddle-point stability of the NSS.

As shown in Appendix 6.5, three critical bounds on b are crucial for the

stability properties of the NSS:

b0 = − 1
1+n

, b1 = 1−α
α

b0, b2 = (1−α)(1−s)
s

b0 (24)

Note that when α > max{α̂, 1/2}, b0 < b1, b2. There also exists a critical

bound ε̄rk > 0 for the elasticity of the rental rate of capital which has to be

considered in some cases. In Figure 1 we first assume extreme values for b

with b̄ = max{b1, b2} and b ∈ (−∞, b0) ∪ (b̄, 0).
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Figure 1: ∆-half-line with α > max{α̂, 1/2}.

In both cases, saddle-point stability is obtained for any value of the elasticity

of intertemporal substitution in consumption γ > 1. However, when b ∈

(b̄, 0), the elasticity of the rental rate of capital needs to be sufficiently low.
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Consider now the case of intermediary values for b. Two different types

of configurations may be derived depending on whether b1 is lower or larger

than b2. Let us start in Figure 2 with the case b1 < b2 which is obtained

when α < s/(1 − s) and s > 1/3.
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)

6

-

�
�

�
�

�
�

�
�

�
�

�@
@

@
@

@
@

@
@

@
@

@

T

D

HHHHHHHH ∆

γ=+∞

γF

A

B C

2-ii) b ∈ (− 1−α
(1+n)α

,− (1−α)(1−s)
(1+n)s

)

6

-

�
�

�
�

�
�

�
�

�
�@

@
@

@
@

@
@

@
@

@

T

D

�������
γ=+∞

γF

∆

Figure 2: ∆-half-line with α ∈ (max{α̂, 1/2}, s/(1− s)) and εrk ∈ (0, ε̄rk).

In both cases, saddle-point stability is obtained for low enough values of the

elasticity of the rental rate of capital εrk and the elasticity of intertemporal

substitution in consumption, γ ∈ (1, γF ) with γF a flip bifurcation value.

Consider finally the case b1 > b2 which is obtained when α > s/(1−s). If

b ∈ (b0, b2), we get the same picture as in Figure 2-i) while if b ∈ (b2, b1), we

get the same picture as in Figure 1-i). It is worth noting at this point that

the conditions on εrk and γ are standard to obtain saddle-point stability.11

Moreover, as shown by Figures 1 and 2, they ensure that the characteristic

roots cannot equal 1 (since the ∆-half-line cannot cross the line AC) and

thus that the steady state is unique.12

11The same restrictions are also necessary in two-sector optimal growth models to obtain

a saddle-point stable steady state (see Benhabib and Nishimura [3], Bosi, Magris and

Venditti [5]).

12When ∆ crosses the line AC, a characterisric root becomes equal to 1 and there

generically occurs a transcritical bifurcation implying the existence of two steady states.
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Theorem 1. Under Assumptions 1-4, there are two critical bounds ε̄rk ∈

(0, +∞) ∪ {+∞} and γ̄ ∈ (1, +∞) ∪ {+∞} such that there exists a steady

state (the NSS) which is generically unique, dynamic efficiency holds and

local indeterminacy is ruled out if α > α̂, γ ∈ (1, γ̄) and εrk ∈ (0, ε̄rk).

Proof : See Appendix 6.6.

As shown in (21), a low value for εrk requires large enough sectoral elas-

ticities of capital-labor substitution. Theorem 1 then proves that for a large

enough amount of capital-labor substitution, a dynamically efficient steady

state cannot be locally indeterminate.13

4.2.2 Dynamic inefficiency and local indeterminacy

Dynamic inefficiency is obtained when α ∈ (0, α̂). In such a case, ∆(T )

starts within an area in which D∞ ∈ (0, 1). Different configurations for local

indeterminacy may occur depending on whether the starting point (T∞,D∞)

is within the triangle ABC or not. We are looking for configurations in

which local indeterminacy is compatible with reasonable values for the elas-

ticity of the rental rate of capital εrk. A simple solution consists in consid-

ering the cases in which (T∞,D∞) belongs to the interior of triangle ABC

so that the NSS is locally indeterminate without any restriction on the sec-

toral elasticities of capital-labor substitution. Assuming that s ∈ (0, 1/3),

α ∈ (s/(1−s), α̂) and b ∈ (b2, min{b1, b0}), we first get the following geomet-

rical representation in which the ∆-half-line is pointing upward as follows:

13Considering a parameterization of the model based on US data, we provide in Dru-

geon, Nourry and Venditti [14] a numerical exercise showing that a dynamically efficient

saddle-point stable NSS arises for empirically plausible values for the sectoral elasticities

of capital-labor substitution.
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Figure 3: s ∈ (0, 1/3), α ∈ (s/(1 − s), α̂) and b ∈ (b2, min{b1, b0}).

Local indeterminacy is here based on large enough values for the elasticity

of intertemporal substitution in consumption, and uniqueness of the steady

state is a generic property since there cannot exist any transcritical bifur-

cation. However, a flip bifurcation and period-two cycles still occur when γ

crosses γF from above.

Assume now that (T∞,D∞) belongs to the interior of triangle ABC, i.e.,

b ∈ (b2, b0), but the ∆-half-line is pointing downward, i.e., b ∈ (b1, 0). If

α ∈ (0, min{α̂, 1/2}) and b ∈ (max{b1, b2}, b0), we get a half-line as given by

∆ or ∆′ in the following Figure:
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Figure 4: α ∈ (0, min{α̂, 1/2}) and b ∈ (max{b1, b2}, b0).

Local indeterminacy is again based on large enough values for the elastic-

ity of intertemporal substitution in consumption. The existence of multiple
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steady states is now a possible outcome since a transcritical bifurcation may

occur but it requires low enough values for the sectoral elasticities of capital-

labor substitution.

All these results can be gathered into the following Theorem:

Theorem 2. Under Assumptions 1-4, there exist α ∈ [0, min{α̂, 1/2}),

ᾱ ∈ (α, min{α̂, 1/2}), b < b̄ < 0 and γ > 1 such that the NSS is locally

indeterminate if α ∈ (α, ᾱ), b ∈ (b, b̄) and γ > γ.

Contrary to the case with dynamic efficiency, under dynamic inefficiency local

indeterminacy can arise without any restriction on the sectoral elasticities of

capital labor substitution.

Remark 2: There is also a case in which (T∞,D∞) belongs to the re-

gion where the NSS is saddle-point stable. Indeed, assuming that α ∈

(0, min{α̂, 1/2, s/(1 − s)}), b ∈ (b1, b0) and εrk > ε̄rk, we get the following

geometrical representation:
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Figure 5: α ∈ (0, min{α̂, 1/2, s/(1 − s)}), b ∈ (b1, b0) and εrk > ε̄rk.

Local indeterminacy requires large enough values for the elasticity of the

rental rate of capital, i.e. unplausible low values for the sectoral elasticities

of capital-labor substitution, and is associated with the existence of multiple

steady states since γT is generically a transcritical bifurcation value. Endoge-

nous fluctuations are also obtained from a flip bifurcation occurring when γ

crosses γF from below.
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5 Concluding comments

We have considered a two-sector two-periods overlapping generations model

with inelastic labor, consumption in both periods of life and linearly homoge-

neous preferences. Under standard conditions on preferences and technolo-

gies, we prove that if the share of first period consumption over the wage

income is large enough, dynamic efficiency holds and sunspot fluctuations

are ruled out. Moreover, as soon as we consider a low enough share of first

period consumption over the wage income which implies dynamic inefficiency

of the NSS, we show that local indeterminacy arises without requiring strong

restrictions on the sectoral elasticities of capital-labor substitution.

The main limitation of our approach results from the local dimension

of our dynamic efficiency. Using the Cass [7] criterion, a global analysis of

dynamic efficiency could be considered. This is left for future research.

6 Appendix

6.1 Proof of Proposition 1

Consider the set K as defined by (12). Then κ∗ ∈ (0, κ̄) is a solution of (14)

α
(

− T1(κ∗,(1+n)κ∗,1)
T2(κ∗,(1+n)κ∗,1)B

)

= 1 + (1 + n)κ∗T2(κ∗,(1+n)κ∗,1)
T3(κ∗,(1+n)κ∗,1)

≡ Φκ∗ ∈ (0, 1) (25)

From (3) and (5), we get R/(g−1(R/B)B) ≡ α(R/B)/(1−α(R/B)). Taking

elasticities of both sides yields

α′(R/B) R
α(R/B)B

= (1 − γ(R/B))(1 − α(R/B)) (26)

Assumption 2, which is equivalent to γ(R/B) > 1, implies that α(z) is a

monotone decreasing function with limz→0 α(z) = αsup, limz→+∞ α(z) = αinf

and (αinf , αsup) ⊆ (0, 1). Figure 6 below provides an illustration of α(z).

20



α(z)

z0

1

αsup

αinf

Φκ∗

α−1(Φκ∗)

Figure 6: Share of first period consumption α(z).

It follows that α(z) admits an inverse function defined over (αinf , αsup).

Let κ∗ ∈ (0, κ̄) be such that Φκ∗ ∈ (αinf , αsup). We then derive

B(κ∗) = − T1(κ∗,(1+n)κ∗,1)
T2(κ∗,(1+n)κ∗,1)α−1(Φκ∗ )

(27)

and κ∗ is a steady state if and only if B = B(κ∗).

6.2 Proof of Proposition 2

It is shown in Benhabib and Nishimura [3, 4] and Bosi et al. [5] that

T12 = −T11b, T22 = T11b
2 < 0, T31 = −T11a > 0, T32 = T11ab (28)

with a ≡ k0/l0 > 0, b as defined by (19) and T11 < 0. Considering that

R(κ) = −T1(κ, (1 + n)κ, 1)/T2(κ, (1 + n)κ, 1), we derive:

R′(κ) = −T11

T2
[1 − (1 + n)b](1 − Rb)

Linear homogeneity of T (k, y, ℓ) implies:

aℓ/k = 1 − (1 + n)b > 0 (29)

Consider the input coefficients in each sector as defined by a00 = l0/y0,

a10 = k0/y0, a01 = l1/y and a11 = k1/y. Linear homogeneity of f 1(k1, l1)
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gives wa01 + ra11 = p or equivalently p(1 − Ra11) = wa01 > 0. From the

definition of b given by (19) we finally obtain

1 − Rb = a00(1−Ra11)+Ra10a01

a00
> 0

and R′(κ) < 0. Consider now the first order condition for a maximum of the

total stationary consumption (18) with respect to κ:

−T1(κ,(1+n)κ,1)
T2(κ,(1+n)κ,1)

= 1 + n (30)

This is equivalent to the equation defining the stationary capital-labor ratio of

a two-sector optimal growth model with inelastic labor supply, no discounting

and full depreciation of capital. Since R′(κ) < 0, the proof of Theorem 3.1

in Becker and Tsyganov [1] applies and there is a unique solution κ̂ of (30).

Along a stationary path of capital stocks, the highest utility is finally defined

as the maximum of u(c, d) subject to (18).

6.3 Proof of Proposition 3

From (17), we get R∗ > 1 + n if and only if α > α̂. The rest of the proof is

based upon arguments similar to the ones introduced in Chapter 2 (Propo-

sition 2.4, p. 83) of de la Croix and Michel [11].14

Let us start with the case in which the NSS is characterized by an under-

accumulation of capital, i.e., −T1(κ
∗, (1+n)κ∗, 1)/T2(κ

∗, (1+n)κ∗, 1) > 1+n.

We will show that increasing consumption for one period t1 without reducing

it at any other period leads to a contradiction. Recall that the ratio of total

consumption over labor is given by Ct = ct+dt/(1+n) = T (κt, (1+n)κt+1, 1).

Under-accumulation implies that −T1(κ
∗, (1+n)κ∗, 1)/T2(κ

∗, (1+n)κ∗, 1) >

z(1 + n) for some z > 1. Along a converging equilibrium path we have for

14We provide an extension to the two-sector framework of the dynamic efficiency prop-

erty derived within an aggregate Diamond model. The whole argument is based upon

the concavity of the social production function T and does not depend on the sign of the

capital intensity difference across sectors.
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t large enough, say t ≥ t0, −T1(κt, (1 + n)κt+1, 1)/T2(κt, (1 + n)κt+1, 1) >

z(1 + n). At any date t, the difference from another feasible path κ̃t satisfies

∆Ct = C̃t − Ct = T (κ̃t, (1 + n)κ̃t+1, 1) − T (κt, (1 + n)κt+1, 1)

The concavity of T then implies

∆Ct ≤ T1(κt, (1 + n)κt+1, 1)(κ̃t − κt)

+ (1 + n)T2(κt, (1 + n)κt+1, 1)(κ̃t+1 − κt+1)

⇔ κ̃t+1 − κt+1 ≤ − T1(κt,(1+n)κt+1,1)
(1+n)T2(κt,(1+n)κt+1,1)

(κ̃t − κt) + ∆Ct

(1+n)T2(κt,(1+n)κt+1,1)

Assume therefore that consumption never decreases. It follows that capital

never increases. Indeed, by induction, if κ̃t − κt ≤ 0, which obviously holds

at t = 0, and if ∆Ct ≥ 0 then the previous inequality implies κ̃t+1 −κt+1 ≤ 0.

Assume moreover that there is some date t1 > 0 such that ∆Ct1 > 0. Then

the previous argument implies κ̃t − κt < 0 for any t > t1 and, for t > t2 =

max{t0, t1}, we get
κ̃t+1 − κt+1 < z(κ̃t − κt)

since −T1(κt, (1 + n)κt+1, 1)/T2(κt, (1 + n)κt+1, 1) > z(1 + n). It follows that

κ̃t+1 − κt+1 < zt−t2(κ̃t2 − κt2) < 0

As z > 1 and κt+1 converges to the NSS, we have the fact that κ̃t+1 − κt+1

converges to −∞ and κ̃t+1 becomes negative, which is not possible.

Consider now the case in which the NSS is characterized by an over-

accumulation of capital, i.e., −T1(κ
∗, (1+n)κ∗, 1)/T2(κ

∗, (1+n)κ∗, 1) < 1+n.

We will show that we can lower the stock of capital and increase consumption

at one date without reducing consumption at another date. Consider an

equilibrium path converging to the NSS. In a neighborhood (κ∗−2ǫ, κ∗ +2ǫ)

of the NSS we have −T1(κ, (1+n)κ, 1)/T2(κ, (1+n)κ, 1) < 1+n. After some

date t0, we then have κt ∈ (κ∗− ǫ, κ∗ + ǫ), −T1(κt, (1+ n)κt+1, 1)/T2(κt, (1 +

n)κt+1, 1) < 1+n and −T1(κt−ǫ, (1+n)(κt+1−ǫ), 1)/T2(κt−ǫ, (1+n)(κt+1−

ǫ), 1) < 1 + n. Let us decrease the stock of capital by ǫ after date t0 and

forever. Concavity of T (k, y, ℓ) with respect to y implies:
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T (κt0 , (1 + n)(κt0+1 − ǫ), 1) − T (κt0 , (1 + n)κt0+1, 1)

≥ −T2(κt0 , (1 + n)(κt0+1 − ǫ), 1)(1 + n)ǫ

Therefore, investment κt0+1 is reduced by ǫ and consumption T (κt0 , (1 +

n)(κt0+1 − ǫ), 1) is increased by at least −T2(κt0 , (1 + n)κt0+1, 1)(1 + n)ǫ. At

t > t0 the new consumption is T (κt − ǫ, (1 + n)(κt+1 − ǫ), 1) ≡ φ(ǫ) with

φ′(ǫ) = −T1(κt − ǫ, (1 + n)(κt+1 − ǫ), 1)

− (1 + n)T2(κt − ǫ, (1 + n)(κt+1 − ǫ), 1)

Since over-accumulation implies φ′(ǫ) > 0 we conclude that consumption can

be increased for all periods and the path is dynamically inefficient.

6.4 Characteristic polynomial

Lemma 6.1. Under Assumptions 1-3, the characteristic polynomial is

P(λ) = λ2 − λT + D (31)
with

D = s[(1+n)bα(γ−1)+1−α+α(1+n)b]
(1+n)b(1−α)(1−s)α(γ−1)

, T = 1
(1+n)bεrkα(γ−1)

+ 1+D(1+n)2b2

(1+n)b

Proof : Let us define the elasticity of the rental rate of capital

εrk = −T11(κ
∗, (1 + n)κ∗, 1)κ∗/T1(κ

∗, (1 + n)κ∗, 1)

the elasticity of the price of investment good

εpy = T22(κ
∗, (1 + n)κ∗, 1)(1 + n)κ∗/T2(κ

∗, (1 + n)κ∗, 1)

and the elasticity of the wage rate

εwk = T31(κ
∗, (1 + n)κ∗, 1)κ∗/T3(κ

∗, (1 + n)κ∗, 1)

all evaluated at the NSS. Total differentiation of (13) using these expressions

with (11), (16) and (26) evaluated at the NSS gives

D = (1+n)bεwk+εpy[1+α(γ−1)]
(1+n)2b2εrkα(γ−1)

, T = 1+(1+n)bεwk+εpy+α(γ−1)(εrk+εpy)
(1+n)bεrkα(γ−1)

(32)

Considering (28) with T1κ
∗/T3 = s/(1−s), −T1κ

∗/T2 = R∗ = s/(1−α)(1−s)

and the fact that (29) implies a = [1 − (1 + n)b]κ∗ we derive

εpy = εrk(1+n)2b2s
(1−α)(1−s)

and εwk = εrk[1−(1+n)b]s
(1−s)

Substituting these expressions into (32) gives the result.
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6.5 Proof of Proposition 4

As γ ∈ (1, +∞), the fundamental properties of ∆(T ) are characterized

from the consideration of its extremities. The starting point of the pair

(T (γ),D(γ)) is indeed obtained when γ = +∞:

lim
γ→+∞

D(γ) = D∞ = s
(1−α)(1−s)

lim
γ→+∞

T (γ) = T∞ = (1−α)(1−s)+(1+n)2b2s
(1+n)b(1−α)(1−s)

(33)

while the end point is obtained when γ = 1:

D(1) = D1 = ±∞ ⇔ b[1 − α + α(1 + n)b] ≷ 0

T (1) = T1 = ±∞

⇔ b[(1 − α)(1 − s) + εrk(1 + n)bs[1 − α + α(1 + n)b]] ≷ 0

(34)

Moreover, we get

D′(γ) = − s[1−α+α(1+n)b]
(1+n)b(1−α)(1−s)α(γ−1)2

(35)

It follows that D′(γ) ≷ 0 if and only if D1 = ∓∞.

The proof of Proposition 4 is organized on the basis of three Lemmas

which will be also useful to prove the main Theorems of the paper. The

next two Lemmas provide a precise characterization of ∆(T ). The first gives

information on the starting point (T∞,D∞) and D′(γ):

Lemma 6.2. Under Assumptions 1-4, for given s, α, b and εrk, the following

results hold:

i) D∞ > 1 if and only if α > α̂;

ii) D′(γ) > 0 if and only if b ∈ (−(1 − α)/(1 + n)α, 0);

iii) T∞ < 0;

iv) When α > α̂, 1+T∞ +D∞ < 0 if and only if b ∈ (−∞,−1/(1+n))∪

(−(1 − α)(1 − s)/(1 + n)s, 0);

v) When α ∈ (0, α̂), 1 + T∞ + D∞ < 0 if and only if b ∈ (−∞,−(1 −

α)(1 − s)/(1 + n)s) ∪ (−1/(1 + n), 0).
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Proof : i) We get from (17), (33) and Proposition 3 that D∞ = R∗/(1 +

n) > 1 iff α > α̂.

ii) The result follows from (34) and (35).

iii) The result immediately follows from (33) and Assumption 4.

iv)-v) Obvious computations from (33) give

1 + T∞ + D∞ = [1 + (1 + n)b] (1−α)(1−s)+(1+n)bs
(1+n)b(1−α)(1−s)

(36)

The result follows from the fact that −(1 − α)(1 − s)/(1 + n)s > −1 if and

only if α > α̂.

Lemma 6.2 exhibits three critical bounds on b which appear to be crucial

for the stability properties of the NSS: b0 = −1/(1+n), b1 = −(1−α)/(1+n)α

and b2 = −(1 − α)(1 − s)/(1 + n)s. We obtain the following comparisons:

b1 > b0 ⇔ α > 1/2, b2 > b1 ⇔ α < s/(1 − s),

α̂ < 1/2 ⇔ s > 1/3, s/(1 − s) > 1/2 ⇔ s > 1/3
(37)

A second Lemma then provides additional information on the slope S and

on the intersections of ∆(T ) with the lines AB and AC:

Lemma 6.3. Under Assumptions 1-4, let α > α̂ and b ∈ (b1, 0). There

exists ε̄rk > 0 such that for given s, α, b and εrk, the following results hold:

1 - ∆(T ) = 1 implies T < −2.

2 - ∆(T ) = −1 implies T < 0 in the following cases:

i) α > max{α̂, 1/2},

ii) s ∈ (1/3, 1/2), α ∈ (α̂, 1/2) and b ∈ (b0, 0),

iii) s ∈ (1/3, 1/2), α ∈ (α̂, 1/2), b ∈ (b1, b0) and εrk ∈ (0, ε̄rk).

3 - ∆(T ) = −1 implies T > 0 if and only if s ∈ (1/3, 1/2), α ∈ (α̂, 1/2),

b ∈ (b1, b0) and εrk > ε̄rk.

Proof : Let b0 = −1/(1 + n), b1 = −(1 − α)/(1 + n)α and b2 = −(1 −

α)(1 − s)/(1 + n)s.

1 - Solving D = 1 in Lemma 6.1 gives
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α(1 − γ) = αs(b−b1)
b(1−s)(α−α̂)

(38)

Under α > α̂, since γ > 1, (38) can be satisfied if and only if b ∈ (b1, 0).

Substituting D = 1 into the expression of T allows to get

T + 2 = 1
(1+n)bεrkα(γ−1)

+ [1+(1+n)b]2

(1+n)b
< 0 (39)

2 - Solving D = −1 in Lemma 6.1 gives

α(1 − γ) = αs(b−b1)
b[1−α(1−s)]

(40)

Since γ > 1, (40) can be satisfied if and only if b ∈ (b1, 0).

i) If α > 1/2 then b1 > b0 and substituting D = −1 into the expression

of T allows to get under b ∈ (b1, 0)

T = 1
(1+n)bεrkα(γ−1)

+ 1−(1+n)2b2

(1+n)b
< 0 (41)

ii) and iii) Now let s ∈ (1/3, 1/2), so that α̂ < 1/2, and α ∈ (α̂, 1/2). It

follows that b1 < b0. Substituting (40) into (41) gives

T = εrks(b−b1)[1−(1+n)2b2]−b[1−α(1−s)]
(1+n)bεrkαs(b−b1)

(42)

Therefore when b ∈ (b0, 0), T < 0 but when b ∈ (b1, b0), T < 0 if

εrk < b(1−α+αs)
[1−(1+n)2b2]αs(b−b1)

≡ ε̄rk (43)

3 - We finally derive from (42) that D = −1 implies T > 0 iff s ∈ (1/3, 1/2),

α ∈ (α̂, 1/2), b ∈ (b1, b0) and εrk > ε̄rk.

Note now from Lemma 6.2 that when α < α̂ we have D∞ ∈ (0, 1) and

the existence of local indeterminacy may be obtained either with D′(γ) > 0,

i.e. b ∈ (b1, 0), or with D′(γ) < 0, i.e. b ∈ (−∞, b1). A third Lemma then

provides additional informations on the intersections of ∆(T ) with the lines

AB, BC and AC:

Lemma 6.4. Under Assumptions 1-4, let α ∈ (0, α̂). There exists ε̄rk > 0

such that for given s, α, b and εrk, the following results hold:

1 - When b ∈ (−∞, b1), ∆(T ) = 1 implies T < −2.

2 - When b ∈ (b1, 0), ∆(T ) = −1 implies T < 0 in the following cases:

i) s ∈ (0, 1/3) and α ∈ (1/2, α̂),
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ii) α ∈ (0, min{α̂, 1/2}) and b ∈ (b0, 0),

iii) α ∈ (0, min{α̂, 1/2}), b ∈ (b1, b0) and εrk ∈ (0, ε̄rk).

3 - ∆(T ) = −1 implies T > 0 if and only if α ∈ (0, min{α̂, 1/2}),

b ∈ (b1, b0) and εrk > ε̄rk.

Proof : Let α < α̂. We follow the same steps as in the proof of Lemma

6.3.

1 - Since γ > 1, we derive from (38) that D = 1 can be satisfied if and only if

b ∈ (−∞, b1). In such a case we derive from (39) that D = 1 implies T < −2.

2 - Since γ > 1, we derive from (40) that D = −1 can be satisfied if and

only if b ∈ (b1, 0). In such a case we derive from (41) and (42) that D = −1

implies T < 0 either when b > b0, or when b < b0 and εrk ∈ (0, ε̄rk), with

ε̄rk as defined by (43). Recall now that b1 > b0 if and only if α > 1/2, and

α̂ > 1/2 if and only if s ∈ (0, 1/3). We derive from all this that D = −1

implies T < 0 in the following cases:

* when s ∈ (0, 1/3), α ∈ (0, 1/2) and b ∈ (b0, 0),

* when s ∈ (0, 1/3), α ∈ (0, 1/2), b ∈ (b1, b0) and εrk ∈ (0, ε̄rk),

* when s ∈ (0, 1/3), α ∈ (1/2, α̂), b ∈ (b1, 0),

* when s ∈ (1/3, 1/2), α ∈ (0, α̂), b ∈ (b0, 0),

* when s ∈ (1/3, 1/2), α ∈ (0, α̂), b ∈ (b1, b0) and εrk ∈ (0, ε̄rk).

The result follows from summarizing all these subcases.

3 - We finally derive from all the previous subcases that D = −1 implies

T > 0 iff α ∈ (0, min{α̂, 1/2}), b ∈ (b1, b0) and εrk > ε̄rk.

Building on all this, we may now prove Proposition 4: If α > α̂, ∆(T )

starts within an area in which local determinacy necessarily holds since

D∞ > 1. The possible occurrence of local indeterminacy requires there-

fore that D(γ) is an increasing function. Let us first introduce as suggested

by Lemma 6.3 a slightly stronger condition on the share α by assuming that

α > max{α̂, 1/2}. This inequality implies b1 > b0. While Lemma 6.2 sug-
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gests that local indeterminacy might occur when b > b1 = −(1−α)/(1+n)α,

we derive from Lemma 6.3 that D = 1 implies T < −2 (see 1) and D = −1

implies T < 0 (see 2). As a result, when α > max{α̂, 1/2}, ∆(T ) can only

cross the line AB when D(γ) > 1 or the line AC when D(γ) < −1 and local

indeterminacy is ruled out.

6.6 Proof of Theorem 1

The proof of Theorem 1 is organized on the basis of two Propositions. The

first one builds upon the determinacy result of Proposition 4 when α >

max{α̂, 1/2}.

Proposition 6.1. Under Assumptions 1-4, let the NSS be characterized by

an under-accumulation of capital with α > max{α̂, 1/2} and consider the

bound b̄ = max{b1, b2}. The following results hold:

1- When b < b0, the NSS is generically the unique steady state and is

saddle-point stable for any γ > 1;

2- When b ∈ (b0, b̄), there is ε̄rk > 0 and γF ∈ (1, +∞) such that if

εrk ∈ (0, ε̄rk), the NSS is generically the unique steady state and is saddle-

point stable for γ ∈ (1, γF ), undergoes a flip bifurcation at γ = γF and

becomes locally unstable for γ > γF .15 Note that if b > b2, γF = +∞ and the

NSS is saddle-point stable for any γ > 1.

3- When b > b̄, there is ε̄rk > 0 such that if εrk ∈ (0, ε̄rk), the NSS is

generically the unique steady state and is saddle-point stable for any γ > 1.

Proof : Let α > max{α̂, 1/2}. From (37), we derive that b1, b2 > b0.

Consider first extreme values for b with b̄ = max{b1, b2} and b ∈ (−∞, b0) ∪

15The period-2 cycles generated by the flip bifurcation are either saddle-point stable if

the bifurcation is super-critical, or locally unstable if the bifurcation is sub-critical. As a

result, contrary to Cazzavillan and Pintus [8], locally indeterminate periodic cycles cannot

occur in this configuration.
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(b̄, 0). When b ∈ (−∞, b0), Lemma 6.2 implies D′(γ) < 0 and 1+T∞+D∞ <

0, while Lemma 6.3 implies S ∈ (−1, 0) for any εrk > 0. We then get Figure

1-i) and the uniqueness of the steady state is ensured as no transcritical

bifurcation occurs. When b ∈ (b̄, 0), Lemma 6.2 implies D′(γ) > 0 and

1 + T∞ + D∞ < 0, while Lemma 6.3 shows that S ∈ (0, 1) if εrk ∈ (0, ε̄rk).

Note that this last condition allows to rule out the existence of a transcritical

bifurcation. We then get Figure 1-ii).

Consider now the case of intermediary values for b. Two different types

of configuration may be derived depending on whether b1 is lower or larger

than b2. Let us start in Figure 2 with the case b1 < b2 which, as shown by

(37), is obtained when α < s/(1−s) and s > 1/3. When b ∈ (b0, b1), Lemma

6.2 implies D′(γ) < 0 and 1 + T∞ + D∞ > 0, while Lemma 6.3 shows that

S ∈ (0, 1) if εrk ∈ (0, ε̄rk). Note that this last condition is introduced to get

the possible existence of saddle-point stability. We then get Figure 2-i) and

the uniqueness of the steady state is ensured as no transcritical bifurcation

occurs. When b ∈ (b1, b2), Lemma 6.2 implies D′(γ) > 0 and 1+T∞+D∞ > 0,

while Lemma 6.3 shows that S ∈ (0, 1) if εrk ∈ (0, ε̄rk). Note that this last

condition is introduced to rule out the existence of a transcritical bifurcation.

We then get Figure 2-ii).

Let us finally consider the case b1 > b2 which is obtained when α >

s/(1 − s). If b ∈ (b0, b2), we get the same picture as in Figure 2-i): a low

elasticity of the rental rate of capital is introduced to get S ∈ (−1, 0) and

thus the existence of saddle-point stability when γ ∈ (1, γF ), with γF a flip

bifurcation value. In contrast, if b ∈ (b2, b1), we get the same picture as in

Figure 1-i): the restriction εrk ∈ (0, ε̄rk) implies S ∈ (0, 1), allows to rule out

the existence of a flip bifurcation and ensures saddle-point stability for any

γ > 1.

We may focus now on the uniqueness property of the steady state. Con-

sider the difference equation (13) as an implicit dynamical system of order
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two parameterized by the elasticity of intertemporal substitution in con-

sumption γ ∈ (1, +∞) that can be written as F (κt, κt+1, κt+2; γ) = 0. Under

Assumption 2 and 4 we easily derive that ∂F/∂κt+2 > 0 and thus there

exists a differentiable function G(.) which satisfies κt+2 = G(κt, κt+1; γ). It

follows that the implicit dynamical system can be converted into an explicit

dynamical system of order two as

κt+1 = xt

xt+1 = G(κt, xt; γ)
(44)

Consider then the vector function on the interior of the set K defined by (12)

H(κ, x; γ) =

(

κ − x

x − G(κ, x; γ)

)

(45)

A steady state of (44) is given by H(κ, x; γ) = 0. Obviously, when B = B(κ∗),

the NSS satisfies this equation, namely H(κ∗, κ∗; γ) = 0, for any γ ∈ (1, +∞).

A simple calculation also shows that the characteristic roots solutions of (31)

are the eigenvalues of the Jacobian matrix of the right-hand-side of (44)

evaluated at the NSS. Thus, if λ1 and λ2 are the characteristic roots solutions

of (31), the eigenvalues of the Jacobian matrix of H(κ, x; γ) evaluated at the

NSS will be given by 1 − λ1 and 1 − λ2. Building on these properties, since

γ ∈ (1, +∞), we can consider H(κ, x; γ) as a homotopy on the interior of K

over (1, +∞) and apply the methodology used by Benhabib and Nishimura [3]

(see Theorem 1 and its proof, pp. 288-290) which is based on the property

that the topological degree of H(κ, x; γ) is a homotopy invariant (see also

Guillemin and Pollack [17]). Denoting Z(γ) = {(κ, x)|H(κ, x; γ) = 0}, this

implies that if the Jacobian matrix of H(κ, x; γ) evaluated at the NSS is

[J(γ)], then
∑

(κ,x)∈Z(γ) signDet[J(γ)] is constant over (1, +∞). We know

that Det[J(γ)] = (1 − λ1)(1 − λ2) and from Figures 1 and 2 that when

εrk ∈ (0, ε̄rk), the characteristic roots λ1 and λ2 cannot cross the value 1 as

the ∆-half-line never crosses the line AC. As a result, the sign of Det[J(γ)]

is constant over (1, +∞) and the NSS is generically the unique steady state.
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This argument relies on the fact that since the transcritical bifurcation is

the generic configuration when one characteristic root root crosses 1, the

topological degree evaluated along the NSS would necessarily change if such

a bifurcation occurs for some other steady state at some value γT . Indeed,

the two steady states associated with the transcritical bifurcation are distinct

when γ 6= γT while they are merged when γ = γT . It follows that under our

restrictions, uniqueness of the steady state is a generic property.16

The second Proposition considers the case with s ∈ (1/3, 1/2) and α ∈

(α̂, 1/2).

Proposition 6.2. Under Assumptions 1-4, let s ∈ (1/3, 1/2) and the NSS

be characterized by an under-accumulation of capital with α ∈ (α̂, 1/2). The

following results hold:

1- When b < b1, the NSS is generically the unique steady state and is

saddle-point stable for any γ > 1;

2- When b ∈ (b1, b0)∪(b2, 0), there exists ε̄rk > 0 such that if εrk ∈ (0, ε̄rk),

the NSS is generically the unique steady state and is saddle-point stable for

any γ > 1;

3- When b ∈ (b0, b2), there exist ε̄rk > 0 and γF ∈ (1, +∞) such that if

εrk ∈ (0, ε̄rk), the NSS is generically the unique steady state and is saddle-

point stable for γ ∈ (1, γF ), undergoes a flip bifurcation at γ = γF and

becomes locally unstable for γ > γF .

Proof : Let s ∈ (1/3, 1/2) and α ∈ (α̂, 1/2). We derive from (37) that

b1 < b0 < b2 < 0. Proceeding as in the proof of Proposition 6.1, we easily

derive from Lemmas 6.2 and 6.3 that Figure 1-i) illustrates the case b < b1,

16Under Assumptions 2 and 4, it is also possible to show that if εrk is low enough,

the Jacobian matrix of H(κ, x; γ) is non singular over Z(γ). As proved in Brock [6] (see

Theorem 1, p. 555), since the NSS exists for any γ ∈ (1, +∞), this property ensures the

uniqueness of the steady state.
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Figure 1-ii) illustrates the case b ∈ (b1, b0)∪(b2, 0), and Figure 2-ii) illustrates

the case b ∈ (b0, b2). In all cases the uniqueness of the steady state is obtained

using the same argument as in the proof of Proposition 6.1.

We may now prove Theorem 1. Building on Propositions 6.1 and 6.2, we

easily conclude that under Assumptions 1-4, when α > α̂, there exist ε̄rk > 0

and γ̄ ∈ (1, +∞) such that the NSS is generically the unique steady state

and is saddle-point stable for any γ ∈ (1, γ̄).

6.7 Proof of Theorem 2

Proposition 6.3. Under Assumptions 1-4, there exist ε̄rk > 0, γ > 1 and

γ̄ > 1 such that the NSS is locally indeterminate if and only if one of the

following sets of conditions is satisfied:

i) s ∈ (0, 1/3), α ∈ (s/(1 − s), α̂), b ∈ (b2, min{b1, b0}) and γ > γ,

ii) α ∈ (0, min{α̂, 1/2}), b ∈ (max{b1, b2}, b0) and γ > γ,

iii) α ∈ (0, min{α̂, 1/2, s/(1 − s)}), b ∈ (b1, b0), εrk > ε̄rk and γ ∈ (γ, γ̄).

Proof : Let us start with the configuration in which (T∞,D∞) belongs to

the interior of triangle ABC so that the NSS is locally indeterminate. We

know from Lemma 6.2 that this is the case when 1 + T∞ + D∞ > 0, i.e.,

b ∈ (b2, b0).

i) Assume in a first step that the ∆-half-line is pointing upward, i.e.,

b ∈ (−∞, b1). Lemma 6.4 then shows that D = 1 implies T < −2. In order

to get a compatibility between b ∈ (b2, b0) and b ∈ (−∞, b1), we need to have

b1 > b2, i.e., α > s/(1 − s) as shown by (37). Since α ∈ (0, α̂), we have to

impose s/(1 − s) < α̂, or equivalently s ∈ (0, 1/3). But this last restriction

implies α̂ > 1/2 as shown again by (37). Therefore, starting from (T∞,D∞)

within the interior of triangle ABC, and recalling from (37) that b1 > b0 if
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and only if α > 1/2, ∆(T ) will cross the segment AB if s ∈ (0, 1/3) and one

of the following sets of conditions is satisfied:

a) α ∈ (s/(1 − s), 1/2) and b ∈ (b2, b1),

b) α ∈ (1/2, α̂) and b ∈ (b2, b0).

To summarize, assuming that s ∈ (0, 1/3), α ∈ (s/(1 − s), α̂) and b ∈

(b2, min{b1, b0}), we conclude that there exists γ̄ > 1 such that the NSS

is locally indeterminate if γ > γ.

ii) Assume now that (T∞,D∞) belongs to the interior of triangle ABC,

i.e., b ∈ (b2, b0), but the ∆-half-line is pointing downward, i.e., b ∈ (b1, 0).

In order to get a compatibility between b ∈ (b2, b0) and b ∈ (b1, 0), we

need to have b1 < b0, i.e., α < 1/2 as shown by (37). Let us then assume

α ∈ (0, min{α̂, 1/2}) and b ∈ (max{b1, b2}, b0). As shown by Lemma 6.4,

depending on whether εrk is lower or larger than ε̄rk, D = −1 implies T < 0

or T > 0. However, in both cases there exists γ̄ > 1 such that the NSS is

locally indeterminate if γ > γ.

iii) Let us consider finally the configuration in which (T∞,D∞) belongs

to the region where the NSS is saddle-point stable. We know indeed from

Lemma 6.2 that this is the case when 1 + T∞ +D∞ < 0, i.e., b ∈ (−∞, b2)∪

(b0, 0). Lemma 6.4 also shows that when b ∈ (−∞, b1), D = 1 implies T < −2

so that any ∆-half-line pointing upward cannot intersect the triangle ABC.

It follows that local indeterminacy requires D′(γ) > 0, i.e., b ∈ (b1, 0) as

shown by Lemma 6.2. Moreover we derive from Lemma 6.4 that ∆(T ) will

cross the triangle ABC if and only if α ∈ (0, min{α̂, 1/2}), b ∈ (b1, b0)

and εrk > ε̄rk, i.e., when D = −1 implies T > 0. Note now from (37)

that α ∈ (0, min{α̂, 1/2}) implies b0 > b1. Therefore, in order to get a

compatibility between b ∈ (−∞, b2)∪ (b0, 0) and b ∈ (b1, b0), we need to have

b1 < b2, i.e., α < s/(1− s) as shown again by (37). To summarize, assuming

that α ∈ (0, min{α̂, 1/2, s/(1 − s)}), b ∈ (b1, b0) and εrk > ε̄rk, there exist

γ > 1 and γ̄ > γ such that the NSS is locally indeterminate if γ ∈ (γ, γ̄).
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Considering that we focus on the existence of local indeterminacy under

plausible conditions on the elasticity of the rental rate of capital εrk, Theorem

2 obviously follows from cases i) and ii) of Proposition 6.3.
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