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Assuming gross substitutability and a capital intensive consumption good, we prove
that when dynamic efficiency holds, local indeterminacy and sunspot fluctuations occur
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illustrate this finding within a standard erxample. This result shows that some fiscal
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1 Introduction

The existence of local indeterminacy and sunspot fluctuations under gross
substitutability are well established facts whithin OLG economies. Consid-
ering an aggregate model with endogenous labor and consumption in the
second period of life only, Reichlin [9] has shown that Hopf cycles and thus
local indeterminacy arise with a unique Pareto optimal steady state when
the technology is Leontief. This conclusion has had a strong echo in the lit-
erature as it implies that the introduction of a public policy based on taxes
and transfers could at the same time stabilize the economy and reach the
Pareto optimal steady state along which all generations get an equal level
of utility.

However, Cazzavillan and Pintus [3] have recently proved that the co-
existence of local indeterminacy and dynamic efficiency is not robust to the
consideration of any positive elasticity of capital-labor substitution. Indeed,
apart from the very special case of Leontief technology, the steady state is
always characterized by an over-accumulation of capital when local indeter-
minacy holds,! and policies targeting the steady state allocation generically
leave room for welfare losses associated with productive inefficiency.

As initially shown in Galor [6], local indeterminacy also arises in two-
sector OLG economies under gross substitutability. However, the Pareto
optimality of the equilibrium has not been precisely discussed in such a
framework. On the one hand, Reichlin [10] proves local indeterminacy of a
dynamically inefficient steady state through the existence of periodic, quasi-
periodic and chaotic dynamics under the assumption of Leontief technolo-
gies. On the other hand, Drugeon et al. [5] show that any dynamically
efficient equilibrium path is locally determinate if the sectoral elasticities of
capital-labor substitution are large enough.

Our main objective in this paper is to show that Reichlin’s [9] result is
a robust property in a two-sector OLG economy. Assuming gross substi-
tutability and a capital intensive consumption good sector, we prove indeed
that local indeterminacy can occur under dynamic efficiency when interme-
diary values for the elasticity of intertemporal substitution in consumption
and low enough but positive sectoral elasticities of capital-labor substitution
are considered. This conclusion shows that contrary to the aggregate frame-
work, in two-sector OLG economies with capital-labor substitutability, some
fiscal policy rules can eliminate business-cycle fluctuations in the economy

!See also Cazzavillan and Pintus [2] for an extension of this result to a model with
positive first-period consumption.



by driving it to an optimal steady state as soon as it is announced.

2 The model

2.1 Production

The economy consists in one consumption good g9 and one capital good y
produced from capital and labor through standard constant returns to scale
technologies:

yo = fO(K%,19), y= fY k1Y) with kX + k' <kand I°+1' < ¢ (1)
k being the total stock of capital and ¢ the total amount of labor.
Assumption 1. Each production function f* : Ri — Ry, i=0,1, is C?,

increasing in each argument, concave, homogeneous of degree one and such
that for any x > 0, f{(0,2) = f3(z,0) = 400, fi(4+00,x) = f3(x,+00) = 0.

As y < f1(k,€), Assumption 1 implies that there exists k() > 0 solution of
k— f'(k,£) = 0 such that f'(k,€) > k when k < k(£), while f'(k,{) < k
when k > k(¢). The set of admissible 3-uples (k,y, ¢) is thus defined as

K={(ky) eR3|0< £, 0<k<E(),0<y< fl(k 0)} (2)

For any (k,y,¢), profit maximization in the representative firm of each
sector is equivalent to solving the following problem of optimal allocation of
productive factors between the two sectors:

T(kay7£) = max fo(k())lo)

kO k1,1011
sty < Uk
KO+ Kk <k (3)
4+t <y

]{70, kl, lO, ll >0

The social production function T'(k,y,¢) gives the maximal output of the
consumption good along interior temporary equilibria (k,y,¢) € K. Under
Assumption 1, T'(k, y, £) is homogeneous of degree one, concave and C? over
K.2 Denoting w the wage rate, r the gross rental rate of capital and p the
price of investment good, all in terms of the price of the consumption good,
we derive from the envelope theorem that

2See Benhabib and Nishimura [1].



T:Tl(kay7£)7 p:_T2(k7y7€)7 w:T3<kay76) (4)
The share of capital in total income is then given by

S<kay7£) = W’M < (07 1) (5)

2.2 Consumption and savings

In each period t, N; agents are born, and they live for two periods. In their
first period of life (when young), the agents are endowed with one unit of
labor that they supply inelastically to firms. Their income results from the
real wage and is allocated between current consumption and savings which
are invested in the firms. In their second period of life (when old), they are
retired and their income resulting from the return on the savings is entirely
consumed. The utility function of a representative agent, defined over his
consumption bundle (¢;, when he is young, and d;11, when he is old), is

_ v/(v=1)
u(cr, dip1) = Ctl A + 5(dt+1/3)1_1m}

with § € (0,1) the discount factor, v > 0 the elasticity of intertemporal
substitution in consumption and B > 0 a scaling parameter.
Fach agent is assumed to have 1 +n > 0 children so that Ny =
(1 + n)N;. Under perfect foresight, and considering the wage rate w; and
the gross rate of return R;y1 as given, a young agent maximizes his utility
function over his life-cycle as follows:
max  u(c,d
ct,de41,Pt ( b H—l)
s.t. wy=ct+ Py
(6)
Rip1ér = dipa
Ct, dt+17 d)t Z 0

Solving the first order conditions gives:
ct = W(RZW = O[(Rt+1/B)UJt (7)

with a(R/B) € (0,1) the share of first period consumption over the wage
income. Under gross substitutability, v > 1 and the saving function ¢, =
(1 — a(Ryy1/B))w is increasing in R.

2.3 Perfect-foresight competitive equilibrium

Total labor is given by the number N; of young households, i.e., £; = Ny,
and is increasing at rate n, i.e., £y11 = (1 + n)f;. We also assume complete
depreciation of capital within one period.



Definition 1. A sequence {k¢,yt, e, ct, di, v, we, pe}72,, with (ko,4o) =
(l;:o,fo) given, is a perfect-foresight competitive equilibrium if:

Z) Ct — (X(Rt+1/B)wt;

i) l(1 — a(Riv1/B))w = prye;

iii) yr = ks

i) lir1 = (14 n)ly;

v) beler +di /(1 +n)] =T (ke, yt, &)

vi) (re, we,pt) is given by (4);

UZZ) Rt+1 = Tt+1/pt-

Let k = k/¢ and & be the solution of k — f1(k,1) = 0. The set of admissible
paths given by (2) can be redefined as follows

K= {(K,t,fit+1) S Rim S Kt S R, 0 S Rt+1 S fl(fit, 1)/(1 —l—n)} (8)
A perfect-foresight competitive equilibrium then satisfies

T3(ke,(14n)ke41,1) T1(Kt41,(14n)Kke42,1) _
(L +n)ke1 + 7t mime 1) [1 —a (_ Tons (i) DB )} =0 (9)

with a(R/B) given by (7), (kt, ki+1) € K and kg = kg = l%g/éo given.

3 Steady state and dynamic efficiency

3.1 A normalized steady state

A steady state is defined as k; = k* for all ¢ with k* solution of

T1(k,(14n)kK,1 o kT5(k,(14+n)k,1) __
@ <_T21(E:,(§+n)/)4,1)13’> =1+(1+n) T32(E£,((1+n))n,1)) =0, €(0,1) (10)

We consider a family of economies parameterized by v # 1. We follow the
same procedure as in Drugeon et al. [5]: we use the scaling parameter B to
ensure the existence of a normalized steady state (NSS) x* € (0,%) which
remains invariant as v is varied. From (7) and (10) we get:

Proposition 1. Under Assumption 1, let v # 1 and k* € (0,k). Then

there exists a unique value B(k*) > 0 as given by
B(s) = — Bl (mn.1) ( — ()R T (" (1 )" 1) )117
)]

T T Ta(k*,(I+n)k*,1) \ 9 [Ta(k*,(1+n)s*,1)+(1+n)x*Ta (k*,(1+n)x*,1
such that k* is a steady state if and only if B = B(Kk*).

Proof: See Appendix 5.1. ]

In the rest of the paper we assume that B = B(k*) so that s = s(k*, k*, 1)
and a = a(R*/B(k*)) = ®,+ remain constant as -y is made to vary.



3.2 Dynamic efficiency

From Definition 1 and the homogeneity of T'(k,y,¥¢), considering that
¥y /T3 = (Ty)Th)(k*T1/T3) = —s/R*(1 — s), we derive the stationary
gross rate of return along the NSS:

* 14+n)s
R = ot (1

Under-accumulation of capital is obtained if and only if R* > 14+ n. As
shown in Drugeon et al. [5] we have:

Proposition 2. Under Assumption 1, let v # 1 and o« = 1 — s/(1 — s).
Then:

i) the NSS is characterized by an under-accumulation of capital if and
only if o > o

i) an intertemporal competitive equilibrium converging towards the NSS
is dynamically efficient if o € (o, 1) and dynamically inefficient if o« € (0, a).

If the labor income is relatively larger than the capital income (s < 1/2), a >
0 and young agents receive enough wage resources to provide a large amount
of savings. But over-accumulation of capital can be avoided provided the
share of first period consumption over the wage income is large enough, i.e.
the agent does not save too much.

4 Local indeterminacy under dynamic efficiency

Let us introduce the relative capital intensity difference across sectors

b= (k1" = K°/10) 11y (12)
and the elasticity of the rental rate of capital
erk = —Tn (%, (L +n)r*, 1)r*/T1(k*, (1 + n)k*, 1) (13)

evaluated at the NSS. From now on we consider a positive value for « = 1—
s/(1 —s), we assume gross substitutability, a capital intensive consumption
good,? and we consider dynamically efficient paths:

Assumption 2. s € (0,1/2), v>1,b<0 and a > a.

We then prove that contrary to the aggregate OLG model, local indeter-
minacy arises under dynamic efficiency in a two-sector model with positive
capital-labor substitution.

#When ~ > 1, this is a necessary condition for local indeterminacy (See Galor [6]).



Theorem 1. Under Assumptions 1-2, let b= —1/(1+n) and b = —(1 —
a)/(1 +n)a. Then there exist €,4, > 0, v > 1 and 7 > v such that the NSS
is locally indeterminate if and only if s € (1/3,1/2), o € (o, 1/2), b € (b,b),
Erk > Erk and v E (lv /7)

Proof: See Appendix 5.2. ]

Theorem 1 is based on a large elasticity .. This restriction can be
interpreted through the aggregate elasticity of capital-labor substitution >
which is linked to &, as follows (see Drugeon [4]):

% = WY (k01000 + yok'llon) , e = (I%/y0)” LY (14)

with o9 and o7 the sectoral elasticities of input substitution. Local inde-
terminacy under dynamic efficiency then requires a low enough aggregate
elasticity X, i.e. low enough but still positive sectoral elasticities. Note also
that the consumption good sector has to be sufficiently capital intensive. If
b is too close to 0, i.e. if the model is close to the aggregate formulation, we
get the same conclusion as Cazzavillan and Pintus [2, 3]: local indetermi-
nacy under dynamic efficiency can never arise with any positive elasticity of
capital-labor substitution.

Remark 1: Note that 4 is generically a flip bifurcation value giving rise to
period-two cycles which are locally indeterminate (or unstable) in a right (or
left) neighborhood of 7, while 7 is generically a transcritical bifurcation value
leading to the existence of a ‘second steady state which is locally unstable
(saddle-point stable) in a right (left) neighborhood of « (see Figure 1 in
Appendix 5.2). B

Through the NSS, the conditions on «, s, b and &, in Theorem 1 are
based on joint restrictions of the technologies. We need therefore to show
that they can be satisfied with standard production functions. Consider the
following CES formulations:

FORO,) = (KO~ + (1 — x)(10)~5] 7+

_1
11 71y (1 (P @ ”

S = [2(77) G
with x € (0,1),¢,p > —1 and > 0. The sectoral elasticities of capital-labor
substitution are given by o9 = 1/(1 +¢) and o1 = 1/(1 + p). We assume
for simplicity a constant population, i.e. n = 0. Note that when o1 = 0
the investment good technology becomes Leontief as lim,_, oo f1(k!, 1Y) =

(15)



min{k!/n,'}. Assume in a first step that o7 = 0. As y = k' /n = 1!, we get

_ -1
Tk, y,0) = [x(k = my) ™ + (1 =) (=) ~]
Following Proposition 1, we consider a NSS k = k* € (0,1) and we compute

o0 = =)A= TR (=r")—nx(I=r)!™* 0 x(1=r")'*
TP ! T () e
0 (I*X)(1*n)1+<ﬂ*<*x(lfﬂ*)““, p0 — 1=K (1+6)(A—x)K**

_ 0
a” = 1—k* and Erk =

(I=x)(1—n)tFer=s
together with the bounds b = —1,
N € G 0 € ) i P { € AN

= (I=x)(1—m)Fers (1—r*)—nx(1—r*)1 T

1+¢
€0 (2 =) (1=x*) (1) XA+ (5572
Srk (2/«:*—1—77)(1 77)77X (K*(l n))<+1 N

(1- W)[X(W) +1— X}

In a first step we derive that if k* € (1/2,1), x € (Xl,)Z ) with
_ (1—n)sr*ite (1—n)'*ter*e
Xl - (1_“*)1+§+(1—77)§5*1+§’ X - (1 P )1+<+(1 n)1+‘}£*<

and n < 7° = min{1 — x*, 2x* — 1}, then s° € (1/3,1/2), o € (a°,1/2) and
b0 € (8°, —1). In a second step, we derive that if ¢ > ¢* with

0o__ K" [1—77(1—77)—"@*2]
N T s e )

then there exists XS € (0, x) given by
k¥ (1— 1+
0 (=) (=) (55050 )

Xy = P S
22 oL [ (L) () (1) (S0 )

such that e, > §9k when y > Xg' Denoting XO = max{x(l],xg}, we have
then proved:

Lemma 1. Let the production functions be given by (15) with o1 = 0. If
€ (1/2,1), n <7, ¢ > " and x € (X% X"), there exist 7° > 1 and
70 > 10 such that the NSS is locally indeterminate for any v € (10,’70).

Assume now that o1 > 0. The social production function derived as the
value function of program (3) is parameterized by oy, namely T (k,y,{).
Considering the same NSS x = x* € (0,1), we can similarly compute !
571, %, b7, e b7t and g7} . We have the following property:

Lemma 2. The social production function T (k,y,{) is continuous in
(k,y,0,01), and as o1 — 0, converges to T°(k,y,£) uniformly in (k,y,£),
i.e. for any e > 0, there is & > 0 such that if 0 < o1 < &, [T (k,y,l) —
TO(k,y,0)| < € for any (k,y,?) € K.



Proof: See Appendix 5.3. ]

. o3 g
It follows from these Lemmas that limg, (%', s7', a7, b7, &7} b7, e7)) =

(a9, 5%, aY, bo,egk,bo,ggk). We have then proved:

Proposition 3. Let the production functions be given by (15). If k* €
(1/2,1), there is 31 > 0 such that for all o1 € [0,51) there exist 77 € (0,1),
71 >0, xt € (0,1), x?* € (0,1), v+ > 1 and 4°* > 47 such that when
n < i, < > st and x € (X’H)Z"lj, the NSS is locally indeterminate for
any v € (7, 77).

Theorem 1 and Proposition 3 show that in a two-sector OLG economy, the
existence of local indeterminacy under dynamic efficiency is compatible with
positive capital-labor substitution in each sector. Following Reichlin [9], our
conclusion suggests that the Pareto optimal steady state can be considered
as a target of the policymaker. Indeed the introduction of a public policy
based on taxes and transfers could at the same time rule out business-cycle
fluctuations in the economy and drive the equilibrium to the optimal steady
state which provides an equal level of utility to all generations.

Let us prove now along the line of Reichlin [9] that such a policy ex-
ists under the assumption that agents and public authority do not make
forecasting mistakes. Assume that the public authority buys goods, levies
taxes and makes transfers. Let ¢g; be the flow of consumption goods which
is bought, 7/ < (>)0 the taxes (transfers) on the income of the young and
79 < (>)0 the taxes (transfers) on the income of the old. We assume a bal-
anced budget rule, i.e. g+ 77+ 77 = 0. The agent’s first and second period
budget constraints become wt—l—Tty = ct+¢r and Ryp19¢+77 1 = diy1. From
utility maximization, we get the optimal saving

B B(6Ryy1/B)Y (wi+T))—12
O = TR TBOR BT (16)
and a perfect-foresight competitive equilibrium satisfies
B(8Rt+1/B)Y (we+1))—T12
(1 +n)ke1pe = 31111-1-3(55’«;1;3)7 - (17)

Now consider the expression of the normalization constant as given in Propo-
sition 1 evaluated at some point x € (0,%), namely B = B(k) such that:
1
_ (k) (I+n)kp(r) -
Bs) = 5 (st
with r(k) = Ti(k,(1 + n)k,1), p(k) = —Ta(k,(1 + n)k,1) and w(k) =
T3(k, (1 +n)k,1). Let




o = (1+ n){ﬁp(n) [R(k) + B(k)(0R(k)/B(k))"] (222§)7

— ki [Ris + B(k)(0Ri /B(x)] } (18)

7 = w(k) — wy

with R(k) = r(k)/p(k). Plugging 7/ =7/, 70, = 72, and 7/, = 70, =0
into (17) gives

(1+n)rp(r) = R BT (19)
As shown in Proposition 1, there exists a solution k = k* which corresponds
to the normalized stationary Pareto optimal perfect-foresight competitive
equilibrium. It follows that if agents believe in this announced policy rule,
they will expect the optimal NSS allocation to hold in the future. This
expectation in turn drives the sytem to the NSS and keep it there forever.
Note however that contrary to Riechlin [9], when local indeterminacy holds,
the NSS is not the unique stationary solution of equation (19). Indeed, as
mentioned in Remark 1, a second steady state generically exists through
a transcritical bifuration occurring at v and is locally unstable for v > ~.
It follows that the stabilization policy (18) has to be parameterized by the
right NSS in order to jump on the optimal stationary allocation.

5 Appendix

5.1 Proof of Proposition 1
Consider the set K as defined by (8) and the expression of a(R/B) as given
by (7). k* € (0,&) is a solution of (10) if

1 . k*To(k*,(14+n)k*,1)
ol e ameny T = L ) G aneny € (01 (20)
+ ( TQ(K*,(1+n)n*,1)B)

Then there exists a unique positive value of B solution of (20) given by

1

wy _ Ti(k*,(14n)k*,1) —(14+n)r*To(k*,(14n)x*,1) 1—y
B(K") = ~ T (Trn)ne ) ([Tso-e*,<1+n>n*,1>+(1in>n*Tz<r~*,(1+n>fe*,1>w)

and k* is a steady state if and only if B = B(k"). ]

5.2 Proof of Theorem 1
From (7), we get
o'(R/B) = (1 —v)a(R/B)(1 — a(R/B))B/R (21)



Under Assumptions 1 and 2, we get from the first order conditions of pro-
gram (3)

Tio =-T11b<0, Ty = T11b2 <0, T31 = —T11a > 0, T39 =Th11ab >0 (22)

with @ = k°/1° > 0, b as defined by (12) and Tj; < 0. Considering (13)
together with (22), T1x* /T3 = s/(1 —s), =11 /T2 = R* = s/(1 — a)(1 — s)
and the fact that homogeneity of T'(k, y, ¢) implies a = [1 — (1 +n)b]x*, total
differenciation of (9) using (4), (5) and (21) evaluated at the NSS gives the
characteristic polynomial P(\) = A2 — A7 (y) + D(v) with
S n)oa(vy— —QTQ n n 2p2
D< ) - [(1(+1+):)b((z72)?1175)3(7(:3 )b]’ 7(7) - (1+n)b53ka('yfl) + 1+?l(jj1)l3 :
When B = B(k*), the NSS, a, s and €, remain constant for any v # 1. We
then study the variations of 7 () and D(vy) in the (7, D) plane as 7 varies
within (1, +00). Solving 7 () and D(y) with respect to a(y — 1) yields to

_ _ rks[l—a+a(l14+n)b]T
D= A(T) - (1—a)(1—€s)k—s—arks(1+n)b[1—a+a(1+n)b]
erks[l—ata(l+n)b]—s(14+n)b
(14n)b[(1—a)(1—s)+erks(14+n)b(l—a+a(1+n)b)]

and allows to use the methodology introduced by Grandmont et al. [7]. As
~ spans the interval (1,400), 7 () and D(y) vary linearly along the line
A(T). The fundamental properties of A(7") depend on its extremities. The
starting point of the pair (7 (), D(y)) is obtained when v = +4o00:

1—a)(1—s)+(14+n)2b3s
D(+o0) =D , T(+00) = Too = (14251)11(1)—6(@(1—)5) (23)

while the end point is obtained when 7 converges to 1 from above. Let
b=-1/1+n),b=—-1—-a)/(1+n)aand b=—(1—-a)(1—s)/(1+n)s.
As lim,_,1+ D(y) = lim,_1+ 7(y) = oo, A(T) is a half-line starting from
(7, Do) and pointing downwards or upwards depending on the sign of

s(b—b
D) = W TP (24)

Under Assumptions 1-2, we get from (23) that Do, = R*/(1+n) > 1. Local
indeterminacy then requires that D'(y) > 0, i.e. b € (b1,0) as shown by
(24). But in this case, D = 1 implies 7 < —2. Indeed, solving D = 1 gives
b—b
o(l-7) = s (25)
which can be satisfied if and only if b € (b,0). Moreover, substituting D = 1

into the expression of 7 allows to get

T+2=

—_ S
o0 = [Ta)(1-9)

14(14n)b]?
T + : (§+n)z)7] <0 (26)

Therefore, when b € (b,0), the only possibility to get local indeterminacy is
that the A-half-line crosses the interior of segment [AC] as follows

10
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Figure 1: Local indeterminacy with dynamic efficiency.

~

This requires that 1+7og+Doe = (b—b)(b—b)/bb < 0 < b € (—00,b)U(b,0),
and that D = —1 implies 7 > 0. Solving D = —1 gives

_ _oas(b=b)
a(l =7) = a9 (27)
which holds if and only if b € (b,0). Substituting D = —1 into 7 gives
T — erpas(b—b)(1+n)? (b2 —b2)—b[1—a(1—s)] (28)

(14+n)be,ras(b—b)
Noting that b < b < o < 1/2 and a < 1/2 < s > 1/3, we derive
from (28) that A(7) = —1 implies 7 > 0 if and only if s € (1/3,1/2),
a € (a,1/2), be (bb) and g, > g, with

e bl—a(l—s)]
=rk T (14n)2(02—b2)as(b—b1)

>0 (29)

The result follows. O

5.3 Proof of Lemma 2

We use the same kind of argument as Nishimura and Yano ([8], Lemma 1, p.
229). Define the set E(k,y,¢,01) = {(k°,1°) > 0Oly < f1(k—k°,¢—1°)}. Then
T (k,y,¢) = max fO(k°,1°) s.t. (k°,1°) € E(k,y,¢,01). Since E(k,y,¢,01)
is lower-semi-continuous in (k,y,%,01), T (k,y,¥) is continuous. It fol-
lows also that the functions (k2 (k,y,£),13, (k,y,0)) = argmaxf°(k°,1°) s.t.
(k°,1°) € E(k,y,,01) are continuous. Moreover, as lim,_ 4o f1(k!,11) =
min{k!/n, '}, we can find a sub-sequence oy; such that when oy; — 0,
(kS (k,y,0),10, (k,y,0)) — (k —ny,l —y) for any (k,y,{) € K. Therefore,

the uniform convergence follows and limy, o 77! (k,y,¢) = T°(k,y,£).
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