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Abstract

On the basis of our previous work, we propose a syllable-

based prominence detection model within the framework of ex-

ploratory data analysis and discriminant learning in the acoustic

domain. This paper investigates two hypothesis on the acoustic

data processing: a linear discriminant analysis in which the rel-

ative discriminant ability of single prosodic cues are combined

into prosodic patterns and a context-dependant model that ac-

counts for phonological dependencies (phonetic intrinsic prop-

erties and coarticulation effect). The proposed approach signif-

icantly outperforms a baseline method on a corpus of French

read speech with a performance of 87.5% in f-measure for the

prominent syllables (respectively 90.4% in global accuracy).

1. Introduction

To enable the development of linguistic study and prosodic mod-

els over large corpora, a number of tasks should be automati-

cally preprocessed such as phonetic decoding and segmentation,

detection of para-verbal phenomena (fillers), prosodic salien-

cies (prominences) and disfluencies. Research on prominence

(syllable or word based) has received a significant amount of

attention over past years both in the study of its perception, its

acoustic correlates as its automatic detection. We will focuse

here mostly on this acoustic dimension.

The perception of prominence is complex: it results from the

interaction between acoustic perceptual salience (a bottom-up

process involving significant acoustic deviation from more or

less abstract references) and cognitive representations and asso-

ciated expectations (a top-down process which involves lexical

feature, syntactical structure, and informational structure)[1, 2].

Most of the studies on prominence, if they do not deny its top-

down dimension, have nevertheless focused on its acoustic cor-

relates [3, 4, 5, 6, 7, 8, 9, 10]. These studies have pointed out

that the perception of prominence is based on a set of acoustic

correlates that seems to be independent of language (variations

in duration, pitch [3, 7], intensity, and vocal quality (spectral

emphasis, vocal effort) [6, 5, 9, 10]), but whose relative contri-

butions is language-specific [4]. Another property is the acous-

tical context-dependencies which account for the local acoustic

reference baseline used by listeners to judge perceptual saliency

[3, 4, 7].

Such findings, while they are fundamental to understand the

mechanisms that underlay the perception of prominence in speech,

could be of little interest in an automatic detection task. There

are two reasons for this: 1) a significant difference observed be-

tween acoustic means does not ensure a good separability for

each particular observation. 2) the use of controlled utterances

neutralizes the phonetic contextual factor which is a source of

variability in the acoustic observations (acoustic properties in-

trinsic units observed and coarticulation) in speech. These two

reasons combined together explain why a relevant acoustic cue

in the case of laboratory speech may have a low discriminating

ability or difficult to integrate in a prominence automatic detec-

tion task [11].

In parallel, methods have been proposed for the automatic de-

tection of prominence [12, 13, 14, 15, 16, 17, 11, 18]. Re-

search in the field of automatic detection of prominence has

mainly concentrated on the search and integration of discrim-

inant acoustic features [13, 15, 11, 18], relatively few on the

choice of classifiers. On the acoustic level: pitch (f0) and du-

ration feature are known and commonly used. If these corre-

lates show robust performance in a prominence detection task,

it seems that they have limited discriminant ability and are not

sufficient in a significant number of cases. Therefore, more re-

cent studies have tried to investigate some new acoustic corre-

lates such as energy (acoustic and perceived)[15], energy bands

[11], and spectral emphasis. These methods are based on the

discriminant ability of a set of single acoustic cues; [13] has

proposed to combine a set of acoustic cues in order to cumu-

late their relative contributions in the achievement of an acous-

tic salience. However, the proposed method is based on some

heuristics postulated solely on the basis of expert knowledge.

On the classifier level: if the decision tree is referred as a base-

line classifier, some other classifiers have been proposed through

literature (neural networks, HMM, rule-based [12], bagging and

boosting approach [14], coupled-HMM[16], voting classifiers

[11]).

Following our previous work [18], our approach is based on ex-

ploratory data analysis and discriminant learning in the acoustic

domain. Our method aims to automatically determine from a

large dimensional acoustic space a set of discriminant prosodic

cues and/or patterns from a large dimensional acoustic space in

a prominence detection task. In the present study, the authors

propose to investigate two new assumptions:

• H1: we support that the phenomenon of prominence results

from a complex mechanism of interaction of different prosodic

cues. This interaction takes place both in the combination of

heterogeneous acoustic features (pitch, duration, vocal qual-

ity, etc.) and in the acoustic context-dependencies (com-

bination of multiple reference floors according to multiple

context-window sizes).

• H2: we suggest that taking into account the phonetic-context,

by neutralizing the variations related to the contextual pho-



netic properties (acoustic intrinsic properties and coarticula-

tion effect), will improve the acoustics separation of promi-

nent classes (P) and non-prominent (NP) syllables;

The article is organized as follows: first, we briefly describe the

corpus used for the experiment; then, we describe the scheme

of our proposed method; finally, we introduce our evaluation

protocol and present the obtained results.

2. Speech Material

Unlike for English studies (Boston University Radio Speech

Corpus [19], and Boston Directions Corpus [20]) there is cur-

rently no reference corpus available for prominence detection

in French. Therefore a home-made corpus of a single speaker

French read speech has been used for this preliminary study.

The corpus has been manually annotated for prominence by

2 non-expert annotators with an agreement score of 78% of f-

measure (respectively 80% of accuracy). This score is in con-

cordance with the inter-annotator agreement usually observed

in the literature (80-90% accuracy). For the detection task, only

syllables for which agreement occurs were considered as being

prominent; others have been declared non-prominent. This re-

sults in 1670 prominent syllables and 4635 non-prominent syl-

lables.

3. Exploratory and Discriminant Learning
Framework

3.1. Feature extraction

In [18], we have proposed a feature extraction framework for

the prominence detection task. We outline here the main prin-

ciples of the feature extraction step: we represent the acoustic

space into 5 of his prosodic dimensions: pitch (f0), durational

(syllable duration and local speech rate), intensity (absolute and

perceived), spectral (mel-frequency energy and loudness), and

vocal quality (spectral slope, spectral emphasis, open quotient

of the glottal source) features. On the basis of these prosodic

dimensions, low-level statistical syllable-based features are ex-

tracted: minimum, maximum, mean, slope, glide, excursion,

range, and standard deviation. These features are then used to

give information on 2 different levels:

• intra-syllabic features: describe prosodic cues that occurs in-

side a given syllable;

• extra-syllabic features: describe the acoustic-context depen-

dencies such as context-window and reference floor that ac-

count for acoustic-context.

In this experiment, two syllable-based units (syllable and nu-

cleus of the syllable), several contextual-windows (none, {previous;

next; surrounding } syllable, current breath group, current utter-

ance) and two reference floors (minimum and mean value on the

considered context-window) have been used.

3.2. Discriminant Analysis

The aim of our proposed method is to automatically estimate

and accumulate the discriminant ability of the single prosodic

cues of the considered acoustic space in order to improve per-

formance in detecting prominence (H1). To formalize this hy-

pothesis, we set our approach within the framework of discrim-

inant analysis. However, as the feature extraction step described

above leads to a high dimensional feature space, this could causes

several problems in a classification task. In particular: poor

classification performance due to the fact that some features are

irrelevant for the task and therefore introduce noise in the learn-

ing procedure; over-fitting of the model to the learning set, es-

pecially in the case of dimension reduction algorithm such as

LDA.

To prevent these bad properties, we propose the following learn-

ing scheme: 1) the initial feature space is reduced by feature se-

lection into a subset of uncorrelated and discriminant features;

2) the resulting feature sub-space is transformed by means of

linear discriminant analysis (LDA) in order to accumulate the

discriminant ability of each single prosodic cue.

Let us introduce some notations and definitions. Let K be

the total number of classes, Nk the number of total feature vec-

tors accounting for the training data from class k and N the to-

tal number of feature vectors, µk and Σk respectively the mean

vector and the covariance matrix of the class k, and µ the over-

all mean vector. The within and between class scatter is then

defined as follows:

B =
P

K

k=1
Nk(µk − µ)(µk − µ)T

W =
P

K

k=1

P

Nk

nk=1
(xnk

− µk)(xnk
− µk)T

And the inertia ratio is defined as:

r =
B

W

3.2.1. Feature Selection

The method used for the feature selection step is based on Iner-

tia Ratio Maximization using Feature Space Projection (IRMFSP

) [21, 18]. Let F be the acoustic feature space with respective

feature dimensions (fi)1≤i≤D where D is the rank of the fea-

tures space. At each iteration of the process, the best feature fi

is selected as the one maximizing ri (inertia ratio along dimen-

sion i) and then the feature space is projected along the dimen-

sion fi thus defining new dimensions fi that verify:

fj = fj − (fj.
fi

‖fi‖
)

fi

‖fi‖
, ∀fj ∈ F

This projection step ensures that selected features are little corel-

lated thus avoiding redundancy in the resulting features set. It-

eration is processed until the ratio of the inertia ratio at step j to

the inertia ratio of the first selected feature drop below a given

threshold or when a desired number of features is reached. This

leads to select a set of little-correlated features that individually

maximizes the classes separability conditionally to each previ-

ous subset of selected features.

3.2.2. Feature Transform

The selected features estimated in the previous step are then

used as input features of a linear discriminant analysis. The aim

of this step is to combine the discriminant ability of the feature,

by estimating the linear combinations of single features of the

original space that maximize the class separation (following the

same criterion mentioned above) This problems turns into de-

termining the K-1 linear combinations (α)1≤k≤K−1 that maxi-

mize the objective function:

J(α) =
αT Bα

αT Wα

Once the parameters α have been estimated, the original fea-

tures are projected along these directions into a transformed

space of rank K-1.



3.3. Context-Dependant Analysis

Even if context-dependent analysis has already been used by

[12] in prominence detection, we would like to assume it as a

full hypothesis in the acoustic modeling of prominence. In or-

der to account for the effect of phonetic-context (intrinsic prop-

erties and coarticulation) on the observed prosodic parameters

(H2), we introduced syllable-based left-to-right contextual fac-

tors. The phonologic contextual factors used in this experiment

are:

• type of {previous, current, next} syllable;

• number of phonemes in {previous, current, next} syllable;

• phonetic label of the current syllable’s nucleus;

• phonetic class of the current syllable’s nucleus;

• number of phonemes of {previous; current; next} syllable

onset;

• number of phonemes of {previous; current; next} syllable

coda;

• phonetic class of the current syllable onset & coda (i.e glide,

occlusive, fricative, liquid, nasal);

4. Models evaluation

4.1. Compared Models

In this study, we compared 5 types of models of prominence

detection. In order to remove any influence of the classifier

type on the performance measurement, each experiment was

performed using weka’s J48 decision tree [22]. The compared

models are:

• a baseline model (BL): decision tree learned on the whole

acoustic space.

• a Context-Dependent model (H1): decision tree learned on

the whole acoustic space + phonetic-context features.

• an IRMFSP model: decision tree learned with the N first dis-

criminant features selected with IRFMSP.

• an IRMFSP + LDA model (H2): decision tree learned on the

optimal linear combination of the N first discriminant fea-

tures selected with IRMFSP.

• an IRMFSP + LDA + context-dependent (H1 + H2): deci-

sion tree learned on the optimal linear combination of the N

first discriminant features selected with IRFMSP + phonetic-

context feature

4.2. Evaluation scheme

The evaluation was conducted on the read speech corpus pre-

sented in section 2 within a 10-fold cross validation. Unlike

other studies that use global accuracy as a measure of promi-

nence detection performance, in this study we used the f-measure

of the prominence class only. This choice is motivated by the

following reasons: 1) prominence classification task is a detec-

tion task, i.e. a classification task in which only one of the class

is of interest. This choice is all the more justified in the promi-

nence detection task since the class of interest has much less

observations than the other. 2) the f-measure provides a good

compromise between recall and accuracy measures (insertion

and deletion rates in the case of a two-class classification task).

5. Results and Discussion

In table 1, we summarize the results obtained with the 5 pro-

posed models. Our proposed hypothesis (H1: phonetic context-

dependency and H2: prosodic cues combination) leads to both

significant improvement compared to the baseline method, with

respective performance of 84.1 and 87.5% f-measure on the

prominence class (this represents for comparison with standard

performance measure respectively an accuracy of 86.5 and 90.4%).

Models Mean Performance ( % f-measure)

BL 81.5

H1 84.1

IRMFSP 84.5

H2 87.5

H1 + H2 87.4

Table 1: Performance of the compared models. In the case of the
IRMFSP-based model, only the optimal model’s performance is re-
ferred.
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Figure 1: Performance of the IRMFSP (white bars) and the
IRMFSP/LDA (gray bars) models as a function of the number of se-
lected features in the feature selection step. Performances are presented
as mean and standard deviation of the f-measure on the prominence
class. The dotted line gives the mean performance of the baseline
model. For convenience, performance is shown only for the first 15
selected features.

From the prosodic cue combination hypothesis (H2), we have

investigated several properties compared to the baseline as well

as the IRMFSP models. First we have investigated the discrim-

inant ability of the most discriminant prosodic feature (syllable

duration) compared to the combination of the N most discrimi-

nant features (H2). An anova analysis reveals that combination

of prosodic features is significantly more discriminant for any

number of selected features (F −stats = 385 for the most dis-

criminant features vs. 511 ≤ F−stats ≤ 990 for the combina-

tion of the N most discriminant features N ≥ 2 on the test set)

. A comparison of the IRMFSP and IRMFSP+LDA models by

mean of prominence detection performance is presented in fig-

ure 1. Both models outperform the baseline model with a very

small feature space dimension. The IRMFSP+LDA model out-

performs the IRMFSP for almost all number of selected features

(N > 2). This means that our proposed model succeed in find-

ing discriminant prosodic patterns that are more discriminant

than single cues estimated with the IRMFSP method. These

results support the hypothesis that prosodic cues combine their

contributions to achieve an acoustic saliency.



From the context-dependant hypothesis, it can be seen that

the increase in performance observed with our H1 model com-

pared to the BL model and the combined H1 + H2 model com-

pared to the H2 model is relatively small or even null. This

means that the proposed model somehow failed in catching dis-

criminant phonetic distinctions in prominence structure. This

suggests that the phonetic distinction does not affect overall

prosodic features homogeneously; phonetic-context rather af-

fects each particular prosodic cue depending on his nature (f0,

duration, intensity, spectral feature, voice quality). Thus, dis-

tinct context-dependent models should be learned for each prosodic

cue or at least for each prosodic dimension. This remains to be

investigated in a further study.

6. Conclusion and future works

In this paper we have proposed the investigation of two hypothe-

ses for a syllable-based prominence detection model within a

discriminant-based exploratory data analysis framework. These

hypotheses were phonetic context-dependencies and prosodic

cues combination. They both significantly outperform a base-

line decision tree model in prominence detection. The improve-

ment obtained by combining prosodic cues gives strong sup-

port to the hypothesis that prominence perception results from

the combination of multiple prosodic cues contributions. How-

ever, our context-dependant model could be greatly improved

by learning different context-dependant models according to

the considered prosodic feature. Moreover, since the discrim-

inant ability of a given prosodic cue is somehow related to his

phonetic context, the context-dependant model should be esti-

mated before estimating the discriminant ability of any prosodic

cue; thus the context-dependency model and the feature selec-

tion should be merged into a single process. This preliminary

study was achieved on read speech, further experiments will

now be carried out on spontaneous speech corpora in order to

propose a model robust to speaker, speaking style, expressiv-

ity and recording conditions. This will be carried out via the

elaboration of a corpus of six hours of spoken French sam-

pled into different speaking styles with manual prosodic an-

notations (Rhapsodie project). Furthermore, our proposed ap-

proach can be applied to any language since our model auto-

matically estimates and combines relevant prosodic cues used

for prominence achievement without any language-specific as-

sumption. Thus it could be used in other languages to compare

the language-specific prominence acoustic correlates and their

relative weights in the achievement of an acoustic saliency.
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