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Abstract

We present in this article a multi-level prosodic model based

on the estimation of prosodic parameters on a set of well de-

fined linguistic units. Different linguistic units are used to re-

present different scales of prosodic variations (local and global

forms) and thus to estimate the linguistic factors that can ex-

plain the variations of prosodic parameters independently on

each level. This model is applied to the modeling of syllable-

based durational parameters on two read speech corpora - labo-

ratory and acted speech. Compared to a syllable-based baseline

model, the proposed approach improves performance in terms

of the temporal organization of the predicted durations (corre-

lation score) and reduces model’s complexity, when showing

comparable performance in terms of relative prediction error.

Index Terms : speech synthesis, prosody, multi-level model,

context-dependent model.

1. Introduction

Research on speech synthesis has brought significant im-

provements over the past decade that makes possible to generate

natural speech from text. However, if the synthesized speech

sounds acoustically natural, it is often considered poor accor-

dingly to the way of speaking (prosodic artefacts and mono-

tony). Now modeling the variability in the way of speaking (va-

riations of prosodic parameters) is required to provide natural

expressive speech in many applications of high-quality speech

synthesis such as multi-media (avatar, video game, story telling)

and artistic (theater, music) applications. Despite growing atten-

tion to prosody modeling over the past few years, one of the ma-

jor drawback of actual prosody models remains the monotony

of the generated prosodic parameters. That problem (averaging

problem) appears mainly due to two inter-related causes : a lack

of linguistic knowledge extracted from the text that could be

used to explain more accurately the observed prosodic varia-

tions and a representation of the prosodic parameters which is

essentially a superposition of acoustic forms observed on a set

of different + / - well defined linguistic units related to different

communication functions.

A short overview of linguistic units and associated +/- lin-

guistic parameters affecting these units leads to distinguish at

least three main classes of prosodic scales and associated lin-

guistic parameters :

1) global variations : overall properties of prosodic parameters

(mean, variance). This level is associated with global characte-

ristics of a speaker and to speaking styles associated with spe-

cific discourse genres.

2) local variations : variations on the smallest linguistic units

(sub-state of a phoneme, syllable or phoneme). These variations

are associated with phonological properties of these levels (co-

articulation, syllabic structure, accentuation).

3) intermediate variations : variations on a set of units larger

than the syllable and + / - linguistically well defined (accentual

group, interpausal group, prosodic group, intonational phrase,

period, verbal construction, discourse sequence, ...) and asso-

ciated with + / - linguistic factors : physiological (f0 declina-

tion), modalities (questions, ...), syntactical (prosodic contrasts

related to some specific syntactical sequence), semantic (infor-

mational structure) and discursive.

In order to model the variability of these parameters, it is

necessary to determine an appropriate representation of proso-

dic parameters and then to extract and estimate the effects of

high-level linguistic features (syntactic, semantic, discursive)

on the observed prosodic parameters. At the signal level several

approaches have been proposed to represent the variations of the

fundamental frequency, HMM phone state-based [1], syllable-

based [2], a set of well defined linguistic units [3], or a set of

units that are estimated with unsupervised statistical methods

[4, 5]. For duration, a phone-based [6, 7, 8] or a syllable-based

[9, 10] representation. If the linguistic studies define the syllable

or syllable-like [11] unit as the minimal unit of prosodic rhythm,

some studies have shown that rythm variations were also used

as prosodic cues by speakers on larger units such as speech rate

variations on some specific verbal constructions (oral parenthe-

sis [12]) as well as informational and discourse structure [13].

Thus in the similar manner as for fundamental frequency varia-

tions, it could be usefull to represent durational variations on

different linguistic units, thus to estimate the linguistic factors

that affect these variations on each unit.

We propose in this article a syllable-based duration model

based on multi-level context-dependent analysis. This paper is

organized as follow : in section 2 our proposed approach is pre-

sented ; in section 3 speech material and evaluation scheme are

presented ; results are discussed in section 4.

2. A Multi-Level Context-Dependent Model

Let L = {l1, l2, ..., lN} a set of continuous and non-

recursive linguistic units (i.e. phonem, syllable, prosodic group,

period, ...), θ = {θl1 , θl2 , ..., θlN } the durational features rela-

ted to the linguistic levels li and F = {Fl1 , Fl2 , ..., FlN } a set

of linguistic features that describe linguistic level li.

Accordingly to the General Superpositional Model [14], the

duration θ(n) of the minimal linguistic unit l1 could be written

as :

θ(n) = ⊕
l∈L

⊕
k∈l

θl,k(n)

For each linguistic level li, a model typology of θli conditio-

nally to Fli is estimated using the Minimum Description Length



(MDL) criterion with normal distributions [15].

Then given a sequence of linguistic features Fli , the op-

timal sequence of observations Θ̂li is estimated as the one

that maximizes the conditional probability of observations Θli

conditionnaly to Fli :

Θ̂li = argmax
Θli

P (Θli |Fli)

which is according to the independance hypothesis the sequence

of means :

Θ̂li == [µli,1; ...; µli,K ]

where :

µli,k = argmax
θli,k

P (θli,k|Fli,k)

In contrast to models based on modeling durational features

on a single linguistic unit (phoneme, syllable), the proposed ap-

proach shows several advantages :

1) distinguishing several linguistic units in the representation of

durational features variations enables to explicite the superposi-

tion of prosodic forms jointly observed on a given unit,

2) each prosodic level (speech rate, duration syllabic residual,

...) can be modeled and controlled independently from each

other,

3) estimate the set of linguistic parameters affecting each lin-

guistic unit independently.

3. Evaluation

3.1. Material

The proposed model has been evaluated on two read speech

+/- neutral described in table 1.

type gender size syllable duration

mean [std]

laboratory speech male > 9 hrs 220 [130] ms.

acted speech male > 5 hrs 160 [100] ms.

(dubling)

TAB. 1 – Description of the used corpora.

All analysis were conducted within the ircamCorpusTools [16]

framework. Corpora were segmented using ircamAlign [17],

syllabified on each interpausal group with Liaphon [18] and syl-

lable prominences have been automatically estimated using ir-

camProm [19].

3.2. Model’s parameters

3.2.1. Prosodic features and Linguistic units

The proposed model in this study is a syllable-based dura-

tion model. In this experiment durational features were chosen

as being speech rate on interpausal group and residual syllable

duration.

3.2.2. Linguistic factors

In this experiment low-levels linguistic parameters were

used, such as locational features (position of a given unit within

higher level units), weight features (number of observations of a

given linguistic unit within higher level units) and phonological

features (syllabic structure and prominence). The used linguis-

tic parameters on each linguistic unit are presented in table 2.

Syllable level

Phonological features

• {preceding, current, succeeding} syllable type,

• {preceding, current, succeeding} syllable structure sequence (onset, nu-
cleus, coda),

• phone label of {preceding, current, succeeding} syllable nucleus,

• phone class in {preceding, current, succeeding} syllable nucleus,

• phone label sequence in {preceding, current, succeeding} syllable,

• phone class sequence in {preceding, current, succeeding} syllable,

• phonem sequence in {preceding, current, succeeding} syllable onset,

• phonem sequence in {preceding, current, succeeding} syllable coda,

• prominence state of {preceding, current, succeeding} syllable.

Locational features

• syllable ordinal position in current prosodic group,

• syllable ordinal position in sentence,

• current prosodic group ordinal position in sentence,

• syllable caterogical position (begin ; middle ; end) in current prosodic
group,

• syllable categorical position (begin ; middle ; end) in sentence,

• current prosodic group categorical position (begin ; middle ; end) in sen-
tence,

Weight features

• phone number in {preceding, current, succeeding} syllable,

• phone number in {preceding, current, succeeding} syllable onset,

• phone number in {preceding, current, succeeding} syllable coda,

• syllable number in {preceding, current, succeeding} prosodic group,

• syllable number in {preceding, current, succeeding} sentence,

Interpausal group level

Locational features

• current prosodic group ordinal position in sentence,

• current prosodic group categorical position (begin ; middle ; end) in sen-
tence.

Weigth features

• number of syllables in {previous ; current ; next} prosodic group,

• number of syllables in sentence,

• number of prosodic groups in sentence,

TAB. 2 – List of the contextual features used for each linguistic

level.

3.3. Evaluation scheme

We have compared our approach to a baseline syllable-

based model in which all described linguistic features were pro-

jected on the syllable unit.

Speaker-dependent models were estimated on a training corpus

of variable size and performances were estimated on a test cor-

pus of fixed size (30mn.)

In order to evaluate the performance as a function of the amount

of training data, variable size training sets were used according

to the following sizes : {1mn ; 2mn ; 5mn ; 30mn ; 1hr ; 2hrs ;

5hrs ; [9hrs]}.

Performance measures were chosen as being the relative predic-

tion error and correlation score between observed and predicted

syllable durations. Relative error measure removes the influence

of observed durations on the error measure (observed syllable

durations varie from 14 to 900 ms. for the laboratory speech

corpus and from 17 to 910 ms. for the acted speech corpus -



pauses included). Correlation score is a performance parameter

used to estimate the goodness of the predicted temporal struc-

ture. This last parameters appears more adequate for measuring

prosodic prediction performance since prosody is more related

to temporal variations rather than absolute error measurement.

4. Results and Discussion

Results are presented in figure 1. An overall comparison of

the obtained performances on both corpus shows better perfor-

mances (relative errors and correlation scores) for the labora-

tory speech than for the acted speech in all cases. Even if these

corpora shows comparable overall relative dispersion (table 1),

such difference could be explained by the fact that laboratory

speech is more prototypical than acted speech and then more

predictable from linguistic features.

Our proposed approach improves performance in terms of cor-

relation score in almost all cases (with exception of the labora-

tory corpus with a 1mn. training size). Performance improve-

ment is more significant on the acted corpus for which perfor-

mance gain varies from 6 to 20% compared to the baseline mo-

del. However the proposed approach shows a little degradation

in relative errors performance (worse for the laboratory speech

and similar for the acted speech corpus)

Gain in correlation score could be explained by several pro-

perties of our proposed model :

1) modeling durational features on different linguistic units en-

ables to explicite the observed acoustic forms on each level se-

parately, thus removing from the syllabic level variations due to

speech rate variations. This leads to a reduction of the disper-

sion of residual syllable durations.

2) the correlation score is little sensitive to offset errors caused

by speech rate prediction errors.

In contrast, the performance degradation in terms of relative er-

ror of prediction is due both to the fact that speech rate predic-

tion errors cause a prediction bias on all syllables of the conside-

red interpausal group, but also by the lack of linguistic features

that can explain such speech rate variations.

If we look at the evolution of the performances regardless

of the model used, we see a clear asymptotic behavior and the

gain in performance is no more significant after 1or 2 hours trai-

ning size. However, this asymptotic behavior in terms of perfor-

mance is observed jointly to a significant increase in terms of

complexity of the models (table 3). On the one hand this means

that if low-level linguistic features could be used to estimate ro-

bust models with a relatively small amount of data, these remain

insufficient to explain more accurately the observed variations.

The increase in complexity jointly observed could be explained

by the fact that increasement of the number of observations in-

creases at the same time the number of competitive linguistic

parameters at each step of the estimattion of the typology of

the model. This tends to increase errors on the prioritization of

these parameters. Then a larger number of linguistic parameters

is needed to obtain similar results.

In terms of complexity (table 3), the proposed model shows

a significant reduction in the complexity of the models obtained

when a sufficient amount of data is available to learn robust

models. (small reduction observed for the laboratory speech

from 5hrs. and a significant reduction for the acted speech from

1hrs.). This is mainly due to the fact that the baseline model

needs more linguistic parameters to explain variations in speech

rate, especially when the model is mixed by trying to jointly ex-

plain syllable duration and speech rate variations.
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FIG. 1 – Performance as a function of the training set size. Top :

laboratory speech. Bottom : acted speech. Baseline model is re-

presented with dash-lines. Proposed model is represented with

plain-lines. Relative prediction errors are plotted with triangles

and correlation score with squares.

laboratory acted

speech speech

syllable multi-level syllable multi-level

1 mn. 16 29 19 24

2mn. 31 36 28 35

10mn. 39 48 41 30

30mn. 103 126 95 89

1h. 151 167 143 116

2h. 236 250 230 192

5h. 488 463 425 331

9h. 766 722 NA NA

TAB. 3 – Models complexity as a function of the training set

size.



5. Conclusion

A multi-level approach of prosodic parameters variations

applied to durational features has been presented. This approach

explicitly represents the different observation levels of prosodic

forms and estimate the linguistic parameters that affects these

forms separately on each linguistic unit. Compared to a base-

line syllable duration model, the proposed approach improves

the performance of the predicted temporal structure (correla-

tion score) and reduces the complexity of the models while pro-

viding comparable performance in terms of relative prediction

error .

In further works, we will focus on two aspects of prosody

modeling. At the acoustic level, we will explicitely model the

prosodic temporal structure by introducing dependencies bet-

ween acoustic observations.

At the symbolic level, we will extract high-level linguistic fea-

tures (morpho-syntactic, syntactic, semantic, discursive) from

text that will be used to improve the estimation of speech rate

variations over intermediate linguistic units.
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