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Abstract 

 
This article proposes a mean-variance optimization and portfolio frontier analysis of energy risk 

management with carbon assets, introduced in January 2005 as part of the EU Emissions Trading Scheme. In a 

stylized exercise, we compute returns, standard deviations and correlations for various asset classes from April 2005 

to January 2009. Our central result features an expected return of 3% with a standard deviation < 0.06 by introducing 

carbon assets – carbon futures and CERs- in a diversified portfolio composed of energy (oil, gas, coal), weather, 

bond, equity risky assets, and of a riskless asset (U.S. T-bills). Besides, we investigate the characteristics of each 

asset class with respect to the alpha, beta, and sigma in the spirit of the CAPM. These results reveal that carbon, gas, 

coal and bond assets share the best properties for composing an optimal portfolio. Collectively, these results illustrate 

the benefits of carbon assets for diversification purposes in portfolio management, as the carbon market constitutes a 

segmented commodity market with specific risk factors linked to the EU Commission’s decisions and the power 

producers’ fuel-switching behavior.  

 
JEL codes: C61; G11; Q40 
 
Keywords: Mean-variance optimization; Portfolio frontier analysis; CAPM; CO2; Carbon; 

Energy; Bonds; Equity; Asset Management; EU ETS; CERs 
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1. Introduction 
 

Carbon assets, created on January 1, 2005 as part of the European Union Emissions 

Trading Scheme (EU ETS)1, present very peculiar characteristics which are worth of 

investigation for portfolio management purposes. The determinants of CO2 prices are indeed 

linked to other energy markets (brent, gas, coal), and institutional events, as highlighted in 

previous literature (Christiansen et al. (2005), Kanen (2006), Mansanet-Bataller et al. (2007), 

Alberola et al. (2008)). Among these fundamentals, the fuel-switching behaviour of power 

operators, and the amendments to the scheme brought by the European Commission are key to 

understand the factors that drive the underlying price changes of carbon assets (Convery et al. 

(2008), Delarue et al. (2008), Ellerman and Feilhauer (2008), Chevallier et al. (2009)). Last but 

not least, carbon assets seem to exhibit a weak link with macroeconomic risk factors, be it with 

industrial production as a proxy of GDP (Alberola et al. (2009a), Alberola et al. (2009b)), or 

with stock and bond indices as a proxy of macroeconomic changes (Chevallier (2009)). Thus, 

the investigation of the interrelationships between carbon assets and energy variables on the one 

hand, and with stock and bond variables on the other hand, appears of particular importance for 

asset management. 

In this article, we develop a stylized exercise to investigate the characteristics of energy, 

weather, bond and equity assets in terms of diversification for portfolio management. Indeed, 

one of the key insights of asset management to present (Bodie et al. (2008), Berk and DeMarzo 

(2008)) is that diversification can reduce risk substantially. The main logic behind composing a 

portfolio not only with bonds and equities, but also with energy commodities, is to achieve a 

lower level of risk. A diversified portfolio may achieve a lower level of risk, because its 

individual asset components do not always move together. Besides, diversification does not 

necessarily reduce expected return. By including relevant asset classes, the goal of portfolio 

management consists in raising the expected return.  

The literature on portfolio management with carbon assets is still very sparse. 

Hasselknippe (2004) first developed commodities market perspectives with respect to managing 

carbon risks. Kristiansen et al. (2006) detail the key factors in carbon pricing, the fuel-mix and 

electricity prices that are relevant to include in carbon risk management, based on several 

country studies. To our best knowledge, only Mansanet-Bataller and Pardo (2008) have 

investigated the empirical question between CO2 prices and portfolio management. The authors 

investigate the properties of CO2 prices for Phase I (2005-2007) and Phase II (2008-2012) of the 

EU ETS, coupled with other energy (brent, natural gas), and bond variables. Their main 

                                                 
1 The EU Emissions Trading Scheme (EU ETS) was established in 2003 by the Directive 2003/87/EC, 
and launched for a trial period from 2005 to 2007. Phase II now covers 2008-2012, while the functioning 
of the scheme has been confirmed at least until 2020 with the end of Phase III. 
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findings consist in showing that including CO2 Phase I and Phase II prices can improve the 

investment opportunity set for an investor that initially invests in traditional assets. 

Our results depart from previous literature (i) by providing insights into each class of 

asset’s expected returns using the Capital Asset Pricing Model (CAPM, Merton (1973)); (ii) by 

applying the mean-variance optimization approach to a wider range of assets including energy, 

weather, bond and equity variables; and (iii) by extending the study period contained in our 

database from April 2005 to January 20092.  To investigate the properties of the new carbon 

asset class in terms of portfolio management, we adopt the basic framework of the CAPM and 

mean-variance optimization, knowing that many developments have occurred in the field3.  

More precisely, our regression analysis shows that carbon, gas, coal, and bonds assets 

appear particularly suitable for asset management. Our mean-variance optimization analysis 

shows that a global portfolio composed of energy (including carbon), weather, bond, equity 

risky assets and a riskless asset (U.S. T-Bills) may achieve a level of standard deviation < 0.06 

for an expected return of 3%. 

The composition of the globally diversified portfolio studied in this article unfolds as 

follows. Among carbon assets, we consider mainly futures carbon prices4. We also retain 

Certified Emissions Reductions (CERs) credits5. The reason behind this choice is that CERs 

may add diversification to a portfolio due to their fungibility with other international ETS than 

the EU ETS. Among energy assets, we select oil, natural gas, and coal prices. Among traditional 

assets, we retain bonds and equities. Finally, we choose to incorporate weather derivatives 

products in the composition of our portfolio, since they offer opportunities to hedge the risks 

attached to temperatures changes, and thus increases/decreases in CO2 emissions, and appear as 

a complementary asset to carbon. 

The remainder of the article is organized as follows. Section 2 presents the data used. 

Section 3 examines asset management strategies with energy, weather, bond and equity 

variables. Section 5 details the optimal portfolio composition. Section 6 concludes. 

 

2. Data 

                                                 
2 Mansanet-Bataller and Pardo (2008) consider a time-period going from April 2005 to January 2008. 
3 More particularly, we choose not to investigate the properties of carbon assets through multifactor 
models such as the Intertemporal CAPM (ICAPM), and arbitrage-based models (Arbitrage Pricing 
Theory, APT). 
4 This choice is motivated by the non-reliable behaviour of carbon spot prices due to banking restrictions 
implemented between 2007 and 2008 (Alberola and Chevallier (2009)). 
5 Clean Development Mechanism (CDM) projects, introduced according to the article 12 of the Kyoto 
Protocol (UNFCCC (2000)), may generate Certified Emissions Reductions (CERs) credits for compliance 
in the EU ETS during 2008-12. The import limit is equal to 1.6 billion tonnes of offsets being allowed 
into the EU ETS from 2008-2020, i.e. an absolute maximum of 50% of the effort will be achievable 
through the CDM, coupled with quality criteria. 
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 This section discusses the source of each time-series chosen for energy, weather, bond 

and equity variables, as well as the robustness checks implemented. 

 

2.1 Source and descriptive statistics 

 The source of the data is Thomson Financial Datastream and Reuters, unless otherwise 

indicated. The various asset classes that we examine in this article are detailed in Tables 1 to 3 

(see the Appendix) which provide the expected returns and standard deviations (Table 1); the 

correlation matrix (Table 2); and descriptive statistics (Table 3) for the energy, weather, bond 

and equity assets. The expected return and standard deviation for each asset class are used in 

Section 4 for the composition of the optimal portfolio. When each asset class is examined as 

part of a portfolio, we measure asset risk by the covariance between asset return and the return 

on the market portfolio. 

 

Insert Figure 1 about here 
 

The returns for energy and weather assets are displayed in Figure 1. 

 

Insert Figure 2 about here 
 

The returns for bond and equity assets are presented in Figure 2. 

According to the matrix of cross-correlations between sector variables reported in Table 

2, no simple correlation is over around 60% in absolute value. Since it is possible to have low 

correlations together with colinearity, we have investigated the presence of multicolinearity by 

comptuting the inflation of variance between explanatory variables. These calculations did not 

reveal serious problematic multicolinearities6. 

For carbon assets, it is worth emphasizing in Table 3 that the kurtosis coefficient is by 

far higher than 3, which is the value of the kurtosis coefficient for the normal distribution. This 

excess kurtosis denotes a high likelihood of outliers. Second, the skewness coefficient is 

different from zero and negative, which highlights the presence of asymmetry. 

 Let us detail in the next section the time-series used for each asset class considered in 

this article. 

 

2.2 Energy, weather, bond and equity assets 

                                                 
6 To conserve space, these results are not reproduced in the article and may be obtained upon request to 
the authors. 
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For carbon assets, we choose the carbon futures contract of maturity December 20087 

traded on the European Climate Exchange (ECX) from April 22, 2005 to December 15, 2008, 

i.e. from the opening of the ECX market to the expiration date of the 2008 carbon futures 

contract. The carbon prices recorded in our database are daily closing prices in €. One European 

Union Allowance (EUA) is equal to one tonne of CO2 emitted in the atmosphere. For 

diversification purposes, we also consider the price of secondary CERs credits, recorded as 

daily closing prices by the Reuters CER Price Index from February 2, 2008 to January 21, 2009. 

One secondary CER is equal to one EUA, and thus to the same CO2-equivalent. 

For natural gas assets, we use the Zeebrugge Natural Gas Next Month price. For the 

electricity price, we use the Electricity Powernext Baseload price. For coal prices, we use the 

Coal Rotterdam futures. For oil products, we use the NYMEX Crude Oil Futures. Gas and 

electricity prices are traded in €/MWh. Coal prices are traded in €/ton. Oil prices are traded in 

$/barrel8. All energy prices recorded in our database are daily closing prices from January 1, 

2005 to January 15, 2009. 

For weather derivatives products, we consider the Climate Futures Eco Clean Energy 

Index traded on the Intercontinental Exchange (ICE). The database contains daily closing prices 

from July 13, 2007 to January 21, 20099.  

For bonds, we retain the ECB 5-year Euro Benchmark Bond. For equities, we consider 

the Euronext 100 Price Index. Both bond and equity variables have been chosen for their ability 

to track changes in global market trends. For both of these variables, we use daily closing prices 

from December 31, 2004 to January 21, 2009. 

As is standard in the financial literature (Bodie et al. (2008), Berk and DeMarzo 

(2008)), we have considered for the riskless asset daily closing prices on the one-month U.S. 

Treasury Bill (T-Bill)10 from April 1, 2005 to January 21, 2009. 

In the next section, we discuss several robustness checks implemented.  

 

2.3 Sensitivity tests 

The purpose of this section is to demonstrate that the results obtained in Sections 3 and 

4 are not sensitive to the choice of the time-series for energy, weather, bond and equity assets. 

As sensitivity tests, we have considered the ECX December 2009 contract for carbon 

prices, the ECX CER Futures for CERs prices, the European Energy Exchange (EEX) off-peak 

                                                 
7 This choice of a carbon futures contract for delivery during Phase II of the EU ETS is motivated by the 
erratic behaviour of carbon prices during Phase I due to the banking restrictions implemented between 
Phase I and Phase II (Alberola and Chevallier (2009)). 
8 To ensure that all energy prices are traded with the same currency, we converted dollars to euros using 
the European Central Bank daily exchange rate (available at http://www.ecb.int ). 
9 As for oil products, the prices of such weather derivatives contracts have been converted to euro using 
the €/$ exchange rate by the ECB. 
10 Data for the T-Bill rate may be obtained at http://research.stlouisfed.org/fred2/  
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electricity price, the London brent crude oil price, the natural gas-Henry Hub price, the daily 

coal futures Month Ahead price CIF ARA, the ICE Weather Futures contract, the Bond Schatz 

and Bond Bulb treasury bills, the Dow Jones EuroSTOXX 50 Price Index, and the Standard & 

Poor’s Euro Price Index. By implementing these alternative robustness tests, the results 

commented below were not materially affected11. 

We discuss in the next section how to implement asset management strategies with the 

energy, weather, bond and equity assets contained in our database. 

 

3. Asset management with energy, weather, bond and equity 
variables 
 

 This section reviews how to choose a portfolio composed of energy commodities, 

weather derivatives, bonds, and equities. We detail how expected returns are determined, and 

how they are related to energy risk management.  

 
3.1 Expected excess return and market risk premium 

Let N be the total number of risky assets. The excess return of asset n may be defined 

as: 

fn RR −  (1) 

with Rn the return on the risky asset, and Rf the return on the riskless asset.  

Then, let us define the expected excess return of asset n as: 

fn RRE −)(  (2) 

where E(.) denotes the expected value of the asset’s return. 

 Next, we define the market portfolio as the value-weighted portfolio of the N risky 

assets: 

∑
=

N

n
nn sP

1

 (3) 

with Pn the price of one asset share, and sn the total number of shares.  

Similarly, the weight of asset n in the market portfolio is: 

∑
=

N

n
nn

nn

sP

sP

1

 (4) 

Now, let RM be the return on the market portfolio. The market risk premium may be 

computed as: 

                                                 
11 To conserve space, sensitivity tests are not reproduced in the article, and may be obtained upon request 
to the authors. 
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fM RRE −)(  (5) 

i.e. as the expected excess return of the market portfolio. 

 Following these basic definitions, we recall in the next section how to measure various 

types of risks involved in portfolio management.  

  
3.2 Systematic and idiosyncratic risks 
 

Based on the CAPM12 (Merton (1973)), when studying asset returns we may estimate 

the following regression equation: 

nfMnnfn RRRR εβα +−+=− )(  (6) 

where the variation of asset n may be decomposed into: 

- the systematic risk βn(RM-Rf), i.e. the risk perfectly correlated with the market portfolio. 

This type of risk affects all assets, such as macroeconomic shocks affecting the 

economy. 

- the idiosyncratic risk εn, i.e. the risk uncorrelated with the market portfolio. This type 

of risk affects only one asset. For equities for instance, idiosyncratic risk corresponds to 

events affecting only a particular company or industry. 

From there, we may derive three characteristics of an asset: 

1. the beta measures the asset’s sensitivity to market movements13: 

)(
),(

M

Mn
n RV

RRCov
=β  (7) 

2. the alpha measures the asset’s attractiveness; 

3. the sigma is the standard deviation of εn, i.e. the idiosyncratic risk. 

In the next section, we provide an estimate of betas, alphas and sigmas for all types of 

risky assets considered as part of our globally diversified portfolio. 

 
3.3 Regression analysis 

 Taking expectations of eq.(6),  

))(()( fMnnfn RRERRE −+=− βα  (8) 

we may get some insights on the alpha, beta and market risk premium of each asset class 

contained in our database. 

 To take into account the heteroskedasticity present in the excess returns of financial and 

energy assets alike, we implement the following ARCH(1,1) model (Engle (1982)):  

                                                 
12 The assumptions underlying the CAPM may be summarized as follows: there are N risky asset and a 
riskless asset, short sales are costless, investors care only about mean and variance, investors have the 
same beliefs, and investors have an one-period planning horizon. 
13 Holding all else equal, if the return on the market portfolio is higher by 1%, then the return on asset n is 
higher by βn. 
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with a Gaussian innovation distribution, as is standard in the financial economics literature 

(Hamilton (1994)). Rt is the return on the asset price, Rt-1 is a proxy for the mean of Rt 

conditional on past information, and εt is the error term. Eq. (9) is estimated by Quasi Maximum 

Likelihood (QML, Gourieroux et al. (1984)). The estimate covariance matrix is estimated using 

the BHHH matrix (Berndt et al. (1974)). 

 

3.4 Estimation results 

Eq.(8) is estimated for each asset class composing our portfolio of energy, weather, 

bond and equity variables using the ARCH modelling structure detailed in eq.(9). Estimation 

results may be found in Tables 4 to 11 (see the Appendix). 

We comment below Tables 4 to 11 with respect to the values of the alpha, beta, and 

sigma coefficients. However, it should be kept in mind that an asset’s expected return depends 

on the asset’s risk through the asset’s beta (i.e. the systematic risk), and not through the asset’s 

sigma (i.e. the idiosyncratic risk). The basic insight of the CAPM is indeed that the systematic 

risk – and not the idiosyncratic risk – is priced by the market. In other words, the relevant 

measure of risk is beta, and not the variance. 

In Table 4 (see the Appendix), we notice that the alpha coefficient for carbon excess 

returns is statistically significant at the 1% level. This result highlights the carbon asset’s 

attractiveness for the composition of the optimal portfolio. On the contrary, the carbon asset’s 

sensitivity to market movements beta is not statistically significant. The sigma coefficient is 

equal to 0.61. This value reveals a medium level of idiosyncratic risk for carbon assets.  

In Table 5 (see the Appendix), we observe that the alpha coefficient for natural gas 

assets is not statistically significant. The beta coefficient however is significant at the 1% level 

and negative. This result indicates that the excess returns on natural gas prices are negatively 

and statistically significantly correlated with market movements. This characteristic of natural 

gas products appears of particular importance for diversification purposes in portfolio 

management. The sigma coefficient is equal to 2.77, which corresponds to a high level of 

idiosyncratic risk. 

In Table 6 (see the Appendix), none of the alpha or beta coefficients are statistically 

significant for the excess returns on the electricity variable. Besides, the level for the 

idiosyncratic risk coefficient sigma is very high (8.97). These results suggest that due to the 

well-known high level of peaks in the time-series of electricity prices (Joskow (2007)), this 
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variable does not appear particularly suitable for asset management strategies compared to the 

raw prices of other energy sources, such as oil, gas and coal14.  

In Table 7 (see the Appendix), we note that the alpha coefficient for coal excess returns 

is statistically significant at the 1% level, which underlines this asset’s attractiveness for 

portfolio management. Besides, the beta coefficient is also significant at the 10% level and 

negative. As for the natural gas variable, this result shows that coal asset’s sensitivity is 

negatively correlated with market movements, which is of interest for diversification purposes. 

The sigma coefficient is equal to 0.87, which reveals a medium level of idiosyncratic risk. 

In Table 8 (see the Appendix), none of the alpha or beta coefficients for oil excess 

returns are statistically significant. The level of idiosyncratic risk for oil assets is in the medium 

range, with a value of 1.46. Due to these characteristics, oil assets do not surprisingly appear as 

very suitable for portfolio management either15.  

In Table 9 (see the Appendix), we note that neither the alpha nor the beta coefficients 

are statistically significant for weather excess returns. Besides, the level of idiosyncratic risk is 

very high, with a value of sigma equal to 5.20. Thus, we may conclude based on these results 

that derivatives products do not appear to share the required properties for diversification and 

increasing returns purposes in portfolio management16. 

In Table 10 (see the Appendix), we observe that the alpha coefficient for bonds is not 

statistically significant. This result is not surprising, since bonds are primarily purchased for the 

security of investments, and thus not for their attractiveness in terms of returns. The beta 

coefficient is statistically significant at the 1% level and positive. In line with the central role 

played by national governments in monetary policy, this result illustrates the strong link 

between the bond market and movements in global equity and commodity markets. The sigma 

coefficient is low (0.07), which confirms bond asset’s interest for pooling risks.   

In Table 11 (see the Appendix), none of the alpha or beta coefficients appear 

statistically significant for the excess return of CERs. This result does not appear especially 

surprising, given the high level of risks attached to the delivery of CDM credits to project 

developers (IETA (2008)). Like carbon assets, CERs carry a medium level of idiosyncratic risk, 

with a value of the sigma coefficient equal to 0.41. 

                                                 
14 Nevertheless, we choose to keep this variable in the determination of our optimal portfolio in the next 
section, due to the central role played by power producers on the European emissions market, which 
greatly influence the determination of the carbon price (Delarue et al. (2008), Ellerman and Feilhauer 
(2008)). 
15 However, due to the clear link between petroleum consumption and GDP (Lutz (2008)) on the one 
hand, and to the fact that oil products are the most traded assets among energy commodities (Kang et al. 
(2009)), we choose to keep oil assets in the composition of our portfolio in the next section. 
16 As for electricity and oil, weather appears as an important determinant of the price of carbon assets 
(Kanen (2006), Alberola et al. (2008)). Thus, we choose to keep this variable in the composition of our 
globally diversified portfolio in the next section. 
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Among all the energy, bond and equity assets, this regression analysis indicates that the 

carbon, gas, coal, and bond assets share the best properties in terms of (i) sensitivity to market 

movements, (ii) attractiveness, or (iii) level of idiosyncratic risk to enter the optimal 

composition of our portfolio17.  

To analyse the interplay between energy, weather, bond and equity assets – which is the 

purpose of the stylized exercise developed in this article - we decide to include all of them in the 

composition of our portfolio in the next section. 

 

4.  Mean-variance optimization and the portfolio frontier 
Following the review of the properties of energy, weather, bonds, and equities assets in 

Section 3, we detail in this section the optimal composition of the portfolio based on mean-

variance optimization and portfolio frontier analysis. 

 

4.1 Portfolio frontier with risky assets only 

 In this section, we explore how to choose the optimal portfolio composed of energy, 

weather, bond and equity assets. This question can be addressed in two steps: 

1. Among all portfolios with a given expected return, which is the portfolio with the 

minimum variance? This first step will give us a set of portfolio, one for each expected 

return.  This set is called the portfolio frontier (PF), whose elements are frontier 

portfolios. 

2. Which is the best portfolio on the PF? This answer will depend on how we trade off risk 

and return, and on the level of risk aversion of a specific group of investors. 

Using the historical data from April 2005 to January 2009 for energy, weather, bonds 

and equities variables as explained in Section 2, we consider below the optimization program of 

choosing the global portfolio. The statistical properties of returns for all classes of assets, 

including expected returns, sample means, standard deviations, and correlations may be found 

in Tables 1 to 3 (see the Appendix)18. 

Among all portfolios that have a given expected return (E), the optimization problem 

consists in choosing the portfolio with the minimum variance: 

                                                 
17 As the CAPM implies than an asset’s expected return depends on risk only through beta, this 
conclusion shall be read especially in the light obtained for the beta coefficient of each asset class. 
18 We should always keep in mind that mean-variance optimization is only as precise as these estimates 
are. While the estimates for standard deviations and correlations are generally quite precise, the estimates 
for expected returns are quite imprecise (i.e. historical data for bonds and equities over a 75-year sample 
report a standard error around 2.5% (Bodie et al. (2008), Berk and DeMarzo (2008).) 
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with wn, n={1, ..., N} the portfolio weights to minimize.  

 The portfolio frontier analysis with risky assets only is displayed in Figure 319. 

 
Insert Figure 3 about here 

 
 

 Assuming that we only care about mean and variance, we only need to consider 

portfolios on the PF. By comparing portfolios on the PF in Figure 3, we may observe that the 

optimal portfolio achieves a standard deviation < 0.1 for an expected return around 3%. This 

result illustrates the benefits of diversification to reduce idiosyncratic risk by adding energy and 

weather variables to usual bonds and equities variables, and more particularly by managing 

energy risk with a new class of carbon assets.  This exercise thus demonstrates that 

diversification outside a group of assets is more effective in reducing risk20. 

 We develop in the next section a slight variation of the mean-variance optimization 

program by including also a riskless asset. 

 

4.2 Portfolio frontier with a riskless asset 
 In this section, all frontiers portfolios are combinations of the riskless asset and the 

tangent portfolio (TP). We use the U.S. T-bills as the riskless asset. We only need to choose the 

weights of the risky assets, wn, n={1, ..., N}, given that the weight of the riskless asset is: 

∑
=

−
N

n
nw

1

1  (11) 

 The variance of the riskless asset is indeed equal to zero, as is its covariance with all 

risky assets. The optimization problem in eq.(10) needs to be rewritten as follows: 
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19 Note that allowing short sales - selling an asset that we do not own - will only result in expanding the 
PF, as is standard in the portfolio management literature (Bodie et al. (2008), Berk and DeMarzo (2008)). 
20 Note this comment applies as long as diversification within a group of assets allows reducing, and 
eventually eliminating, idiosyncratic risk. However, it cannot eliminate systematic risk. 
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The PF is delimited by the line linking the riskless asset with the TP21. Thus, to 

determine the PF, we only need to solve the optimization problem, and to draw the line linking 

that portfolio to the riskless asset. 

The portfolio frontier analysis with a riskless asset is presented in Figure 4. 

 

Insert Figure 4 about here 

 

 By considering the line linking the riskless asset with the points on the hyperbola22, we 

notice in Figure 4 that the optimal portfolio in this configuration allows achieving a standard 

deviation < 0.06 for an expected return around 3%. Thus, departing from the benchmark case in 

Section 4.2, the inclusion of a riskless asset such as the T-Bill rate allows minimizing the 

variance for the same level of expected return.  

 We are now able to answer carefully to the question “which portfolio to choose?”. 

Assuming that we care only about mean and variance, we should choose indeed a portfolio on 

the PF. Which portfolio depends then on how we trade off risk and return, i.e. on the level of 

risk aversion23. If we are very risk-averse, we should choose a portfolio closer to the riskless 

asset. If we are not very risk-averse, we should choose a portfolio closer to the TP, and even 

above the TP. For investors as a group, the demand will be a combination of tangent portfolio 

and riskless asset. 

These comments conclude our stylized exercise of portfolio management including 

bonds, equities, energy and weather variables, as well as a new class of carbon assets. 

 
5.  Concluding Remarks 

This article provides a stylized exercise to investigate the diversification benefits that 

may be drawn from using carbon assets in portfolio management. Apart from traditional assets, 

there is a need on the carbon market to take into account the interrelationships with other energy 

markets, weather influences, and macroeconomic conditions, as shown in previous literature 

(Christiansen et al. (2005), Alberola et al. (2008), Chevallier (2009)). Thus, we introduce two 

types of carbon assets – carbon futures and CERs - among a global portfolio composed of 

energy commodities (oil, coal, gas), weather derivatives, bonds and equities. Our study period 

goes from April 2005 to January 2009.  

                                                 
21 The basic insight here is that at the market equilibrium demand equals supply, and in particular the TP 
coincides with the market portfolio. 
22 In this context, the portfolio frontier is indeed represented by the line with the steepest slope. 
23 Chevallier et al. (2009) demonstrate that the level of risk aversion is higher on the carbon market than 
on equity markets. This result is due to the high level of institutional uncertainty on this emerging 
commodity market. The authors however point out that the values for risk aversion on the carbon market 
should progressively converge to the values found on equity markets, as the formation of anticipations 
becomes more homogeneous among market operators. 
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Based on a CAPM framework, we show (i) that carbon, gas, coal and bonds share the 

required properties in terms of betas to compose a globally diversified portfolio, and (ii) that a 

global portfolio with energy (including carbon), weather, bond, equity risky assets and a riskless 

assets (U.S. T-Bills) achieves a level of standard deviation < 0.06 for an expected return of 3%. 

Collectively, these results provide insights into the benefits of introducing carbon assets 

for diversification purposes in portfolio management. Unlike other energy markets which 

exhibit a direct link with macroeconomic conditions, risk factors on the carbon market are 

mainly linked to power producers’ fuel-switching behaviour and institutional decision changes 

by the EU Commission.  

Finally, portfolio management with carbon assets is yet another attempt at eliminating 

idiosyncratic risk among a range of diversified investments, but not systematic risk, as the 

recent “credit crunch” crisis has shown the dependency of all types of assets to macroeconomic 

shocks. 
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Figure 1: Returns for Energy and Weather Assets    
Source: Thomson Financial Datastream and Reuters 
Note: ECX DEC08 refers to the ECX carbon futures contract of maturity December 2008, Gas to the natural gas variable, Elec to the electricity variable, Coal to the coal 
variable, Oil to the crude oil variable, WEA to the weather derivatives contract, CER to Certified Emissions Reduction credits as defined above.   
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Figure 2: Returns for Bond and Equity Assets    
Source: Thomson Financial Datastream and Reuters 
Note: BOND refers to the bond variable, and EUR to the Euronext 100 price index as defined above.   
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Figure 3: Portfolio Frontier Analysis with Risky Assets Only 
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Figure 4: Portfolio Frontier Analysis with a Riskless Asset 

Note: T-Bill refers to the U.S. Treasury Bills which are used as a proxy of a riskless asset. 
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 RT ECX 

DEC08 
RT GAS RT ELEC RT COAL RT OIL RT WEA RT CER RT BOND RT EUR 

Expected 
Return 

-0,0018 0,0338 -0,0211 0,0027 0,0053 0,4321 0,01702381 2,83286E-05 -0,161643059 

Std Deviation 0,614890277 2,824325206 10,78246731 0,999584701 1,41804319 5,196337234 0,399817029 0,039726132 8,767931502 
 

Table 1: Expected Return and Standard Deviation for Energy, Bond and Equity Assets 
Note: RT stands for returns, Std Deviation for standard deviation, ECX DEC08 for the ECX carbon futures contract of maturity December 2008, Gas for the natural gas 
variable, Elec for the electricity variable, Coal for the coal variable, Oil for the crude oil variable, WEA for the weather derivatives contract, CER for the Certified Emissions 
Reduction valid under the Kyoto Protocol, Bond for the bond variable, and EUR for the Euronext 100 price index as defined above.   
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 RT DEC08 RT GAS RT ELEC RT COAL RT OIL RT WEA RT CER RT BOND RT EUR 
RT DEC08 1         
RT  GAS -0,083843348 1        
RT  ELEC 0,03238164 -0,031102759 1       
RT  COAL -0,027721224 -0,006438851 -0,062186799 1      
RT  OIL -0,001466019 -0,026542535 0,036280144 0,008111349 1     
RT  WEA 0,047632133 0,002645503 0,031059249 -0,087117043 0,021932909 1    
RT  CER -0,050862875 0,056893671 -0,022524169 -0,018719988 -0,087943419 -0,08034643 1   
RT  BOND -0,037261286 -0,017078898 -0,039683893 -0,042892797 0,003310712 0,05231719 -0,054683998 1  
RT  EUR 0,048495721 -0,031195733 0,017930111 0,026260248 0,044474849 -0,0001236 0,018837533 0,328404693 1 

 

Table 2: Correlation Matrix between Energy, Bond and Equity Assets 
Note: RT stands for returns, Std Deviation for standard deviation, ECX DEC08 for the ECX carbon futures contract of maturity December 2008, Gas for the natural gas 
variable, Elec for the electricity variable, Coal for the coal variable, Oil for the crude oil variable, WEA for the weather derivatives contract, CER for the Certified Emissions 
Reduction valid under the Kyoto Protocol, Bond for the bond variable, and EUR for the Euronext 100 price index as defined above.   
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 RT_BOND RT_CER RT_COAL RT_ECX RT_ELEC RT_EUR RT_GAS RT_OIL RT_TBILL RT_WEA 
 Mean  0.000963  0.017024  0.029840 -0.001818 -0.039664  0.085487  0.035882  0.014558 -0.001253  0.432105 
 Median  0.000000  0.000000  0.040000  0.020000 -1.091000  0.510000 -0.050000 -0.038158  0.000000  0.000000 
 Maximum  0.120000  1.530000  4.560000  3.650000  39.71300  28.39000  22.65000  11.77371  0.750000  17.00000 
 Minimum -0.120000 -1.310000 -3.740000 -7.400000 -34.05300 -32.65000 -21.55000 -12.84609 -0.490000 -15.59999 
 Std. Dev.  0.035708  0.399817  0.867270  0.614890  10.52693  8.149984  2.782299  1.468422  0.063300  5.196337 
 Skewness  0.071808  0.561290 -0.117488 -2.244994  0.667781 -0.417292  0.668721 -0.008155  0.956086  0.015606 
 Kurtosis  3.355982  5.053116  6.386975  29.79303  5.177692  4.645799  18.30428  14.43857  35.80764  3.820959 

 
Table 3: Descriptive Statistics for Energy, Bond and Equity Asset Returns 
 
Note: RT stands for returns, Std Deviation for standard deviation, ECX DEC08 for the ECX carbon futures contract of maturity December 2008, Gas for the natural gas 
variable, Elec for the electricity variable, Coal for the coal variable, Oil for the crude oil variable, WEA for the weather derivatives contract, CER for the Certified Emissions 
Reduction valid under the Kyoto Protocol, Bond for the bond variable, and EUR for the Euronext 100 price index as defined above.   
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Dependent Variable: E(RECX)-Rf 

 Coefficient Std. Error 
α1 0.233822*** 0.018746 
α0 0.030971*** 0.015919 
βn -0.001871 0.002132 
 Variance Equation 
ω 0.206975*** 0.008719 
φ 0.517981*** 0.029673 

  
Diagnostic Tests  
R-squared 0.010182 
Adjusted R-squared 0.005920 
εn 0.614371 
Log likelihood 772.3144 
Durbin-Watson stat 2.173891 
AIC 1.664485 
SC 1.690392 
F-statistic 0.049384 
ARCH Test 0.463494 
Q(20) 32.826 

 
 

Table 4: CAPM Regression Results for the ECX DEC08 carbon futures contract with a ARCH(1,1) model 
Note: Bollerslev-Wooldridge robust standard errors. AIC refers to the Akaike Information Criterion, SC refers to the Schwarz Criterion, Q(20) refers to the Ljung-Box Q 
Statistic with a maximum number of lags of 20. The value for the F-Statistic is the p-value. 
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Dependent Variable: E(RGAS)-Rf 
 Coefficient Std. Error 
α1 -0.148277*** 0.019587 
α0 -0.049021 0.036290 
βn -0.015294*** 0.0001 
 Variance Equation 
ω 3.641193*** 0.083878 
φ 0.976279*** 0.058441 

  
Diagnostic Tests  
R-squared 0.011125 
Adjusted R-squared 0.006867 
εn 2.775468 
Log likelihood 2159.681 
Durbin-Watson stat 1.927542 
AIC 4.635291 
SC 4.661198 
F-statistic 0.034141 
ARCH Test 0.437272 
Q(20) 31.948 

 
 

Table 5: CAPM Regression Results for the Natural Gas Variable with a ARCH(1,1) model 
Note: Bollerslev-Wooldridge robust standard errors. AIC refers to the Akaike Information Criterion, SC refers to the Schwarz Criterion, Q(20) refers to the Ljung-Box Q 
Statistic with a maximum number of lags of 20. The value for the F-Statistic is the p-value. 
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Dependent Variable: E(RELEC)-Rf 

 Coefficient Std. Error 
α1 -0.193808*** 0.027463 
α0 -0.024556 0.252310 
βn -0.005041 0.033414 
 Variance Equation 
ω 52.71211*** 2.026832 
φ 0.385487*** 0.051454 

  
Diagnostic Tests  
R-squared 0.288642 
Adjusted R-squared 0.282395 
εn 8.973819 
Log likelihood 3270.581 
Durbin-Watson stat 1.876152 
AIC 7.129523 
SC 7.176718 
F-statistic 0.000000 
ARCH Test 0.386772 
Q(20) 43.851 

 
 

Table 6: CAPM Regression Results for the Electricity Variable with a ARCH(1,1) model 
Note: Bollerslev-Wooldridge robust standard errors. AIC refers to the Akaike Information Criterion, SC refers to the Schwarz Criterion, Q(20) refers to the Ljung-Box Q 
Statistic with a maximum number of lags of 20. The value for the F-Statistic is the p-value. 
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Dependent Variable: E(RCOAL)-Rf 

 Coefficient Std. Error 
α1 -0.017292 0.025569 
α0 0.069475*** 0.018898 
βn -0.003782* 0.002333 
 Variance Equation 
ω 0.420828*** 0.016661 
φ 0.541561*** 0.059253 

  
Diagnostic Tests  
R-squared 0.032222 
Adjusted R-squared 0.007541 
εn 0.875754 
Log likelihood 1125.123 
Durbin-Watson stat 2.040838 
AIC 2.419964 
SC 2.445871 
F-statistic 0.000000 
ARCH Test 0.149836 
Q(20) 32.806 

 
 

Table 7: CAPM Regression Results for the Coal Variable with a ARCH(1,1) model 
Note: Bollerslev-Wooldridge robust standard errors. AIC refers to the Akaike Information Criterion, SC refers to the Schwarz Criterion, Q(20) refers to the Ljung-Box Q 
Statistic with a maximum number of lags of 20. The value for the F-Statistic is the p-value. 
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Dependent Variable: E(ROIL)-Rf 
 Coefficient Std. Error 
α1 -0.053927** 0.026455 
α0 -0.048182 0.038928 
βn 0.004600 0.005541 
 Variance Equation 
ω 1.304628*** 0.074932 
φ 0.392536*** 0.052151 

  
Diagnostic Tests  
R-squared 0.010448 
Adjusted R-squared 0.006188 
εn 1.467020 
Log likelihood 1604.130 
Durbin-Watson stat 2.157620 
AIC 3.445675 
SC 3.471582 
F-statistic 0.044520 
ARCH Test 0.998397 
Q(20) 26.224 

 
 

Table 8: CAPM Regression Results for the Oil Variable with a ARCH(1,1) model 
Note: Bollerslev-Wooldridge robust standard errors. AIC refers to the Akaike Information Criterion, SC refers to the Schwarz Criterion, Q(20) refers to the Ljung-Box Q 
Statistic with a maximum number of lags of 20. The value for the F-Statistic is the p-value. 
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Dependent Variable: E(RWEA)-Rf 
 Coefficient Std. Error 
α1 0.131258** 0.060792 
α0 0.352982 0.258217 
βn -0.030425 0.027680 
 Variance Equation 
ω 22.38411*** 1.890043 
φ 0.165212** 0.077231 

  
Diagnostic Tests  
R-squared 0.008427 
Adjusted R-squared 0.002178 
εn 5.205682 
Log likelihood 1155.894 
Durbin-Watson stat 2.039692 
AIC 6.126092 
SC 6.178038 
F-statistic 0.052922 
ARCH Test 0.861886 
Q(20) 11.509 

 
 

Table 9: CAPM Regression Results for the Weather Variable with a ARCH(1,1) model 
Note: Bollerslev-Wooldridge robust standard errors. AIC refers to the Akaike Information Criterion, SC refers to the Schwarz Criterion, Q(20) refers to the Ljung-Box Q 
Statistic with a maximum number of lags of 20. The value for the F-Statistic is the p-value. 
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Dependent Variable: E(RBOND)-Rf 
 Coefficient Std. Error 
α1 0.213099*** 0.011935 
α0 0.000901 0.001663 
βn 0.001360*** 0.000140 
 Variance Equation 
ω 0.002116*** 0.000123 
φ 0.785840*** 0.048804 

  
Diagnostic Tests  
R-squared 0.017500 
Adjusted R-squared 0.013270 
εn 0.070768 
Log likelihood 1282.670 
Durbin-Watson stat 2.167503 
AIC 2.735911 
SC 2.710004 
F-statistic 0.002505 
ARCH Test 0.110491 
Q(20) 32.9337 

 
 

Table 10: CAPM Regression Results for the Bond Variable with a ARCH(1,1) model 
Note: Bollerslev-Wooldridge robust standard errors. AIC refers to the Akaike Information Criterion, SC refers to the Schwarz Criterion, Q(20) refers to the Ljung-Box Q 
Statistic with a maximum number of lags of 20. The value for the F-Statistic is the p-value. 
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Dependent Variable: E(RCER)-Rf 
 Coefficient Std. Error 
α1 0.124443*** 0.050585 
α0 0.004425 0.026743 
βn 0.001311 0.002119 
 Variance Equation 
ω 0.104057*** 0.009300 
φ 0.445578*** 0.118872 

  
Diagnostic Tests  
R-squared 0.007763 
Adjusted R-squared 0.008371 
εn 0.410895 
Log likelihood 118.7581 
Durbin-Watson stat 2.044370 
AIC 0.986121 
SC 1.056349 
F-statistic 0.074957 
ARCH Test 0.324762 
Q(20) 19.467 

 
 

Table 11: CAPM Regression Results for the CER contract with a ARCH(1,1) model 
Note: Bollerslev-Wooldridge robust standard errors. AIC refers to the Akaike Information Criterion, SC refers to the Schwarz Criterion, Q(20) refers to the Ljung-Box Q 
Statistic with a maximum number of lags of 20. The value for the F-Statistic is the p-value. 
 
 


