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Abstract

In this paper, we apply first and higher-order Euler discretizations to com-
pare dynamic systems in discrete and continuous time. In addition, we stress the
difference between backward and forward-looking approximations. Focussing on
local bifurcations, we find that time representation is neutral and asymptoti-
cally neutral for models with saddle-node and Hopf bifurcations, respectively.
Conversely, it is far from neutral for models with flip bifurcations (in discrete
time), even though these bifurcations disappear under a critical discretization
step or under higher-order Euler discretizations.
In the second part, we apply the theory to popular economic models. Discrete-

time dynamics of capital accumulation, such as Solow (1956), can be recovered
under first-order backward-looking discretizations because of the predetermined
nature of capital. Models of capital accumulation with intertemporal optimiza-
tion, such as Ramsey (1928), need hybrid discretizations because of the forward-
looking nature of the Euler equation, where consumption behaves as jumping
variable.

Résumé

Dans ce papier, nous effectuons une comparaison des systèmes dynamiques
en temps discret et en temps continu fondée sur des discrétisations d’Euler du
premier ordre et d’ordre supérieur. Nous montrons que l’équivalence entre le
modèle discret et la version discrétisée du modèle continu peut être obtenue
généralement par une approximation tournée vers le passé (backward-looking),
une approximation tournée vers le futur (forward-looking) et dans certains cas
par une approximation hybride. Pour une analyse qui se limite aux bifurcations
locales élémentaires, on trouve que la représentation du temps est neutre dans
les modèles avec bifurcations de type saddle-node et asymptotiquement neutre
pour des bifurcations Hopf. Par contre, ce résultat de neutralité ne tient plus
en présence de bifurcations flip (en temps discret), même si ces bifurcations
disparaissent en dessous d’une valeur critique du pas de discrétisation ou au
dessus d’un certain ordre de discrétisation.
Dans une deuxième partie du papier, nous illustrons nos résultats théoriques

en appliquant la méthodologie à un certain nombre de modèles économiques fam-
iliers. On retrouve la dynamique d’accumulation du capital (variable prédéter-
minée) à la Solow (1956) en temps discret, à partir d’une discrétisation au
premier ordre backward-looking de sa version en temps continu. Dans les mod-
èles de croissance à la Ramsey (1928), avec optimisation intertemporelle, cette
équivalence entre temps discret et temps continu ne peut provenir que d’une dis-
crétisation hybride : à cette approximation backward-looking de la dynamique
du capital doit s’adjoindre une discrétisation forward-looking de la dynamique
de la consommation en raison de la nature tournée vers le futur de l’équation
d’Euler.

Keywords: discretizations, bifurcations, growth models.
JEL Classification: C02, C61, C62, O41.
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1 Introduction
The issue of time representation, that is, the choice of a discrete or a continuous
variable, is a fundamental concern in economic theory. Turnovsky (1977) wrote
in International Macroeconomic Dynamics: "There is one methodological mat-
ter that arises in the modeling of dynamic economic systems, and that is the
choice of discrete versus continuous time [...] The preference in this book is for
continuous time formulation, mainly because we find it to be more tractable and
often more transparent. But to some degree this choice is a question of taste."
In our paper, we don’t address the question whether discrete or continuous-

time models are more appropriate to represent the economic activity. It is
deceptive to answer such a question; there are neither criteria nor measures to
compare the suitability of these approaches. In this respect, Turnovsky is right:
it’s a matter of taste.
Optimization in discrete (continuous) time and the solution of difference

(differential) equations often rests on the author’s skills and mathematical con-
venience. In most of cases, authors are forced to a given option by no other
reason than formal easiness.
We aim at drawing the aftermath of time structure on the economic system

without questioning on the reasons before. More precisely, the question we
raise is how the choice of time, as a continuous or discrete variable, affects the
stability properties of a dynamic system: it is well-known that these properties
can depend on the time specification.
Most of theoretical models, especially in the growth literature, are built in

continuous time. Preference for system of differential equations comes essen-
tially from technical considerations. Continuous-time systems are usually more
tractable than systems of difference equations. If, on the one hand, most of
economic transactions are pointwise over time, on the other hand, the common
sense suggests that real life unfolds continuously. More sophisticated economic
arguments are developed by Gandolfo (1997).1

On the one side, decisions and transactions happen at given instants and
statistical data are available as discrete-time measurements. Some authors argue
that a discrete-time approach makes sense not only from a theoretical but also
from an empirical point of view.2

From a methodological point of view, there is another difference between
these representations which argues in favour of discrete time. A simple one-
dimensional difference equation can generate complex dynamics, while a higher-
dimensional system is needed in continuous time (Guckenheimer and Holmes
(1983)).

1Gandolfo (1997) puts forward eight arguments in favour of a continuous instead of a
discrete-time representation of economic activity.

2Two main criticisms are addressed by Gandolfo (1997) to these apparently convincing
arguments. First, although individual decisions are discrete, the fact that they are not syn-
chronized and spread over time from a great number of agents, restores a theoretical justifi-
cation for continuous-time models. In addition, statistical inference in continuous time knew
consequent and satisfactory developments since the 1970s (see Bergstrom (1976), Bergstrom
(1984), Gandolfo (1981) and Wymer (1972)).
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For example, the logistic map exhibits stable fixed point, stable periodic
cycles (of any order) and deterministic chaos. In addition, all these dynamic
behaviors are sensitive to a single parameter value. Conversely, only monotonic
orbits, either convergent or explosive, are generated by a one-dimensional dif-
ferential equation. Consequently, one gains in simplicity by modeling complex
dynamics in discrete time.
Finally, in discrete time, distinction between forward and backward-looking

variables turns out to be more natural. For instance, introducing observed or
expected inflation in a Taylor rule changes the dynamic properties of monetary
policy.
These examples show that time modeling is neither trivial nor neutral and

has economic consequences. The choice of time can determine the results in-
dependently of the underlying economic mechanisms. In the logistic case, the
continuous time rules out in advance the occurrence of (a)periodic cycles.
A still new but growing literature is focussing on a common ground to both

the strands of models and checking the sensitivity of results to time representa-
tion. Scholars tackle the question in different ways.

• Mercenier and Michel (1994) consider infinite-horizon optimizations and
discretize continuous-time models as usually done in numerical simulation.
Their goal is closely related to ours. A discrete-time approximation should,
at least, preserve the steady-state of the continuous-time model. They
show that the invariance property of steady state can be achieved through
an appropriate Euler discretization and simple restrictions on discounting.

• Some papers reconsider in discrete time the dynamic properties of a class
of models originally written in continuous time (and vice versa).

A strand of literature focuses on dynamic indeterminacy. Carlstrom and
Fuerst (2005) study the role of time specification on real indeterminacy
and sunspot equilibria in models where the central bank implements a
fairly interest rate policy rule. Recommendations to rule out multiple
equilibria are substantially different under different time representations.
Mino, Nishimura, Shimomura and Wang (2005) address the same issue
in two-sector endogenous growth models with constant social returns. As
Mercenier and Michel (1994), they are concerned with a discrepancy of
results in theoretical continuous-time works and discrete-time applied pa-
pers. In the class of endogenous growth models they consider, they find
that conventional results of continuous-time literature no longer hold in a
discrete-time formulation. Hintermaier (2005) shows that the existence of
sunspot equilibria in business cycle models depends on the specification
of time and, in discrete time, on the period length.

Another popular class of models, time-to-build, has been recently revis-
ited in the light of time specification. Using delay equations (difference-
differential equations) seems particularly appropriate and somewhat ap-
pealing to tackle our issue. Licandro and Puch (2006) study whether the
discrete-time version is consistent with the continuous-time time-to-build
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model. Bambi (2008) makes an attempt to unify the literature on time-
to-build, recovering multi-period investments in discrete-time from delay
equations in continuous time. Cycles are found to occur (through Hopf
bifurcations) under both time representations.

Eventually, one may question whether time nature matters under uncer-
tainty. Leung (1995) shows that the consumption paths are different in
discrete and continuous time when agents face an uncertain life-span.

• Anagnostopoulos and Giannitsarou (2008) build a dynamic general equi-
librium model where the period length is a free parameter. They recover
traditional models in discrete and continuous time as particular cases. In
addition, they compare the dynamic properties of a large class of models
under both time specifications. Focussing on indeterminacy, they conclude
that the period length matters in economic dynamics.

Comparing conditions for the occurrence of elementary bifurcations in a
neighborhood of an invariant steady state is a proper way of tackling the ques-
tion. Prior to bifurcation analysis, we need a general approach in the spirit
of Anagnostopoulos and Giannitsarou (2008) and we bridge the continuous
and discrete-time models through a general discretization method. In this re-
spect, we apply, as Mercenier and Michel (1994) and Krivine, Lesne and Treiner
(2007), an Euler procedure based on a Taylor expansion to discretize a system
of differential equations. First or higher-order Euler discretizations preserve
the continuous-time steady state and help us to understand why some stability
properties (dis)appear from a time representation to another. An appealing
feature of Euler approximations is that discrete-time dynamics can be recov-
ered under opportune discretizations. More precisely, while the steady state
is invariant under discretization, whatever its order and step, dynamic prop-
erties are sensitive to both the order and the step. In addition, they depend
on the type of discretization (backward, forward-looking or hybrid). Neverthe-
less, discrete-time dynamics of popular growth models can be derived from the
continuous-time system through first-order unit-step discretizations. Focussing
on the type of discretization is a value we add to the existing literature. In eco-
nomics, some models require backward of forward-looking discretizations (Solow
(1956)), while a large class of higher-dimensional models need hybrid discretiza-
tion to recover the equivalence between discrete and continuous time. The mix
of backward and forward-looking discretizations, what we call hybrid, is par-
ticularly appropriate for models of dynamic optimization. Traditional optimal
growth models in discrete time (Ramsey (1928), Cass-Koopmans (1965)) come
from a hybrid approximation of the continuous-time versions: backward-looking
discretization of the law of motion involving the state variable (as in Solow) and
forward-looking discretization of the Euler equation involving a costate variable
(the discounted multiplier).
Bifurcation theory is a fashionable topic built on a solid ground by gen-

erations of brilliant mathematicians (from Poincaré to Thom, to Arnol’d). A
literature within the reach of nonspecialized scholars has grown in recent years.
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Good introductions are, among the others, Guckenheimer and Holmes (1983),
Hale and Koçak (1991). However, in order to have a rigorous but concise intro-
duction to bifurcations in discrete time, interested scholars are highly recom-
mended to read Grandmont (2008).
In the first part of the paper, we provide a comparative analysis of (local)

bifurcations in continuous and discrete time bridging the models through poly-
nomial approximations and exploiting the equivalence properties of discrete-time
and (opportunely) discretized systems: bifurcations depend on the discretization
step. At the best of our knowledge, no attempts have been made in literature
to tackle the issue from this point of view. In addition, we go beyond the equiv-
alence results and we study also the occurrence of bifurcations in higher-order
discretizations, including quadratic forms.
For simplicity, we focus on two-dimensional systems. The Central Manifold

Theorem ensures that one or two-dimensional manifolds (in the case of Hopf
bifurcations) are concerned by generic bifurcations.
We consider three classes of elementary bifurcations: the family of saddle

node bifurcations (including the transcritical and the pitchfork), the family of
period-doubling bifurcations (including the flip), the family of Hopf bifurcations.
The dynamic properties in continuous time of a saddle-node bifurcation are

preserved under a Euler discretization, whatever the discretization step.
From a qualitative point of view, Hopf bifurcations are also preserved, but

no longer for arbitrary discretization steps. More precisely, a "continuity" prop-
erty holds under discretization: conditions for Hopf bifurcation in discrete time
"tend" to conditions in continuous time as the discretization step tends to zero.
The very difference arises in the case of flip bifurcations that are specific to

discrete-time systems (indeed, there is no room for period-doubling bifurcations
in continuous time). Under linear Euler approximations, the flip bifurcation
disappears when the discretization step falls below a positive critical value. In
addition, we show a surprising result in traditional growth models: a quadratic
Euler approximation rules out the occurrence of flip whatever the discretization
step.
We can say that the choice of time representation is neutral for models

with saddle node bifurcations, almost neutral for models with Hopf bifurcations
(the discrete-time critical value lies in a neighborhood of the continuous-time
bifurcation value), far from neutral for models with flip bifurcations (in discrete
time), even though these bifurcations disappear below a given threshold.
In the second part of the paper, we apply the methodology to popular dy-

namic economic models. We start with models, such as Kaldor (1940) or Solow
(1956), where the discrete-time counterpart of continuous-time system comes
from backward-looking discretizations.
In the seminal Solow’s dynamics, there is no room for bifurcations: the

steady state is stable whatever the time representation. In addition, we show
that computing the intensive form of discretized dynamics is not equivalent to
discretizing the intensive form of the original model, even though the steady
state remains the same. In the second case, flip bifurcations require a suffi-
ciently large discretization step. As seen above, a second (and a fortiori higher)
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order Euler discretization makes the discretized system sufficiently close to the
continuous-time model to rule out any bifurcation, whatever the discretization
step. As usual, introducing imperfections, like externalities, can promote non-
monotonic dynamics. Following Day (1982), we add a negative productive ex-
ternality in the Solow model: there is room for flip bifurcations in discrete time
and, unsurprisingly, no room for bifurcations in continuous time. The analysis
of the discretized model allows us to compute the critical discretization step.
In order to study the occurrence of Hopf bifurcations, we need two-dimensional

dynamics. Kaldor model is one of the simplest economic example of two-
dimensional systems: a Hopf bifurcation arises under a parsimonious set of
assumptions. Confirming the general results found in the first part, we show
that, even if the discrete and the continuous-time critical values differ, the for-
mer converges to the latter as the discretization step tends to zero.
Applications carry on with an influential class of optimal growth models. It’s

a question of models with dynamic optimization, namely intertemporal utility
maximization. The original Ramsey (1928), with undiscounted preferences, is
a good introduction. We show that an appropriate hybrid discretization is
needed to recover the discrete-time from the continuous-time system. The gen-
eral hybrid approximation developed in the first methodological part can be
now applied to the reduced forms of the Ramsey model.
In 1965, Cass and Koopmans introduced (independently) a discounting mech-

anism in the Ramsey model. Applying a Euler discretization to these models
allows us to penetrate the sense of discounting in discrete/continuous time.
Indeed, only discretizing the version of Euler equation with the discounted mul-
tiplier enables us to recover the traditional discrete-time model. The undis-
counted multiplier is stationary at the steady state. Discretizing the Euler
equation with the undiscounted multiplier gives an alternative approximation,
which is still right but different from the usual intertemporal arbitrage in dis-
crete time. There is no room for bifurcations in this model: the steady state
is saddle-point stable in continuous as well as in discrete time, whatever the
discretization step. To conclude the economic applications (the second part of
the paper) and give a straightforward example of Hopf bifurcation in a model
à la Cass-Koopmans with public spending externalities both in the utility and
the production functions, we provide a more general3 version of Zhang (2000)
and we show that both the externalities are crucial to generate limit cycles
(through a Hopf bifurcation). We confirm the qualitative equivalence of the
Hopf bifurcation highlighted in the first part of the paper: under a sufficiently
small discretization step, this bifurcation occurs in discrete time if and only if
it arises in continuous time.
The rest of the paper is organized as follows.
In the first part, we address the methodological issue of time discretization

and the consequences on a dynamic system: the discretization methodology
and the taxonomy of elementary bifurcations are presented in sections 2 and 3,
respectively.

3Because of more general fundamentals.
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The second part is devoted to apply the discretization methodology and
the bifurcation analysis to some popular economic models. Section 4 focuses
on backward-looking discretizations with applications to one-dimensional Solow
models (flip bifurcation) and two-dimensional Kaldor models (Hopf bifurcation).
In section 5, we apply the methodology to models of dynamic optimization,
including seminal models of optimal growth, where the discrete-time version
can be recovered under an opportune hybrid discretization.

Part I

Theory
2 General methodology
Time is discrete when is represented by a countable set of points. Time is
continuous when is dense in the real numbers. In the first case, there exists a
bijection with the set of natural numbers; in the second case with the continuum,
say the real line.
Numerical methods have been applied to solve systems of differential equa-

tions. Discretizing, that is picking a sequence of points in the continuum, is
a convenient way to represent and plot continuous-time system. Discretiza-
tions based on a Taylor development (that is polynomial representations) were
introduced by Euler and are today quite pervasive in computational science.
From a theoretical point of view, the Euler approach can shed a light on the

interplay between continuous and discrete-time dynamics. More precisely, it
proves to be also pertinent to investigate and compare bifurcations in different
timings.
The issue we tackle concerns the type and the amplitude of discretization we

need in order to recover an equivalence between discrete and continuous time,
where equivalence means the persistence of dynamic properties from a regime
to another.
As Euler, we choose to apply a Taylor expansion to discretize a continuous-

time system. We start by taking in account a first-order expansion (that is a
linear discretization), then, we will consider higher-order discretizations.

2.1 First-order Euler discretization

2.1.1 Backward-looking discretizations

Instead of considering a continuous variable t and the corresponding position
x (t) determined by a system of ordinary differential equations:

ẋ = f (x) (1)

jointly with the initial condition x0 ≡ x (0), let us pick up a regular sequence of
time values: (tn)

∞
n=0 = (nh)

∞
n=0, where h is a (possibly small) positive constant

8
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(discretization step), and the associated values: xn ≡ x (tn) = x (nh).
According to the definition of derivative, we can write:

ẋ (t) ≡

⎡⎢⎣ limh→0 [x1 (t+ h)− x1 (t)] /h
...

limh→0 [xm (t+ h)− xm (t)] /h

⎤⎥⎦
where x ∈ Rm.
If h is sufficiently small, we can set ẋ (t) ≈ [x (t+ h)− x (t)] /h and, there-

fore, [x (t+ h)− x (t)] /h ≈ f (x (t)). We obtain [x (tn + h)− x (tn)] /h ≈ f (x (tn)),
that is [x (tn+1)− x (tn)] /h ≈ f (x (tn)) and, finally, (xn+1 − xn) /h ≈ f (xn),
since tn+1 = tn + h. It follows that

xn+1 − xn ≈ hf (xn) (2)

The entire sequence (xn)
∞
n=0 can be computed from the initial condition

x0, by iterating the procedure: x1 ≈ x0 + hf (x0), x2 ≈ x1 + hf (x1) ≈ x1 +
hf (x0 + hf (x0)) and so on.
Equation (2) constitutes a backward-looking Euler discretization, because

the variation xn+1 − xn depends on the past value xn on the RHS of (2).
However, the sequence (xn) is just an approximation of the true sequence

(x (nh)), exact solution of system (1): the smaller h, the more accurate the
approximation. It is not unworthy to observe that simplicity and elegance make
the Euler’s method the easiest technique to handle in order to plot a phase
diagram and find a numerical solution of a system of differential equations.
However, we are not interested here in numerical simulations, but in the

change of dynamic properties, when one passes from a continuous to a discrete
time setting: Euler’s discretization is of great help to understand why some
stability properties (dis)appear from a timing to another.
Conversely, given an ordinary m-dimensional discrete-time system: xn+1 =

xn+ hf (xn) ≡ g (xn), we can define f (xn) ≡ [g (xn)− xn] /h and approximate
the discrete-time system with ẋ = f (x). As above, the smaller h, the more
accurate the approximation.

2.1.2 Forward-looking discretizations

Instead of considering the right-hand derivative, we can compute the left-hand
derivative: ẋ (t) ≡ limh→0 ([x (t)− x (t− h)] /h) where x ∈ Rm.
If h is sufficiently small, we can set ẋ (t) ≈ [x (t)− x (t− h)] /h and, there-

fore, [x (t)− x (t− h)] /h ≈ f (x (t)). We obtain [x (tn+1)− x (tn+1 − h)] /h ≈
f (x (tn+1)), that is [x (tn+1)− x (tn)] /h ≈ f (x (tn+1)) and, finally, (xn+1 − xn) /h ≈
f (xn+1), since tn = tn+1 − h. It follows that

xn+1 − xn ≈ hf (xn+1) (3)

(3) constitutes a forward-looking Euler discretization, because the variation
xn+1 − xn depends on the future value xn+1 on the RHS of (3).
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In the following, we focus on higher-order Euler discretizations. As in the
case of equation (3), the derivation of higher-order forward-looking discretiza-
tions is similar to that of backward-looking discretizations.
In economics, forward-looking discretizations are of interest because agents

behave according to their expectations. In the second part of the paper, we
will revisit influential economic models through hybrid linear approximations
mixing backward and forward-looking discretizations.

2.2 Higher-order Euler discretizations

Let us now provide higher-order Taylor expansions to approximate the continuous-
time dynamic system.
First, we begin with studying quadratic and higher-order polynomial ap-

proximations of a simple differential equation, then we will approximate higher-
dimensional ordinary system of differential equations.

2.2.1 One-dimensional dynamics

Before entering higher-order discretizations of a dynamic system, let us show
how to improve the Euler approximation of a simple one-dimensional dynamics
through a quadratic Taylor expansion.

Proposition 1 The differential equation ẋ = f (x), x ∈ R, can be approximated
by a second-order Taylor polynomial:

xn+1 ≈ xn + f (xn)h+ f (xn) f
0 (xn)h

2/2 ≡ g (xn) (4)

Proof. As seen above, we define xn ≡ x (tn) = x (nh). Then

xn+1 − xn = x (nh+ h)− x (nh) =

nh+τZ
nh

ẋdt

¯̄̄̄
¯̄
τ=h

=

nh+τZ
nh

f (x (t)) dt

¯̄̄̄
¯̄
τ=h

First, we compute

ϕ (τ) ≡
nh+τZ
nh

f (x (t)) dt (5)

through a (quadratic) Taylor expansion centered in τ = 0.

ϕ (τ) ≈ ϕ (0) + ϕ0 (0) (τ − 0) + ϕ00 (0) (τ − 0)2 /2

=

nh+0Z
nh

f (x (t)) dt+ f (x (nh+ 0)) τ + f 0 (x (nh+ 0))x0 (nh+ 0) τ2/2

= 0 + f (x (nh)) τ + f 0 (x (nh)) f (x (nh)) τ2/2

= f (xn) τ + f 0 (xn) f (xn) τ
2/2

10
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since x0 (nh) = f (x (nh)). Eventually, we obtain

xn+1 − xn =

nh+hZ
nh

f (x (t)) dt = ϕ (h) ≈ f (xn)h+ f (xn) f
0 (xn)h

2/2

Similarly, one can compute a third-order Euler discretization:

xn+1 − xn

≈ f (xn)h+ f (xn) f
0 (xn)h

2/2 +
h
f (xn) f

0 (xn)
2 + f (xn)

2 f 00 (xn)
i
h3/6

If f ∈ C∞, the infinite-order Taylor series converges exactly to xn+1 − xn
and one can replace the sign of approximation: ≈, with the sign of equality: =.
In other terms, if f ∈ C∞, an infinite-order discretization (Taylor series

instead of a Taylor polynomial) makes the discrete-time dynamics exactly equal
to those in continuous time. In this case, discretization introduces no distortions
whatever the step h:

xn+1 − xn = ϕ (h) =
∞X
p=0

ϕ(p) (0)hp/p! (6)

where ϕ(p) denotes the pth derivative of function ϕ (see formula (5)).
A higher-order approximation requires numerical computations because of

the infinite complexity of any analytical solution.

2.2.2 Higher-dimensional dynamics

System ẋ = f (x) and its first-order approximation xn+1 ≈ xn+hf (xn) become,
respectively:

ẋ1 = f1 (x1, . . . , xm)

...

ẋm = fm (x1, . . . , xm)

and

x1n+1 ≈ x1n + hf1 (x1n, . . . , xmn) ≡ g1 (x1n, . . . , xmn)

...

xmn+1 ≈ xmn + hfm (x1n, . . . , xmn) ≡ gm (x1n, . . . , xmn)

What could we say about the second-order approximation in this general
case? As seen above, we define xn ≡ x (tn) = x (nh) (in vector terms). More
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explicitly, we have

x1n ≡ x1 (tn) = x1 (nh)

...

xmn ≡ xm (tn) = xm (nh)

The following proposition holds.

Proposition 2 The continuous-time dynamic system ẋ = f (x), x ∈ Rm, can
be approximated by a second-order Taylor polynomial:

xin+1 ≈ xin + hfi (xn) +
h2

2

mX
j=1

fj (xn)
∂fi
∂xjn

(xn) (7)

where the subscript i denotes the ith component of the vector.

Proof. Focus on the ith component. As above

xin+1−xin = xi (nh+ h)−xi (nh) =
nh+τZ
nh

ẋidt

¯̄̄̄
¯̄
τ=h

=

nh+τZ
nh

fi (x (t)) dt

¯̄̄̄
¯̄
τ=h

(8)

(notice that now fi depends on all the components, that is, on the vector x (t)).
First, we compute

ϕi (τ) ≡
nh+τZ
nh

fi (x (t)) dt (9)

through a (quadratic) Taylor expansion centered in τ = 0: ϕi (τ) ≈ ϕi (0) +

ϕ0i (0) (τ − 0) + ϕ00i (0) (τ − 0)
2 /2. Explicitly, we get ϕi (0) =

nhZ
nh

fi (x (t)) dt = 0

and ϕ0i (0) = fi (x (nh+ 0)) = fi (xn). Moreover,

ϕ00i (τ) =
d

dτ
fi (x (nh+ τ)) =

mX
j=1

∂fi
∂xj

(x (nh+ τ))
dxj
dτ

(nh+ τ)

=
mX
j=1

∂fi
∂xj

(x (nh+ τ)) fj (x (nh+ τ))

and

ϕ00i (0) =
mX
j=1

fj (x (nh))
∂fi
∂xj

(x (nh)) =
mX
j=1

fj (xn)
∂fi
∂xjn

(xn)

since, with some notational misuse, (dxj/dτ) (nh+ τ) = fj (x (nh+ τ)). There-
fore, the ith component of ϕ becomes

ϕi (τ) ≈ ϕi (0) + τϕ0i (0) +
τ2

2
ϕ00i (0) = τfi (xn) +

τ2

2

mX
j=1

fj (xn)
∂fi
∂xjn

(xn)

12

Document de Travail du Centre d'Economie de la Sorbonne - 2009.28



Finally, according to (8) and (9), we obtain

xin+1 − xin = ϕi (h) ≈ hfi (xn) +
h2

2

mX
j=1

fj (xn)
∂fi
∂xjn

(xn)

or, equivalently, (7).
In the case of a two-dimensional dynamics, the backward-looking formula

(7) becomes explicitly:∙
x1n+1 − x1n
x2n+1 − x2n

¸
≈ h

∙
f1 (x1n, x2n)
f2 (x1n, x2n)

¸
+
h2

2

∙
∂f1/∂x1n ∂f1/∂x2n
∂f2/∂x1n ∂f2/∂x2n

¸ ∙
f1 (x1n, x2n)
f2 (x1n, x2n)

(̧10)

or, more compactly,

xn+1 ≈ xn +

∙
hI +

h2

2
J0 (xn)

¸
f (xn) (11)

As in the linear case of equation (3), we can derive a quadratic forward-

13
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looking approximation. Formally, we get4

xin+1 ≈ xin + hfi (xn+1)−
h2

2

mX
j=1

fj (xn+1)
∂fi

∂xjn+1
(xn+1) (14)

Computing higher-order Taylor expansions is still possible, exploiting the
properties of vector function ϕ and its relation with the original function f .
More precisely, we have

xin+1 − xin =

nh+τZ
nh

fi (x (t)) dt

¯̄̄̄
¯̄
τ=h

= ϕi (h) ≈
qX

p=0

hp

p!
ϕ
(p)
i (0) (15)

where the right-hand side is the qth-order approximation of the ith component
of the vector xn+1 − xn.
We observe that the pth derivative of the scalar function ϕi involves the

(p− 1)th (simple and cross) derivatives of the vector function f : even when

4Focussing on the ith component, we find

xin − xin−1 = xi (nh)− xi (nh− h) =

nh

nh−τ

ẋidt

τ=h

=

nh

nh−τ

fi (x (t)) dt

τ=h

(12)

(notice that now fi depends on all the components, that is, on the vector x (t)).
First, we compute

ϕi (τ) ≡
nh

nh−τ

fi (x (t)) dt (13)

through a (quadratic) Taylor expansion centered in τ = 0: ϕi (τ) ≈ ϕi (0) + ϕ0i (0) (τ − 0) +

ϕ00i (0) (τ − 0)
2 /2. More explicitly, we get ϕi (0) =

nh

nh

fi (x (t)) dt = 0 and ϕ0i (0) =

fi (x (nh− 0)) = fi (xn). Moreover

ϕ00i (τ) =
d

dτ
fi (x (nh− τ)) = −

m

j=1

∂fi

∂xj
(x (nh− τ)) fj (x (nh− τ))

and

ϕ00i (0) = −
m

j=1

fj (x (nh))
∂fi

∂xj
(x (nh)) = −

m

j=1

fj (xn)
∂fi

∂xjn
(xn)

since (dxj/dτ) (nh− τ) = −fj (x (nh− τ)). Therefore, the ith component of ϕ becomes

ϕi (τ) ≈ ϕi (0) + τϕ0i (0) +
τ2

2
ϕ00i (0) = τfi (xn)−

τ2

2

m

j=1

fj (xn)
∂fi

∂xjn
(xn)

Finally, according to (12) and (13), we obtain

xin+1 − xin ≈ hfi (xn+1)−
h2

2

m

j=1

fj (xn+1)
∂fi

∂xjn+1
(xn+1)

or, equivalently, (14).
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computations turn out to be hard from an analytical point of view, they are
often feasible from a numerical point of view. As above, the identity

xin+1 − xin = ϕi (h) =
∞X
p=0

hp

p!
ϕ
(p)
i (0)

holds whatever h if f ∈ C∞.

3 Local bifurcations
In order to compare continuous-time and discrete-time system, we will study
approximations in a neighborhood of the steady state and focus only on ele-
mentary bifurcations.

3.1 Steady state

The system ẋ = f (x) and its discrete time approximation xn+1 ≈ xn+ hf (xn)
have the same steady state. Indeed, in the continuous-time case, we require
ẋ = 0, that is f (x) = 0, while, in the discrete-time case, we need xn+1 = xn,
that is f (xn) = 0 for every n, or, equivalently, f (x) = 0. More explicitly:
f1 (x1, . . . , xm) = . . . = fm (x1, . . . , xm) = 0 determines the steady state of
either a continuous-time or a discrete-time dynamics. We further notice that
the steady state equations f1 (x1, . . . , xm) = . . . = fm (x1, . . . , xm) = 0 neither
depend on the discretization degree h nor on the discretization method (forward-
looking or backward-looking).

3.2 Elementary bifurcations

We consider (local) bifurcations in stability of a simple attractor: the steady
state, and we study the role of either the order or the degree h of discretization
in the occurrence of these bifurcations.
In continuous time, an elementary bifurcation arises when the real part of

an eigenvalue λ (p) of the Jacobian matrix crosses zero in response to a change
of parameter p. Without loss of generality, we normalize to zero the critical
parameter value of bifurcation (p = 0) and we get generically two cases.
(1) Saddle-node bifurcation. A real eigenvalue crosses zero: λ (0) = 0.
(2) Hopf bifurcation. The real part of two complex and conjugate eigenvalues

λ (p) = a (p) ± ib (p) crosses zero: a (0) = 0 and b (p) 6= 0 in a neighborhood of
p = 0.
In discrete time, an elementary bifurcation occurs when one eigenvalue λ (p)

of the Jacobian matrix evaluated at the steady state, crosses the unit circle in
response to a change of parameter p. Normalizing as above to zero the critical
parameter value of bifurcation (p = 0), we find generically three classes of
elementary bifurcations.
(1) Saddle-node bifurcation: λ (0) = +1.

15

Document de Travail du Centre d'Economie de la Sorbonne - 2009.28



(2) Flip bifurcation: λ (0) = −1.
(3) Hopf bifurcation: |λ (0)| = |a (0)± ib (0)| = 1 with b (0) 6= 0.
Generically, only one eigenvalue is concerned with a saddle-node or a flip

bifurcation and the bifurcation analysis can reduce to the study of a simple one-
dimensional invariant manifold. Similarly, two complex (conjugated) eigenvalues
are concerned with the Hopf bifurcation and the bifurcation analysis simplifies
to the study of a two-dimensional invariant manifold. More explicitly, when
an eigenvalue (or a conjugated pair of eigenvalues in the case of Hopf) crosses
the unit circle, generically, no other eigenvalue crosses simultaneously the circle.
Then a higher-dimensional reduces to a one-dimensional dynamics or to a two-
dimensional dynamics under a Hopf bifurcation (Central Manifold Theorem)
and the movement of the other eigenvalues does not change the qualitative
properties of dynamics (topological equivalence). In other terms, only a one or
two-dimensional central manifold is concerned with the bifurcation: the other
manifolds preserve their qualitative properties.
One-dimensional dynamics can not capture the occurrence of Hopf bifurca-

tions. In order to study all the types of bifurcations in a common framework
and highlight the differences between discrete and continuous time, we focus on
two-dimensional systems. There is no loss of generality with respect to higher-
dimensional dynamic system because of the Central Manifold Theorem.

3.3 Discretizations

We can compare discrete and continuous-time bifurcations through backward
and forward-looking discretizations. While backward-looking approximations
are more usual in other fields, such as physics, biology, demography, in eco-
nomics expectations plays a role: agents face uncertainty and current decisions
rest on the probabilities they have in mind about future. For instance, saving
behavior depends on the expected interest rate. In order to capture forward-
looking decision processes, forward-looking discretizations are more appropriate.
Popular growth models mix backward and forward-looking mechanisms and are
correctly approximated by hybrid discretizations, that is system of backward
and forward-looking equations.

3.3.1 Backward-looking discretization

Focus first on (2). System ẋ = f (x) and its approximation xn+1 ≈ xn+hf (xn)
become, respectively:

ẋ1 = f1 (x1, x2) (16)

ẋ2 = f2 (x1, x2) (17)

and

x1n+1 ≈ x1n + hf1 (x1n, x2n) ≡ g1 (x1n, x2n) (18)

x2n+1 ≈ x2n + hf2 (x1n, x2n) ≡ g2 (x1n, x2n) (19)

16
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As seen above, for both the systems, the steady state is the same and still
given by

f1 (x1, x2) = 0

f2 (x1, x2) = 0

The Jacobian matrices of systems (16)-(17) and (18)-(19) are, respectively:

J0 ≡
"

∂f1
∂x1n

∂f1
∂x2n

∂f2
∂x1n

∂f2
∂x2n

#
and J1 ≡

"
∂g1
∂x1n

∂g1
∂x2n

∂g2
∂x1n

∂g2
∂x2n

#
(20)

Under a linear approximation, local dynamics in continuous and discrete
time are related by h, the degree of discretization, according to a simple equality:

J1 = I + hJ0 (21)

where I denotes a two-dimensional identity matrix.
We observe that, since J0 depends on the steady state x which, in turn, does

not depend on h, then J1 depends only linearly on h as (21) shows.
In the following, let us denote the trace and determinant of J0 and J1 by

(T0,D0) and (T1,D1), respectively.
The characteristic polynomial in discrete time is given by P1 (λ) ≡ λ2 −

T1λ+D1, where

T1 = 2 + hT0 (22)

D1 = 1 + hT0 + h2D0 = T1 − 1 + h2D0 (23)

In the case of a second-order discretization, we compute the Jacobian matrix
of the RHS of (11) with respect to xn and we find

J1 = I + hJ0 +
h2

2

¡
J20 + F1H01 + F2H02

¢
where J0 is given in (20) and

F1 ≡
∙
f1 f2
0 0

¸
F2 ≡

∙
0 0
f1 f2

¸
H01 ≡

"
∂2f1
∂x21n

∂2f1
∂x2n∂x1n

∂2f1
∂x1n∂x2n

∂2f1
∂x22n

#
H02 ≡

"
∂2f2
∂x21n

∂2f2
∂x2n∂x1n

∂2f2
∂x1n∂x2n

∂2f2
∂x22n

#

3.3.2 Hybrid discretization

In economics, many higher-dimensional models require a hybrid discretization
to recover the equivalence between discrete and continuous time, that is a mix of
discretization in backward and forward looking. Without loss of generality, we
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consider a two-dimensional system where the first equation is discretized back-
ward and the second one forward.5 Thus, the system of differential equations
(16-17) becomes:

x1n+1 ≈ x1n + hf1 (x1n, x2n) (24)

x2n+1 ≈ x2n + hf2 (x1n+1, x2n+1) (25)

As seen above, the steady state is invariant to the choice of time and to the
type of discretization (backward/forward): f1 (x1, x2) = 0 and f2 (x1, x2) = 0.
The Jacobian matrix of the hybrid system (24)-(25) is:

J1 =

⎡⎣ 1 + h ∂f1
∂x1n

h ∂f1
∂x2n

h ∂f2
∂x1n+1

1+h
∂f1
∂x1n

1−h ∂f2
∂x2n+1

1+h2
∂f2

∂x1n+1

∂f1
∂x2n

1−h ∂f2
∂x2n+1

⎤⎦ (26)

The characteristic polynomial in discrete time is given by P1 (λ) ≡ λ2 −
T1λ+D1, where

T1 = 2 +
h

1− h ∂f2
∂x2

(T0 − hD0) (27)

D1 = 1 +
h

1− h ∂f2
∂x2

T0 (28)

are the trace and the determinant.6

In the following, we study how conditions for elementary bifurcations change
under a discretization of a continuous-time system. For simplicity, we focus
on two-dimensional backward-looking discretizations, but results can be easily
extended to the case of hybrid and higher-dimensional dynamic systems.

3.4 On the saddle-node equivalence

The continuous-time properties of the family of saddle-node bifurcations (saddle-
node, transcritical and pitchfork) are preserved in discrete time. In a way,
the saddle-node is the less sophisticated among the elementary bifurcations.
The following proposition shows that this bifurcation persists under an Euler
discretization.

Proposition 3 A saddle-node bifurcation generically occurs in continuous time
if and only if it arises in discrete time, whatever the discretization step h.

5The reader is referred to the section on the Ramsey-Cass-Koopmans models.
6 In the particular case ∂f2/∂x2 = 0, we get

T1 = 1 +D1 − h2D0 (29)

D1 = 1 + hT0 (30)
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Proof. In continuous time, a saddle-node bifurcation occurs if both the eigen-
values are real and one generically crosses zero. In the bifurcation point, the
determinant of the Jacobian matrix of system (16)-(17) becomes zero (if one
eigenvalue is zero, also the product of eigenvalues is zero): D0 = 0.
Consider now the discretization (18)-(19) with trace and determinant (22)-

(23). It is known that in discrete time a saddle-node (saddle-node, transcritical
or pitchfork) bifurcation generically arises if and only if D1 = T1 − 1 (simply
notice that the characteristic polynomial evaluated at λ = 1 is zero: P1 (1) =
1− T1 +D1 = 0).
Equality (23) implies that D0 = 0 if and only if D1 = T1 − 1, whatever the

discretization step, that is the proposition.
First, we notice that discretization preserves a saddle-node bifurcation, even

if the approximation is extremely rough (whatever h > 0).
Second, we observe that, even if D0 = 0 entails that P1 (1) = 0, that is the

pair (T1,D1) lies on the line D1 = T1−1 in the (T,D)-plane (see the line AC in
Figure 1), nevertheless the location on the line still depends on the discretization
step, since (T1,D1) = (2 + hT0, 1 + hT0), according to (22)-(23). In other terms,
the equivalence stated in Proposition 3, refers only to the occurrence of a saddle-
node, but does not rule out the role of h, the discretization step, in dynamics:
if λ1 ≡ 1, then λ2 = 1 + hT0 still depends on h.7

 

T 

D 

1 

1 B 

A 

C HOPF

FLIP SADDLE NODE

Figure 1. Bifurcation lines.

3.5 On the Hopf equivalence

Conditions for Hopf bifurcation in discrete time are "close" and tend to those
in continuous time as the "distance" h between dynamics in continuous and

7The representation of bifurcations in the (T,D)-plane follows Samuelson (1941).
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discretized time tends to zero.
Let us consider a parametrized function f (x1, x2, p) with the following no-

tation for derivatives:

fixj ≡ ∂fi/∂xj

fip ≡ ∂fi/∂p

Proposition 4 Assume f (x, p) ∈ C2. A Hopf bifurcation in continuous time
generically requires T0 = 0 and D0 > 0; while, under a backward-looking dis-
cretization, it needs

T0 = −hD0 (31)

D0 ≥ T 20 /4 (32)

where h is the discretization step. The right-hand sides of (31) and (32) tend
to zero as h goes to zero, that is conditions (31) and (32) "converge" to the
corresponding conditions in continuous time.

Proof. Given the Jacobian matrix, we compute the continuous-time charac-
teristic polynomial: P0 (λ) = λ2 − T0λ + D0, where T0 and D0 are the trace
and determinant of J0 (see the Jacobian matrix (20)). The two roots of the
characteristic polynomial are: λ = T0/2 ±

p
T 20 /4−D0. Roots are complex if

and only if D0 > T 20 /4. In this case, the eigenvalues become λ = α ± iβ with
α ≡ T0/2 and β ≡

p
D0 − T 20 /4.

Hopf bifurcation in continuous time generically requires: α = 0 and β 6= 0,
that is

T0 = 0 (33)

D0 > T 20 /4 = 0 (34)

Consider now discretization (18)-(19) with trace and determinant (22)-(23).
It is known that a Hopf bifurcation generically arises in discrete time if and
only if D1 = 1 and D1 ≥ T 21 /4 (complex and conjugated eigenvalues have the
same modulus and cross together the unit circle if their product (determinant)
is one). In other terms, conditions to get a Hopf bifurcation become T 21 ≤ 4 and
D1 = 1. Using (22)-(23), we get

T 21 = (2 + hT0)
2 ≤ 4 (35)

D1 = 1 + h (T0 + hD0) = 1 (36)

(36) gives T0 + hD0 = 0 or, equivalently,

h = −T0/D0 (37)

Substituting (37) in (35), we obtain
¡
2− T 20 /D0

¢2 ≤ 4 or, equivalently, 0 ≤
T 20 /D0 ≤ 4. The left-hand inequality means D0 > 0. Therefore the right-hand
inequality becomes D0 ≥ T 20 /4.
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Summing up, the necessary and sufficient conditions for a Hopf bifurcation
in discrete time are, generically: T0 + hD0 = 0 and D0 ≥ T 20 /4.
More explicitly, taking into account that the derivatives appearing in J0 and

then in (T0,D0) depend directly and indirectly (through the steady state) on
the parameter value p, we have

T0 (x (p) , p) = −hD0 (x (p) , p) (38)

D0 (x (p) , p) ≥ T0 (x (p) , p)
2
/4 (39)

where x (p) is a stationary state corresponding to the parameter value p. We
observe that (39) implies D0 ≥ 0 and, therefore, (38) entails T0 ≤ 0 if (without
loss of generality) h > 0.
The Hopf bifurcation value pH solves (38). Under the hypotheses of the

Implicit Function Theorem, equation (38) locally defines an explicit function
pH = pH (h).
Compare now these conditions with those required in continuous time to

obtain a Hopf bifurcation (33)-(34):

T0 (x (p) , p) = 0

D0 (x (p) , p) > T0 (x (p) , p)
2 /4

Conditions (38) and (39) "converge" continuously to (33) and (34), respec-
tively, as h (the "distance" between the systems in discrete and continuous time)
goes to zero.
More precisely, if f (x, p) ∈ C2, x (p) is generically continuous because

f (x, p) ∈ C1 (apply the Implicit Function Theorem to f1 (x1, x2, p) = 0 and
f2 (x1, x2, p) = 0) and pH (h) is generically continuous because f (x, p) ∈ C2

(apply the Implicit Function Theorem to (38)), that is to8

0 = f1x1 (x (p) , p) + f2x2 (x (p) , p)

+h [f1x1 (x (p) , p) f2x2 (x (p) , p)− f1x2 (x (p) , p) f2x1 (x (p) , p)]

8Notice that
x01 (p)
x02 (p)

= − f1x1 f1x2
f2x1 f2x2

−1
f1p
f2p

with f1x1f2x2 − f1x2f2x1 6= 0, and

p0H (h) = −
f1x1f2x2 − f1x2f2x1

∆

with

∆ ≡ (1/h+ f1x1) f2x2x1x
0
1 + f2x2x2x

0
2 + f2x2p

+(1/h+ f2x2 ) f1x1x1x
0
1 + f1x1x2x

0
2 + f1x1p

−f1x2 f2x1x1x
0
1 + f2x1x2x

0
2 + f2x1p

−f2x1 f1x2x1x
0
1 + f1x2x2x

0
2 + f1x2p

6= 0

Continuity of x and pH implies, respectively: limp→pH x (p) = x (pH) and
limh→0+ pH (h) = pH (0).
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We obtain limh→0+ [hD0 (pH (h) , x (pH (h)))]→ 0− entailing that (38) "con-
verges" to (33). (39) "converges" to (34) because when T0 goes to zero, generi-
cally D0 does not go to zero (the case where both the eigenvalues of J0 are zero
is non-generic).
In other terms, if a Hopf bifurcation arises in continuous time, it is (gener-

ically) possible to find a (sufficiently small) discretization step which preserves
(by continuity) this bifurcation. Condition for Hopf in discrete time can be made
arbitrarily close to that in continuous time: simply reduce the period length h
(which is an inverse measure of the approximation degree of a continuous-time
dynamics through a linear Euler discretization). Under nice continuity prop-
erties (namely, f (x, p) ∈ C2), the discrete-time critical value pH (h) lies in a
neighborhood of the continuous-time critical value pH (0).9

In some respect, there is no qualitative difference between the Hopf bifurca-
tions in continuous and discrete time.
Finally, we notice that in the case of saddle-node bifurcations, the critical

value pS does not depend on h, while now h matters.

3.6 On the flip singularity

As seen above, the saddle-node bifurcation is invariant with respect to a linear
Euler discretization.
The Hopf bifurcation is characterized by a qualitative equivalence in continu-

ous or in discrete time and the continuous-time condition is generically obtained
by continuity as the (linear) discretization parameter h converges to zero.
The very difference between dynamics in continuous and discrete time arises

with the flip bifurcation under Euler approximations of the system in continuous
time.
More precisely, we will prove that, under linear and higher-order Euler ap-

proximations, if the continuous-time eigenvalue is bounded from below, the flip
bifurcation disappears in discrete time when the discretization parameter h falls
below a positive lower bound h∗.
We know also that the (vector) variation xn+1 − xn = x (nh+ h) − x (nh)

in continuous time is exactly represented by an infinite order Taylor series,
provided that the original function f belongs to the class C∞. A plausible
conjecture is that the critical discretization step h∗ depends on the order q of
Taylor discretization (see expression (15): h∗ = h∗ (q)), increases with respect
to q and, eventually, limq→+∞ h∗ (q) = +∞ (when the approximation becomes
infinitely accurate, there is no longer room for flip bifurcations whatever the

9 In the particular case
∂f/∂x2 = 0 (40)

linearizing the hybrid discretization (24)-(25) gives T2 = 2 + hT0 − h2D0 and D2 = 1 + hT0.
If T0 = 0 and D0 > 0 (conditions for Hopf bifurcation in continuous time, see (33)-(34)), we
get also D1 = 1 and T2 = 2−h2D0 < 0, satisfying conditions (37)-(35) for a Hopf bifurcation
in discretized time whatever h. In other terms, under condition (40), we no longer requires
the discretization step to be sufficiently small in order the Hopf equivalence to hold.
This case matters in growth theory because Ramsey-like models such as Cass-Koopmans

(1965) or Zhang (2000) satisfy (40).
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amplitude of h (even if the discretization step is arbitrarily large)). In order to
prove this conjecture, one can focus on the one-dimensional case without loss of

generality and apply the expansion (15): xn+1−xn = ϕ (h) =

qX
p=0

ϕ(p) (0)hp/p!

(see also Krivine, Lesne and Treiner (2007) and Hale and Koçak (1991)).
In the following, we will highlight the role of h in the occurrence of flip

bifurcation and we will confine ourselves to study, without great loss of general-
ity (because of the Central Manifold Theorem), one-dimensional discretizations
(first, second and higher-order expansions).

3.6.1 First-order discretization

A continuous-time scalar system: ẋ = f (x, p), where p is the bifurcation pa-
rameter, can be approximated by a first-order Taylor polynomial: xn+1 ≈
xn + hf (xn, p) ≡ g (xn, p).

One-dimensional dynamics Consider a parametrized steady state: f (x, p) =
0. In order to lighten notation, we will denote partial derivatives as follows:
fx ≡ ∂f/∂x, fp ≡ ∂f/∂p, fxx ≡ ∂2f/∂x2, fpp ≡ ∂2f/∂p2 and so on.
As seen above, under the assumptions of the Implicit Function Theorem, the

stationary state depends on the bifurcation parameter: x = x (p).10

A flip bifurcation generically requires: λ = gx (x (p) , p) = −1 or, more
explicitly:

∂ [xn + hf (xn, p)]

∂xn

¯̄̄̄
xn=x(p)

= 1+ hfx (x (p) , p) = −1 (41)

Applying the Implicit Function Theorem to (41), we get, locally, the critical
value as a function of discretization degree: pF = pF (h).11

Sufficient conditions to rule out flip bifurcations In the following,
without loss of generality, we set h > 0 and we call X (p) ≡ {(x, p) : f (x, p) = 0}
the set of stationary states x corresponding to a parameter value p. X (P ) ≡[
p∈P

X (p) is the graph of the stationary states obtained by varying the (scalar)

parameter p. X (p) is empty, when the system admits no stationary states at
p. In the sequel, we consider only the range of parameter values generating a
nonempty set of stationary states: P ≡ {p : X (p) 6= ∅}. The next proposition
provides a sufficient condition to exclude flip bifurcations.

10 If f ∈ C1 and fx 6= 0, we get x0 (p) = −fp/fx.
11 If f ∈ C2, fx 6= 0 and fxx/fx 6= fpx/fp, then

p0F (h) =
1

h

fx/fp

fxx/fx − fxp/fp
(42)
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Proposition 5 Let f ∈ C1 and Y ≡ fx (X (P )). If −∞ < inf Y , there exists
a nonempty discretization range (0, h∗) with h∗ ≡ |−2/ inf Y |, where no flip
bifurcation arises.

Proof. (1) If inf Y ≥ 0, then 1 + hfx (x (p) , p) > 0 > −1 whatever h and
whatever the selection (x (p) , p) ∈ X (p). (2) If inf Y < 0, solve 1+h inf Y > −1
in order to exclude the flip bifurcation, that is, set h < −2/ inf Y . Then, if
h < |−2/ inf Y |, (1) and (2) are satisfied.
Since computing the graph X (P ) and its image with respect to fx can be

difficult, we provide another sufficient condition, less general than Proposition
5, but easier to check.

Corollary 6 Let f ∈ C1 and Z ≡ fx (S × P ), where S is the domain of x. If
−∞ < inf Z, then there exists a discretization range (0, h∗) with h∗ ≡ |−2/ inf Z|
with no flip bifurcation.

Proof. Simply notice that X (P ) ⊆ S × P and apply Proposition 5.
In order to prove the usefulness of Proposition 5 and its corollary, we provide

two examples: the first one shows how the boundedness of parameter range P
can account for the lack of flip bifurcations in a nonempty interval (0, h∗); the
second example shows the same for an unbounded parameter range.

Example with bounded parameter range Consider a quadratic dy-
namics in continuous time: ẋ = f (x, p) = px − x2, with two steady states:
x0 = 0 and x1 = p. Euler discretization gives: xn+1 ≈ xn + hf (xn, p) =
xn + h

¡
pxn − x2n

¢
≡ g (xn, p). Flip bifurcation requires (41), that is

1 + h [p− 2x (p)] = −1 (43)

We apply this condition to the two steady states.
(1) In the steady state x0 = 0, (43) becomes 1+hp = −1, that is pF = −2/h.

So, there is a flip bifurcation whatever h > 0, if p ∈ (−∞, b) with 0 ≤ b ≤ +∞.
We observe that the continuous-time eigenvalue fx (0, p) = p is unbounded from
below if p ∈ (−∞, b).
(2) In the other steady state, x1 = p, (43) becomes 1 − hp = −1, that

is pF = 2/h. Again, there is always a flip bifurcation whatever h > 0, if
p ∈ (a,+∞) with −∞ ≤ a ≤ 0. The eigenvalue fx (p, p) = −p is unbounded
from below if p ∈ (a,+∞).
Reconsider now both the cases ((1) and (2)) and place a restriction on the

range of parameter values in order to obtain h∗ > 0. Assume, for instance,
p ∈ [a, b] with a, b ∈ R. Then fx (0, p) = p ∈ [a, b] and fx (p, p) = −p ∈ [−b,−a],
that is Y ≡ fx (X (P )) = [−b,−a] ∪ [a, b] and Proposition 5 eventually applies:
h∗ ≡ |−2/ inf Y |.
A numerical example can clarify more this point. Let a = 0, b = 1. Then Y =

[−1, 1] and h∗ ≡ |−2/ inf Y | = 2. Consider, for example, a linear discretization
with h = 1 ∈ (0, 2): xn+1 ≈ (1 + p)xn − x2n ≡ g (xn, p). The flip condition
(43) at x0 = 0 becomes 1 + p = −1 and we notice that p = −2 /∈ [a, b] = [0, 1].
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Similarly, the flip condition (43) at x1 = p becomes 1− p = −1 and we observe
that p = 2 /∈ [a, b] = [0, 1]. Summing up, no flip bifurcation arises at h = 1
whatever the steady state we consider.

Example with unbounded parameter range In economic applications,
some parameters are unbounded (e.g. the elasticities of substitution). If ∂f/∂x
is bounded from below, Proposition 5 still applies.
In order to find an explicit solution, we consider a simple example: ẋ =

f (x, p) = 2 (2p− x− 1/x) with p ∈ P ≡ (−∞,−1) ∪ (1,+∞). As above, we
obtain two steady states: x1 ≡ p −

p
p2 − 1 and x2 ≡ p +

p
p2 − 1. Euler

discretization becomes: xn+1 ≈ xn + hf (xn, p) = xn + 2h (2p− xn − 1/xn) ≡
g (xn, p). Flip bifurcation requires (41), that is

1 + 2h
h
x (p)

−2 − 1
i
= −1 (44)

We apply this condition to both the steady states. The continuous-time
eigenvalue fx is bounded whatever p ∈ P :

fx (x (p) , p) = 2

∙³
p±

p
p2 − 1

´−2
− 1
¸
∈ [−2,+∞]

where the sign − (+) refers to the steady state x1 (x2). Then Y ≡ fx (X (P )) =
[−2,+∞] whatever p ∈ P , and h∗ ≡ |−2/ inf Y | = 1.
A numerical example will convince the reader. Set, for instance, h = 1/2 ∈

(0, 1). There is no room for flip bifurcations under a linear discretization: indeed,

the flip condition (44) requires
³
p±

p
p2 − 1

´2
= −1, where − (+) still refers

to the steady state x1 (x2), that is an impossible equality, whatever p ∈ P .

Two-dimensional dynamics A flip bifurcation in discrete time requires
D1 = −T1 − 1 or, more explicitly, according to (22-23):

D0 (p)h
2 + 2T0 (p)h+ 4 = 0 (45)

where T0 (p) and D0 (p) denote, with some notational misuse, the trace and
determinant of the Jacobian matrix J0 (p) in continuous time, which depends
on the parameter p.
Thus, the bifurcation value in discrete time depends on h: pF = pF (h).

Nothing ensures that D0 (pF (h))h
2 + 2T0 (pF (h))h goes to zero as h goes to

zero. However, if the derivatives of the Jacobian matrix are bounded on X (P ),
limh→0+

£
D0 (pF (h))h

2 + 2T0 (pF (h))h+ 4
¤
= 4 > 0 and, therefore, there ex-

ists a discretization degree h∗ such that h ∈ (0, h∗) rules out the occurrence of
flip bifurcations.
The reader can also apply the arguments developed in the previous section,

up minor changes, and derive sufficient conditions to show that cycles disappears
when the discretization step reduces.
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3.6.2 Second-order discretization

For simplicity, we focus only on one-dimensional dynamics. We provide sufficient
conditions to rule out flip bifurcations under small discretization step, whatever
the parameter value.

Proposition 7 Let f ∈ C3 on S × P and f , fx, fxx be bounded over X (P ).
Then there exists a nonempty discretization range (0, h∗), where generically no
flip bifurcation arises.

Proof. The continuous-time system ẋ = f (x, p) can be approximated by a
second-order Taylor polynomial (expansion (4)):

xn+1 ≈ xn + f (xn, p)h+ f (xn, p) fx (xn, p)h
2/2 ≡ g (xn, p) (46)

The steady state solves f (x, p) = 0 and the solution is a correspondence
X (p) which depends on the parameter p. For simplicity, focus on a selection
x (p) ∈ X (p).12

A flip bifurcation generically arises at: λ = gx (x (p) , p) = −1. Using (46),
more explicitly, we get

gx (x (p) , p)

≡ ∂
£
xn + f (xn, p)h+ f (xn, p) fx (xn, p)h

2/2
¤
/∂xn

¯̄
xn=x(p)

= 1 + fx (x (p) , p)h+
³
[fx (x (p) , p)]

2 + f (x (p) , p) fxx (x (p) , p)
´
h2/2

= −1 (47)

In order to solve equation (47) and to find the critical value as a local func-
tion of the discretization degree: pF = pF (h), we apply the Implicit Function
Theorem to (47).13

If f , fx, fxx are bounded on the graphX (P ), the derivative appearing on the
left-hand side in (47) goes to one as h goes to zero: limh→0+ gx (x (pF (h)) , pF (h)) =
1 > −1 violating the flip condition on the right-hand side.
By continuity, there exists a (right) neighborhood of 0, (0, h∗), where (47) is

violated, whatever p ∈ P .

Proposition 8 If P is compact and, for every (x, p) ∈ S × P , f ∈ C2 and fx
is nonzero, then no flip bifurcation occurs in a nonempty interval (0, h∗).

12As above, if f ∈ C1 ⊇ C3 and fx 6= 0, we get x0 (p) = −fp/fx.
13f (x, p) ∈ C3 is a comfortable assumption. Totally differentiating (47), we obtain

p0F (h) =
1

h

fx

fp

fx +
1
h
+ f fxx

fx

fx +
1
h

fxx
fx
− fxp

fp
+ f

2
fxxx
fx

− fxxp
fp

All the derivatives are evaluated in (x (p) , p). We require the denominator of p0F (h) to be
nonzero (generically).
Compare with (42).
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Proof. f ∈ C2 implies the continuity of f , fx, fp, fxx. fx, fp ∈ C0 and
fx 6= 0 over S × P entail the continuity of a selection x (p) over P . Continuity
of f , fx, fxx, x (p) and compactness of P imply boundedness of f (x (P ) , P ),
fx (x (P ) , P ), fxx (x (P ) , P ). Then

lim
h→0+

h
1 + fx (x (p) , p)h+

³
[fx (x (p) , p)]

2
+ f (x (p) , p) fxx (x (p) , p)

´
h2/2

i
= 1

whatever p ∈ P and (47) is violated in a (right) neighborhood of zero.
We observe that this procedure can be generalized to third-order discretiza-

tion through the expansion

xn+1 ≈ xn + f (xn, p)h+ f (xn, p) fx (xn, p)h
2/2

+
h
f (xn, p) fx (xn, p)

2 + f (xn, p)
2 fxx (xn, p)

i
h3/6

≡ g (xn, p)

of a continuous-time dynamics ẋ = f (x). Without entering details, we notice
that the restriction f ∈ C4 is a comfortable assumption in order to apply, as
above, the Implicit Function Theorem.
In the following, we will consider many popular dynamic models: in par-

ticular, the most influential dynamic models (Kaldor (1940), Solow (1956) and
Cass-Koopmans (1965)), and we compare discrete-time and discretized dynam-
ics with or without imperfections.

Part II

Economic applications
Dynamic complexity can emerge in simple economic models. Introducing mar-
ket imperfections in general equilibrium models can promote the occurrence of
different bifurcations.
Ramsey-type models without market imperfections are characterized by saddle-

path stability. Flip bifurcations arise in Solow models with negative externalities
(Day (1982)). Hopf bifurcations occur in Ramsey models with positive exter-
nalities (Zhang (2000)).
Discounting matters. Discretizing the continuous-time Cass-Koopmans model,

we recover the discrete-time version, only if the discount rate approximation is
appropriately made.
In order to bridge the growth literature, we provide a general model of

intertemporal optimization and we present Zhang (2000) as a particular case.
In addition, we recover the Cass-Koopmans model as a particular case of Zhang
(2000) (when the externalities become zero) and we show that Ramsey (1928) is
in turn a special case of Cass-Koopmans (1965) (when the discount rate becomes
zero).
Among different questions, one issue is especially addressed and concerns

the very nature of dynamics in models of growth. Indeed, beyond the variety of
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models, capital accumulation is a common feature: the capital stock is a state
variable either in Solow or in Ramsey models and its predetermined nature is
properly represented through a backward-looking discretization. Only through
such approximation the discrete-time capital accumulation can be recovered
from the continuous-time law of motion.
However, in the class of Ramsey models, the intertemporal arbitrage replaces

the assumption made by Solow of an exogenous saving rate. The very nature of
utility maximization, which results in the intertemporal arbitrage, is forward,
because the consumption the agent smooths, is a jump variable: in order to
recover the discrete-time from the continuous-time Euler equation, a forward-
looking discretization is needed.
Putting together capital accumulation and consumption smoothing, we ob-

tain the two-dimensional dynamics of Ramsey models: the twofold nature of the
system (backward and forward) is properly represented by a hybrid discretiza-
tion.

4 Backward-looking discretizations
Discrete-time version of popular dynamic models such as Kaldor (1940) and
Solow (1956) can be derived through a backward-looking (Euler) discretization.
In order to show how the occurrence of cycles of period two (flip bifurcation)
depends on the length of the discretization step, we introduce negative external-
ities in the seminal Solow model (Day (1982)). While Solow and Day dynamics
are one-dimensional, the Kaldor model is two-dimensional. The main asset of
Kaldor (1940) is the occurrence of Hopf bifurcations under a parsimonious set
of assumptions.

4.1 Solow models

In the case of Solow models or Solow models with externalities, dynamics are
one-dimensional and there is no room for Hopf bifurcations.
We compare the continuous and discrete-time versions of the most influ-

ential growth model and focus only on the occurrence of saddle-node and flip
bifurcations.
In growth theory, utility maximization results in the household’s consump-

tion smoothing, that is a forward-looking behavior which is taken in account by
a forward-looking discretization. In the Solow model, preferences are roughly
summarized by an exogenous saving rate and there is no longer room for forward-
looking mechanisms.
This explains why we recover the discrete-time Solow model through a (first-

order) backward-looking discretization. However, we notice that discretizing
dynamics in the capital intensity is not equivalent to discretizing dynamics in
the aggregate capital.
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4.1.1 Solow models

In continuous time, the seminal version is a two-dimensional dynamics:

K̇t = sF (Kt, Lt)− δKt (48)

L̇t = n0Lt (49)

and reduces to an intensive law of motion under the assumption of a CRS
technology:

k̇t = sf (kt)− (δ + n0) kt (50)

where k ≡ K/L is the capital intensity and f (k) ≡ F (k, 1). s, δ and n0 denote
the saving rate, the rate of capital depreciation and the demographic growth
rate, respectively. Capital letters stand for aggregate variables. Under the usual
neoclassical assumptions on technology, the non-trivial steady state is unique
and solves

f (k) /k = (δ + n0) /s (51)

Moreover, it is locally stable because the eigenvalue of the intensive dynam-
ics, evaluated at the steady state, is λ0 = − (1− a) (δ + n0) < 0, where a ≡
kf 0 (k) /f (k) ∈ (0, 1) is the capital share. In other terms, there is no room for
local bifurcations.
In discrete time, the basic model is still two-dimensional:

Kt+1 −Kt = sF (Kt, Lt)− δKt (52)

Lt+1 − Lt = n1Lt (53)

and reduces to the one-dimensional intensive law:

kt+1 = [sf (kt) + (1− δ) kt] / (1 + n1) (54)

where n1 denotes the demographic growth rate. As above, the positive steady
state solves f (k) /k = (δ + n1) /s and is unique under the usual assumptions.
Local stability is entailed by the eigenvalue in the unit circle:

λ1 = 1− (1− a) (δ + n1) / (1 + n1) ∈ (0, 1) (55)

As above, there is no room for local bifurcations.

4.1.2 Discretized Solow models

The question we address now is whether Euler approximations (of different
orders) are appropriate to recover the discrete-time model.
We begin with a first-order discretization of the original continuous-time

system. Discretizing system (48)-(49) and referring to (18)-(19) with x1 ≡ K
and x2 ≡ L gives

Kn+1 ≈ Kn + hf1 (Kn, Ln) = Kn + h [sF (Kn, Ln)− δKn] (56)

Ln+1 ≈ Ln + hf2 (Kn, Ln) = (1 + hn0)Ln (57)
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Normalizing (56) by Ln, we derive the intensive law:

kn+1 ≈ [(1− hδ) kn + hsf (kn)] / (1 + hn0)

The steady state does not depend on the discretization step and still solves (51),
while the eigenvalue depends on h (indeed the Euler method approximates the
transition):

λ1 = 1− (1− a) (δ + n0) / (1/h+ n0) (58)

Under the assumption h > 0, λ1 < 1 and there is no room for a saddle-node
bifurcation.
If n0 < δ (1− a) / (1 + a), a flip bifurcation arises at

hF = 2/ [(1− a) δ − (1 + a)n0] > 2

The case h = 1 deserves a comment. In this case, there is no longer room for
bifurcations and the discretized system (56)-(57), with n = t, reduces to (52)-
(53), provided that n0 = n1. Thus, we can say that the traditional discrete-time
Solow model is exactly the first-order discretization of the original continuous-
time model.
We observe that, in general, computing the intensive form of discretized

dynamics is not equivalent to discretizing the intensive form of the original
model. Indeed, discretizing the intensive form (50) gives

kn+1 ≈ kn + h [sf (kn)− (δ + n0) kn]

The steady state remains the same (see (51)), but the eigenvalue λ1 = 1 −
(1− a) (δ + n0)h is now slightly different from those of the discrete-time model
(55) and of the discretized model (58). As above, there is no room for a saddle-
node bifurcation. However, the flip bifurcation is possible if the discretization
step is sufficiently large: hF = 2/ [(1− a) (δ + n0)]. When h = 1, the law of
motion reduces to kt+1 ≈ sf (kt) + (1− δ − n0) kt, which is different from that
of the discrete-time model (54). A flip bifurcation is still possible at n0 =
2/ (1− a)− δ.
Let us focus now on the second-order Euler discretizations.
Increasing the order of discretization makes the approximation closer to the

continuous-time system. Intuitively, we conjecture that, when a discrete time
system approaches continuous-time dynamics, it inherits their features. In par-
ticular, we expect that flip bifurcations disappear when the order of approxima-
tion is sufficiently high. Surprisingly, the next proposition proves that the order
two is sufficient to rule out any flip bifurcations and two-period cycles.

Proposition 9 In the Solow model with a CRS technology, the second-order
Euler discretization of the original continuous-time system (48)-(49) reduces to
the intensive law of motion:

kn+1

≈
kn + [sf (kn)− δkn]

¡
h+ [sf 0 (kn)− δ]h2/2

¢
+ sn0 [f (kn)− knf

0 (kn)]h
2/2

1 + hn0 + (hn0)
2 /2

(59)
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As above, the steady state solves (51), which no longer depends on h, while
the eigenvalue is given by

λ2 =
1

2

1 + (1 + h [an0 − (1− a) δ])
2

1 + hn0 + (hn0)
2 /2

> 0 (60)

The quadratic approximation (59) rules out any flip bifurcation and, for
h = 1, even the saddle-node bifurcation is excluded.

Proof. In order to approximate the original continuous-time system (48)-(49),
we apply formula (10) with x1 ≡ K, x2 ≡ L, f1 (Kt, Lt) = sF (Kt, Lt) − δKt,
f2 (Kt, Lt) = n0Lt:∙

Kn+1 −Kn

Ln+1 − Ln

¸
≈

∙
h+ [s (∂F/∂Kn)− δ]h2/2 s (∂F/∂Ln)h

2/2
0 h+ n0h

2/2

¸
∙
sF (Kn, Ln)− δKn

n0Ln

¸
(61)

Dividing the first equation by Ln, replacing the second equation Ln+1/Ln =
1+hn0+(hn0)

2 /2 in the first and noticing that, under the assumption of CRS,
∂F/∂Kn = f 0 (kn) and ∂F/∂Ln = f (kn) − knf

0 (kn), we obtain the intensive
discretization (59).
Equation (59) becomes at the steady state:

1 ≈ 1 + h [sf (k) /k − δ] + ([sf (k) /k − δ] [asf (k) /k − δ] + (1− a)n0sf (k) /k)h
2/2

1 + hn0 + (hn0)
2
/2

(62)
where a ≡ kf 0 (k) /f (k). A way of checking that the steady state of the
continuous-time model remains the steady state of our quadratic approxima-
tion is substituting (51) in (62): after tedious computations, the RHS simplifies
to one.
Deriving the RHS of (59) w.r.t. kn and evaluating the derivative at the

steady state, that is replacing (51) and a ≡ kf 0 (k) /f (k), after further tedious
computations, we obtain (60). λ2 > 0 prevents the occurrence of flip bifurca-
tions. From (60), simple computations show that h = 1 implies λ2 ∈ (0, 1), that
is a monotonic convergence to the steady state.
As above, computing the quadratic approximation of the original continuous-

time system and, then, deriving the intensive form, is different from computing
the intensive form and, then, its quadratic approximation.
Reconsider the continuous-time intensive form (50) and apply the expansion

(4).

kn+1 ≈ kn + [sf (kn)− (δ + n0) kn]

µ
h+

h2

2
[sf 0 (kn)− (δ + n0)]

¶
(63)
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The steady state remains the same as in the continuous-time model and
no longer depends on h (see (51)). Deriving the RHS of (63) and using the
information of steady state (51), we get the eigenvalue:

λ2 =
³
1 + [1− h (1− a) (δ + n0)]

2
´
/2 > 0

where a is the capital share. Notice that a saddle-node bifurcation can arise
at hS = 2/ [(1− a) (δ + n0)], but, since λ2 > −1, whatever h > 0, there is no
longer room for cycles.

4.2 Solow models with externalities

Introducing imperfections in the Solow model can promote non-monotonic dy-
namic. Considering externalities is a simple way of generating complex dynamics
and, possibly, chaos.
Let us focus on negative productive externalities from a firm to another and

assume that the environmental quality enhances factors’ productivity, but is,
in turn, negatively affected by the average capital intensity. Formally, capital
intensity k reduces the environmental quality to m− k1−a, where m > 0 is the
endowment of quality.
For simplicity, we assume a Cobb-Douglas production function (as in Day

(1982)) and introduce an upper bound for the negative externality to ensure a
positive TFP. More precisely:

Assumption 1 The production function is given by

F (Kt, Lt) ≡ A
¡
m− k1−at

¢
Ka
t L

1−α
t (64)

with k0 ∈
£
0,m1/(1−a)¤.

4.2.1 Day models

In this section, we highlight the differences between continuous and discrete
time: introducing externalities matters and the dynamic equivalence between
the traditional Solows models no longer holds.
In continuous time, the dynamics system becomes

K̇t = sA
h
m− (Kt/Lt)

1−a
i
Ka
t L

1−α
t − δKt (65)

L̇t = n0Lt (66)

because of the equilibrium condition sF (Kt, Lt) = K̇t + δKt (saving = invest-
ment).
The dynamics of capital intensity reduce to

k̇t ≡ sA
¡
m− k1−at

¢
kat − (δ + n0) kt (67)
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with a (non-trivial) steady state:

k = [msA/ (δ + n0 + sA)]1/(1−a) ∈
h
0,m1/(1−a)

i
(68)

The explicit solution of (67) is given by:

kt =
h
k1−a +

¡
k1−a0 − k1−a

¢
e−(1−a)(δ+n0+sA)t

i1/(1−a)
Under Assumption 1, the entire sequence of capital intensities lies in the

interval
£
0,m1/(1−a)¤ and the steady state k is asymptotically stable, that is

the capital intensity converges monotonically towards its stationary value in the
long run: limt→+∞ kt = k.
Therefore, in continuous time there is no room for bifurcations.
Conversely, in discrete time, persistent cycles and, possibly, chaos can arise.

In order to prove this crucial difference, reconsider the Solow model (52)-(53)
augmented with productive externalities (64). Under the Assumption 1, nor-
malizing (52) by Lt and replacing Lt+1/Lt with 1+n1, gives the law of motion
of capital intensity:

kt+1 = [(1− δ − sA) kt + sAmkat ] / (1 + n1) (69)

with steady state

k = [msA/ (δ + n1 + sA)]1/(1−a) ∈
h
0,m1/(1−a)

i
(70)

We observe that (68) coincides with (70) iff n0 = n1.
The eigenvalue evaluated at the steady state is less than one: λ1 = a +

(1− a) (1− δ − sA) / (1 + n1) < 1, and, thus, there is no room for a saddle
node. However, a flip bifurcation (λ1 = −1) generically occurs at

A = AF ≡
1

s

∙
1− δ + (1 + n1)

1 + a

1− a

¸
(71)

In other terms, negative productive externalities generate cycles (when pro-
duction increases, capital intensity goes up, productivity is lowered by the ex-
ternality and, eventually, production as well).

4.2.2 Discretized Day models

One may question whether discretizing the original continuous-time system (65)-
(66) introduces new bifurcations in the model. Let us consider a first-order dis-
cretization. System (56)-(57) still holds. h denotes the discretization step, that
is xn ≡ x (tn) = x (nh) with x = K,L. Normalizing equation (56) by Ln, using
(57) to find Ln+1/Ln = 1+hn0, and replacing in (56), under the Assumption 1,
we obtain the intensive form: kn+1 ≈ [(1− hδ − hsA) kn + hsAmkan] / (1 + hn0).
Setting h = 1 and n0 = n1, we recover exactly the discrete-time Day model

(equation (69)). The steady state is still given by (68) or by (70) with n0 = n1
and does not depend on h.
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As proved in the section "On the saddle-node equivalence", discretizing a
system does not introduce saddle-node bifurcations. In our case, local dy-
namics are captured by the eigenvalue evaluated at the steady state: λ1 =
1− h (1− a) (δ + n0 + sA) / (1 + hn0) < 1.
Conversely, a flip bifurcation (λ1 = −1) generically arises at

A = AF ≡
1

s

µ
2

1− a

1 + hn0
h

− δ − n0

¶
(72)

Unsurprisingly, this critical value reduces to (71), when h = 1 and n0 = n1.
Choosing the discretization step, we get equivalently

hF = 2/ [(1− a) (δ + n0 + sA)− 2n0]−1

As in the Solow case, discretizing the original system and computing the
intensive form is not equivalent to the reversed procedure, that is, discretizing
the intensive dynamics.
The first-order discretization of (67) is given by

kn+1 ≈ kn + h
£
sA
¡
m− k1−an

¢
kan − (δ + n0) kn

¤
≡ g (kn)

while the steady state remains (68) (Euler discretization preserve the continuous-
time steady state and the steady state is, obviously, independent of the dis-
cretization step h).
In order to ensure the positivity of variables under this linear Euler dis-

cretization and, in particular, kn ∈
£
0,m1/(1−a)¤ for n = 0, 1 . . ., we introduce a

restriction in the parameter range.

Assumption 2

1 + a (1− a)1/a−1 (hsA)1/a

δ + n0 + sA
< h ≤ 1

δ + n0
(73)

Proposition 10 If (73) holds, then k0 ∈
£
0,m1/(1−a)¤ implies kn = gn(k0) ∈£

0,m1/(1−a)¤ for any integer n.
Proof. We apply the induction principle. We need to prove that kn ∈

£
0,m1/(1−a)¤

entails kn+1 ∈
£
0,m1/(1−a)¤.

First, we notice that 0 < kn < m1/(1−a) and h ≤ 1/ (δ + n0) implies kn+1 =
g (kn) > 0.
Second, we observe that g is concave and that, since h > δ + n0 + sA, g

attains its maximum at

k∗ =

∙
am

hsA

h (δ + n0 + sA)− 1

¸1/(1−a)
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A sufficient condition for kn+1 = g (kn) < m1/(1−a) is g (k∗) < m1/(1−a), or,
equivalently, the left-hand inequality of (73).
Under condition (73), the interval

£
0,m1/(1−a)¤ is mapped into itself. The

eigenvalue evaluated at the steady state is given by

λ1 = 1− h (1− a) (δ + n0 + sA) < 1

There is no room for a saddle-node bifurcation: λ1 < 1, but there is for a
flip bifurcation at hF = 2/ [(1− a) (δ + n0 + sA)]

−1 or, equivalently, at:

A = AF =
1

s

∙
2

h (1− a)
− δ − n0

¸
(74)

hF is required to satisfy (73). AF is slightly different from (72).
One may question what dynamics arise if (73) is violated and, in particular,

if h < 1/ (δ + n0 + sA). In this case, g becomes increasing and persistent cycles
are ruled out. If δ + n0 + sA < 1, cycles disappear at h = 1.
For example, if a = 1/2, (73) becomes explicitly h ≤ 1/ (δ + n0) and A− <

A < A+, where A± ≡ 2
h
1±

p
h (δ + n0)

i
/ (hs). These conditions are suffi-

cient to ensure that
£
0,m2

¤
is mapped in itself. However, the feasibility of the

flip bifurcation requires an additional (sufficient) conditions hF ≤ 1/ (δ + n0)
and A− < AF < A+. The feasibility of the bifurcation point (74) requires
3 (δ + n0) /s ≤ AF and A− < AF < A+, where AF is given by (74).
As in the case of Solow models, we can approximate better the continuous-

time Day model with a second-order discretization. However, discretizing the
original system is not equivalent to discretizing the intensive dynamics (67).

Proposition 11 In the Day model with a Cobb-Douglas technology, the second-
order Euler discretization of the original continuous-time system (65)-(66) re-
duces to the intensive law of motion:

kn+1

=
kn + [sAk

a
nm− (δ + sA) kn]

£
h+

¡
asAka−1n m− δ − sA

¢
h2/2

¤
+ (1− a)n0sAk

a
nmh2/2

1 + hn0 + (hn0)
2 /2

(75)

The steady state is still given by (68) and no longer depends on h, while the
eigenvalue is given by

λ2 =
1

2

1 + (1 + h [an0 − (1− a) (δ + sA)])2

1 + hn0 + (hn0)
2
/2

> 0 (76)

The quadratic approximation (75) rules out any flip bifurcation.

Proof. In order to approximate the original continuous-time system (65)-(66),
we apply formula (10) with x1 ≡ K, x2 ≡ L,

f1 (Kt, Lt) ≡ sA
h
m− (Kt/Lt)

1−a
i
Ka
t L

1−α
t − δKt
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f2 (Kt, Lt) ≡ n0Lt and we obtain (61), where now F is given by (64).
Dividing the first equation in (64) by Ln, replacing the second equation

Ln+1/Ln = 1+hn0+(hn0)
2
/2 in the first and noticing that, under the assump-

tion of private CRS, ∂F/∂Kn = aAka−1n m − A and ∂F/∂Ln = (1− a)Akanm,
we get the intensive second-order discretized version of the augmented Solow
model (75).
After tedious computations, we recover, as usual, the continuous-time steady

state (68).
Eventually, we compute the eigenvalue. Deriving the RHS of (75) wrt kn

and evaluating it at the steady state, after further tedious computations, we
obtain (76) which is formally close to (60). The main difference is due to the
externalities sA.
As above, the quadratic approximation of the original continuous-time sys-

tem is different form the quadratic approximation of intensive law.
Reconsider the continuous-time intensive form (67) and apply the expansion

(4).

kn+1 ≈ kn+[msAkan − (δ + n0 + sA) kn]
£
h+

¡
amsAka−1n − δ − n0 − sA

¢
h2/2

¤
(77)

The steady state remains the same of the continuous-time model and no
longer depends on h (see (68)). Deriving the RHS of (77) at the steady state,

we get the eigenvalue: λ2 =
³
1 + [1− h (1− a) (δ + n0 + sA)]2

´
/2 > 0. Notice

that a saddle-node bifurcation can arise at hS = 2/ [(1− a) (n0 + δ + sA)], but,
since λ2 > −1, there is no longer room for cycles.
Summing up, we can conclude that (1) in the Solow model, as well as in the

Day model, it is not equivalent to discretize the original form or the intensive
law; (2) the representation in discrete time is richer in terms of bifurcations.
In other terms, economic results are sensitive to the choice of time represen-

tation which is robust only if the conditions of equivalence between discrete and
continuous time are satisfied. These conditions are quite specific.

4.3 Kaldor models

4.3.1 Kaldor models

We consider the continuous and discrete-time version of the popular Kaldor
model (1940). In the spirit of Solow (1956), we do not require a microfoun-
dation of the consumers’ behavior which is simply summarized by an exoge-
nous aggregate saving function S (Yt) with marginal propensity less than one:
0 < SY (Yt) < 1 for every Yt > 0.
From our point of view, the main asset of the Kaldor model are two-dimensional

dynamics where eigenvalues can be complex and Hopf bifurcations arise.
Kaldor pioneered the theory of business cycle from a Keynesian point of view.

In the early Seventies Chang and Smyth (1971) provided a rigorous presentation
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of the model:

K̇t = I (Kt, Yt)− δKt (78)

Ẏt = p [I (Kt, Yt)− S (Yt)] (79)

where p > 0, IK < 0, IY > 0.
Equation (78) is the law of motion of physical capital, while equation (79)

captures the response of output to an excess investment (It−St): when savings
exceed the investment demand, the economy experiences a slowdown.
A steady state of system (78)-(79) is given by: I(K,Y ) = S(Y ) = δK. The

trace and the determinant of the associated Jacobian matrix

J0 ≡
∙
IK − δ IY
pIK p (IY − SY )

¸
(80)

are, respectively:

T0 = IK − δ + p (IY − SY ) (81)

D0 = p [(IK − δ) (IY − SY )− IKIY ] (82)

Assumption 3 0 < IY − SY < IKIY / (IK − δ).

Inequality IY − SY < IKIY / (IK − δ) is equivalent to D0 > 0. Under As-
sumption 3, the following remarks hold.
(0) The eigenvalues have the same sign and the steady state can never be a

saddle.
(1) If T0 < 0, both the eigenvalues have a negative real part and the steady

state is stable (sink).
(2) If T0 > 0, both the eigenvalues have a positive real part and the steady

state is unstable (source).
(3) There is room for a Hopf bifurcation when T0 crosses zero and the imag-

inary part is nonzero (the complex and conjugated eigenvalues cross the imagi-
nary axis).
The parameter p is an appropriate bifurcation parameter: it can be inter-

preted as the "speed" of output response to excess savings.
In particular, one of the assets of Kaldor model is that limit cycles through

a Hopf bifurcation easily occur. The critical value for a Hopf bifurcation is
determined solving T0 = 0:

p0H =
δ − IK
IY − SY

(83)

and is strictly positive under Assumption 3.
For p < p0H , the real part of the roots is negative and the steady state is

asymptotically stable, while it becomes positive for p > p0H (instability).
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4.3.2 Discretized Kaldor models

One may question whether discretizing the continuous-time Kaldor model ex-
cludes the occurrence of Hopf bifurcation. Applying our general method, the
following proposition holds.

Proposition 12 The backward-looking discretized Kaldor model is

Kn+1 ≈ Kn + h [I (Kn, Yn)− δKn] (84)

Yn+1 ≈ Yn + hp [I (Kn, Yn)− S (Yn)] (85)

The trace and the determinant evaluated at the steady state are T1 = 2 + hT0
and D1 = 1+hT0+h2D0 (equations (22) and (23)), where T0 and D0 are given
by (81) and (82).
A Hopf bifurcation occurs at the critical value

p1H =
δ − IK

IY − SY + h [(IK − δ) (IY − SY )− IKIY ]
(86)

provided that

p1H ≥ p0H −
1

h

4

IY − SY

p1H is always positive for positive h’s under Assumption 3.

Proof. System (84)-(85) is simply obtained applying (18)-(19) to system (78)-
(79). A Hopf bifurcation arises in discrete time if D1 = 1 and T 21 ≤ 4. The
critical point p1H is found replacing expressions (81)-(82) in equation D1 = 1.
The numerator of p1H is positive; the denominator is positive under Assumption
3.
Noticing that T1 = 2+hT0, condition T 21 ≤ 4 is equivalent to −4/h ≤ T0 ≤ 0.

Replacing (81) and solving with respect to p, we get under Assumption 3:

δ − IK
IY − SY

− 1
h

4

IY − SY
≤ p1H ≤

δ − IK
IY − SY

that is
p0H −

1

h

4

IY − SY
≤ p1H ≤ p0H

Assumption 3 ensures that p1H ≤ p0H . This condition implies that the
critical Hopf bifurcation value in discrete time is less than the corresponding
value in continuous time, for any positive value of h.
These results deserve two comments.
(1) As seen in the theoretical part (Proposition 4), we find from (86) that p1H

converges exactly to p0H when the discretization step tends to zero: limh→0+ p1H =
p0H .
(2) Setting h = 1 in system (84)-(85), we recover the traditional Kaldor

model in discrete time. Thus, for h = 1, the discrete-time and the continuous-
time critical values are different.
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5 Hybrid discretizations
On the one hand, in Solow-like models, the saving rate is given and does not
result from a utility maximization. There is no intertemporal optimization,
there are no jump variables and the future is determined by the state variable.
As seen above, the discrete-time model is recovered through a simple backward-
looking discretization of the continuous-time model.
On the other hand, hybrid discretizations are important in economic theory

when agents’ behavior results from a dynamic optimization. Households smooth
consumption over time under a budget constraint with the wealth inherited
from the past (backward-looking side), while considering the future interest
rate in their intertemporal arbitrage (forward-looking side). The twofold nature
of the dynamic system becomes explicit when we discretize the continuous-
time model. In order to recover the discrete-time model we need to discretize
backward the budget constraint and forward the Euler equation (intertemporal
smoothing). Influential examples of dynamic optimization are Ramsey (1928)
and Cass-Koopmans (1965).14

5.1 Optimization models

Before entering (neo)classical growth models, we consider a theoretical approach
to dynamic optimization. Solutions we provide are very general and can be ap-
plied to a large class of intertemporal optimization programs with intertemporal
separability, beyond the economic applications. Indeed, we consider the possi-
bility that both the state and the control variables enter either the objective
functional or the constraint.
Optimal growth models work as particular cases and can be recovered as

applications of a common theoretical core with no redundancies. So, in order
to simplify the reader’s task, we have decided to present the method, which
remains merely theoretical, in the part devoted to economic applications.
In the next section, we solve the continuous and discrete-time programs,

while, in the following, we discretize and linearize the system in continuous
time.

5.1.1 Optimization models

We maximize a general intertemporal functional

V ≡
∞Z
0

βtv (kt, ct) dt (87)

14There are models with jump variable and without control (that is, without intertemporal
optimization). Hybrid discretization still works because of the jump variable (forward-looking
side) as, for instance, in Dornbusch (1976), which is a two-dimensional model where the
commodity prices are predetermined, while the exchange rate jumps.
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where kt and ct denote a state and the control, subject to a law of motion

k̇t ≤ s (ct, kt) (88)

and a discounting process β̇t = −ρtβt, where ρt = ρ (t) is a given positive
function. The initial conditions k0 and β0 ≡ 1 are also given.

Assumption 4 v and s are C2, strictly increasing in both the arguments
( ∂v/∂k > 0, ∂v/∂k > 0) and strictly concave.15 The Inada boundary conditions
are also satisfied.

The agent chooses the control in order to maximize the functional subject
the law of motion.

βt is a general discount function which depends on the lapse of time. Alter-
natively, we define the discount rate as

ρt ≡ −β̇t/βt (89)

We notice that, if ρt = ρ, a constant, then the solution of (89) is βt =
β0e
−ρt. In this case, maximizing

R∞
0

e−ρtv (kt, ct) dt is equivalent to maximizing
∞R
0

βtv (kt, ct) dt = β0
R∞
0

e−ρtv (kt, ct) dt.

The discounted Hamiltonian associated to the program is Ht ≡ βtv (kt, ct)+
λts (kt, ct). Maximizing Ht with respect to the costate, state and control vari-
ables, gives, respectively: ∂Ht/∂λt = k̇t, ∂Ht/∂kt = −λ̇t, ∂Ht/∂ct = 0, that
is

k̇t = s (kt, ct)

λ̇t = −βt∂v/∂kt − λt∂s/∂kt
λt
βt

= −∂v/∂ct
∂s/∂ct

with β̇t = −ρtβt and transversality condition: limt→∞ λtkt = 0. Setting μt ≡
λt/βt and noticing that

λ̇t = βtμ̇t + μtβ̇t (90)

we obtain

μ̇t = −μt

Ã
β̇t
βt
+

∂s

∂kt

!
− ∂v

∂kt

μt = −∂v/∂ct
∂s/∂ct

(91)

15Functions v and s satisfy the second-order (Arrow-Mangasarian) sufficient conditions
for maximization: ∂2s/∂k2 < 0, ∂2s/∂k2 ∂2s/∂c2 > ∂2s/ (∂k∂c)

2; ∂2v/∂k2 < 0,

∂2v/∂k2 ∂2v/∂c2 > ∂2v/ (∂k∂c)
2.
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Applying the Implicit Function Theorem to equation (91) gives ct = c (kt, μt)
with

∂ct
∂kt

=
∂v
∂ct

∂2s
∂ct∂kt

− ∂s
∂ct

∂2v
∂ct∂kt

∂s
∂ct

∂2v
∂c2t
− ∂v

∂ct
∂2s
∂c2t

(92)

∂ct
∂μt

=

³
∂s
∂ct

´2
∂v
∂ct

∂2s
∂c2t
− ∂s

∂ct
∂2v
∂c2t

(93)

Hence, we obtain a two-dimensional system in (kt, μt):

k̇t = s (kt, c (kt, μt)) (94)

μ̇t = −μt

"
β̇t
βt
+

∂s

∂kt
(kt, c (kt, μt))

#
− ∂v

∂kt
(kt, c (kt, μt)) (95)

Let, for simplicity, the discount rate be constant over time: ρ = −β̇t/βt; at
the steady state, the system writes

0 = s (k, c (k, μ)) (96)

ρ =
∂s

∂k
(k, c (k, μ)) +

1

μ

∂v

∂k
(k, c (k, μ)) (97)

In order to simplify notation, we will denote first and second-order partial
derivatives of a function z = z (x, y) as follows: (zx, zy) ≡ (∂z/∂x, ∂z/∂y) and∙

zxx zxy
zyx zyy

¸
≡
∙

∂2z/∂x2 ∂2z/ (∂x∂y)
∂2z/ (∂y∂x) ∂2z/∂y2

¸
Local dynamics of system (94)-(95) are summarized by the following Jaco-

bian matrix:

J0 ≡
∙
sk + scck sccμ
−P ρ−Q

¸
(98)

where ck ≡ ∂c/∂k and cμ ≡ ∂c/∂μ are given by (92) and (93), and

P ≡ vkk + μskk + ck (vkc + μskc) (99)

Q ≡ sk + cμ (vkc + μskc) (100)

The determinant of the Jacobian matrix is given by

T0 = ρ−Q+ sk + scck (101)

D0 = (ρ−Q) (sk + scck) + Psccμ (102)

More explicitly, the trace and the determinant are given by:

T0 = ρ+ scck − cμ (vkc + μskc)

D0 = (ρ− sk) (sk + scck) + cμ [sc (vkk + μskk)− sk (vkc + μskc)]
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where ρ− sk = vk/μ.
This general (reduced) form allows us to derive immediately the stability

properties in classical growth models. For instance, we will show that, in the
Cass-Koopmans model: ck = vk = vkk = vkc = skc = 0 and cμ, sc, skk < 0.
Then T0 = ρ > 0 and D0 = μcμscskk < 0: the steady state is a saddle point and
there is no room for bifurcations. This is a robust property of optimal growth
models.
Focus now on the intertemporal optimization model in discrete time.
We maximize the utility series

P∞
t=0 βtv (kt, ct) under a sequence of con-

straints: kt+1 − kt ≤ s (kt, ct) with t = 0, 1 . . .
Under the assumptions vc > 0 and sc < 0, the Lagrangian multipliers are

positive and the constraints is binding. The intertemporal smoothing is repre-
sented by a sequence of Euler equations. We have the system

kt+1 = kt + s (kt, ct)

μt
μt+1

=
βt+1
βt

∙
1 +

∂s

∂kt+1
(kt+1, ct+1) +

1

μt+1

∂v

∂kt+1
(kt+1, ct+1)

¸
where μt is still given by (91). As above (91) allows us to define ct = c (kt, μt)
with partial derivatives (92) and (93).
Discrete-time dynamics are eventually given by

kt+1 = kt + s (kt, c (kt, μt)) (103)

μt
μt+1

=
βt+1
βt

∙
1 +

∂s

∂kt+1

¡
kt+1, c

¡
kt+1, μt+1

¢¢
+

1

μt+1

∂v

∂kt+1

¡
kt+1, c

¡
kt+1, μt+1

¢¢¸
(104)

that is a two-dimensional system in the pair of variables (kt, μt). kt is a state
variable, while μt is a jump variable. Notice also that μt is the current-value
costate variable of the continuous-time program at time t, that is λt = βtμt.

5.1.2 Discretized optimization models

In this section, the main question we tackle is whether the discrete time system
(103)-(104) can be recovered through a (first-order) Euler discretization.
We mix a backward-looking discretization of constraint (94) and a forward-

looking discretization of the Euler equation (95).
Discretizing the continuous-time constraint (94) gives:

kt+h − kt ≈ hs (kt, c (kt, μt)) (105)

that is the discrete-time resource constraint (103) under a unit discretization
step (h = 1).
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Because of the forward-looking nature of the Euler equation, we can not
recover (104) in backward-looking. Using (90), equation (95) can be written in
terms of λt ≡ βtμt instead of μt:

λ̇t = −λt
∂s

∂kt

µ
kt, c

µ
kt,

λt
βt

¶¶
− βt

∂v

∂kt

µ
kt, c

µ
kt,

λt
βt

¶¶
(106)

Let us call (106) a λ-type Euler equation and apply the forward-looking dis-
cretization (3) to (106):

λt+h − λt

= −h
∙
λt+h

∂s

∂kt+h

µ
kt+h, c

µ
kt+h,

λt+h
βt+h

¶¶
+ βt+h

∂v

∂kt+h

µ
kt+h, c

µ
kt+h,

λt+h
βt+h

¶¶¸
Replacing λt = βtμt, we obtain

βt
βt+h

μt
μt+h

= 1 + h

∙
∂s

∂kt+h

¡
kt+h, c

¡
kt+h, μt+h

¢¢
+

1

μt+h

∂v

∂kt+h

¡
kt+h, c

¡
kt+h, μt+h

¢¢¸
(107)

that is the discrete-time Euler equation (104) under a unit discretization step
h = 1.
We notice that, under no discounting, as in the original Ramsey (1928),

considering λ or μ is indifferent. Conversely, now the choice of multiplier mat-
ters: only the discretization of a λ-type Euler equation allows us to recover the
discrete-time model. Discretizing a μ-type equation gives another approxima-
tion which is still right but different from the usual one.
We conclude that traditional growth models in discrete time come from

a unit step hybrid approximation of the continuous-time system: backward-
looking discretization of the constraint and a forward-looking discretization of
a λ-type Euler equation.
In the case of the Solow model, we have studied the dynamic properties

of a quadratic discretization and, in particular, the surprising impossibility of
flip bifurcations. Along these lines, we can derive a quadratic approximation of
(94)-(106), now hybrid because of the forward-looking nature of consumption
smoothing. More precisely, we apply discretization (7) to (94) and (14) to (106).

k̇t = s

µ
kt, c

µ
kt,

λt
βt

¶¶
≡ f1 (kt, λt)

λ̇t = −λt
∂s

∂kt

µ
kt, c

µ
kt,

λt
βt

¶¶
− βt

∂v

∂kt

µ
kt, c

µ
kt,

λt
βt

¶¶
≡ f2 (kt, λt)
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become, respectively:

kt+h − kt ≈ hf1 (kt, λt)

+
h2

2

∙
f1 (kt, λt)

∂f1 (kt, λt)

∂kt
+ f2 (kt, λt)

∂f1 (kt, λt)

∂λt

¸
λt+h − λt ≈ hf2 (kt+h, λt+h)

−h
2

2

∙
f1 (kt+h, λt+h)

∂f2 (kt+h, λt+h)

∂kt+h
+ f2 (kt+h, λt+h)

∂f2 (kt+h, λt+h)

∂λt+h

¸
or, more explicitly:

kt+h − kt ≈ hst +
h2

2

µ
st − μtq1t

∂s

∂ct

∂c

∂μt

¶
∂s

∂kt
(108)

βt
βt+h

μt
μt+h

≈ 1 + hq1t+h
∂s

∂kt+h

+
h2

2
q1t+h

∂s

∂kt+h

µ
∂s

∂kt+h
+ μt+hq3t+h

∂c

∂μt+h

∂2s

∂kt+h∂ct+h

¶
−h

2

2
st+h

µ
q2t+h

∂2s

∂k2t+h
+ q3t+h

∂c

∂kt+h

∂2s

∂kt+h∂ct+h

¶
(109)

where st ≡ s (kt, c (kt, μt)) and

q1t ≡ 1 +
1

μt

∂v/∂kt
∂s/∂kt

q2t ≡ 1 +
1

μt

∂2v/∂k2t
∂2s/∂k2t

q3t ≡ 1 +
1

μt

∂2v/ (∂kt∂ct)

∂2s/ (∂kt∂ct)

We observe that in the Cass-Koopmans model (and a fortiori in Ramsey) the
utility function no longer depends on capital: v (kt, ct) = u (ct), and, therefore,
q1t = q2t = q3t. System (108)-(109) reduces to:

kt+h − kt ≈ hst +
h2

2

µ
st − μt

∂s

∂ct

∂c

∂μt

¶
∂s

∂kt
(110)

βt
βt+h

μt
μt+h

≈ 1 + h
∂s

∂kt+h
+

h2

2

∂s

∂kt+h

µ
∂s

∂kt+h
+ μt+h

∂c

∂μt+h

∂2s

∂kt+h∂ct+h

¶
−h

2

2
st+h

µ
∂2s

∂k2t+h
+

∂c

∂kt+h

∂2s

∂kt+h∂ct+h

¶
(111)

In order to study and compare elementary bifurcations in discrete and con-
tinuous time, focus now on linear discretizations.16

16We omit, for brevity, the linearization of quadratic discretizations.
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Discretizing β̇t in forward-looking, we obtain

βt+h/βt ≈ 1/
¡
1 + hρt+h

¢
(112)

We can replace (112) in (107) to get

μt
μt+h

=
1 + h

h
∂s

∂kt+h

¡
kt+h, c

¡
kt+h, μt+h

¢¢
+ 1

μt+h

∂v
∂kt+h

¡
kt+h, c

¡
kt+h, μt+h

¢¢i
1 + hρt+h

(113)
The existence of a steady state requires ρt = ρ constant over time. A

constant discounting implies βt+h/βt = βh, where β = e−ρ. In this case, at
the steady state, (113) gives (97). Assumption 4 on the fundamentals ensures
the existence and the uniqueness of the steady state given by (96)-(97).
Focus now the local dynamics. Since, at the steady state, μt is stationary

(while λt = βtμt is not because βt decreases over time), we linearize the system
with a forward-looking μ-type Euler discretization.
The hybrid Euler discretization (105)-(107) becomes

kt+h ≈ kt + hs (kt, c (kt, μt)) (114)

(1 + hρ)
μt
μt+h

= 1 + h

∙
∂s

∂kt+h

¡
kt+h, c

¡
kt+h, μt+h

¢¢
+

1

μt+h

∂v

∂kt+h

¡
kt+h, c

¡
kt+h, μt+h

¢¢¸
(115)

We linearize (114)-(115) to obtain

dkt+h = [1 + h (sk + scck)] dkt + hsccμdμt

and

h [vkk + μskk + ck (vkc + μskc)] dkt+h

+(1 + h [ρ− vk/μ+ cμ (vkc + μskc)]) dμt+h

= (1 + hρ) dμt

that is,

h [vkk + μskk + ck (vkc + μskc)] dkt+h + (1 + h [sk + cμ (vkc + μskc)]) dμt+h

= (1 + hρ) dμt

(notice from (97) that sk = ρ − vk/μ). Using (99) and (100), we find the
associated Jacobian matrix J1:

J1 ≡
∙

1 + h (sk + scck) hsccμ
− [1 + h (sk + scck)]

hP
1+hQ

1+hρ
1+hQ −

hP
1+hQhsccμ

¸
(116)
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with the following trace and determinant

D1 = [1 + h (sk + scck)]
1 + hρ

1 + hQ
(117)

T1 = 1 + h (sk + scck) +
1 + hρ

1 +Qh
− Ph

1 +Qh
hsccμ (118)

A saddle-node bifurcation requires D0 = 0 in continuous time and D1 = T1−
1 in discrete time. It is easy to check that h2D0 = (1 +Qh) (D1 − T1 + 1), where
D0 is given by (102) and T1 and D1 are given by (117) and (118). Therefore
D0 = 0 iff D1 = T1 − 1. This means that a saddle-node bifurcation generically
arises in continuous time if and only if it occurs in discrete time.
A Hopf bifurcation in continuous time generically requires T0 = 0 and D0 >

0. In discrete time, a Hopf bifurcation needs D1 = 1 and T 21 ≤ 4. We observe
that

T1 = 2 +
h [T0 (1 + hρ)− hD0 − hρ (ρ−Q)]

1 + hρ− h (ρ−Q)
(119)

D1 = 1 +
h [T0 (1 + hρ)− hρ (ρ−Q)]

1 + hρ− h (ρ−Q)
(120)

where T0, D0, T1, D1 are respectively given by (101), (102), (117) and (118).
According to (97) and (100), when v no longer depends on k (as in the

Ramsey-Cass-Koopmans framework), we have ρ = Q. Then (119) and (120)
reduce to17

T1 = 1 +D1 −
h2

1 + hρ
D0 (121)

D1 = 1 + hT0 (122)

and T0 = 0 iff D1 = 1. Using (121) with D0 > 0 and D1 = 1, condition T 21 ≤ 4
is equivalent to h ≤ 2

∙
ρ/D0 +

q
1 + (ρ/D0)

2

¸
.

Therefore, if a Hopf bifurcation arises in continuous time, under a sufficiently
small discretization step, it occurs generically also in discrete time.

5.2 Ramsey models

The most popular optimal growth model is undoubtedly Ramsey (1928), later
refined by Cass (1965) and Koopmans (1965). Following the original Ramsey
(1928), we assume no discounting: ρ = 0. Ramsey argued against discounting
utility of future generations as being "ethically indefensible". Cass and Koop-
mans introduced discounting and compared the market equilibrium with the
planner’s solution.
In the original Ramsey model, a social planner maximizes a dynastic util-

ity by choosing the intertemporal allocation of consumption. In contrast to

17We observe that, when ρ = 0, expressions (121)-(122) reduce to (29)-(30) in footnote 6.
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Kaldor (1940) and Solow (1956), Ramsey-type models are characterized by an
intertemporal utility maximization resulting in an endogenous saving rate. In
the following, to keep things as simple as possible, we assume no population
growth (n = 0).

5.2.1 Ramsey models

At first, we consider a continuous-time dynamics. A benevolent planner chooses
the consumption path and the profile of capital accumulation in order to maxi-
mize the representative consumer’s utility functional (87) subject to the resource
constraint (88) with the following specification of the fundamentals:

s (kt, ct) = f (kt)− δkt − ct (123)

v (kt, ct) = u (ct)− u (c) (124)

and βt ≡ 1 for every t ≥ 0.
The instantaneous utility is defined by u (ct) − u (c), where c denotes the

"bliss point". In order to ensure the utility functional to be bounded (the inte-
gral to converge) we fix a particular bliss point value: c = f (k)−δk with f 0 (k) =
δ. This bliss point is the steady state value of consumption in the Ramsey
model.18

Assumption 5 The intensive production function f (k) is C2, strictly in-
creasing ( f 0 (k) > 0) and strictly concave ( f 00 (k) < 0) in the capital intensity
and satisfies the Inada conditions.

Assumption 6 The instantaneous utility function u is C2, strictly in-
creasing (u0 (c) > 0) and strictly concave (u00 (c)) in the consumption level.
ε (c) ≡ −u0 (c) / [u00 (c) c] > 0 will denote the elasticity of intertemporal substi-
tution.

Equation (91) reduces to μ = u0 (c) and c = c (k, μ) = u0−1 (μ) ≡ d (μ) with
∂c/∂k = 0 and ∂c/∂μ = 1/u00. Assumption 6 (namely, the strict concavity of
u) entails that ct is a well-defined function of μt. System (94)-(95) simplifies to:

k̇t = f (kt)− δkt − d (μt) (125)

μ̇t = −μt [f 0 (kt)− δ] (126)

The transversality condition of discounted programs no longer applies. More-
over, all the model of dynamic optimization where the transversality condition
(as a necessary condition for maximization) plays no role, are those without
discounting (Pitchford (1977)).
Focus now on discrete-time dynamics. The planner maximizes the intertem-

poral utility
P∞

t=0 [u (ct)− u (c)] subject to the sequence of resource constraints:
kt+1 − kt + ct ≤ f (kt)− δkt. c still denotes the bliss point.

18Compare the Ramsey (1928) and Cass-Koopmans (1965): the bliss point value is nothing
else than the modified golden rule under a null discount rate.
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System (103)-104) writes:

kt+1 − kt = f (kt)− δkt − d (μt) (127)
μt
μt+1

= 1 + f 0 (kt+1)− δ (128)

5.2.2 Discretized Ramsey models

The issue we address is whether system (127)-(128) can be obtained as an Euler
discretization of the continuous-time system. The answer is positive under an
appropriate hybrid discretization. As seen above, the added value of Ramsey
with respect to Solow is the intertemporal utility maximization; the resource
constraint remains the same, but the Euler equation replaces the exogenous
saving rate. We have shown that the discrete-time Solow model can be obtained
through a linear discretization.19

Under (123) and (124), system (114)-(115) writes

kt+h − kt ≈ h [f (kt)− δkt − d (μt)] (129)
μt
μt+h

≈ 1 + h [f 0 (kt+h)− δ] (130)

and, setting a unit discretization step (h = 1), we recover exactly the discrete-
time system (127)-(128).
Thus, the discrete-time Ramsey model comes from a first-order hybrid dis-

cretization of the continuous-time model, that is a backward-looking discretiza-
tion of the resource constraint (125) (apply (2)) and a forward-looking dis-
cretization of the Euler equation (126) (apply (3)).
On the one side, the resource constraint is backward-looking because the

capital stock is a state variable; on the other side, the consumption smoothing
(Euler equation) rests on current saving decisions that depend on the expected
interest rate. These arguments account for a hybrid discretization.
Focus on the steady state. Assumption 5 and Assumption 6 ensure the

existence and uniqueness of the steady state. Equations (96) and (97) become
respectively: c = f (k) − δk and f 0 (k) = δ: the steady state is the same for
dynamic systems (125)-(126), (127)-(128) and (129)-(130).
Focus now on local dynamics. Let

α (k) ≡ kf 0 (k) /f (k) (131)

εr (k) ≡ kf 00 (k) /f 0 (k) = − [1− α (k)] /σ (k) < 0 (132)

be the capital-share in total income and the elasticity of interest rate. Let σ (k)
and ε (c) denote the elasticities of capital-labor substitution and of intertemporal
substitution.
The Jacobian matrix of the continuous-time system (98) reduces to:

J0 =

∙
0 −1/u00 (c)

−u0 (c) f 00 (k) 0

¸
=

∙
0 Ak/μ

Bμ/k 0

¸
(133)

19More precisely, if h = 1, system (56)-(57) reduces to (52)-(53).
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where A ≡ εδ (1− α) /α > 0 and B ≡ δ (1− α) /σ > 0. The trace and the
determinant become T0 = 0 and D0 = −AB < 0: the steady state is a saddle
point and there is no room for bifurcations.
Focus now on the hybrid discretization (129)-(130). We can apply and sim-

plify the reduced forms of the general case to obtain the following proposition:

Proposition 13 (Ramsey) The stability properties of the hybrid discretization
are consistent with those of the continuous-time model. More precisely, (1) the
hybrid trace and determinant are T1 = 2 + h2AB and D1 = 1 < T1 − 1, (2)
the hybrid discretization is saddle-point stable (as the continuous-time system),
whatever the discretization step h.

Proof. The Jacobian matrix J1 of the hybrid Euler discretization (129)-(130)
is obtained from (116) using (123) and (124):

J1 ≡
∙

1 0
hμf 00 (k) 1

¸−1 ∙
1 −h/u00 (c)
0 1

¸
=

∙
1 hA k

μ

hB μ
k 1 + h2AB

¸
with A and B as above. Trace and determinant (117) and (118) simplify: T1 =
2 + h2AB = 2 − h2D0 and D1 = 1. Since D1 = 1 and D1 < T1 − 1, the pair
(T1,D1) lies in the cone of the saddle points, whatever the discretization step
h. There is no room for bifurcations, as in the continuous-time case.

5.3 Cass-Koopmans models

The "ethical" undiscounted utility functional in Ramsey (1928) is replaced in
the Cass-Koopmans model (1965) by a weighted average of future felicities with
decreasing weights over time (discounting).

5.3.1 Cass-Koopmans models

A benevolent planner determines the profile of capital accumulation in order to
maximize the representative consumer’s utility functional (87) subject to the
resource constraint (88).20 In Cass (1965) and Koopmans (1965), saving and
utility functions are specified as

s (kt, ct) = f (kt)− δkt − ct (134)

v (kt, ct) = u (ct) (135)

and satisfy Assumptions 5 and 6. We assume no population growth. As in
the Ramsey model, equation (91) reduces to c = d (μ) with μ = u0 (c) and
d0 (μ) = 1/u00. System (94)-(95) simplifies to:

k̇t = f (kt)− δkt − d (μt) (136)

μ̇t = μt [ρt + δ − f 0 (kt)] (137)

20Without imperfections, the market economy decentralizes the benevolent planner’s solu-
tion (first welfare theorem).
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In discrete time, the planner maximizes the utility series
P∞

t=0 βtu (ct) sub-
ject to the sequence of resource constraints: kt+1 − kt + ct ≤ f (kt) − δkt with
t = 0, 1 . . . Under fundamentals (134) and (135), system (103)-104) writes:

kt+1 − kt = f (kt)− δkt − ct (138)
μt
μt+1

=
βt+1
βt

[1 + f 0 (kt+1)− δ] (139)

5.3.2 Discretized Cass-Koopmans models

Saving decisions are forward-looking: under an appropriate hybrid discretiza-
tion, that is, a backward-looking discretization of the resource constraint (apply
(2) as in the Solow model) and a forward-looking discretization of the Euler
equation (apply (3) as in the Ramsey model), we recover the traditional discrete-
time Cass-Koopmans model.
Under (134) and (135), system (114)-(115) reduces to

kt+h − kt ≈ h [f (kt)− δkt − d (μt)]

μt
μt+h

≈
βt+h
βt

(1 + h [f 0 (kt+h)− δ]) (140)

and becomes the discrete-time system (138)-(139) with h = 1 (unit discretization
step).
We notice that, while in the Ramsey model considering λ or μ was indiffer-

ent because of no discounting, now the choice of multiplier matters: only the
discretization of a λ-type Euler equation allows us to recover the traditional
discrete-time model. Discretizing a μ-type equation gives another approxima-
tion which is also right, but different from the usual Euler equation in discrete
time.21

21 Indeed, the reader must to be aware that the discrete-time Cass-Koopmans model is only
one of the possible first-order discretizations of the continuous-time system (136)-(137).
For simplicity, focus only on the Euler equation and omit the backward-looking approxima-

tion of the resource constraint. (137) can be equivalently written as ẋt = ρt+ δ− f 0 (kt) with
xt ≡ lnμt.
Focus first on the forward-looking. Discretizing β̇t or β̇t/βt gives, respectively, βt+h/βt ≈

1/ 1 + hρt+h or βt+h/βt ≈ e−hρt+h . If ρt = ρ is constant over time, we can define the
discount factor with a unit step without caring about discretizing in backward or forward-
looking: β ≡ βt+1/βt ≈ e−ρ.
Using the appropriate discounting discretization and linearizing μ̇t or ẋt gives, respectively,

μt
μt+h

≈ 1 + h f 0 (kt+h)− δ −
βt − βt+h

βt+h
(141)

μt
μt+h

≈
βt+h

βt
eh[f

0(kt+h)−δ] (142)

The sense of such approximations can be understood, by considering, for instance, (142). We

know that ez ≈ 1+z, when z is close to zero. Replacing eh[f
0(kt+h)−δ] with 1+h [f 0 (kt+h)− δ]

gives, exactly, (140), that is (139).
In backward-looking, discretizing β̇t or β̇t/βt gives, respectively, βt+h/βt ≈ 1 − hρt or

βt+h/βt ≈ e−hρt . Using the opportune discounting discretization and approximating, for
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Let us now focus on a second-order hybrid discretization. Discretization
(110)-(111) comes from a backward-looking second-order discretization of the
resource constraint and a forward-looking second-order discretization of the λ-
type Euler equation. Replacing (134) and (135) in discretization (110)-(111),
we find a well-defined hybrid system in

¡
kt, μt, kt+h, μt+h

¢
:

kt+h − kt ≈ h [f (kt)− δkt − d (μt)]

+
h2

2
[f 0 (kt)− δ] [f (kt)− δkt − d (μt) [1 + ε (d (μt))]] (146)

μt
μt+h

≈ βt+h
βt

[1 + h [f 0 (kt+h)− δ]

+
h2

2

³
[f 0 (kt+h)− δ]

2 −
£
f (kt+h)− δkt+h − d

¡
μt+h

¢¤
f 00 (kt+h)

´¸
(147)

Under a unit discretization step, we eventually find the second-order Cass-
Koopmans model in discrete time, which refines the traditional model (138)-
(139):

kt+1 − kt ≈ f (kt)− δkt − d (μt)

+
1

2
[f 0 (kt)− δ] [f (kt)− δkt − d (μt) [1 + ε (d (μt))]]

μt
μt+1

≈ βt+1
βt

[1 + f 0 (kt+1)− δ

+
1

2

³
[f 0 (kt+1)− δ]

2 −
£
f (kt+1)− δkt+1 − d

¡
μt+1

¢¤
f 00 (kt+1)

´¸
For simplicity, we omit the linearization of quadratic discretizations and we

focus on linear discretizations to compare elementary bifurcations in discrete
and continuous time.
Assume a constant discounting: ρt = ρ (that is, βt+h/βt = βh with β =

e−ρ). Under Assumption 5 and 6, the steady state is unique. Equations (96)

instance, λ̇t, μ̇t or ẋt implies, respectively,

μt
μt+h

≈
βt+h
βt

1

1− h [f 0 (kt)− δ]
(143)

μt
μt+h

≈ 1

1− h [f 0 (kt)− δ] +
βt−βt+h

βt

(144)

μt
μt+h

≈
βt+h

βt
eh[f

0(kt)−δ] (145)

Dynamics generated by backward-looking approximations are very different from (139) be-
cause the productivity depends on kt instead of kt+1. Forward-looking dynamics are more
appropriate to capture saving decisions that depend on future returns.
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and (97) give the modified golden rule: c = f (k)− δk and22

ρ = f 0 (k)− δ (149)

Focus now on local dynamics. We linearize the system (136)-(137) around
(k, μ) (as seen above, μ is stationary, while λt = βtμ is not).
The continuous-time Jacobian matrix (98) reduces to:

J0 ≡
∙

ρ − 1
u00(c)

−u0 (c) f 00 (k) 0

¸
=

∙
ρ Ak/μ

Bμ/k 0

¸
(150)

where A ≡ ε [ρ/α+ δ (1− α) /α] > 0 and B ≡ (ρ+ δ) (1− α) /σ > 0.
Matrix (150) generalizes (133) with discounting (ρ > 0): under no discount-

ing (ρ = 0), the Cass-Koopmans model collapses in the Ramsey model. As
above, α, σ and ε denote, respectively, the capital-share in total income, the
elasticity of capital-labor substitution and the elasticity of intertemporal sub-
stitution (see also formulas (131)-(132)).
The trace and the determinant in continuous time are T0 = ρ > 0 and

D0 = −AB < 0 and the steady state is a saddle point: there is no room for
bifurcations.
Focus now on the hybrid Euler discretization (129)-(130) and the Jacobian

matrix J1 obtained from (116) specifying the fundamentals as in (134) and (135):

J1 ≡
∙
1 + hρ hAk/μ
hBμ/k 1 +ABh2/ (1 + hρ)

¸
(151)

The determinant and the trace of the hybrid system are D1 = 1 + hρ =
βt/βt+h = β−h and T1 = 1 +D1 + h2AB/ (1 + hρ).23

Since D1 > 1 and D1 = T1 − 1 − h2AB/ (1 + hρ) < T1 − 1, the steady
state is a saddle point, whatever the discretization step h. There is no room for
bifurcations, as in the continuous-time case.

5.4 Cass-Koopmans models with externalities

Externalities can affect either the production or the utility levels of economic
agents. The public goods constitute a prominent class of externalities. Zhang
(2000) introduces externalities of public spending in the Cass-Koopmans frame-
work. As in Barro (1990), the public good plays the role of positive productive
externality. However, Zhang (2000) considers also a public consumption good

22Discretizing β̇t in forward-looking gives

βt+h/βt ≈ 1/ 1 + hρt+h (148)

while, replacing (148) in (140) gives

μt
μt+h

≈ 1 + h [f 0 (kt+h)− δ]

1 + hρt+h

that is, at the steady state, (149).
23We observe that, when h = 1, then D1 = 1/β.
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which enters households’ utility functions. In his original model, Cobb-Douglas
technology and preferences are considered and time is continuous.
We generalize Zhang in two directions: on the one side, we use more general

production and utility functions; on the other side, we provide a discrete-time
version of Zhang and we compare bifurcations in continuous and discrete time.
Exemplifying one of the simplest Hopf bifurcations in a two-dimensional

economy is the main asset of Zhang (2000) and the very sense of considering his
model in our work.

5.4.1 Zhang models

Zhang (2000) introduces two externalities in the Cass-Koopmans model.
(1) On the hand, there are positive externalities of public capital in a homo-

geneous production function as in Barro (1990): Y ≡ F (K,L, g) or, in intensive
terms, y = f (k, g), where y ≡ Y/L and k ≡ K/L.
(2) On the other hand, we introduce positive externality of public capital in

the utility function: ut = u (ct, gt).
These functions fulfill the following properties.

Assumption 7 The production function F is CRS with respect to (Kt, Lt).
The intensive production function f (k, g) is C2, increasing in k and g and
strictly concave in the private capital k ( ∂f/∂k > 0 and ∂2f/∂k2 < 0). In
addition: ∂2f/ (∂g∂k) > 0.

Assumption 8 The utility function u is C2, strictly increasing in c and g
( ∂u/∂c > 0, ∂u/∂g > 0) and strictly concave in c (∂2u/∂c2 < 0).

According to Assumption 7, the impact of public capital on private produc-
tion is positive (∂f/∂g > 0) and positively affects the marginal productivity of
private capital (∂2f/ (∂g∂k) > 0).
For simplicity, we assume no population growth (n = 0) and no capital

depreciation (δ = 0).
The public budget is assumed to be balanced over time and the receipts

to come from a homogenous tax on labor and capital earnings: Gt = τYt =
τF (Kt, Lt, gt) (or, in per capita terms, gt = τyt = τf (kt, gt)). The implicit
equation gt = τf (kt, gt) locally determines the equilibrium public spending as
a function of capital stock:

gt = g (kt) (152)

Assumption 9

dg/dk = (τ∂f/∂k) / (1− τ∂f/∂g) > 0 (153)
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In the following, we focus on the competitive dynamics.24 The representative
household chooses the consumption path and the profile of capital accumulation
in order to maximize the utility functional (87) subject to the resource constraint
(88) with a new specification of fundamentals:

s (kt, ct) = (1− τ) (rtkt + wtlt)− ct (154)

v (kt, ct) = u (ct, gt) (155)

The initial endowment k0 is given.
Under Assumption 7, profit maximization gives

(rt, wt) = (∂f/∂kt, f (kt, gt)− kt∂f/∂kt) (156)

while gt = g (kt) solves the government budget constraint:

gt = τf (kt, gt) (157)

For simplicity, we assume an inelastic labor supply: lt = 1.
Under Assumptions 7 and 8 that replace Assumption 4, we can substitute

(156) in the dynamic system (94)-(95) to obtain:25

k̇t = (1− τ) f (kt, g (kt))− c (kt, μt) (158)

μ̇t = μt

∙
ρt − (1− τ)

∂f

∂kt
(kt, g (kt))

¸
(159)

In discrete time, the households maximize the utility series
P∞

t=0 βtu (ct, gt)
subject to the sequence of budget constraints: kt+1−kt+ct ≤ (1− τ) (rtkt + wtlt)
with t = 0, 1 . . .
With fundamentals (154) and (155), system (103)-104) reduces to

kt+1 − kt = (1− τ) (rtkt + wtlt)− ct (160)
μt
μt+1

=
βt+1
βt

[1 + (1− τ) rt+1] (161)

Substituting lt = 1 and (156) in (160)-(161), one gets

kt+1 − kt = (1− τ) f (kt, g (kt))− c (μt, gt (kt)) (162)
μt
μt+1

=
βt+1
βt

∙
1 + (1− τ)

∂f

∂kt+1
(kt+1, g (kt+1))

¸
(163)

where μt = ∂u/∂ct is the current-value costate variable of the continuous-time
program.

24Because of the externalities, the benevolent planner’s solution differs from the competitive
market solution (the planner internalizes the external effects).
25The capital stock enters indirectly the utility function through the public good, which is an

externality. Since we consider a market economy, households maximizes the utility functional
taking g as given, and the (Arrow-Mangasarian) second-order conditions reduce to the partial
concavity of u (∂2u/∂c2 < 0) jointly with the partial concavity of s (∂2f/∂k2 < 0).
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5.4.2 Discretized Zhang models

The issue we tackle, is still whether discrete-time dynamics can be obtained
through an Euler discretization of the continuous-time system.
As above, the answer is positive if we choose a hybrid discretization, that

is, backward and forward-looking discretizations for the resource constraint and
the Euler equation, respectively.
Under (154) and (155), system (114)-(115) simplifies to

kt+h − kt ≈ h [(1− τ) f (kt, g (kt))− c (μt, gt (kt))] (164)
μt
μt+h

≈ βt+h
βt

∙
1 + h (1− τ)

∂f

∂kt+h
(kt+h, g (kt+h))

¸
(165)

and, setting a unit discretization step (h = 1), we recover the discrete-time
system (162)-(163).
As was the case in the Cass-Koopmans model, the discrete-time Zhang model

comes from a backward-looking discretization of the resource constraint and a
forward-looking discretization of a λ-type Euler equation, what we call a hy-
brid discretization. Dynamics generated by backward-looking approximations of
Euler equations are very different from (163) because the productivity depends
on kt instead of kt+1. Forward-looking dynamics are appropriate to capture the
investment decisions that depend on future returns.26

Under the forward-looking approximation βt+h/βt ≈ 1/
¡
1 + hρt+h

¢
, ρt = ρ

(that is βt = β0e
−ρt) and h = 1, (163) becomes:

μt
μt+h

=
1 + (1− τ) ∂f

∂kt+1
(kt+1, g (kt+1))

1 + ρ

The existence of a steady state requires ρt = ρ constant over time. In this
case, equations (96)-(97) become:

c = (1− τ) f (k, g (k)) (166)

ρ = (1− τ)
∂f

∂k
(k, g (k)) (167)

(as above, μt is stationary at the steady state, while λt decreases). Solving (167)
for k and replacing in (166) gives c.
Focus now on the steady state of the discretized time model (164)-(165) or,

equivalently, when h = 1, of the discrete-time model (162)-(163).
Equation (164) evaluated at the steady state gives (166). In addition, we

can replace βt+h/βt by 1/
¡
1 + hρt+h

¢
in (165) to get

μt
μt+h

≈
1 + h (1− τ) ∂f

∂kt+h
(kt+h, g (kt+h))

1 + hρt+h

26As above, the reader must to be aware that the discrete-time Zhang model is only one of
the possible first-order discretizations of the continuous-time system (158)-(159) (simply apply
equations (141), (142), (143), (144), (145) by replacing f 0 (k)− δ with (1− τ) ∂f (k, g (k)) ∂k
everywhere).
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Immediately, we obtain that μt = μt+h and ρt+h = ρ imply the steady state
(167) of the continuous-time model.
The issues of existence and uniqueness rests on the solution of (166)-(167).

Proposition 14 Let

ϕ (k) ≡ ∂f

∂k
(k, g (k))

Under Assumption 7, 8, 9 and boundary conditions

lim
k→0+

ϕ (k) < ρ/ (1− τ) and lim
k→+∞

ϕ (k) > ρ/ (1− τ) (168)

or
lim
k→0+

ϕ (k) > ρ/ (1− τ) and lim
k→+∞

ϕ (k) < ρ/ (1− τ) (169)

a steady state exists.
Moreover, if, at the steady state, (1) ϕ0 (k) < 0 in case (168), or (2) ϕ0 (k) >

0 in case (169), then the steady state is unique.

Proof. Focus first on equation (167): ϕ (k) = ρ/ (1− τ). In order to ensure
the existence of a strictly positive k, the boundary conditions (168) and (169),
jointly with the continuity of ϕ, are sufficient.
Derivability of ϕ is entailed by Assumption 7 (f (k, g) is twice continuously

differentiable) and Assumption 9 (derivability of g):

ϕ0 (k) ≡ ∂2f

∂k2
+

∂2f

∂g∂k
g0 (k) (170)

Derivability of ϕ implies continuity.
We notice that, under conditions (168) or (169), and continuity, the number

of steady states is odd.
In addition, given a strictly positive k, equation g = τf (k, g) has a non-

negative solution g (k) because f is continuous, f (k, 0) ≥ 0 and limg→+∞ ∂f/∂g <
1/τ (this inequality is entailed by Assumption 9). Thus c = (1− τ) f (k, g (k))
is non-negative and μ is strictly positive (Assumption 8).
If there are n steady states ki with ki < ki+1 and i = 1, . . . , n, the sign of

ϕ0 changes from steady state ki to steady state ki+1. In order to ensure the
uniqueness, a sufficient condition is that always ϕ0 (k) < 0 at the steady state
in case (168), or always ϕ0 (k) > 0 at the steady state in case (169).
Roughly speaking, (168) and (169) correspond to the cases of dominant

increasing and dominant decreasing returns to scale, respectively. As we will
see later (equation (178)), ϕ0 (k) > 0 is a necessary condition to get a Hopf
bifurcation. We conclude that increasing returns promotes uniqueness of steady
state and occurrence of Hopf bifurcations (and limit cycles). This explains also
why, in contrast, the Ramsey-Cass-Koopmans framework is characterized by
saddle-path stability.
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Focus now on the local dynamics and define the following elasticities:

(α1, α2) ≡
µ
∂f

∂k

k

f
,
∂f

∂g

g

f

¶
(α11, α12) ≡

µ
∂2f

∂k2
k

∂f/∂k
,
∂2f

∂g∂k

g

∂f/∂k

¶
Let also

(η11, η12) ≡
µ
∂2u

∂c2
c

∂u/∂c
,
∂2u

∂g∂c

g

∂u/∂c

¶
Notice that α ≡ α1 is the capital share in total income, while εr ≡ α11

is the elasticity of the interest rate with respect to the capital intensity with
ε = −1/η11 > 0. Usual assumptions give α1 > 0, α2 > 0, α11 < 0, α12 > 0,
η11 < 0, η12 Q 0.
At the steady state, the discounting is constant over time: βt+h/βt = βh,

where β = e−ρ. Using (c, g) = (1− τ , τ) f , (∂f/∂k, ∂u/∂c) = (ρ/ (1− τ) , μ)
and c/k = ρ/α1, the Jacobian matrix (98) simplifies:

J0 =

⎡⎣ ρ
h
1 + 1

α1

³
α2 − ∂c

∂g
g
c

´
kg0(k)
g

i
− ∂c

∂μ

−ρ
h
α11 + α12

kg0(k)
g

i
μ
k 0

⎤⎦ (171)

Differentiating (157) gives

kg0 (k)

g
=

α1
1− α2

(172)

We observe that Assumption 9 implies kg0 (k) /g > 0, that is α2 < 1. We
get also µ

dc

dμ

μ

c
,
∂c

∂g

g

c

¶
=

µ
1

η11
,−η12

η11

¶
(173)

Replacing (172) and (173) in (171) gives

J0 =

⎡⎣ ρ1+η12/η111−α2 − 1
η11

ρ
α1

k
μ

−ρ
³
α11 +

α1α12
1−α2

´
μ
k 0

⎤⎦ (174)

Eventually, (174) becomes:

J0 =

"
ρ1−εη121−α2 ρ ε

α
k
μ

−ρ
³
εr +

αα12
1−α2

´
μ
k 0

#

Let us compare the Jacobian matrix of the continuous-time Cass-Koopmans
model. Without capital depreciation (δ = 0), A ≡ ρε/α, B ≡ −ρεr and (174)
writes

J0 =

∙
ρ ρ ε

α
k
μ

−ρεr μk 0

¸
(175)
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If there are no externalities in production and utility: α2 = α12 = η12 = 0,
the Jacobian of the Cass-Koopmans model eventually reduces to (175). Notice
also that setting ρ = 0 (no discounting), we recover the Jacobian matrix of the
continuous-time Ramsey model with δ = 0.
The trace and the determinant in continuous time (101)-(102) become:

D0 = ερ2
µ
εr
α
+

α12
1− α2

¶
T0 = ρ

1− εη12
1− α2

but now, in contrast with the Cass-Koopmans framework (T0 > 0 and D0 < 0)
saddle-path stability is no longer ensured and we can have different signs.
In particular, since α > 0, ε > 0, εr < 0 and α2 ∈ (0, 1), we have

T0 ≥ 0⇔ η12 ≤
1

ε
(176)

D0 > 0⇔ α12 > −
1− α2
α

εr (177)

As seen above, increasing returns promotes the occurrence of Hopf bifurca-
tions.
We remark also that, using (170) and computing the elasticity of ϕ at the

steady state, we get
kϕ0 (k)

ϕ (k)
= εr +

αα12
1− α2

(178)

Thus, increasing returns (ϕ0 (k) > 0) require sufficiently large positive ex-
ternalities (α12 > − (1− α2) εr/α) that imply in turn, according to (177), a
necessary condition to the occurrence of Hopf bifurcations (D0 > 0).
Focus now on the hybrid discretization (164)-(165).
At the steady state, (164) becomes c = (1− τ) f , while, under a forward-

looking approximation with a constant ρ (βt+h/βt ≈ 1/ (1 + hρ)), (165) gives
∂f/∂k = ρ/ (1− τ). Moreover, the government budget constraint becomes
g = τf . Finally, the derivative of the Lagrangian function with respect to
consumption still gives ∂u/∂c = μ. Thus, unsurprisingly, we recover (166)-
(167).
Differentiating (164)-(165) around this steady state or, equivalently, applying

(116) with (154) and (155) gives the system
¡
dkt+h, dμt+h

¢T
= J1 (dkt, dμt)

T ,
where

J1 =

"
1 0

hρ
1+hρ

h
α11 + α12

kg0(k)
g

i
μ
k 1

#−1
"
1 + hρ

α1

h
α1 +

³
α2 − ∂c

∂g
g
c

´
kg0(k)
g

i
−hρ

α1
∂c
∂μ

μ
c
k
μ

0 1

#
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Replacing (172) and (173) gives

J1 =

"
1 0

hρ
1+hρ

³
α11 +

α1α12
1−α2

´
μ
k 1

#−1 "
1 + hρ

1+
η12
η11

1−α2 − 1
η11

hρ
α1

k
μ

0 1

#
is the capital share in total income, is the elasticity of the interest rate with
respect to the capital intensity with > 0.
Replacing α ≡ α1, εr ≡ α11 and ε = −1/η11, we get

J1 =

"
1 0

hρ
1+hρ

³
εr +

αα12
1−α2

´
μ
k 1

#−1 ∙
1 + hρ1−εη121−α2 hρ ε

α
k
μ

0 1

¸
(179)

that is

J1 =

"
D1

hρε
α

k
μ

D1 (T1 −D1 − 1) α
hρε

μ
k T1 −D1

#
where

D1 = 1 + hρ
1− εη12
1− α2

(180)

T1 = 1 +D1 − hρ
ε

α

hρ

1 + hρ

(1− α2) εr + αα12
1− α2

(181)

are the determinant and the trace (see also (117)-(118)).
Let us compare the Jacobian matrix of the discretized Cass-Koopmans model

(151) with (179). Without capital depreciation (δ = 0), A ≡ ρε/α, B ≡ −ρεr
and (151) simplifies to

J1 ≡
"
1 + hρ hρ ε

α
k
μ

−hρεr μk 1− hρ ε
α

hρ
1+hρεr

#
(182)

If there are no externalities in production and utility: α2 = α12 = η12 = 0
and (179) eventually reduces also to (182). Notice also that setting ρ = 0 (no
discounting), we recover the Jacobian matrix of the continuous-time Ramsey
model with δ = 0.
The main interest of the Zhang model (2000) is the occurrence of a Hopf

bifurcation.
Hopf bifurcation in continuous time generically requires: α = 0 and β 6= 0,

that is

T0 = 0

D0 > T 20 /4 = 0

According to (176) and (177), T0 = 0 and D0 > 0 are equivalent to

η12 = 1/ε (> 0) (183)

α12 > −1− α2
α

εr (> 0) (184)
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respectively. In other terms, either the externalities in the production function
(η12 > 0) or in the utility function (α12 > 0) are crucial in order to find limit
cycles. Notice also that both the externalities are necessary. For instance, in
the Barro model (1990), even if η12 > 0, saddle-path stability prevails because
α12 = 0.
It is known that a Hopf bifurcation generically arises in discrete time if and

only if D1 = 1 and T 21 ≤ 4 (see the section on the Hopf equivalence).
Replacing (180) in D1 = 1, we get

η12 = 1/ε (185)

as in the continuous-time case (whatever the discretization step), while, replac-
ing (181) in T 21 ≤ 4 and using η12 = 1/ε, we needµ

2− hρ
ε

α

hρ

1 + hρ

(1− α2) εr + αα12
1− α2

¶2
≤ 4

that is,

α12 ≥ −
1− α2
α

εr (186)

and
(hρ)

2

1 + hρ
≤ 4α

ε

1− α2
(1− α2) εr + αα12

(187)

Let
ω ≡ 2α

ε

1− α2
(1− α2) εr + αα12

(> 0)

(187) is equivalent to

h ≤ h∗ ≡ 1
ρ

h
ω +

p
ω2 + 2ω

iµ
>

ω

ρ
> 0

¶
Conditions (185) and (186) are respectively equivalent to conditions (183)

and (184). Since the RHS of (187) is positive under condition (186), inequality
(187) is satisfied for h < h∗. In other terms, as proved in the section on the Hopf
equivalence, under a sufficiently small discretization step, a Hopf bifurcation
occurs in discrete time if and only if it arises in continuous-time.
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