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Abstract

Although attention has been given to obtaining reliable standard errors for the plug-
in estimator of the Gini index, all standard errors suggested until now are either
complicated or quite unreliable. An approximation is derived for the estimator by
which it is expressed as a sum of IID random variables. This approximation allows us
to develop a reliable standard error that is simple to compute. A simple but effective
bias correction is also derived. The quality of inference based on the approximation is
checked in a number of simulation experiments, and is found to be very good unless the
tail of the underlying distribution is heavy. Bootstrap methods are presented which
alleviate this problem except in cases in which the variance is very large or fails to exist.
Similar methods can be used to find reliable standard errors of other indices which are
not simply linear functionals of the distribution function, such as Sen’s poverty index
and its modification known as the Sen-Shorrocks-Thon index.
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1. Introduction

Some attention has been given recently to the standard error of a Gini index estimated
by a plug-in estimator with no distributional assumptions. Quite a number of tech-
niques for computing an asymptotically valid standard error have been proposed, of
varying degrees of complexity or computational intensiveness. Sandstrom, Wretman,
and Waldén (1988) discuss estimation of the Gini coefficient with arbitrary probability
sampling design, and then propose three ways to compute a standard error. The first
is from a complicated analytic formula, the second is based on the jackknife, and the
third is discarded as “quite useless”.

More recently, Bishop, Formby, and Zheng (1997) have given a discussion of the vari-
ance of the Gini index in the context of estimating Sen’s index of poverty; their ap-
proach is based on U-statistics, as is also that of Xu (2007). Ogwang (2000) provided
a method for computing the Gini index by an OLS regression, and discussed how to
use this regression to simplify the computation of the jackknife standard error. Then
Giles (2004) claimed that the OLS standard error from this regression could be used
directly in order to compute the standard error of the Gini index itself. See also the
reply by Ogwang (2004).

Subsequently, Modarres and Gastwirth (2006) struck a cautionary note on the use of
Giles’s approach, showing by simulation that the standard errors it produces are quite
inaccurate. They recommended a return to the complex or computationally intensive
methods used previously, and, in their replies, Ogwang (2006) and Giles (2006) did not
fundamentally disagree with the criticism. More recently still, Bhattacharya (2007) has
developed techniques of asymptotic inference for Lorenz curves and the Gini index with
stratified and clustered survey data. These techniques are based on sample empirical
process theory and the functional delta method, and they lead to a formula for the
variance of an estimated Gini index, which is however not at all easy to implement.

This paper shows how to compute an asymptotically correct standard error for an
estimated Gini index, based on a reasonably simple formula that is very easy to com-
pute. The proposed standard error is based on the delta method, but makes no use
of empirical process theory. The approach also provides a simple and effective bias
correction for the estimate of the index. The methods used can be extended to other
commonly used indices, including Sen’s (1976) poverty index, and the modification of
it proposed by Shorrocks (1995), often referred to as the Sen-Shorrocks-Thon (SST)
index.

In section 2, we review some well-known properties of the Gini index, and give an
expression for the Gini index of a sample. This is then related to the regression
proposed by Ogwang (2000). Then, in section 3, an asymptotic approximation for the
usual plug-in estimator of the index is derived. This approximation shows that the
estimator is asymptotically normal, since it takes the form of a sum of IID random
variables. In section 4, inference based on the estimate is investigated. The asymptotic
variance is easily found from the approximation, and it is shown how it can easily be
estimated from the sample. Bias is studied next, and a simple bias correction proposed.
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Section 5 considers the jackknife as an alternative way of doing bias correction and
variance estimation. It is found that the jackknife does not give reliable inference.
The bootstrap is discussed briefly in section 6. Unlike the jackknife, the bootstrap
can yield reasonably reliable inference. Section 7 provides simulation evidence that
bears out the main conclusions of the paper, and reveals their limitations when used
with heavy-tailed distributions. The empirical study given in Giles (2004) is redone in
section 8 so as to make clear how the methods of this paper differ from those used by
Giles. In section 9, the methods of the paper are used to find the asymptotic variance
of Sen’s (1976) poverty index and the SST variant. Section 10 concludes.

2. Properties of the Gini index

The classical definition of the Gini index of inequality is twice the area between the
45°-line and the Lorenz curve. If we denote by F' the cumulative distribution func-
tion (CDF) of the incomes under study, the Lorenz curve is defined implicitly by the
equation

L(F(2)) = % / "y dF(y), 1)

where p = fooo ydF(y) is expected income. It is assumed that there are no negative
incomes. The function L is increasing and convex, and maps the [0,1] interval into
itself. Twice the area between the graph of L and the 45°-line is then

~—

G:1—2/0 L(y) dy. (2

Using the definition (1) in (2), we find that

G:1—2/OOOL(F(w))dF(a:)zl—Z/L)Oo/Owde(y)dF(:c).

Then, on interchanging the order of integration and simplifying, we obtain

Gzl—%/oooy/yoodF(a:)dF(y)=1—%/Oooy(1—F(y))dF(y)
= %/0 (2yF(y) —y) dF(y) = %/0 yF(y)dF(y) — 1. (3)

The last expression above corresponds to a result cited in Modarres and Gastwirth
(2004) according to which G is 2/u times the covariance of Y and F(Y'), where Y de-
notes the random variable “income” of which the CDF is F. There are of course
numerous other ways of expressing the index G, but (3) is most convenient for present
purposes. See Appendix A for further discussion of this point.
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Suppose now that an IID sample of size n is drawn randomly from the population, and
let its empirical distribution function (EDF) be denoted as F'. The natural plug-in
estimator of GG is then G, defined as

N

G - 2 / Ty () dE() 1. (4)

Evaluating G using (4) reveals an ambiguity: different answers are obtained if the EDF
is defined to be right- or left-continuous. The ambiguity can be resolved by splitting
the difference, or by noting that we can write

G-+ [T yabwy wa(( ) - ()
N ﬂiz i%)(i -1 ?

Here the y(;y, @ = 1,...,n, are the order statistics. The definition (5) has the advantage
over alternative possibilities that, when y(;) = ji for every i, G = 0.

In order to compute G itself, Ogwang (2000) suggested the use of the regression
1= 0+ u;, i=1,...,n, (6)

estimated by weighted least squares under the assumption that the variance of w; is
proportional to 1/y(;y. The parameter estimate 6 is then

= <z": yi>_1 Zn:iy(i)-
=1 =1

It is easy to check that G, as given by (5), is equal to 20/n — 1 — 1/n. Giles (2004)
reformulated the weighted regression as

i\/y(i)ze\/y(i)+vi7 izla"'vn? (7)

now to be estimated by OLS. His proposal was then simply to use the OLS standard
error, multiplied by 2/n, as the standard error of G. As pointed out by Modarres and
Gastwirth (2004), however, the fact that the order statistics are correlated means that
the OLS standard error may be unreliable.



3. An asymptotic expression for the Gini index

Standard arguments show that the estimator (4) is consistent under weak regular-
ity conditions. Among these, we require the existence of the second moment of the
distribution characterised by F'. This is not quite enough, as the class of admissible
CDFs F must be further restricted so as to avoid the Bahadur-Savage problem; see
Bahadur and Savage (1956). Asymptotic normality calls for a little more regularity,
but not a great deal. In this section, we examine the quantity n'/?2 (é — @) that should
be asymptotically normal under the required regularity, and derive the variance of its
limiting distribution as n — oo.

Let

IE/OOOyF(y)dF(y) and fE/OOOyF(y)dF(y)- (8)

Notice that the integral defining [ exists if we assume that the first moment of F'
exists, since F'(y) is bounded above by 1. Then we have

. 2[ 21 2 N
n1/2 G-aG 1/2 :nl/Q . /JI_[ALI
(G-G)= (M u) il )
2

= (20 = 1) = In' 2 = ). ©)

Our assumed regularity ensures that both n'/?(ji — p) and n'/2(I — I) are of order 1
in probability. To leading order, then, we may approximate (9) by replacing p/ in the
denominator by 2.

Next, we note that

1/2(M 1) —1/22

Clearly this is an asymptotically normal random variable. For n'/ Z(f —1I), we calculate
as follows.

nM2(f — I) = n'/? </OOO yF(y) dF (y) — /000 yF(y) dF(y)>
= pl/? </OOO yF(y)d(F — F)(y) + /OOO y(F(y) — F(y)) dF(y)
[ ulFw) - Pw) A - F)). (10)
0

1/2

The last term above is of order n™"/< as n — oo, and so will be ignored for the purposes

of our asymptotic approximation.

The first term in the rightmost member of (10) is
wi? [ yF@)A(E - F)(y) =0 Z(yj (1)~ T); ()
0
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note from (8) that I = E(YF(Y')). Evidently, this is asymptotically normal, since the
terms are IID, the expectation of each term in the sum is 0, and the variance exists.
The second term is

w3 ([ it <0 - 1), (12)

where I(+) is an indicator function, equal to 1 if its argument is true, and to 0 if not.
Define the deterministic function m(y) = foy xdF(x). We see that

E(m(Y)):/OO / /:ch ) dF (y)
/’ l/ dF(y)dF (z) = (/ 2(1— F(z)) dF(z)

Y)) =p—1.

Consequently,

Thus (12) becomes
—n~1/? Z(m(yj) - E(m(Y))), (13)

which is again asymptotically normal. It follows that n'/ Q(f —1I) is also asymptotically
normal, and, from (10), (11), and (13),

n“QQK—I)::n—VQE:(uﬂWyﬂ m(y;) — E(YFYY)—WHOW)>

=1
—”22( yiF(y;) = mly;) — (21 = ). (14)
Finally, we obtain from (9) an approximate expression for n'/2(G — G):
~ 2 2 o
nt/?(G - G) ~ —Elnl/Q(ﬂ—u)+;nl/2(I—I) (15)

This expression can of course be regarded as resulting from the application of the delta
method to expression (4). It is useful to express (15) as the sum of contributions from
the individual observations, as follows:

WG - @) 2N (L )y Ey) i) - 21— )

pN
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In this way, n'/ 2(@ — () is expressed approximately as the normalised sum of a set of
IID random variables of expectation zero, so that asymptotic normality is an immediate
consequence. Since from (3) and (8) we have G = 2 /u—1, the variance of the limiting
distribution of n!/2(G' — G) is

%}FZVar(—(GjL Dy; + 2(y; F'(y;) —m(yj))) (16)

4. Inference for the Gini index

To estimate the variance (16), one can replace u by i and G by G. But the functions
F and m are normally unknown, and so they, too, must be estimated. The value of
F(y@y) at the order statistic y(;) is estimated by F(y(i)) = (20 — 1)/(2n), where we
continue to evaluate F' at its points of discontinuity by the average of the lower and
upper limits. Since by definition m(y) = E(Y I(Y < y)), we can estimate m(y;) by

() = BCIY <)) = =3 i Tw: < ). (17)

n

If y; = y@), then we see that m(y«) = (1/n) Z;Zl Yij)-
Let Z; = —(G + Dy + 2(yi) F(y)) — m(y())). Clearly, we can estimate Z; by

. . 2 — 1 2

Zi=—(G+1yu + Yo~ Z?J(j)~ (18)
j=1

Then Z =n~' 3" | Z; is an estimate of E(Z;), and n=' 3.1 (Z; — Z)? is an estimate

of Var(Z;). Since the sum in (16) can be rewritten as the sum of the variances of

the Z;, 1 =1,...,n, the variance of G can be estimated by

Var(G) = e Z(z — 7)%. (19)

Having a reasonable estimate of the variance of G is only one part of getting reasonable
inference, since (¢ can be quite severely biased. First, we note that, since E(f1) = p,
the expectation of the first term on the right-hand side of (15) vanishes. Therefore we
need consider only E(I — I) in order to approximate E(G — G).

A

Replacing population values by estimates, we see that I = ji(G +1)/2, and, from the
expression (5) for G, it follows that

L1 & o1
I = ﬁzy(i)(l_ 5)-
i=1
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In order to compute the expectation of I , we need the expectations of the order
statistics y(;). It is known that, if the order statistics are those of an IID sample of
size n drawn from the continuous distribution F’ with density f = F”, then the density
of y(y is

foo (@) = (”) (F@) (1 - F@)" " f(a).

Thus

Now it is easy to check that

(1) =n(02)) ma (D) =n-n(0Z2)+n(02)) e

If © = 1, the first term on the right-hand side of the second equation above is replaced
by 0. We see that

ZH:Z(?)F11(1 — )"t = nzn: (?:i)pzl(l _ pyni

=1
:nz (”;1)1?@'(1 — Rl o, (22)

where the last step follows from the binomial theorem. Similarly, from (21) along
with (22), we have

if (7>Fi—1(1 — F)"" =n(n—1) n (7;:22>Fi_1(1 —F)"""+n

- 1
=1

)
[y

3
N

=n(n—1) '_ (
=n(n— l)F_—l— n. (23)

_9\ .

n . )FH—l(l o F)n—Q—z +n
i

Thus, with (22) and (23), (20) becomes

A 1 o0

E(l) = 22, (n(n—1)F(z) +n — %n) xdF(z)
_ /0 " eF(x)dF(z) — % /0 " a(F(a) - DYar()
:[-%U—H)

From (15) we can now obtain an approximate expression for the bias of G:
2 1

E(G - G) ~ ;E(f —I)= —@(21 —p) = —G/n. (24)
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If follows from this that nG//(n — 1) is a bias-corrected estimator of G. Although still

biased, its bias is of order smaller than n='.

It may be helpful here to summarise the steps needed in the computation of (19)
and (24). After computing /i as the sample mean, the steps are as follows.

Sort the sample in increasing order, so as to obtain the series of order statistics ;).

e Form the two series w; = (2¢ — 1)y(;)/(2n) and v; = n~! Z;Zl Y(j)- Then I =,
the mean of the w;.

o Compute the bias-corrected estimate of the Gini index, G = n(2I /i —1)/(n—1).

o Form the series Z; = —(G + 1)y) + 2(w; — v;), and compute the mean Z. The

estimated variance of (3 is the sum of the squares of the Zi— 7 , divided by (nj)2,
as in (19). The standard error is the square root of the estimated variance.

It is often of considerable interest to test whether the Gini indices for two populations
are the same. If independent samples are drawn from both populations, one can
compute the two estimated indices, G and Gs say, along with two standard errors
0c1 and 6¢ge. A suitable test statistic is then 7 = (él —ég)/\/&él + 62,5 If correlated
samples are available, the covariance of the two estimated indices should be taken into
account. In order to do so, two series, with elements Z1; and Zo; say, should be formed,
using (18), for each sample. Then, after making sure that the elements of the two series
are ordered in the same way, the covariance of G1 and Gs is estimated by

L NN 24— 20) (2o - Z), (25)

cov(Gy, Ga) = ——
n?fin fio i=1

where n is the size of each sample, ji, k = 1,2, are the sample means, and Z, k = 1, 2,
the means of the Z;;. The same technique can be used to estimate covariances of a
set of more than two estimated Gini indices.

5. The jackknife

Among the various “computationally intensive” suggestions for obtaining a standard
error for the Gini index is the jackknife; it is proposed by Modarres and Gastwirth
(2006) among others. However, we will see in this section that the jackknife does
not yield a reliable estimate of the standard error, and further that it is not even
appropriate for its usual main function, namely bias correction.

-8 -



A first remark is called for here. Given the regression (6) proposed by Ogwang (2000)
as modified by Giles (2004) to take the form (7) that can be estimated by OLS,
implementation of the jackknife is by no means computationally intensive. Consider
Giles’s regression modified further as follows:

(Qin_ ! )« /Yy = 0+/Ye) + residual, (26)

where the term “residual” is used to emphasise the fact that this regression is a com-
putational tool, and has no direct statistical interpretation. It is straightforward to
check that the OLS estimate 6 from this regression is equal to the (biased) estimator G
given by (5).

If we denote by 6() the estimate obtained by leaving out observation ¢, then the
jackknife estimate of G is
n

Gy — 0. (27)

1
The jackknife bias estimator is thus n~! times the negative of

by=(n—1)) (6-69). (28)
i=1
From the result of the previous section, this should be an estimate of G for the jackknife
to correct properly for bias.

For the general linear regression
y; = X;0 + residual, i=1,...,n,

estimated by OLS, with X; a 1 x k vector of regressors and 6 a k x 1 vector of
parameters, the vector (%) of OLS estimates found by omitting observation 7 is related
to the full-sample estimate @ by the equation

) — ) = - _1h (XTX)71x; T, (29)

where X is the n x k& matrix with ¢** row Xj, 4; is the OLS residual for observa-

tion 4, and h; = (Px)q, the i*™h diagonal element of the orthogonal projection matrix

Px = X(X"X) !XT, See Davidson and MacKinnon (2004), section 2.6, for details.

In order to specialise (29) for use with regression (26), we note that X becomes a
vector with typical component . /y¢;), and h; = y(;)/(njt). The residual is

. 21 —1 -
Thus, noting that 6 = (3, we see that
yiy (2 —1—n(1+Q))
n(nf — y(i)) '

Since this is trivially easy to compute after computing G, by running regression (26)
or otherwise, implementing the formula (27) is also very simple.

0_ 60 —

(30)
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Let us take a closer look at expression (28). From (30), we find that

b= "1 > (v (20— 1= n(1+G) (1= 227, (31)

n2 — nj

Since n™2 Y,y (20 — 1) = (1 + G) (equation (5)), and n~! > iY@ = [, it follows
that

A

Z (4) 22—1—%(1+G)):0.

Thus we have

1 < , - -
by = ez 2 Ul (2= 1= n(1+G)) +0p(n"). (32)
=1

Now n~ 1>~ y(22-) = 62 + 2, where 62 is the sample variance, while

1 & , o X )
a7 2 (2= 1) =2 /O y2E(y) dE(y) = 265,
=1

where we define e; = E(Y2F(Y)). Substituting these results into (32), we find that

262 52

- (1+G)( Z—) (33)

which is a consistent estimator of the rather complicated functional defined by the same
expression without the hats. In general, b; is not, therefore, a consistent estimator
of G,! as would be needed if the jackknife estimator G J were to be unbiased to an order
smaller than n~!. It may well be that G is less biased than G, but its bias converges
to 0 as n — oo no faster. Since the properly bias-corrected estimator (n + 1)@ /n is
even easier to compute than the jackknife estimator G, there is no need to bother
with the latter.

by =

The jackknife estimator of the variance of G is

Var, (G = " Z(éw . %iém)i (34)
j=1

with the () given by (30). The calculations needed to analyse (34) are similar in spirit
to those above for the jackknife estimator itself, but a good deal more complicated, and
so we omit them here. They show that it is not a consistent estimator of the asymptotic
variance of G. This fact also emerges very clearly from some of the simulations reported
in section 7.

1 Exceptionally, by is consistent for G if the underlying distribution is the exponential

distribution. This is noted here because many of the simulations reported in section 7
use the exponential distribution to generate simulated samples.
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6. The bootstrap

Unlike the jackknife, the bootstrap can reasonably be expected to yield fairly reliable
inference about the Gini index. Indeed, if used in combination with the asymptotic
standard error derived from (19), it should give rise to asymptotic refinements relative
to inference based on the variance estimate (19); see Beran (1988).

Specifically, in order to test the hypothesis that the population value of the Gini index
is Go, one first computes the statistic 7 = (G — Gy) /6, where here G is the almost
unbiased estimate n(2I/fi — 1)/(n — 1), and the standard error ¢ is the square root
of the variance estimate (19). Then one generates B bootstrap samples of size n by
resampling with replacement from the observed sample (assumed to be also of size n).
For bootstrap sample j, one computes a bootstrap statistic 77, in exactly the same way
as 7 was computed from the original data, but with Gy replaced by G, in order that
the hypothesis tested should be true of the bootstrap data-generating process. The
bootstrap P value is then the proportion of the 77 that are more extreme than 7. For
a test at significance level «, rejection occurs if the bootstrap P value is less than .
For such a test, it is also desirable to choose B such that «(B + 1) is an integer; see,
among other references, Davidson and MacKinnon (2000).

Bootstrap confidence intervals can also be based on the empirical distribution of the
bootstrap statistics 7. For an interval at nominal confidence level 1 —«, one estimates
the a/2 and 1 — /2 quantiles of the empirical distribution, normally as the [aB/2]
and [(1—a/2)B] order statistics of the 7. Here [-] denotes the ceiling function: [z] is
the smallest integer not smaller than x. Let these estimated quantiles be denoted as
Qa2 and q1_q /2. respectively. Then the bootstrap confidence interval is constructed as

[G 0Gq1—a/2 G- 0Gqa 2] It is of the sort referred to as a percentile-¢, or bootstrap-t,
confidence interval; see for instance Hall (1992).

In order to test a hypothesis that the Gini indices are the same for two populations
from which two independent samples have been observed, a suitable test statistic is
(@1 — ég) /\/ 0%, + 6%,. For each bootstrap repetition, a bootstrap sample is gen-
erated by resampling with replacement from each of the two samples, and then the
bootstrap statistic is computed as (G% — G5 — G1 + @2)/\/(051)2 + (6G2)? in what
should be obvious notation. If the samples are correlated, the denominator of the
statistic should take account of the covariance, which can be estimated using the for-
mula (25). Bootstrap samples are then generated by resampling pairs of observations.

7. Simulation evidence

In this section, we study by simulation to what extent the methods proposed here give
reliable inference, and we compare them with methods previously proposed.

First, in order to see whether the asymptotic normality assumption yields a good
approximation, simulations were undertaken with drawings from the exponential dis-
tribution, with CDF F(x) =1 —e™ %, > 0. The true value Gq of the Gini index for
this distribution is easily shown to be one half. In Figure 1, graphs are shown of the

— 11 —



EDF of 10,000 realisations of the statistic 7 = (G — Gy)/6¢, using the bias-corrected
version of G and the standard error 6 derived from (19), for sample sizes n = 10 and
100. The graph of the standard normal CDF is also given as a benchmark.

—n=10 0.9
........ n = 100
—— N(0,1) 0.7

T T T
0.5 1.5 2.5

Figure 1. Distribution of standardised statistic as a function of sample size

It can be seen that, even for a very small sample size, the asymptotic standard normal
approximation is good. The estimated bias of the of G was —0.000444 for n = 10, and
—0.000717 for n = 100. Thus the promise of an approximately unbiased estimator is
borne out in these examples. The means of the realised 7 were —0.1262 and —0.0478
for n = 10 and n = 100, and the variances were 1.3709 and 1.0879. The greatest
absolute differences between the empirical distributions of the 7 and the standard
normal CDF were 0.0331 and 0.0208.

In contrast, Figure 2 shows the empirical distributions for n = 100 of the statistics
76 = (G — Goy)/ooLs and 75 = (Gy — Gy) /6. Here doLs is the standard error from
regression (7), & is the square root of the variance (34), and G is given by (27).

It is clear that both of these statistics have distributions that are far from the standard
normal distribution. The jackknife estimator does a good job of removing bias, but this
is an accidental property of the exponential distribution, whereby the jackknife bias
estimator (33) happens to be consistent for G. The mean of the jackknife estimates G
was —0.0057, not quite so good as with true bias correction. The mean of the 7; was
—0.0308, that of 7¢ was —0.0012, and the variances of 7; and 7g were 0.2693 and
0.4275 respectively.

The exponential distribution may well be fairly characteristic of distributions encoun-
tered in practice, but its tail is not heavy. Heavy-tailed distributions are notorious for
causing problems for both asymptotic and bootstrap inference, and so in Figure 3 we
show empirical distributions for our preferred statistic 7 with data generated by the
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— Giles
-------- jackknife
— N(0,1)

| | |
0.5 1.5 2.5

Figure 2. Distribution of Giles’s statistic and jackknife statistic

Pareto distribution, of which the CDF is Fpareto(z) = 1 — 27, 2 > 1, A > 1. The
second moment of the distribution is A\/(A — 2), provided that A > 2, so that, if A <2,
no reasonable inference about the Gini index is possible. If A > 1, the true Gini index
is 1/(2A —1). Plots of the distribution of 7 are shown for n = 100 and A = 100, 5, 3, 2.
For values of A greater than about 50, the distribution does not change much, which
implies that there is a distortion of the standard error with the heavy tail even if the
tail index is large. The actual index estimate G‘, however, is not significantly biased
for any value of A considered.

— A =100 0.9 +
— A=5
— =3 0.7 1
— =2

T T T
0.5 1.5 2.5

Figure 3. Distribution of 7 for the Pareto distribution

Table 1 shows how the bias of 7, its variance, and the greatest absolute deviation of
its distribution from standard normal vary with .
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A Bias Variance Divergence from N(0,1)
100 -0.1940 1.3579 0.0586

20 -0.2170 1.4067 0.0647

10 -0.2503 1.4798 0.0742

5 -0.3362 1.6777 0.0965

4 -0.3910 1.8104 0.1121

3 -0.5046 2.1011 0.1435

2 -0.8477 3.1216 0.2345

Table 1. Summary statistics for Pareto distribution

It is plain that the usual difficulties with heavy-tailed distributions are just as present
here as in other circumstances.

We end this section with some evidence about the behaviour of the bootstrap. In
Table 2, coverage rates of percentile-t bootstrap confidence intervals are given for
n = 100 and for nominal confidence levels from 90% to 99%. The successive rows
of the table correspond, first, to the exponential distribution, and then to the Pareto
distribution for A = 10,5,2. The numbers are based on 10,000 replications with
399 bootstrap repetitions each.

Level 90% 92% 95% 97% 99%
Exponential 0.889 0.912 0.943 0.965 0.989
A =10 0.890 0.910 0.942 0.964 0.984
A=5 0.880 0.905 0.937 0.957 0.982
A=2 0.831 0.855 0.891 0.918 0.954

Table 2. Coverage of percentile-t confidence intervals

Apart from the expected serious distortions when A = 2, the coverage rate of these con-
fidence intervals is remarkably close to nominal. It seems that, unless the tails are very
heavy indeed, the bootstrap can yield acceptably reliable inference in circumstances
in which the asymptotic distribution does not.

8. Empirical illustration

Giles (2004) uses his proposed methods, including the jackknife, in order to estimate
the Gini index and associated standard error for consumption data for 133 countries,
data extracted from the Penn World Tables; see Summers and Heston (1995). The
tables in this section compare Giles’s results with those obtained using the methods
of this paper.
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The data are measures of real consumption per capita, in constant dollars, expressed
in international prices, base year 1985, for four years, 1970, 1975, 1980, and 1985.
The Gini index is therefore a measure of dispersion of consumption across the 133
countries for which data are available. Table 3 shows the estimated index for each
of the four years, first as computed using formula (5) (or equivalently, by Giles’s
regression (7) or (26)), second with the simple bias correction proposed here, and
third using the jackknife formula (27). The standard errors associated with these
estimates are, respectively, the standard error from regression (26), the square root of
the variance estimate (19), and the jackknife standard error, given by the square root
of (34).

Year G from (5) Bias corrected Jackknife
1970 0.4649 0.4684 0.4685
(0.0418) (0.0173) (0.0478)
1975 0.4767 0.4803 0.4802
(0.0406) (0.0169) (0.0457)
1980 0.4795 0.4831 0.4827
(0.0397) (0.0177) (0.0445)
1985 0.4940 0.4978 0.4974
(0.0391) (0.0176) (0.0438)

Table 3. Estimates and standard errors of GG

It can be seen that the jackknife does a very good job of bias correction with these
data, at least according to the theory-based bias correction. On the other hand, the
jackknife standard errors are similar to those produced by regression (26), and are
quite different from those given by (19).

There are slight numerical discrepancies between the results given here and those given
by Giles. They affect only the last two decimal places. I think that the numbers here
are correct.

Table 4 gives three 95%-nominal confidence intervals for each year of data. The first
is based on the standard errors from (19), along with critical values from the standard
normal distribution; the second uses the jackknife standard errors with N(0,1) critical
values; the third is the percentile-t bootstrap confidence interval. The asymptotic
intervals with the best standard error are very similar indeed to the bootstrap intervals,
and both are very much narrower than those computed with the jackknife standard
€rTors.

Whatever confidence intervals are used, they all overlap, and so it is not possible
to reject the hypothesis that the indices are the same for all four years, unless one
takes into account the fact that the series are strongly correlated. By estimating
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Year Std error from (19) Jackknife std error bootstrap

1970 [0.4345,0.5022] [0.3746,0.5621] [0.4393,0.5074]
1975 [0.4470,0.5135] [0.3906,0.5699)] [0.4477,0.5140]
1980 [0.4482,0.5179)] [0.3959,0.5702] [0.4531,0.5219]
1985 [0.4632,0.5323] [0.4119,0.5836] [0.4647,0.5329]

Table 4. Confidence intervals for G

the covariance of the estimated indices for 1970 and 1985 by (25), an asymptotically
standard normal statistic can be computed for the hypothesis that the indices are the
same for both years. Its value is 2.462, which allows us to reject the hypothesis at
conventional significance levels.

9. Extensions: Sen’s poverty index and the SST index

In this section, we sketch briefly how the methods of this paper can be used to obtain
an asymptotically valid standard error of Sen’s poverty index; see Sen (1976). This
index makes use of the Gini index of the poor in the population, that is, those whose
income is less than a specified poverty line, which we here treat as exogenously given.
For a poverty line z, Sen justifies the use of the following index as a reasonable measure
of poverty:

S(z)=H(I+ (1-1)Gp). (35)

Sen’s definition is for a discrete population. His notation is as follows. H is the
headcount ratio, which can generally be expressed as F'(z), where F' is the population
CDF, discrete or continuous. His I — not the same as our I defined in (8) — is given

by

where ¢ = nF'(z) is the number of the poor. Here we have used the function m(y) =
J;  dF (x) defined in section 3. The last two expressions in (36) can apply to either a
discrete or continuous population. Sen’s [ is interpreted as the income-gap ratio. The
Gini index of the poor, G, is defined by Sen as

G,=1 Yy (g +1—1),
P QNP;(Z

where 11, is the average income of the poor. The above expression can also be written
as

G, = Z Y (@ (37)
1=1

QMp-
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which corresponds exactly with our definition (5) for the Gini index of everyone in a
discrete sample or population. In terms of the CDF F', we have

1 z
7 J, v =

It follows that (37) can be expressed as

Hp =

Gp = W/o yF(y)dF(y) — 1, (38)

and so, from (35) along with (36) and (38), we find that

S(:) = F() = s [ w(FG) = F) dF ()

2 z
T 2F(2) /O (2= 9)(F(z) = Fy)) dF (y) (39)

We use (39) as our definition of Sen’s index for both continuous and discrete popula-
tions, in the latter case resolving the ambiguity of a left- or right-continuous CDF by
splitting the difference, as in (5) and (37).

We now consider the problem of estimating S(z) on the basis of a sample of size n
drawn from a population characterised by the CDF F. As usual, we denote by F the
empirical distribution function of the sample. The natural plug-in estimator is

5(z) = 2F2(z)

A

/ (2~ ) (B(z) - F(y) dB(y). (40)

Let ¢ be the number of individuals in the sample whose incomes are below the poverty
line z; we have § = nF'(z). Then a short calculation shows that

q

— 41
nqz - y(z 1+ ) ( )

It is of interest to observe that the estimate (41) does not coincide exactly with Sen’s
own definition for a discrete population, which can be written as

q

SSen( - Z’ Z y(z) — 7+ 1). (42)

=1

This point is discussed further in Appendix A.

The algorithm for computing S (z) along with its standard error from a sample of size n
can be summarised as follows.
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e Sort the sample in increasing order, so as to obtain the series of order statistics y ;).

e Determine the number ¢ of individuals with income less than the poverty line z.

e Fori=1,...,q, form the series s; = (2 — y(;y)(¢ — i + %) Then S(z) is the sum
of the s;, i =1,...,q, times 2/(ngz).

o Fori=1,...,q, form the series p; = (24 — 2i + 1)y(;)/(2n) +n~! 23:1 Y-

o Form a series ZZ with Z;, = 0 for i = ¢ + l,...,n, and, for © = 1,...,4,
Z; = z(24/n — 5(2)) /2 — p;, and compute the mean Z. The estimated variance
of S(z) is the sum of the squares of the Z; — Z, times 4/(z§)2.

The calculations that lead to this algorithm are found in Appendix B. Simulations
show clearly that S(z) is downward biased. Unfortunately, estimating the bias is not
as straightforward as for G.

The SST index is defined by Shorrocks (1995) as

q

Sssr(2) = % S (@20 — 2+ 1)(z - yg)- (43)

1=1

Arguments like those leading to (39) show that this formula can be extended to deal
with both continuous discrete distributions by using the definition

Sssr(:) = 2 [ (=) (1= F) aF o) (14)

The plug-in estimator obtained by replacing F' by F in (44) does in this case coincide
exactly with (43). The algorithm for computing Sssr(z) using a sample of size n is
much like that for S(z). The last three steps are replaced by

e Fori=1,...,q, form the series s; = (z — y(;))(n — i + %) Then Ssgr(z) is the
sum of the s;, i = 1,..., 4, times 2/(n?z).
o Fori=1,...,q, form the series p; = (2n — 2i + 1)y;)/(2n) + n~! 22:1 Y-

e Form a series Z; with ZAZ- = 0for i = ¢+ 1,...,n, and, for ¢« = 1,...q,
Zi = 2(1 — q:/n)) +n7t 30 y() — pi, and compute ‘Ehe mean Z. The estimated
variance of Ssgr(z) is the sum of the squares of the Z; — Z, times 4/(zn)?.

Estimating the bias of SSST(Z) is quite feasible. Thus, for a bias-corrected estimator,
we may add the step

e The bias-corrected estimator is

. 1 1<
o)~ (5 - —Z;ym)'

LN

Again, details are found in Appendix B.
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10. Conclusion

An expression for the asymptotic distribution of the plug-in estimator of the Gini
index has been found that behaves at least as well as other proposed distributions.
It is based on an approximation of the estimator as a sum of IID random variables.
This approximation allows us to derive a reliable formula for the asymptotic variance.
A somewhat more complicated argument leads to an expression for the bias of the
estimator. Both bias and variance are easy to estimate in a distribution-free manner.

Similar methods can be used to estimate the variance of Sen’s (1976) index of poverty,
for arbitrary poverty line z. Unfortunately, it does not seem to be easy to find an
expression for the bias of the estimator. This is not the case for the Sen-Shorrocks-
Thon modification of the index, for which the standard error and bias are easy to
estimate.

Simulations demonstrate that the asymptotic distribution derived for the Gini index
is good even for quite small sample sizes, and, unless the tails of the underlying dis-
tribution are heavy, is thoroughly reliable for sample sizes greater than around 100.
With heavy tails, the asymptotic distribution is a less good approximation. Use of the
bootstrap, however, allows us to obtain reliable inference unless the tails are so heavy
that the variance is huge or fails to exist.

Appendix A

As mentioned just before the derivation of formula (5) for G, equation (4) does not
define the Gini index of a discrete distribution unambiguously, since adopting right- or
left-continuous forms of the CDF lead to different expressions. In this paper, we have
used the average of the two different expressions, that is, the G of expression (5), for
estimation purposes, although we saw that yet another expression, namely nG /(n—1),
is less biased.

In much of the literature on the Gini index, it is assumed that there is a finite popu-
lation for which the index is to be computed. There has been some discussion of just
how to do so, caused by disagreement over the desirable and undesirable features of
different definitions. The issues are very clearly set out in a pair of comments that
appeared in the American Sociological Review, Jasso (1979), and the reply by Allison
(1979). Gini’s original idea was that the index measured the mean difference between
any pair of incomes. Allison and Jasso disagreed over whether the “pair” formed by an
income and itself should be counted as a pair for calculating the mean. Allison, who
felt that it should, arrived at a formula numerically identical to the G of (5). Jasso,
who felt that it should not, preferred the formula

. 2 - n+1
Go= —— yuyi— , 45
P (1) &0 T T (45)
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which is readily shown to be equal to nG/(n — 1), the expression we have used here
as a less biased estimator. More than a few subsequent authors have shared Jasso’s
preference for (45), for instance Deaton (1997). However, as pointed out by Allison,
(45) does not satisfy the population symmetry axiom of Sen (1973), which requires
that, if a finite population is exactly replicated, the new double-size population should
have the same Gini index as the old. Sen himself, in Sen (1976), as might be expected,
uses the definition (5). Many economists have sided with Sen and Allison. A notable
example is a paper by Donaldson and Weymark (1980), in which various generalisations
of the Gini index are presented.

In view of all this, it is a little strange that the definition (42) given by Sen (1976)
of his poverty index does not satisfy the population symmetry axiom. On the other
hand, the estimator (41) that we use does so if treated as the actual index for a discrete
population. To see this, let every individual be duplicated, letting the individual whose
income has rank ¢ reappear as two individuals, each with income y;) but with ranks
2¢ — 1 and 2i¢. Then, when the population is duplicated, since ¢ and n become 2¢q
and 2n respectively, (41) becomes

q

q
. 1
4nq 1 Y(iy) 2q—2z—|— —|—2q—2z—|— gz—y() —2—1—5),
as for the original population. A similar calculation shows that (42) does not share

this property.

What no one seems to dispute is that, for a continuous distribution, the appropriate
definition of the Gini index is (3) or one of its many equivalents. The approach
adopted in this paper is that the finite sample is drawn from an underlying continuous
distribution, and our task is to estimate the population index (3) as well as possible.
The plug-in estimator (4), as realised by the formula (5), takes the form of one of the
possible versions of the index for a discrete distribution, the one that has the support
of Sen, Allison, and others. On the other hand, the other version (45), favoured by
Jasso and many applied econometricians like Deaton, is a better, because less biased,
estimator of the population index.

Appendix B

We use the delta method to express (40) approximately as a sum of IID random
variables. The approximation is as follows:

2 z
TR /O (z =) (F(z) = F(y)) d(F = F)(y). (46)



The first term on the right-hand side above is

- 2l < ) - F(2). (47)

The third term can be written as

n

nz;(z) Z(I(ya’ < 2)(z —y;)(F(2) = F(y;)) —E(IY < 2)(z = Y)(F(2) - F(Y)))),

and the second term as
2 "
nzF(z) 2_4: /0 (z =) (I(y; < 2) —Uy; <y) — F(z) + Fy)) dF (y)

Here,

and

Thus, on collecting terms, we see that the second term of (46) is
2 n
G ;(I@j < 2)(2F () — mly;)) — B(I(Y < 2)(z = Y)(F(2) = F(¥V))). (49)

The terms (48) and (49) can be combined to give

nzli(z) ZI(% < 2) ('ZF(Z) —yiF'(2) +y; F(y;) — m(y;)

—2B(I(Y < 2)(2 — Y)(F(2) - F(Y))),

and so, with (47), we find that

n

S(z) — ~

mF :1 —-BEI(Y < 2)2)), (50)

where



and Z is the random variable formed by replacing y; in (51) by Y. If y; = y(;, the
i*® order statistic, for i < § we estimate Z;, as in (18), by

A

Zi = 52(24/n = $(2)) = (@ — i+ 3y /n— = v
j=1
= %z(zq/n ~5(2)) - pi,

where p; = (2§ — 2i + 1)y /(2n) + n~! Z;Zl Y(j)- For i > g, we set Z; = 0. We can
thus estimate (50) by the expression

2 o -
o ;(Zi ~E(I(Y <2)2).

Clearly we can estimate E(I(Y < z)Z) by Z, the mean of the Z;, i = 1,...,n, and so
can estimate the variance of S(z) by

4 5 512
ip 25 20

as claimed in the algorithm for S(z) in section 9.

For 5’§ST(2), the analysis is similar, and so we can be brief. The delta method tells us
that Ssgr(z) — Ssst(2) is approximately

2/ ()1 - F@)d(F — F)(y) - 2 / - (Fl) - FW) dFG).  (52)
0 0

z z
Making the same substitutions as for S (z) leads to the result that

Ssst(2) — Sssr(z) = % > (y; <2)Z; —EA(Y < 2)2)),

with
Zj = z(l — F(z)) — Y ((1 — F(yj)) +m(z) — m(y;).

For y; = y(;y with ¢ < ¢, the estimate of Z; fori=1,...,4is
5 N . 1 ~ A
Zi=z(1-g¢/n)—(n—i+ E)y(i)/n +m(z) —m(y;),

with m(y) given by (17). This leads to the variance estimator of the algorithm for
Ssst(z) in section 9.
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The difference between Sggr(z) — Ssgr(z) and the delta-method approximation (52)
is
2 [* A
2 | =00 - Fw) aF - P, (53)
Since the expectation of (52) is manifestly zero, the bias of S'SST(Z) is the expectation
of (53). Indeed, since the integral with respect to F'(y) is also manifestly zero, the
bias is the expectation of

2 g 2 —1

——/Oz(z—y)(ﬁ(y)—F(y)) Z—SZ Ca 0 (

- F(Zl(i)))'

z

The methods used in section 4 to find the bias of G can be used again to compute the
expectation of this expression. The computation is slightly complicated by the fact

that ¢ is random. We see that E(§) = nF(z), and E(¢%) = n(n — 1)(F(z))2 + nF(z).
After some calculation, we find that the bias is —n~!(Sssr(z) — F(2) + m(z)/z).

Therefore .
B("IE) — syn(e) + L (R - ),

n—1 n—1 z

and so a suitable bias-corrected estimator is

as claimed in the algorithm.
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