
HAL Id: halshs-00323675
https://shs.hal.science/halshs-00323675

Preprint submitted on 29 Sep 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Methods, Techniques and Tools for Product Line Model
Verification

Raul Mazo, Camille Salinesi

To cite this version:
Raul Mazo, Camille Salinesi. Methods, Techniques and Tools for Product Line Model Verification.
2008. �halshs-00323675�

https://shs.hal.science/halshs-00323675
https://hal.archives-ouvertes.fr

Université Panthéon Sorbonne, Paris 1

Centre de Recherche en Informatique CRI

Internal report

Methods, Techniques and Tools for Product
Line Model Verification

Raúl MAZO
Camille SALINESI

 2

 3

Abstract

Requirements for a product line have thus to be expressed in terms of features shared by all members
of the product line, known as commonality, and distinct features of individual members, known as
variability. Identifying and representing variability is an important aspect of product line devel opment. In
order to be able to model and manage common and variable features, they have to be documented in a
variability model.
Feature diagram (FD) is a notation that is currently used to express variability models. Feature diagrams
model the variability of features at a relatively high level of granularity. Their main purposes are (i) to
capture feature commonalities and variabilities, (ii) to represent dependencies between features, and
(iii) to determine combinations of features that are all owed and disallowed in the product line model
(PLM). All the above can present multiple problems in the models of produ ct lines, problems that, from
an industrial point of view, are highly expensive. Just like Pohl and other authors, we have not found in
literature a method covering up the different criteria to be verified on a PLM. In the same way, we have
found a lack of criteria unification with regard to the characteristics that must be verified, and a lack of
language unification used in the rigid processes of verification found in literature. «To our knowledge,
specialised techniques for software product line inspections, reviews, or walkthroughs have not be en
proposed» [Polh et al. 05]. On the other hand, consistency checking of the requirement specification in
domain engineering is still an open issue [Lauenroth, Pohl 07].
Motivated by these lacks, we suggest a PLM verification process focused in correctness evaluation on
these types of models. We firstly do a bibliographic search that permit us make an inventor y of some
techniques. We then go on to formalisation work of each criterion, particularly those for model
verification, with propositional logic. Next, we have do integration work through MAP formalism, in order
to propose a PLM correctness verification process that can be carried out in different ways. We have
validated this approach through a real case study and implementation of the proposed MAP process
model in a computational tool.

 4

Contents

Abstract

Part I: Background

1. Introduction 8
1.1 Requirements Engineering 8
1.1.1 Requirements engineering reference model 9
1.2 Product Lines Engineering 13
1.2.1 Importance of PLE 14
1.2.2 The PLE process 16
1.2.3 Commonality and Variability 17
1.3 Product Line Models 18
1.3.1 Feature Diagrams 20
1.3.2 Formal semantic 20
1.4 Automated Analysis of Feature Models 22
1.5 Conclusion 24

Part II Research Presentation

2. Research problem, methodology and justification 26
2.1 Research problem 26
2.2 Research methodology 26
2.3 Justification 26

Part III State of the art on V&V in RE

3.1 Definition of Verification 30
3.2 Definition of Validation 30

 5

3.3 Verification vs. Validation 31
3.4 Desirable characteristics to verify 34
3.5 Desirable characteristics to validate 40
3.6 Verification and validation techniques 45
3.7 Conclusion 48

Part IV Verification of Product Line Models

4.1 Methods proposed 50
4.2 Feature Meta-Model 63
4.3 {Characteristics to verify} + {techniques}* + {lessons}* 65
4.4 General lessons 79
4.5 Conclusion 82

Part V Multi-method of Verification

5 The Approach 84
5.1 Context and MAP formalism 84
5.2 MAP model of the approach 86
5.3 Context models of the MAP 87
5.4 Discussion 97
5.5 Conclusion 98

Part VI Case Study and Tool Support

6 Case Study: Stago’s Product Line Model 100
6.1 Introduction 100
6.2 Stago’s Product Line Model 100
6.3 Stago’s Product Line Model Verification 101
6.4 Conclusion 117

7 Tool Support 119
7.1 Presentation 119

 6

7.2 Architecture 119
7.3 System Functionality 125
7.4 Manual of the Application 129
7.5 Limitations 135
7.6 Conclusion 136

Part VII Perspectives and Conclusion

Perspectives 140
Conclusion 140

Part VIII Appendix

PLVyV tool and its video in magnetic support 142
Application Source Codes 142

Bibliography 143

 7

Part I

Background

 8

1 Introduction

The use of computers and software products has enormous ly increased in the last years. In order to
obtain high-quality products along with higher productivity, it is required to carefully analyze, model,
specify and manage system requirements. And this tendency is extended to industry fields like
automobiles and electronic device production. Requirements engineering is introduced to address such
issues early in the development process. A well-established requirement engineering process ensures
that product requirements are properly elicited, analyzed, documented, verified and managed.
Several other attempts have been made to increase the prod uctivity and quality of goods. A very
promising approach is the reuse or the production guided by product line practices. The main goal is to
develop a model that represents the family of products, which is then customized to configure individual
products. A product family is a collection of similar products with requirements that are common across
the family and others features or requirements that are unique to individual products. In this approach it
is possible to reuse product components and apply variability with decreased costs and time . Therefore
well-established requirements engineering process, in order to produce the product line model and well -
established model verification and validation process are essential for any product line practice. One
error in the product line model entails a problem in each product of the family. For this reason, an
appropriate process of verification and validation (V&V), centred in the product line model and not only
in each particular configuration, is necessary to guarantee the success in this paradigm of production.

We have found in our literature search, that there is no standard theory on V&V applied to product line
models. Neither is there a standard “box of tools” from which tools are taken in a natural order to verify a
product line model or a particular configuration model ; see [Davis 92] and [Landry and Oral 93]. Neither
is there a list of criteria, expressed in a common language, which must be applied on models through
V&V process. In our research work, we have made a list from dispersed criteria or invariants to be
evaluated on a product line model or on a particular product model. Also, we have unified the language
for these set of criteria desired to be verified in a product line model. Thus, our objective is to propose a
Verification process in order to improve the weakness identified above.

1.1 Requirements Engineering

Requirements engineering (RE), in software engineering, is a term used to describe all the tasks that
are into the instigation, scoping and definition of a new or modified computer system. Requirements

 9

engineering is an important part of the software engineering process; whereby business analysts or
software developers identify the necessities or the requirements of a customer; having identified these
requirements they are then in a position to find a solution.

RE provides the global context for our work. As every research domain, there are many definitions
about what requirements engineering (RE) is, Nuseibeh and Easterbrook, in their 2000 ICSE roadmap
paper for RE [Nuseibeh, Easterbrook 00] introduce RE as follows: "The success’ main measure of a
software system is the degree to which it meets the purpose for what it was intended. Broadly speaking,
software systems requirements engineering is the process of discovering this purpose, by identifying
stakeholders and their needs, and documenting these in a form that is amenable to analysis,
communication, and subsequent implementation."

Earlier it was considered that RE was relatively easy and corresponding to introduce the software
development process. However, it became clear soon, that RE is a very important and problematic
stage. As many failures at system developing have been caused by mistakes admitted during the RE
and it was too expensive or even impossible to correct them and to satisfy clients’ requirements in the
given time. Now, in some development models, RE process must get involved during all software's life
cycle.

At RE stage it is possible to construct a stable model of the future system on the basis of requirements
prior to the beginning of designing and development process to prevent failures in the future and to
formalise what the future system must be. Complete requirements represent a declarative description of
the future system. That's why Software Engineering (SE) research ers emphasized on the fact that
requirements describe what is to be done, but not how they are implemented [Cockburn 00].

1.1.1 Requirements engineering process

In this work we assume a classical vision of RE, in which the process starts with stakeholder
identification. RE then goes on with requirements acquisition or elicitation . Then we move on to
requirements analysis and concept formation. Once a set of consistent and a set of relatively complete
requirements have been gathered and analysed, proper requirements specification or requirements
facet modelling can take place. It is sure that during requirement modelling we find that requirements
verification is needed. At the end of requirements modelling we have to perform a requirement
validation, which serves to make sure that the requirement development phase has achieved the right

 10

requirements. A final stage of requirements management or requirements satisfiability and feasibility is
needed to complete a full and proper requirements development process. It is a little description of each
RE process's main activities:

a. Stakeholders identification

At the very outset of a development project identify all possible and potential requirement
stakeholders. In order to face this phase, we propose some recommendations to consider. It is
better to include a large number of elicited requirements than to exclude some of them which might
cause trouble later on, and even more, when such requirements rightfully intervene . Be prepared,
throughout a project, to revise the list of requirement stakeholders. At the very outset of a
development project define, together w ith designated requirement stakeholders, their role, their
rights and duties, etc. Through the requirement stakeholders' identification is necessary revising the
roles of stakeholders.

b. Requirements acquisition or elicitation

Requirement elicitation is the first stage in considering the problem that software system should be
able to solve. This process is carried out once the context definition and the software’s goal have
been established. The task of requirements elicitation is to establish boundaries and requirements
for the software system. It is carried out by interaction with stakeholders and detailed studying of
corresponding knowledge domains. Requirement elicitation has always been a human activity.
There are several techniques and methods of requirement elicitation. The most widespread
techniques are interviews, scenarios, prototypes, facilitated meetings, observation, etc.
At this stage the relationship between developers of the system and the customer should be
established.
The requirement elicitation is variously termed "requirements ’ capture", "requirements’ discovery"
and "requirements’ acquisition".
Having been gathered during this stage, requirements may be checked for quality using different
methods and tools [Lami 05], [Hooks 93], [Firesmith 03]. The quality of requirements is an important
feature for the following stages. Several rules for writing quality requirements are discussed in
[Wiegers 99] and some examples are given.

c. Requirements analysis and concept formation
After some requirements were discovered they must be analysed to:

 Necessity (need for the requirement);

 11

 detect and resolve drawbacks in them (for example, consistency, conflicts, ambiguity
situations, completeness, etc);

 improve their quality;

 they must be structured and refined;

 discover the bounds and properties of the system;

 discover how system will interact with the environment;

 another necessary analysis.

After this stage the requirements have to be described clear enough to enable their specification,
verification and validation.
For providing more convenient analysis procedures, requirements may be structured by different
characteristics. For example, whether the requirement is functional or non -functional:
Functional requirements describe the functions that the software is to execute (formatting some text,
modulating a signal). They are sometimes known as capabilities.
Non-functional requirements are the ones that act to constraint the solution. Non-functional
requirements are sometimes known as constraints or quality requirements. They can be further
classified according to whether they are performance requirements, maintainability requirements,
safety requirements, reliability requirements, or o ne of other types of software requirements.
One of the most common procedures in requirements analysis is negotiation. It may be used to
resolve problems with requirements where conflicts happen between two stakeholders requiring
mutually incompatible features (conflicting requirements). Requirements that seem problematic are
discussed and the stakeholders involved present their views about the requirements. After
negotiation the requirements are prioritised and a compromise set of requirements may be agree d
upon. Generally, this will involve making changes to some of the requirements, what also may
cause new problems appearing.
Other techniques used for requirements analysis are: requirements classification, conceptual
modelling, requirements’ negotiation, prioritization, architectural design and requirements allocation.

d. Requirements specification or requirements modelling

First of all, let's start with the definition of Software Requirements Spec ifications (SRS) process.
There will probably be different definitions more or less completed.

 12

The definitions in the work are commonly based on an excellent source for definitions in Software
Engineering discipline - the IEEE Computer Society [IEEE 98] , [IEEE 04]. Here, the SRS process is
defined as "a process result of which are unambiguous and complete specification documents".
It is accepted to consider the SRS is a complete description of the system behaviour to be
developed. It includes a set of use cases that describe all of the interactions that users will h ave
with the software, numerical values, limits and measurable attributes which may be checked on the
working system.
Briefly, SRS is a document (paper or electronic), which defines (specifies) the Software System.

e. Requirements verification

Requirement verification is the process in which some requirements specifications (RS) are being
analysed in order to find out whether what is being described satisfied certain properties. Some of
these properties are consistency between the RS model elements, correctness, validity or
satisfiability of the RS model constraints, suitability and usability of each RS model element and
richness of the model.

f. Requirements validation

Requirement validation is the process, and the resulting docum ents, in which some requirement
specification models are being inspected by both requirement stakeholders and requirement
engineers, and in which, whatever is being prescribed, is being validated with reference to the
elicitation report and with respect to whatever the requirement stakeholders might now realise about
their expectations. In order to achieve this validation, some properties, like correctness,

unambiguousness, completeness, stability, verifiability, modifiability and traceability, must be
considered.

g. Requirement management or requirement satisfiability and feasibility

Requirement management is a relatively new branch in RE process. It is the activity concerned with
the effective control of information related to s ystem requirements. Requirement management
process is carried out together with other engineering processes. The beginning of th is process
should be planned at the same time that the process of initial requirement elicitation starts. Directly

 13

requirement management process should begin right after the draft vers ion of the requirements’
specification is ready.

1.2 Product Lines Engineering

When we talk about Product Lines Engineering [Pohl et al. 05] we might think in the way that goods
have being produced and all the different changes experienced throughout. Formerly goods were
handcrafted for individual customers. Gradually, the number of people who could afford to buy various
kinds of products increased. Pioneer with the invention of the production line in the domain of
automobiles, Ford starts the production for a mass market much more cheaply than individual product
creation on a handcrafted basis. However, the production line reduced the possibiliti es for diversification
and that is why Ford was only able to produce black cars.

Roughly, both types of products, individual and mass produced can be identified in the software domain
as well: they are denoted as individual software and standard software. Generally, each of these types
of products has its drawbacks. Individual software products are rather expens ive, while standard
software products lack sufficient diversification.

Example from the Camera World
In 1987, Fuji released the Quicksnap, the first single -use camera. It caught Kodak by surprise: Kodak
had no such product in a market that grew from then on by 50% annually, from 3 million in 1988 to 43
million in 1994. However, Kodak won back market share and in 1994, it had conquered 70% of the US
market. How did Kodak achieve it? First, a series of clearly distinguishable, different camera models
was built based on a common platform. Between April 1989 and July 1990, Kodak reconstructed its
standard model and created three additional models, all with common components and the same
manufacturing process. Thus, Kodak could develop the cameras faster and wi th lower costs. The
different models appealed to different customer groups. Kodak soon had twice as many models as Fuji,
conquered shelf space in the shops and finally won significant market share this way (for details see
[Clark and Wheelwright 1995]).

 14

1.2.1 Importance of PLE

As we have already discussed, the main goal that product line engineering pursues is to provide
customised standard products at reasonable costs. In this section, we briefly outline the key features
and motivations for developing goods under the product line engineering paradigm.

Reduction of Development Costs

One of the most relevant purposes of an engineer is to create solutions that provide human benefices
and economical profits. An essential reason for introducing product li ne engineering is the reduction of
costs. When artefacts from the platform are reused in several different kinds of systems, and a standard
work is implemented; this implies a cost reduction for each system. Before the artefacts can be reused,
strategies investments and even a detailed planning are necessary for creating them. This means that
the company has to make an up-front investment to create the platform before it can reduce the costs
per product by reusing platform artefacts. Figure 1 -3-1 shows the accumulated costs needed to develop
n different systems. The solid line sketches the costs of developing the systems independently, while
the dashed line shows the costs for product line engineering. In the case of some few systems, the
costs for product line engineering are relatively high, whereas they are significantly lower for larger
quantities (one of the main microeconomics theories). The location at which both curves intersect marks
the break-even point. At this point, the costs are the same for developing the systems separately as for
developing them by product line engineering. Empirical investigations revealed that, for software, the
break-even point is already reached around three systems.
A similar figure is shown in [Weiss and Lai 1999], where the break-even point is located between three
and four systems. The precise location of the break -even point depends on various characteristics of the
organisation and the market it has envisaged: the customer base, the expertise, and the range and
kinds of products. The strategy that is used to initiate a product line also influences the break -even point
significantly [McGregor et al. 2002].

 15

Figure 1-2-1: Costs for developing n kinds of systems as single systems compared to product line
engineering

Enhancement of Quality
The artefacts in the platform must be reviewed and tested in many products and different processes.
They have to prove their proper and correct functioning in more than one kind of product. The extensive
quality assurance implies detecting faults, failures and improper work methods to correct them, thereby
increasing the quality and reliability of all products.

Reduction of Time to Market
Often, a very critical success factor for a product is not only the shelf life but when you begin w ith a
project is time to launch it in the market. For single -product development, we assume it is roughly
constant, mostly comprising the time to develop the product. For product line engineering, the time to
market indeed is initially higher, as the common artefacts have to be planned and built first. Yet, after
having passed this hurdle, the time to market is considerably shortened as many artefacts can be
reused for each new product (see Figure 1 -3-2).

 16

Figure 1-2-2: Time to market with and without pro duct line engineering

1.2.2 The PLE process

As shown in Figure 1-2-3, the PLE process is split along this line into two sub processes: domain
engineering and application engineering [Pohl et al. 05].

Figure 1-2-3: Schema of the PLE process [Pohl, Metzger 06].

 17

Domain Engineering

The principle of PLE is to exploit common elements of a number of different systems by developing
them as one single core while still allowing differences between these systems. Commonalities, i.e.
functions or properties that systems of the future product line have in common [Coplien et al. 98], and
differences (generally called variabilities [van Gurp et al. 01]), however, have to be defined into the PL
model during this sub-process.
The domain engineering process is the process in which the scope is decided. Based on this scope, the
commonalities and differences of systems in the PL are defined.

Application Engineering

This process is based on the Domain Engineering once commonalities have been exploited and
implemented as reusable artefacts and variability have been defined as variation points. The application
engineering process now exploits this variability to apply it at the correct moment of the process.
Each variation point is analysed and one of its variants chosen (we can say that the variation point is
bound). Once all variation points are bound to variants, a particular s ystem of the PL is initiated. The
reusable artefacts will be then assembled and after successful integration tests, the development of the
new products is finished.

1.2.3 Commonality and Variability

To facilitate mass customisation, the artefacts used in different products have to be sufficiently
adaptable and flexible to fit into the different systems produced in the product line. This means that
throughout the development process we have to identify and describe where the products of the product
line may differ in terms of features that they provide, the requirements they fulfil, or even in terms of th e
underlying architecture, etc. Thus we have to provide flexibility in all those artefacts to support mass
customisation.
A very well known case is that of the different cars of the same product line which may have different
windshield wipers and washers. Ingeneers design cars in a way that allows a common approach to
support the different motors for these different windshield wipers/washers, their different sizes, etc. Such
flexibility comes with a set of constraints. If you drive a convertible, you do not want a rear window
washer splashing water onto the seats! Therefore, the selection of a convertible car means the flexibility

 18

that the availability of the windshield wipers and washers is restricted, so that the rear window washer is
disabled when the car roof is open.
This flexibility is a precondition for mass customisation; it also means that we can predefine what
possible realisations shall be developed (there are only a certain number of windshield wiper
configurations conceivable). In addition, it means that we define exactly the places wh ere the products
can differ so that they can have as much in common as possible. The flexibility described here is called
"variability" in the product line context. This variability is the basis for mass customisation.

1.3 Product Line Models

Product line models or product line diagrams are commonly used to define the valid combinations of
elements in a product line. Not all elements are compatible.
There are two types of requirements specifications [Faulk 01] in product line engineering : The product
line (or domain) requirements specification and the product (or application) requirements specification.
The Product Line Requirements Specification (PLRS) or Product Line Model (PLM) as we will refer to
this concept in the rest of document is developed during domain engineering. It contains all the common
and variable requirements of all products of the product line. Requirements specification of a particular
product of the product line is commonly named Product Requirements Specification (PRS) or Product
Line Configuration (PLC), we will use the latest in the rest of document. The PRS for a particular product
is derived from the PML [Pohl et al. 05], [Bühne et al. 06].
When deriving a PLC, all common requirements defined in the PLM become part of each PLC. The
variable requirements can be added to a PLC by selecting variants from the variability model and
thereby adding the variable requirements related to the selected variants. We can not only make a
derivation, we also can create an independent configuration, and then contrasting it with its product line
model. Another existing relation between both can be to try to deduce PLM from a set of PLCs.

Product line model notations

The Feature Diagram (FD) notation used in Figure 1-4-1 is built based on the FORE formalism. FORE
(Family Oriented Requirements Engineering) [Streitferdt 03] is a method proposed by Riebisch and his
work group at Alexandria project [Alexandria]. We have chosen this formalism because it offers all of the
modeling facilities of previous notations to its launching. Besides, it includes some of the characteristics
and construction rules particularly important at the moment of implementing the method proposed in this
work. For example, FORE introduce the use of cardinalities [Riebisch et al. 02], enriching feature

 19

diagrams with UML cardinalities. Also, FORE proposes that all variant features grouped with relations
of cardinalities be optional features.

Some of the properties that characterise FORE notation are:

 A feature diagram is a Directed Acyclic Graph (DAG)

 A feature is a node of this graph

 Relationships between features are represented by links. There are two types of relationship,
variant dependency and transverse dependency.

 Variant dependencies can be of kind mandatory or optional. The sense of relations is
determined by a white or black circle at the end of the line. Black circle represents a mandatory
relationship between father and child features, that is, if father is chosen, then child feature
must be selected too. White circle represents an optional relationship between father and child
features, which is, if father is chosen, child can or can not be selected.

 Transverse dependency can be of two kinds: an exclude relation or a require relation. An

exclude relation is represented by a two headed arrow () and a require relation is

represented by one headed arrow (). The direction of relations is determined by an arrow at

the end of a dotted line.

 Optional relations with the same father can be grouped in a set. A relation can be member of
one and only one set.

 A set have a cardinality that indicates the minimal and maximal number of features than it is
possible to choice. The set of possible values is: 0.1, 1, 0.N, 1.N, N, p, 0.p, 1.p, p.N, m..p, 0..*
and 1..*.

 Graphically, the set of features grouped by a transverse dependency relationship is represented
by a line or arch comprising all the implicated relations and a couple of symbols as shown in the
previous numeral.

 Grey rectangles are destined to represent features that have as function to facilitate the
structure of the model [Streitferdt 03].

Although this notation seems adequate to construct models of product lines by means of features and
that eliminates most of the ambiguities, the notation FORE does not, nor its predecessor FODA,
establish utilization rules to guide the engineer in the modelling process. It does not establish either any
rule permitting to identify a big of ambiguities that exit even in this type of models. Th ose ambiguities will
be treated with detail in chapters III, IV and VI .

 20

Another notation is VFD (varied feature diagrams) introduced by Schobbens et al. in [Schobbens et al.

06]. This one is just another notation among several other new or adapted FD notations that have been
proposed since the original introduction of FDs as part of the FODA method [Kang et al. 90]. Other
extensions of FODA are the following: FORM, an extension of FODA [Kang et al. 98]. FeatuRSEB
[Griss et al. 98], an integration of FODA and the Reuse-Driven Software Engineering Business (RSEB)
[Jacobson et al. 97] are two more propositions based on features. Van Gurp et al. extend FeatuRSEB
to include binding times [Van Gurp et al. 01]. Riebisch et al. replaced operator nodes by more general
cardinalities [Riebisch et al. 02]. Batory introduces propositional constraints defined among features
[Batory 05]. Czarnecki suggest cardinalities and provide a formalisation for these diagrams [Czarnecki
et al. 05]. PLUSS [Eriksson et al. 05] is another extension of FeatuRSEB. All the above mentioned
notations are only a subset of all existing FD notations.
At the moment, there is no unified and universally accepted notation.
However, most of the notations cited above can be defined using a general parameterised FD defini tion,
as proposed in section 1.3.2.

1.3.1 Feature Diagrams

Feature diagrams (FDs) are used to model and manage variability of a PL. FDs capture commonalities
and variabilities by structuring the represented information in the form of a feature tree, or a directed
acyclic graph (DAG). The tree or the DAG represents the decomposition of one feature into an arbitrary
number of sub-features. The root feature is called concept and represents the system itself.

A FD is a hierarchical decomposition of the system into features and subfeatures. This hierarchy can be
either a tree or DAG, which allows a feature to have more than one parent node. This structure is
supported by FORE formalism, in opposition to FODA notation that is limited to trees. Most authors who
extended the tree structure to a DAG argued for more expressiveness.

1.3.2 Formal semantic

In literature we have found several formal definitions of feature models [Czarnecki, Pietroszek 06],
[Metzger et al. 07]. These formal definitions have not adapted to our verification process based in
evaluations of logical rules in order to check both static and dynamic properties of product line models
and not only product line configurations.

 21

For us, a Feature Diagram d (based in the FD metamodel that we will present in next sections) is a
eight-tuple (F, r, VD, AVD, TD, ATD, A, C) where:

F is the set of features
r  F is the root of d, r is unique |r| = 1

VD  F X F is the set of variant depen dencies edges,
AVD is an application of VD set at {  ,  },  representing optional dependency and  representing
mandatory dependency. (f, f’)  VD will rather be noted f f’ for optional relations and f f’ for
mandatory relations, where f is the child and f’ is the father

TD  F X F is the set of transverse dependency edges

ATD is an application of TD set at { , },  representing require dependency and  representing

exclude dependency. (f, f’)  TD will rather be noted f f’ for include relations and f f’ for exclude

relations

A nAVD is a finite set of arcs, each couple of variant dependencies participating in A must be an

optional dependency.

C is an application of arcs set at  )*N X N( that define the cardinality of A

For the variant dependency v = (f, f’), with f, f’ in F, the node f is so-called father of v and the node f’ is
so-called child of v.

)(

)(

:

),)((

:

642

241

ffTDtd

ffTDtd

Examples

jiffTD

TDbydefinedisnapplicatioATDThe

ji







  

 ),(2,0

:

*

:

321 ffAa

Example

AVDA

CbydefinedisnapplicatioycardinalitThe

n





 22

Example 1-3-1:
The follow is the graphic representation of Feature Diagram d = (F, r, VD, AVD, TD, ATD, A, C) defined
by:
F = { f1, f2, f3, f4, F5, F6 };
r = { f1 };
VD = { (f2  f1), (f3  f1), (f4  f1), (f5  f2), (f6  f2) };

TD= { (f4  f2), (f4  f6) };

A = { [0,2] (f2,f3) },

Figure 1-3-1: example of product line model in FORE notation.

1.4 Automated Analysis of Feature Models

The automated analyses of FMs is usually performed in two steps: i) The FM is translated into a certain
logic representation ii) Off -the-shelf solvers are used to extract information from the result of the
previous translation such as the number of possible products of the feature model, all t he products
following a criterion, finding the minimum cost configuration, etc [Benavides et al. 06].

According to [Benavides et al. 07], the current implementation of the framework integrates three of the
most commonly used logic representations proposed for the automated analyses of feature models:
CSP, SAT and BDD. A complete performance test of solvers dealing with such representations and
details about the translation of an FM into a CSP, SAT and BDD were introduced in [Benavides et al.
06b], [Benavides, Ruiz 05].

F2 F3 F4

F1

F5 F6

0,2

 23

Three of the most commonly used logic representations proposed for the automated analyses of feature
models: CSP, SAT and BDD.

Constraint Satisfaction Problem (CSP)
A Constraint Satisfaction Problem (CSP) [Tsang 95] consists on a set of finite domains variables, and a
set of constraints restricting the values of the variables. Constraint Programming can be defined as the
set of techniques such as algorithms or heuristics that deal with CSPs and the purpose is to find
combinations of values in which all constraints are satisfied based on a common objective. The main
ideas concerning the use of constraint programming on FM analysis were stat ed in [Benavides et al.
05].
Constraint Programming is the most flexible proposal. It can be used to perform the most of the
operations currently identified on feature models [Benavides et al. 06a]. However, constraint
programming solvers reveal a weak time performance when executing certain operations on medium
and large size feature models calculating the number of possible combinations of features due most of
the time to a high number of variables [Benavides et al. 06c].

Boolean Satisfiability Problem (SAT)
A propositional formula is an expression consisting on a set of boolean variables (literals) connected by

logic operators (¬,^,v,  ,). The propositional satisfiability problem (SAT) [Cook 71] consists on

deciding whether a given propositional formula is satisfiable, i.e., a logical values can be assigned to its
variables in a way that makes the formula true. The basic concepts about the using of SAT in the
automated analysis of FMs were introduced in [Batory 05].
The performance results of SAT solvers are slightly better than the results of CSPs . however this
approach is not so powerful [Benavides et al. 06c]. The best of our knowledge, it is that there is not any
approach in which feature models attributes c an be translated to SAT in order to perform operations as
maximizing or minimizing attribute values.

Binary Decision Diagrams (BDD)
A Binary Decision Diagram (BDD) [Bryant 86] is a data structure used to represent a boolean function. A
BDD is a rooted, directed, acyclic graph composed by a group of decision nodes and two terminal
nodes called 0-terminal and 1-terminal. Each node in the graph represents a variable in a Boolean
function and has two children nodes representing an assignment of the variable to 0 and 1. All paths
from the root to the 1-terminal represents the variable assignments for which the represented Boolean

 24

function is true meanwhile all paths to the 0 -terminal represents the variable assignments for which the
represented Boolean function is false.
Although the size of BDDs can be reduced according to some established rules, the weakness of this
kind of representation is the size of the data structure which may vary between a linear to an
exponential range depending on the variable ordering [Bryant 86]. Calculating the best variable ordering
is an NP-hard problem. However, the memory problem is clearly compensated by the time performance
results offered by BDD solvers. While CSP and SAT solver are incapable of finding the total number of
solutions of medium and large size feature models in a reasonable time, BDD solvers can work it out in
an insignificant amount of time, so it justifies its usage at least on counting operations.

1.5 Conclusion

The objective of this first chapter was to survey different RE and product line relevant definitions to our
work. This includes not only notations found in literature, but also owned definitions necessaries for our
approach such as a formal semantic of a PLM. These definitions will be used in the rest of this
document. In this chapter we also highlight the importance of product line engi neering for the industry
and its relation with RE.
The next chapter presents the problematic situation that has motivated this research work and the way
that we have used to tackle it.

 25

Part II

Research Presentation

 26

2. Research problem, methodology and justification.

2.1 Research problem

We have observed that the few solutions developed over the past ten years have not been integrated
into a coherent and flexible process of V&V. The penury of methods for the formal verification of
conceptual models and the urgency of proposing well adapted approaches are recognized by the
scientific community [Wang et al. 05], [Polh et al. 05], [Lauenroth, Pohl 07]. Likewise, the lack of tools for
the industry was cited in the Fourth Product Line Engineering Workshop acts [Bass et al. 99], in 2001 by
Zave [Zave, 01] and again recently by Padmanabhan and Lutz [Padmanabhan, Lutz 05].
The recent award of Turing Prize '07 by Joseph Sifakis for his work in model checking confirms the
importance of this topic, and the importance to continue its exploration.

2.2 Research methodology

The methodology followed in this investigation can be summarized in following steps:

1. Bibliographic search that permit us make an inventory of some techniques
2. Formalisation work of each criterion, particularly those for PLM verification, with propositional

and first order logic notations [Bradley, Manna 07].
3. Integration work through MAP formalism, in order to propose a PLM correctness verification

process that can be carried out of different ways .
4. Approach validation through a real case study and implementation of the proposed MAP

process model in a computational tool.

3.3 Justification

Graphical representation of PLMs can be directly represented in logical constraints that can be
evaluated by means of SAT solvers or constraint scheduling. MAP is a formalism that allow s
representing multi-process. That is, a MAP representation is not a sequence predefined of tasks. It is
rather a set of tasks that may be organized in a different way, in terms of situation and intention of the
person using the map.

 27

We have used propositional logic and first order logic in order to represent the set of invar iant or logic
rules that must respect a PLM. Propositional logic and first order logic are also known as propositional
calculus and predicate calculus, respectively, because they are calculi for reasoning about propositions
(“the sky is blue”, “this comment references itself”) and predicates (“x is blue”, “y references z”),
respectively. Propositions are either true or false, while predicates evaluate to true or false depending
on the values given to their parameters (x, y, and z). And to represent the process we have used MAP
formalism. Loosely speaking, a Map [Rolland et al. 99] is a navigational structure in the form of a graph
where nodes are intentions and edges are strategies. It is possible to follow different strategies for each
couple of target/source intentions, thus dynamically determining different solution paths between start
and end. So a Map is a modelling formalism that permits to represent several processes on the same
design.

 28

 29

Part III

State of the art on V&V in RE

 30

3. State-of-the-art on Validation and Verification in Requirements Engineering

3.1 Definition of Verification

Formal verification is the process of checking whether a design satisfies some requirements (called
properties or invariants in this document).
Verification work typically proceeds as follows [Bjorner 06]: “Desired properties of the requirement’s
model, properties that do not transpire immediately from the proofs by symbolic testing or formal proofs,
or model checking, is, or are, performed in order to check that the desired property(ies) holds of the
requirements model”.

3.2 Definition of Validation

By requirements validation we shall understand a process with some resulting documents in which
some requirements’ prescriptive artefacts (documents, models, etc.) are being inspected by both
requirements’ stakeholders and requirements ’ engineers. This includes the pointing in, the pointing out,
if necessary, of inconsistencies, incompletenesses, conflicts and errors of prescription that may change
the elicitation report.

According to [Bjorner 06], in order to perform domain validation, the validators need the following (input)
documents: (i) the list of domain stakeholders; (ii) the domain acquisition documents: questionnaire, and
the collection of indexed description units; (iii) the rough-sketch, terminology, narrative, and possibly the
formalisation documents that constitute the domain description proper; and (iv) the domain analysis and
concept formation documents. That is, the validators need access to basically all documents produced
in the domain modelling effort. In order to complete domain validation, the validators produce the
following output documents: (i) A possibly updated domain stakeholder document; (ii) Possible updated
domain acquisition documents, (iii) Possible updated rough sketches, terminology, narrative and the
formalisation documents; and (iv) A domain validation report. We now cover some aspects of the
necessarily informal validation process.

 31

Figure 3-2-1: Domain validation input and output documents

Validation works typically proceeds as follows [Bjorner 06]: requirements engineers, requirements
stakeholders and review, line by line, the domain model, holding it up against the previously elicited
requirement prescriptions’ units, while then noting down any discrepancies.
In doing requirements’ validation, requirements ’ stakeholders usually read the informal, yet precise and
detailed narrative prescriptions. No assumption is made as to their ability to read formalisations. On the
contrary, it is assumed that they cannot read formal specifications.

3.3 Verification vs. Validation

The following authors give their point of view concerning the difference between verification and
validation:

According to Boehm, in verification we examine whether our requirements model is logic or according to
such requirements engineers want it to be, “Verification gets the requirements model right” [Boehm 81].
In validation we examine the requirements ’ model to make sure we are modelling what the

List of domain
stakeholders

Domain acquisition
documents:
questionnaire and
collection of
description units

Rough-sketch,
terminology,
narrative and the
formal domain
description.

Validators in domain
validation process

Updated domain
stakeholder
document

Updated domain
acquisition
documents

Updated rough
sketches,
terminology and
formalisation
documents

Domain validation
report

Domain analysis
and concept
formation
documents

 32

requirements’ stakeholders think that the domain is, “Validation gets the right requirements model”.
Usually verification precedes validation.

According to Kuloor and Eberlein, “Requirements are verified to check their completeness, precision
and suitability in the requirements verification stage [Kuloor, Eberlein 02]. Formal reviews, prototyping
and requirements testing are some of the techniques used for requirements verification. A product
family has more than one product and most of the requirement s are common across the family”.

Ponsard et al., suggests that “verification is about making sure the system is correct, especially with
respect to formal semantics of the goal model. Validation is about making sure the system being built is
the system the user is expecting” [Ponsard et al. 05].
Verification:

A set of goals G1, ... , Gn refines

a goal G in a domain theory D if

the following conditions holds:

GDGGGssCompletene n ,,...,,: 21

 niGDGMinimality jij ,...,2,1,:  

falseDGGGyConsistenc n ,,...,,: 21

In [Probert et al. 2003] authors claim that to verify a model is to make sure that it is created correctly,
which means there is no defect or error present. Examples include deadlocks, live -locks, and implicit
(missing) definitions in the model that are introduced via the design process itself.
“To validate a model is to make sure we create the right model, which means the model created has to
match the requirements. Simulation involves making an executable program based on a system
specification and running this executable progr am to understand and debug the behavi our of the system
specification”.

 33

Figure 3-3-1: Relationship between verification and validation proposed by Probert et al.

According to [Bahill, Henderson 2005], verifying requirements is the process aiming to proving that each
requirement has been satisfied. Verification can be done by logical argument, inspection, modelling,
simulation, analysis, expert review, test or demonstration. Bahill and Henderson also define validating
requirements as the process to ensure that the set of requirements is correct, complete, and consistent;
a model can be created to satisfy the requirements; a real-world solution can be built and tested to
prove that it satisfies the requirements.

Otherwise, Easterbrook holds that the terms Verification and Validation are commonly used in software
engineering to mean two different types of analysis [Easterbrook 96]. The usual definitions are:
Verification: Are we building the system correctly?
Validation: Are we building the correct system?

Requirements’ verification and validation ends up with a report which either accepts the requirements ’
model, or points out needs to correct the elicitation report, the requirements analysis and concept
formation report, and the requirements model.

Verification:
Find errors or defects in our

Specification and Description
Language (SDL) model

Validation:
Made simulations in order

to validate if the model
created has to match

the requirements

¬ errors
[false]

[true]

 34

Thus requirements verification and validation can be expected to be an interactive process alternating
with further requirements elicitation report work, possibly with further requirements analysis and concept
formation work; and ending with further requirements verification and validation work.

In the following section we will split the characteristics found in the literature which we consider relevant
to evaluate in an RS document. Two groups will be created, based on the criterion described above
verification / validation. Some characteristics should be verified and validated to ensure a complete
evaluation.

In the rest of the document we will assume verification and validation as two complementary processes.
We will consider verification as the first step of the validation process. In this sense, the fundamental
strategy of verification is to identify and to reduce errors in a model, that is, verification deals with
mathematics. And validation addresses the question of the f idelity of the model to specific conditions of
the real world, that is, v alidation deals with requirements.

3.4 Desirable characteristics to verify

In general, the most important elements to respect in order to guarantee an acceptable requirement
specification quality level are defined in [Lami 2007] and can be resumed in the next fourth tables:

Indicator Description

Vagueness When parts of the sentence are inherently vague (e.g., contain words with non -unique
quantifiable meanings). For example: easy, strong, good, bad, useful, significa nt,
adequate and recent.

Subjectivity When sentences contain words used to express personal opinions or feelings. For
example: similar, similarly, having in mind, take into account and as [adjective] as
possible

Optionality When the sentence contains an optional part (a part that can or cannot be
considered). For example: possibly, eventually, in case of, if possible, if appropriate, if
needed

Implicity When the subject or object of a sentence is generically expressed by demonstrative

 35

adjectives (e.g., this, these, that, those) or pronouns (e.g., it, they). Implicit adjective
(e.g., previous, next, following, last), or preposition (e.g., above, below).

Weakness When a sentence contains a weak verb. For example: could, might and may.

Table 3-4-1: Ambiguity Indicators for RE’s verification and validation

Indicator Description

Multiplicity When a sentence has more than one main verb or more than one subject.

Readability The readability of sentences is measured by the Coleman-Liau Formula of readability.
The reference value of this formula for an easy -to-read technical document is 10. If
the value is greater than 15, the document is difficult to read.

Table 3-4-2: Understandability Indicators for RE’s verification and validation

Indicator Description

Under-
specification

When a sentence contains a word identifying a class of objects without a modifier
specifying an instance of this class.

Table 3-4-3: Completion Indicators for RE’s verification and validation

Indicator Description

Vagueness See Table 3-4-1

Subjectivity See Table 3-4-1

Optionality See Table 3-4-1

Implicity See Table 3-4-1

Weakness See Table 3-4-1

Under-
specification

The use of words that need to be instantiated (i.e., access [write, remot e, authorized
access]

Multiplicity The use of multiple subjects, objects, or verbs, which suggests there are actually
multiple requirements.

Table 3-4-4: Expressiveness Defect Indicators for RE’s verification and validation

 36

Numerous definitions exist in literature for requirements’ quality concepts likely to be verified, as a result
of environmental specialization, variety of purpose, granularity level, etc. The following are some of the
characteristics that must be verified in a n RS document or model.

3.4.1 Completeness

A requirement model specification is completed if full labels and references to all figures, tables,
diagrams, definitions of all terms and units of measure are included in the RS document. According to
[Bjorner 06] a requirements’ model is completed if no holes can be pointed out, that is, everything
needed to be prescribed has been prescribed. Completeness is thus relative. It is only written what
“needs” be described, not what “can” be described.

According to [Zowghi, Gervasi 03], a measure for the “degree of completeness” of a set S subject to
R  D, we consider the ratio between the size of a maximal subset of S that is entailed by R  D
(maximal entailed subset, or mes) and the size of the whole set S, i.e.:

S

SDRmes
SDRcompl

),(
),,(




This measure, too, has value 1 when completeness holds, and assumes progressively lower values,
down to 1, for decreasing completeness.

3.4.2 Consistency of the requirements model

Zowghi and Gervasi claim that consistency requires the inexistency of two or more requirements in a
specification contradict ing each other [Zowghi, Gervasi 03].
As a measure for the “degree of consistency” we consider the ratio between the size of a maximal
consistent subset (mcs) of R  D and the size of the whole set, i.e.:

DR

DRmsc
DRcons






)(
),(

 37

For consistent R and D,  cons (R;D) = 1, whereas the measure tends to 0 the inconsistency degree

increases.

A wide variety of possible causes of inconsistency in software development have been identified in the
research literature. For example, in [Nuseibeh 96], the author views inconsistency as it arises between
the views of multiple stakeholders in software development. In addition, Easterbrook [Easterbrook et al.

95] regard an inconsistency similarly as any situation in which two parts of a specification do not obey
some relationship that should be hold between them. Something similar proposes Bjorner [Bjorner 06],
who claims that inconsistency of a requirements prescription is referred to some pairs (or more) of text
where one text prescribes one (set of) property (properties), while another text (of the pair or more)
prescribes (prescribe) an “opposite” property (set of properties), th at is: Property P and Property not P.

In [Lamsweerde et al. 98] it is possible to find most current techniques for inconsistency handling in the
current literature consider binary -relation conflicts only.

There are potentially many ways to resolve inconsistencies [Balzer 91]. Consistency in requirements
models thus implies a lack of contradiction within the presented information. Both a direct refutation of
previously stated requirement and an indirect denial of this description can constitute contradicti ons
within the requirements’ model. Direct refutation represents statements within the model that are
incompatible with each other. The truth of the first statement of a requirement directly negates the truth
of the second statement. Moreover, information within the model can be refuted in an indirect manner. A
given set of facts could establish a potential situation that, given the proper set of circumstances, would
contradict other facts within the model. In practice whether a statement is an implicit con sequence is a
matter of degree. Therefore, establishing consistency within a requirements ’ model is primarily a
semantic task.

3.4.3 Correctness

Correctness in specification requirements is verified by checking both, consistency and completeness
[Zowghi, Gervasi 03].

 38

Figure 3-4-1: Relationship between Specification, Domain and Requirement in an evolutionary
framework.

In figure 3-4-1, arrows represent evolution steps between successive versions of requirements and
domain descriptions.
Several revisions of the requirements are considered, each one serving the role of a specification with
respect to the previous one. This situation may be found in practice when we consider the common
case of a product family undergoing several release cycles, but also, at a finer grain, inside a single
release cycle.
Monotonic domain refinement: if we are performing an evolution step, from Ri and Di to the
subsequent versions Ri+1 and Di+1, and we are only adding new information about the domain, i.e.
Di+1 j= Di. Then,

iiii

Ritrwsscompletene

iii

yconsistenc

ii DRDRRDRDR  )()()(11

...

1111     

That is, if we can prove that:
Consistency: our new requirements are consistent with the domain (i.e., they are not asking for
something that is impossible in the real world), and that Completeness w.r.t. Ri: the new requirements
and domain description, together, do not contradict the previous requirements, then (Ri+1 U Di+1) |= Ri
U Di holds.
Monotonic requirements refinement: if we are performing an evolution step, from Ri and Di to the
subsequent versions Ri+1 and Di+1, and we are only adding new requirements, i.e. Ri+1 |= Ri. Then,

iiii

Ditrwsscompletene

iii

yconsistenc

ii DRDRDDRDR  )()()(11

...

1111     

In other words, if we can prove that:
Consistency: our new requirements are consistent with the domain described so far, and that
Completeness w.r.t. Di: the new requirements and domain description, together, do not contradict the
previous domain description, then (Ri+1 U Di+1) |= Ri U Di holds.
Where Ri: requirement specification i, Di: domain specification i.

 39

3.4.4 Satisfiability, faithful or constraint consistency

According to [Zhang et al. 04], in a product line modelling process, satisfiability ensures that there is no
inconsistency in tailoring and binding actions at the moment of deriving a particular product line
configuration form the product line model. If this pr operty is not satisfied, constraints on features or
those tailoring and binding actions should be reconsidered to eliminate inconsistencies. This definition is
not implemented by means of a computational tool and the level of operationalisation and formali sation
is not developed. Zhang et al. propose a logical formula in order to automate the satisfiability verification
process, but their implementation into a compu ting application is not yet done .

3.4.5 Suitability of each RS model element

Within the framework of software development, ISO/IEC 2001 defines suitability as the presence and
appropriateness of a set of functions for specified tasks . And in the context of product line modelling,
[Zhang et al. 04] claim that suitability ensures that every feature without being selected has the
possibility of being removed at any time. If this property is not sa tisfied, it means that there is one or
more features that will not have the chances to be removed at some moments of its life cycle . That is to
say, these features actually have been bound. Zhang et al. say that possible causes may be that the
operators have ignored the binding of these features, or have done some improper tailoring or binding
actions, or some constraints themselves are wrong. Zhang et al. propose a logical formula in order to
automate the suitability verification process, but their implementation into a compu ting application is not
yet done.

3.4.6 Usability of each RS model element

According to [Zhang et al. 04] usability ensures that every feature in the product line model has the
possibility of being added at any time. They hold also that if the property is not satisfied, it means that
there is one or more features that will not have the chances to be bound after the current binding time .
That is to say, these features actually have been removed from the feature model. The possible causes
may be that the operators have ignored the tailoring actions on these features, or have done some
improper tailoring or binding actions, or some constra ints themselves are wrong. They propose to
eliminate these causes by putting these features to removed feature s ets, or by undoing some actions at
the current binding time, or by revising constraints on features. Zhang et al. propose a logical formula in

 40

order to automate the usability verification process, but their implementation into a computing
application is not yet done.

3.4.7 Verifiability of the RS model

In [IEEE 98] and [IEEE 04] we find that an RS is verifiable if, and only if, every requirement stated
therein is verifiable. A requirement is verifiable if, and only if, there exists some fi nite cost effective
process in which a person or machine can check that the software product meets the requirement. In
general any ambiguous requirement is not verifiable.

According to Bjorner, this criterion relates to the implementation stage. For a requirement to have been
met by an implementation means that it can be proven or tested [Bjorner 06]. Some requirements can
not be so tested, at least not objectively and not quantifiable. In the case of product line, we think that all
models can be verified and this premise has been the one that has motivated this research work.

3.5 Desirable characteristics to validate

There are numerous definitions in the lite rature for requirements quality concepts to validate, as a result
of environmental specialization, variety of purpose, granularity level, etc. The following are some of the
desirable characteristics that must be validated in a RS document or model.

3.5.1 Completeness

According to Boehm, to be considered complete, the requirements ’ document must respect three
fundamental characteristics [Boehm 84]:
a) To include all significant requirements, whether relating to functionality, performance, design
constraints, attributes, or external interfaces. In particular any external requirements imposed by a
system specification should be acknowledged and treated.
b) To include definition of the responses of the software to all realizable classes of input data in all
realizable classes of situations. Note that it is important to specify the responses to both valid and
invalid input values.
c) To include full labels and references to all figures, tables, and diagrams in the RS and definition of all
terms and units of measure.

 41

The first two properties imply a closure of the existing information and are typically referred to as internal
completeness. The third property, however, concerns the external completeness of the document.
External completeness ensures that all of the information required for problem definition is found within
the specification. This definition for external completenes s shows why it is impossible to define and
measure absolute completeness of specification. The only truly complete specification of som ething
would be defined if no external elements intervene in the aforementioned specification . A compromising
position would be to determine whether a specification is sufficiently complete. Decision on what is
sufficient completeness would have to be defined with respect to the type of system being implemented.
For example, in safety-critical systems sufficient completeness may be defined with respect to system
safety design constraints as well as requirements derived from hazard analysis [Leveson 00]. Clearly
one of the available techniques that could assist in the determination of external completeness of the
specification is domain modeling.
Jaffe et al have developed a set of formal criteria to identify missing, incorrect, and ambiguous
requirements for process-control systems [Jaffe et al. 91]. This work has been continued by Leveson in
the design of formal specification languages [Leveson 00]. Throughout the development of various
formal specification languages, Leveson has found that propositional log ic notation does not scale well
to complex expressions in terms of readability and to overcome this concern, she has developed a
tabular representation of disjunctive normal form called AND/OR tables. In the same way, in goal
oriented methods such as I* [Mylopoulos et al. 99] and AGORA [Kaiya 02], goal refinement and
elaborations are used in the form of AND/OR graph to validate requirements specification for
completeness.
In addition, Letier and Lamsweerde suggest that goals must be made explicit in the req uirements
engineering process because goals drive the elaboration of requirements to support them and that they
provide a criterion for measuring requirements completeness [Letier, Lamsweerde 02].

3.5.2 Consistency of the requirements

In [IEEE 98] and [IEEE 04] reports, their authors hold that if an RS does not agree with some higher-
level document, such as a system requirements specification, then it is not correct.
In the following list they present some types of requirements inconsistence:
a) The specified characteristics of real -world objects may conflict.
b) There may be logical or temporal conflict between two specified actions.
c) Two or more requirements may describe the same real-world object but use different terms for that
object. The use of standard terminology and definitions promotes consistency.

 42

But they do not propose any method or technique that permits to identify and rectify t hese types of
inconsistencies with the stakeholders or other artefact help.

3.5.3 Correctness

In [IEEE 98] and [IEEE 04] reports, we find that if an RS does not agree with some higher-level
document, such as a system requirements specification, then it is not correct. So that, an RS is correct
if, and only if, every requirement stated therein is one that the softwa re shall meet.
Our literature research has showed that as there is no tool or procedure that ensures correctness. The
RS should be compared with any applicable superior specification, such as a system requirements ’
specification, with other project documen tation, and with other applicable standards, to ensure that it
agrees. Alternatively the customer or user can determine if the RS correctly reflects the actual needs.
Traceability makes this procedure easier and less prone to error. Completeness is a relat ive property
and may be determined only in relation to an external reference.
According to [Zowghi, Gervasi 03], [IEEE 98] and [IEEE 04], correctness of a requirements ’ specification
describes the correspondence of that specification with the real needs of the intended users much the
same way that correctness of a piece of software refers to the agreement of the software part with its
specification. In the real-world RE is an evolutionary and incremental process and hence the
inconsistency analysis which is part of this process must also be performed in an evolutionary and
incremental manner. This means that consistency checking is part of the construction of the
requirements specifications and should be performed in parallel.
In the same way, Bjorner claims that a requirements’ model is correct (validated) when it has been
thoroughly validated with respect to all requirements stakeholders, and that the client has accepted the
final document [Bjorner 06].

3.5.4 Importance and/or stability

According to [IEEE 98] and [IEEE 04], an RS is ranked for importance and/or stability if each
requirement in it has an identifier to indicate either the importance or stability of that particular
requirement. Typically, all of the requirements that relate to a software pro duct are not equally
important. Some requirements may be essential, especially for life -critical applications, while others may
be desirable.
Bjorner proposes a simple ranking of individual requirements into [Bjorner 06]:
a) Essential requirements (must be implemented);

 43

b) Worthwhile requirement (would be very nice if implemented) ; and
c) Optional requirements (implement if not too costly), and with this ranking being stable during the
requirements engineering phase.
This characteristic is implemented in the majority of RE applications in the market. In these tools, ranked
is typically made by engineers and the rank possibilities are not s o complicated, per contra, is a process
well defined and largely implemented in order to classify requirements by char acteristics mentioned
above.

3.5.5 Modifiability

According to [IEEE 98] and [IEEE 04] an RS is modifiable if, and only if, its structure and style are such
that any changes to the requirements can be made easily, completely, and consistently while retain ing
the structure and style. Modifiability generally requires an RS to:
a) Have a coherent and easy-to-use organization with a table of contents, an index, and explicit cross
referencing;
b) Not be redundant (i.e., the same requirement should not appear in more than one place in the RS);
c) Express each requirement separately, rather than intermixed with other requirements.

It is claimed that requirements change all the time. Whenever such changes actually do happen, one
needs to modify the existing requirements’ model [Bjorner 06]. To do so, it is of paramount importance
that the requirements’ prescription documents follow a hopefully existing domain description document.
This makes it easier to find, we claim, where changes to the requirements ’ prescription model need be
made, and, given that the final criterion is met, to trace repercussions of the change.

3.5.6 Satisfability

Bjorner claims that a requirements’ model is satisfactory if it satisfies the following criteria [Bjorner 06]:
correctness (validated by stakeholders), unanbiguity, completeness, consistency, stability, verifiability,
modifiability, traceability and faithfulness. Therefore, satisfaction property can not be validated directly,
that is, it is necessary to validate the previous RE qual ity properties in order to achieve satisfiability
validation. These set of properties are discussed in this section one by one.

 44

3.5.7 Traceability

In [IEEE 98] and [IEEE 04] reports, an RS is traceable if the origin of each of its requirements is clear
and if it facilitates the referencing of each requirement in future development or enhancement
documentation.
On the other hand, Bjorner holds that a requirements model is traceable if every requirement Rs , is
annotated with its origin (whom, when, where) , and that the reason (rationale) for the requirements is
well-documented [Bjorner 06]. Furthermore, traceability means that one can simply find all those other
requirements Rs1, Rs2, …, Rsn, on which the meaning of the given requirement depends, that is, Rs
relies on Rs1, Rs2, …, Rsn, or whose meaning depends on the given must therefore be provided by
suitable requirements documentation tools.
Traceability is widely explored and implanted in almost all modern software systems. And dependence
between requirements is each day more and more an automatic activity.

3.5.8 Unambiguousness

One more time in [IEEE 98] and [IEEE 04], an RS is unambiguous if, and only if, every requirement
stated therein has only one interpretation. As a minimum, this requires that each characteristic of the
final product be described using a single unique term. In cases where a term used in a particular context
could have multiple meanings, the term should be included in a glossary where its meaning is made
more specific.

Lami claims that a requirement specification is not ambiguous, when it is [Lami 07]:
a) Not vague: When parts of the sentence are not inherently vague (e.g., do not contain words with
non-unique quantifiable meanings. Like: easy, strong, good, bad, useful, signifi cant, adequate and
recent).
b) Not subjective: When sentences contain words used to express personal opinions or feelings (e.g.,
similar, similarly, having in mind, take into account, as [adjective] as possible, etc).
c) Not optional: When the sentence do not contains an optional part (i.e., a part that can or cannot be
considered. Like: possibly, eventually, in case of, if possible, if appropriate, if needed, etc).
c) Explicit: When the subject or object of a sentence is explicitly expressed (e.g., use of demonstrative
adjectives like: this, these, that, those or pronouns like: it, they. Implicit adjectives like: previous, next,
following, last or prepositions like: above, below).
d) Not weak: When a sentence do not contains a weak verb (i.e., could, mi ght, may).

 45

According to [Bjorner 06] a requirements model is unambiguous if it does not have inconsistencies, no
vaguenesses and no double meaning remain in the final requirements model. In other words: it is
precise.

For us, a product line model is unam biguous if it has not inconsistencies in his variability and transversal
relationships, and also if it does not admit multiple interpretations, like for example to have a mandatory
and optional feature at the same time or a feature that is excluded and also required by one or two
mandatory features.

3.5.9 Understandability

In the context of natural language analysis for RE, Lami holds that a requirement specification is
understandable when a sentence does not have more than one main verb or more than one subject
(e.g., the use of multiple subjects, objects, or verbs, which suggests there are a ctually multiple
requirements) and when each sentence is readable [Lami 07]. He also holds that readability of
sentences is measured by the Coleman-Liau Formula of readability. The reference value of this formula
for an easy-to-read technical document is 10. If the value is greater than 15, the document is difficult to
read.

This characteristic will be not considered to be evaluated on product line model because the context of
application is rather applied on requirement textual description.

3.5.10 Verifiability with reference to stakeholders and elicitation report

For us, a RS is verifiable if, and only if, every requirement stated therein is verifiable. A requirem ent is
verifiable if, and only if, there are some finite cost-effective process in which a person or machine can
check that the software product meets the requirement. In general any ambiguous requirement is not
verifiable.

3.6 Verification and validation techniques

According to [Mader et al. 07], formal verification is a strong means to obtain the necessary certainty. Its
success lies in the ongoing development of sophisticated algorithms, data structures and tools; the size

 46

of (automatically) verifiable problems is increasing; new classes of verifiable problems are being found;
and also hardware progress allows dealing with larger and larger systems. Many cases have
demonstrated the usefulness or potential usefulness of computer aided verification.
At the same time, formal verification has a number of dangers. It is very reductionistic in the sense that it
provides certainty about a model of only one fragment of reality.

According to [Kuloor, Eberlein 02], formal reviews, prototyping and requirements tes ting are some of the
techniques used for requirements verification. Within the context of formal verification, product line
engineering presents a big and actual issue for the industry. A product family has more than one
product and most of the requirements are common across the family. Any defect or misunderstanding in
such requirements would affect the entire family. There are requirements that are specific to each
product. Hence requirements verification is very important for product lines. Requirements verification
can be conducted in a similar way as they are conducted in single product development. But in the
same manner, we have not clear if all the verification techniques used for a single product can also be
used for product lines. And in the same way that [Lauenroth, Pohl 07], we consider that it is an open
issue in RE research.

Techniques for verification:

Testing
By requirements resting we shall understand that a requirements’ prescription is provided with set
values for all relevant arguments (the set data), with the prescription then being evaluated for those
arguments. A way of performing a requirements’ test is by a systematic search for a counter -example to
claim (of proof) of correctness. Testing has been and is still today a heuristic -based science. An
important element in performing testing is formal text analysis. If requirements prescription parts have
been formalised, then theory-based testing technologies have or can be developed and can be used for
testing.

Formal proofs
By a formal proof we shall understand a given requirements ’ prescription, a statement (a theorem) to be
proved, and the proof that the requirements ’ prescription satisfies the statement: this proof refers to a
proof system for the language in which the requirements ’ prescription is expressed (axioms and
inference rules), and is otherwise a sequence, composed from steps, where each step in the sequence

 47

is like a theorem (a lemma), a statement, and where pairs of steps in the proof sequence are related by
the axioms and the inference rules.

Model checking
By model checking we shall understand a method for formally verifying usual concurrent systems,
frequently extremely large, have been reduced to manageable finite state systems. Requirements ’
prescriptions about such finite state systems are typically expressed as temporal logic formulas.
Efficient symbolic algorithms are used to traverse the model defined by the system and check if the
requirements prescription holds or not. Three most important techniques for model checking are CSP,
SAT and BDD described in section 1.4.

Techniques for validation:

Requirements Reviews
Requirements Reviews are techniques that check system’s requirements for completeness, relevance
and precision [Sommerville, Kotonya 98]. They can be either formal or informal. Formal reviews include
a group session to verify the requirements. Informal reviews involve a discussion between the
requirements engineer and the customer. Since there are several products involved Formal Reviews
have to be conducted to verify product line requirements. The review team should include domain
experts, requirements engineers, customers and stakeholders. Review can be conducted as a group
meeting facilitated by the requirements engineer. At first , the product family in general including all the
common and variable requirements is considered for review. All the comments must be documented.
Any changes required must be recorded. Next, requirements for each product in the family are
reviewed. The reviewing process should also ensure that the family and its member requirements are
properly mapped. Informal reviews can be conducted between the requirements ’ engineer and
customers to validate the product specific requirements.

Prototyping
Prototyping is a technique during which products are partially implemented in order to learn more about
certain problems or to demonstrate that certain featu res are working as intended [Sommerville, Kotonya
98]. Requirements for a product family can be verified by developing prototypes. In this case the
prototype representing the common features can be reused for all the members across the family. For
example, a prototype developed to illustrate the user interface facility of a system can be reused for all
products.

 48

Requirements Testing
The process of testing the product against each requirement is called Requireme nts Testing [Macaulay
96]. Product family requirements can also be verified by defining test cases for each requirement. While
defining the test cases it is possible to unearth some of the defects in the early stage of the
development. In the case of product line development , test cases must be defined for both common and
variable requirements.

3.7 Conclusion

The objective of this third chapter was to survey the different definitions of verification and validation in a
RE context, to compare them and listing the characteristics that must be verified and validated in a
requirement specification artefact . This chapter includes not only methods and notations used in V&V
process approaches, but also explains the three most popular techniques for verifying and validating a
requirement specification document.
The next Chapter focuses on verification of a particular requirement specification artefact . In the
subsequent chapters we will centred our effort in product line models verification process definition and
implementation.

 49

Part IV

Verification of Product Line Models

 50

4. Verification of Product Line Models

4.1 Methods proposed in literature

Formal verification is a strong means to obtain the necessary certainty. Its success lies in the ongoing
development of sophisticated algorithms, data structures and to ols. The size of automatically verifiable
problems is increasing; new classes of verifiable problems are being found. Hardware progress also
allows us, or at least tries, to automate the verification of this kind of problems. Each day we find out
more and more tools or potential tools of computer assisted verification.

At the same time, formal verification fails on its reductionistic view of problems in the sense that it
provides certainty about a model of only a fragment of reality. We know that verification process for a
real-world system cannot consist of formal techniques only, but also requires interaction with
stakeholders and its environment in order to validate the system from a more real point of view. In this
work we will focus on the verification issue. We will deal w ith validation feature in future reports.

In this section we will work on verification process found in literature. We argue that the importance of
positive results from formal verification depends on the quality of the verification process and techniques
used. Next we present twelve most relevant methods found in literature.

1. A method for formal verification of a feature model is proposed by [Wang et al. 05]. They present an

approach to modeling and verifying feature diagrams using Semantic Web ontologies. In the
proposed method, the feature configuration is constructed as a separate ontology and t he reasoning
engine is invoked to check its consistency. The configuration is valid if the ontology is checked to be
consistent with respect to the feature diagram ontology. They use Protégé-OWL and RACER to
detect the inconsistence in a particular feature configuration, looking for errors in relations between
features and inconsistent constraints between features .
In the following diagram, Wang et al show how RACER detect constraint inconsistency between a
set of value constraints of a particular configura tion “E” and the product line model constraints.

 51

Figure 4-1-1: RACER detect an inconsistency, taken from [Wang et al. 05]

2. A propositional logic-based method for verification of feature models at different binding times

(construct-time, reuse-time, compile-time, install-time, load-time) is proposed by [Zhang et al. 04]. In
this method, the constraints in a feature model are formalised in a set of logical sentences. Each
binding time, after an undecided feature is bound or removed, the truth value of this feature will
become the logical constant True or False respectively. With this conversion the constraint
satisfiability problem is transformed in satisfaction problems in the mathematical logic. So,
verification problems such as the detection of inconsistent constraints or the detection of the
conflicting or unnecessary binding resolution can be automatically revealed. Zhang et al propose
three properties SUS (i.e. Satisfability, Usability and Suitability) to verify feature models.
We have modified the original formula proposed by Zhang et al in order to permit feature model
verification independently of the binding time concept. Thus, it is proposed to check:
Liveliness (Usability): the usability ensures that every feature in Undefined Feature Set has the
possibility of being bound or added in the future model.

 52

    fCIikPLCPLCI

PLMCf

inikik 



 ..11),1(,...,

,)DependencyTransverse endency,VariantDep(, Feature

Utility (Suitability): the suitability ensures that every feature in Feature Set has the possibility of
being removed from the feature model .

     fCIikPLCPLCI

PLMCf

inikik 



 ..11),1(,...,

,)DependencyTransverse ,endencyVariantDep(, Feature

Satisfiability: the satisfiability ensures that there is no inconsistency in constraints. If this property is
not satisfied, constraints on features should be reconsidered to eliminate inconsistencies.

ini CfPLMCf ..1,)DependencyTransverse ,endencyVariantDep(, Feature 

Zhang et al propose five main steps in the process of feature model verification. The firs step is
feature model construction. In this step, features, refinement relations between features and
constraints on features associated with a product -line are systematically identified. The sec ond step
is to formalise constraints on features into logic sentences. The third step is to compute atomic -set
contained in a feature model, and use these atomic -sets to simplify constraints by replacing features
involved in constraints with their correspo nding atomic-sets. After the third step, operators can apply
the SUS criteria to verify constraints on features, and further take binding resolutions at each
binding-time (the fifth step) and repeatedly apply the SUS criteria to verify these resolutions. T he
fourth step can be automated by using model checkers, suc h as SMV. The approach can be
summarized with the next process diagram:

 53

Figure 4-1-2: process of feature model verification proposed by Zhang et al

3. Another verification procedure pretends to check feature-based model templates against Object-

Constraint Language (OCL) well-formedness rules. [Czarnecki, Pietroszek 06] present an
automated verification procedure for ensuring that no ill -structured template instance will be
generated from a correct feature-based configuration. This method use a feature-based model
template composed of a feature model and an annotated model expressed in some general
modeling language such as UML or a domain-specific modelling language. The approach allows
expressing the desired well-formedness constraints in OCL with respect to the metamodel of the
target modelling language. Next, this set of constraints is transformed into a model in the chosen
modelling language. So, a feature-based template is correct if, and only if, every correct
configuration results in a correct template instance. Though, in this approach it is easy to forget a
necessary constraint in the feature model or an annotation in the annotated model. Their approach
can be applied to a domain requirement specification . However, Czarnecki and Pietroszek only deal
with static properties of the UML.

The follow diagram, taken from [Czarnecki, Pietroszek 06] , shows the context used in the
verification procedure.

1: Feature model
construction

2: To formalise constraints on features into logic sentences

3: To compute atomic-set and replacing features involved in
constraints with their atomic-set

4: Operators can apply the SUS criteria to verify constraints
on features

5: Take binding resolutions at each binding-time and apply
the SUS criteria to verify these resolutions

Can be automated by tool supporting

Can be automated by tool supporting

Can be automated by using model checkers (SMV)

 54

Figure 4-1-3: Context of the Czarnecki and Pietroszek’s verification procedure

It is clear that in the following figure, the class diagram, that has been generated from the PL
configuration, is not well formed because of the dangling association “MultipleClassification |
!Categories”

Figure 4-1-4: Example of a UML class model template, taken from [Czarnecki, Pietroszek 06]

So, the key idea of a feature-based model template is that, given a particular feature configuration,
an instance of the template can be automatical ly created by removing the model elements wh ich
presence conditions are evaluated FALSE.

4. An initial research path to address volatility analysis in software PL engineering issues, based on

aspect-oriented and model-driven techniques is presented in [Alférez et al. 07]. This approach
motivates the use of feature models in conjunction with use case and activity diagrams , so that
every requirement is ideally related to only a feature. But in this verification approach, oriented to
satisfaction of requirements , it is possible that a use case be related with several features.
Figure 4-1-5 describe the process by means of which the generation of the use case model related
to a SPL configuration and the generation of activity diagrams related to a SPL configuratio n is

 55

done. The mapping between features, use cases, activity steps, is defined by creating links between
those elements in their respective meta -models.

Figure 4-1-5: an overview of the process, taken from [Alférez et al. 07]

5. Padmanabhan and Lutz propose a tool-supported verification of product line requirements

[Padmanabhan, Lutz 05]. They use logic to define constraint rules for the consistency of
requirements and support consistency checks of the PRS. Their approach is implemented in a
requirement engineering tool called DECIMAL (DECIsion Modeling AppLication). DECIMAL is an
interactive, GUI-driven requirements verification tool that automatically checks for completeness
and consistency between a new product and the product line to which it belongs. DECIMAL also
performs range and type correctness checking to verify that the values of variabilities selected for
the new member fall in the range and are of the same data type as specified for the product line.
The tool does not provide run-time checks and neither check to see if the constraints themselves
are consistent. They do not support consistency checks of the DRS.

In Figure 4-1-6 a SQL query looking for inconsistencies in the constraints and a SQL query looking
for product-line member that did not s atisfy a particular commonality are shown. The utilized method
consist in automatically checks that dependency relationships among variabilities are maintained in
the new system.

 56

Figure 4-1-6: SQL queries for consistency and completeness verification in DECIMAL

6. Product Line Software Engineering (PuLSE) is a customizable product line practice proposed in

[Bayer et al. 99]. The PuLSE process has three basic elements: Deployment Phases, Technical
Components and Support Components. Deployment phases are logical steps in the PuLSE practice
that describe the activities needed to define and develop a family of products. PuLSE technical
components include the technical expertise required to carry out various PuLSE activities. PuLSE
support components provide the guidelines required to solve any non-technical issue such as
organization issue, project entry points and process evolution. On the other hand PuLSE provides
very little information about requirements specification, verification and traceability. Moreover
PuLSE permits to carry out a consistency verification procedure over one member of the product
line with respect to PL model. Besides, we have found evolutions of PuLSE, such as KobrA that is
an object-oriented customization of PuLSE. However, KobrA focuses more on the design and
implementation of a domain framework.

The follow figures show the generic storyboard of a PL and one particular storyboard’s
configuration.

 57

Figures 4-1-7 and 4-1-8: Examples taken from [Bayer et al. 99].

7. Pure:variants is a tool developed by ‘Software Acumen’ enterprise as a Eclipse plug-in

[PureVariants], [Spinczyk, Beuche 04]. In the context of pure::variants, model verification is the
process of checking the validity of feature family, and variant description models. Two kinds of
model validation are supported, i.e. validating the XML structure of models using a corresponding
XML Schema in order to check if the XML structure of a pure::variants model is correct. And
performing a configurable set of checks using the model check framework in order to allow the
validation of models using a configurable and extensible set of rules (called "model checks"). There
are no restrictions on the complexity of model checks.

 58

As feature selections are made, pure::variants checks their va lidity and, if necessary, automatically
resolves dependency conflicts or highlights conflicts if they cannot be resolved automatically. Once
a valid selection has been made, an evaluation of the Family models, containing component
definitions, is performed .
This evaluation process produces an abstract (XML) description of the variant in terms of software
components (components, modules, files etc.). This description is used to control a transformation
process that in-turn generates the finished product var iant (source code and other artefacts).
The next figure show a computer’s product line model, in which several particular configurations can
be derived and verified like we have described above.

Figure 4-1-9: Example of computer’s product line model , taken from [PureVariants]

8. FeaturePlugin is an Eclipse plug-in proposed in [Antkiewicz, Czarnecki 04]. Verification process in

FeaturePlugin is yet under construction and refinement because, by the moment, the tool only
supports static verifications of the models. FeaturePlugin also support additional constraints, i.e.,
those that cannot be expressed as feature or group cardinalities. Common examples are implies
and excludes constraints. In general, additional constraints in cardinality based feature models
require tree-oriented navigation and query facilities, iteration mechanisms or quantifiers, and ways
of counting feature clones in the scope of a given feature within a configuration. Furthermore, logic,
arithmetic, set, and string operators on feature attr ibutes and feature sets are desirable. Such
constraints can be adequately expressed using XPath 2.0 .
FeaturePlugin can check the additional constraints for a given configuration. For exampl e, the
configuration in Figure 4-1-10 satisfies all the constraints from Figure 4-1-11. Figure 4-1-11 shows
three examples. The first constraint is an example of a local constraint requiring that the attribute of

 59

InDays is positive. The second constraint involves several features and states that selecting
FraudDetection implies that CreditCard and/or DebitCard are selected. The third constraint
existentially quantifies over feature clones and states that at least one custom shipping method
should have a rate of more than 0.

Figure 4-1-10: configuration of EShop, taken from [Antkiewicz, Czarnecki 04].

Figure 4-1-11: constraints evaluated from on the configuration from figure # -1, taken from
[Antkiewicz, Czarnecki 04].

9. FAMA is a framework for the automated analysis of feature m odels proposed by [Benavides et al.

07]. The automated analyses of FMs is usually performed in two steps:
i) The FM is translated into a certain logic representation

 60

ii) Off-the-shelf solvers are used to extract information from the result of the previous translation
such as the number of possible products of the feature model, all the products following a criteria,
finding the minimum cost configuration, etc [Benavides et al. 06].
The current implementation of FAMA integrates three of the most promising logic representations
proposed in the area of the automated analysis of feature models: CSP, SAT and BDD, but more
solvers can be added if needed. The implementation is based on an Eclipse plug – in and uses XML
to represent FMs so it can interoperate with other tools that support it.

The operations fully supported by FAMA and showed in Figure 4-1-12 are:
• Finding out if an FM is valid, i.e. there is a product satisfying all the constraints. This verification is
showed in Figure 4-1-13 for a particular configuration.
• Finding the total number of possible products of an FM (number of products).
• List all the possible products of a feature model (list of products).
• Calculate the commonality of a feature, i.e. the number of products where a feature appears in.

Figure 4-1-12: operations and selection of solvers in FAMA (taken from [Benavides et al. 07])

 61

Figure 4-1-13: verification of constrains satisfiability for a particular configuration (taken from
[Benavides et al. 07]).

10. Another method for product line models verification is proposed in [Batory, Thaker 06]. Batory and

Thaker focus on the safe composition of products by ensuring that there is no undefined element
(e.g. classes, method) referred to in a composed program implementation. Again, they deal with
static properties of the product line model and product line configurations and do not support a
consistency check of behavioral properties . They propose some logical expressions dealing with
refinement constraint, parent constraints and reference constraints. Like for example:
If features X, Y, and Z, are refined by feature F:
 F  X v Y v Z

Let PLf be the propositional formula of product line PL:
 (PLf ^ F ^ ¬X ^ ¬Y ^ ¬Z) = false

11. Gomaa and Shin suggest a multiple-view approach for modelling variability in software product lines

and verify properties like consistency of relations between objects and traceability assurance
[Gomaa, Shin 04]. They extend UML (Unified Modeling Language) notations with variation points
and define a central feature notation. All variabilities are then linked together in a multiple -view
meta-model. In addition to assuring traceability, the meta -model can be used in order to check
whether all relations between objects are correct, like f or instance checking that each class
corresponds to a feature. This can be achieved thanks to definition of rules at meta-level and
checking that multiple-view model must follow the rules defined in the multiple -view metamodel.

 62

The next figure (Figure 4-1-14) shows the method proposed by Gomaa and Shin:

Figure 4-1-14: multiple-view approach for modelling variability and consistency checking (taken
from [Gomaa, Shin 04]).

12. Classen proposes a problem-oriented modelling and verification method of software product lines

[Classen 07]. He suggests to use the problem frames approach as a complement to feature
diagrams; (i) because it is based on the well established requirements engineering framework
mentioned before, thus enforcing the distinction of the three m ain descriptions, and (ii) because it
emphasizes and provides appropriate means for modelling the physical context. According to
Classen, a PLM is consistent if the set of specification S and the set of domain description (W)
satisfy the set of requirements R (expressed in a PLM). That is (S, W) |= R

The idea behind the feature interaction detection approach is essentially to verify the first proof
obligation of the requirements engineering framework by Zave and Jackson [Zave, Jackson 97],
S,W |= R, for all valid configurations of a PLM. A given configuration can be checked for interactions
by verifying its proof obligation, wh ich constituents can be found in the feature descriptions. If the
verification of the proof obligation is to be automated, all descr iptions have to be expressed in a
formalism that allows for automated reasoning. Classen’s approach uses the event calculus (EC)
[Shanahan 99] for that purpose, because it is intuitive and well suited for commonsense
descriptions such as those found in the domain properties for instance. The whole process can then

 63

be mostly automated: (i) valid configurations of a pro duct line are derived from the feature diagram
and (ii) each configuration is verified using the Decreasoner EC implementation.

The first proof obligation of this reference model serves as correctness proof for a feature or a
system. The three constituent descriptions of the proof obligation (specifications S, domain
descriptions W and the requirement R) are coherently modelled (see Figure 4-1-15) using Jackson’s
Problem Frames approach [Jackson 01], and formally expressed using the EC [Mueller 06],
[Shanahan 99]. This in turn allows to automate the verification of the first proof obligation through
automated model checking. Finally, the variability of the PL is modelled using FDs [Schobbens et al.
06]. Feature interaction detection is then done by verifying the proof obligation for each possible
product of the product line, as defined in the PLM .

Figure 4-1-15: mapping a FD to several problem diagrams (taken from [Classen 07]).

4.2 PLM Meta-Model

Variability can be defined either as an integral part of development artefacts or in a separate variability
model. Many research contributions have suggested the integration of variability in tradi tional software
development diagrams or models such as use case models, feature models, message sequence
diagrams, and class diagrams. Kang et al and Fey et al use feature models to represent variability
[Kang et al. 02], [Fey et al. 02]. Bühne et al, Halmans and Pohl, von der Maßen and Lichter introduce
variability in use case models [Bühne et al. 03], [Halmans and Pohl 03], [V.d. Maßen, Lichter 02]. Bosch
et al. and Svahnberg et al deal with variability in implementation structures [Bosch et al. 02], [Svahnberg
et al. 01] and nearly Pohl et al propose an orthogonal variability model as an artefact that “relates the

 64

variability defined to other software development models such as feature models, use case models,
design models, component models, and test mod els” [Pohl et al. 05].
We will work with FORE approach [Streitferdt 03]. We propose the metamodel depicted in Figure 4-2-1
for our tool- supported verification method.

Figure 4-2-1: Proposed metamodel for feature product line models.

The two central elements of the product line metamodel are Product Line Model (PLM) and Product Line
Configuration (PLC). A PLM is composed of three elements, the “Feature”, “Variant Dependency” and
“Transverse Dependency”. And a PLC is composed of “Features”.
The Feature class is specialised in two classes “FatherFeature” and “ChildFeature”. This specialisation
is complete and disjoint. Consequently, every Feature is either of the class “Fath erFeature” or
“ChildFeature”. One or several “ChildFeature” are associated by the relation “ChildOf” with a
“FatherFeature” class.

Each model element depicted in Figure 4-2-1 has at least one attribute, all grouped in the class
“Attribute”, i.e. identifier and textual annotation that allow us, for instance, to record the particula rities of
each element. For the sake of simplicity, the attributes are not shown in the metamodel.

Variability Dependency
A “VariantDependency” is the association class between “FatherFeature” and “ChildFeature” classes.
The “VariantDependency” class is specialised in “Mandatory” and “Optional” as a complete and disjoint
heritage relationship. The multiplicities of the association enforce that a “FatherFeature” must be
associated with at least one “ChildFeature” and each “ChildFeature” must be associated with one
“FatherFeature”.

 65

The optional variability dependency states that a variant child related to the variation father can be a
part of a particular product line configuration but does not need to be a part of it. The set of child
features related to parent features by means of optional dependencies is called the variability of a
feature product line model. The mandatory variability dependency implies that child feature must be part
of a particular configuration if the father feature is chosen. This does not imply that mandatory features
have to be included in all configurations of the software product line. A mandatory feature is only part of
an application if the related feature father is part of it. The set of child features related to parent features
through mandatory dependencies is caller the commonality of the feature product line model.

Transversal Dependency
A “TransverseDependency” is the association class between two features that are not related by father-
child relationship. We specialise the “TransverseDependency” relationship class into an “Excludes” and
a “Requires” relationship. The specialisation is defined as complete and disjoint. The multiplicities of the
association enforce that each feature can be associated through a transverse dependency with one or
several variants.
The “Excludes” transverse dependency states that a feature A can constraint other feature B in the
sense that if A exists in a particular product line configuration, then feature B can not be chosen in the
same configuration. The “Requires” transverse dependency stated that a feature A can constraint other
feature B in the sense that if feature A is chosen, then feature B must be chosen in the same product
line configuration.

Alternative Choice
A variability model must offer the facility to define the minimum and the maximum number of features to
be selected from a given group of variants. Consequently, we define a modelling element that allows us
to group optional features and to define multiplicities for each group . For each “FeatureSet” we have a
“Cardinality” with two attributes, “Min” and “Max”. They are needed to specify the range for the
permissible numbers of variants to be selected from the group. Additionally, the “Cardinality” class has
the constraint that the “ChildFeature” that are part of a group must refer to the same “FatherFeature”.

4.3. {Characteristics to verify in PL models} + {techniques}* + {lessons}*

In the literature, we have found some characteristics that we can considerate in a process of product
line model verification. These characteristics are defined and discussed in this section; also we go to

 66

present the techniques used to their implementation and some lessons learned from this literature
analysis to our product line model verification appro ach.

4.3.1. Consistency

In the literature we found several definitions of consistency in PLMs. According to [Lauenroth, Pohl 07]
the PLC of a product line is consistent, if a viable implementation exists. A necessary criterion for
consistency is the absence of contradictions in the specification.
Requirements in the PLM can contradict each other. This implies that a PLM must, however, not be
consistent. For example, Savolainen and Kuusela argue that inconsistencies (i.e. contradictions)
between product line requirements can be intentionally introduced: “… within the product family there
are also intentional inconsistencies” [Savolainen, Kuusela 01]. For example, it is possible that one
product of a product line P has to fulfil the requirement A, whereas another product of the product line P
has to fulfil the requirement ¬A. Consequently, a PLM may contain contradicting requirements.
In contrast, a PLC must be consistent. However, from contradicting requirements in the PLM we cannot
necessarily deduce that any derived PLC is inconsistent. A set of contradicting requirements in the PLM
will imply an inconsistency in a PLC only if the set of contradicting requirements of the PLM can be part
of the same PLC. Since the variability model determines if a set of con tradicting requirements may
become part of the same PLC, the definition of consistency of a PLM must take the product line
variability into account.
Laurent and Pohl also claim that the PLM of a product line is consistent, if all PLCs of all possible
products (determined by the variability model of the PLM) are consistent. The computational cost for
automate these definition is too high, for this reason Laurent and Phol’s last definition of consistency is
lacking from a pragmatic point of view, and there are not known tools that implement it.

In addition, in [Batory,Thaker 06] authors deal with static properties of the PLC and do not support a
consistency check of behavioral properties. Some years back, [Bayer et al. 99] had said than a PLC is
consistent if satisfied the set of PLM commonalities. And as complement to the previous definition,
[Padmanabhan, Lutz 05], a PLC is valid if there are not inconsistencies by reference to PLM’s
constraints.

On the other hand, for [Wang et al. 05], a PLC is valid if its ontology is checked to be consistent with the
PLM’s ontology. According to [Classen 07], a PLM is consistent if the set of specification and the set of
domain description satisfy the set of require ments (or the PLM).

 67

We can say that a PLM is consistent if and only if it satisfied:
1. The right dependency relationships among the features (constraints, cardinality-range, types, etc);
2. A particular Product Line Configuration construction respect all the commonalities;
3. It is possible to derive at lea st one particular configuration from the product line model.

Techniques proposed for consistency verification:

In [Wang et al. 05], the authors present an approach to modeling and verifying feature diagrams using
Semantic Web Ontologies. The technique proposed shows how to check PLC’s ontology with respect to
the PLM’s ontology in order to verify consistency. This technique needs to transform the PL feature
model and each PLC feature model into PLM’s and PLC’s ontology respectively and to compare each
one with the PLM’s ontology. This comparison is made by means of a reasoning engine that is invoked
to check its consistency. The configuration is valid if the ontology is checked to be consistent with
respect to the feature diagram ontology. Wang et al’s approach use Protégé-OWL and RACER to
successfully detect the inconsistence in a PLC .

Another technique is proposed by [Bayer et al. 99]. This technique pretends to check that each
commonality in the PLM must be present in each PLC, if this correspondence relation is not satisfied for
PLC k, then PLC k is not consistent. We can represent it by the following logical constraint:

cfPLCffeaturePLMcyCommonalit  .,

Padmanabhan and Lutz propose to make SQL queries looking for inconsistencies in the constraints and
SQL queries looking for PLCs that did not satisfy a particular commonality [Padmanabhan, Lutz 05].
This technique addresses the issue of requirements verification for product lines through a requirements
engineering tool called DECIMAL (DECIsion Modeling AppLication). DECIM AL is an interactive, GUI-
driven requirements verification tool that automatically checks for completeness and consistency
between a new product and the product line to which it belongs and automates completeness,
consistency, range, and type checks to verify that the values of variabilities selected for the new
member fall in the range and are of the same data type as specified for the product line . On the other
hand, DECIMAL still does not check to see if the constraints themselves are consistent.

 68

Lauenroth and Pohl propose a consistency checking technique for dynamic properties of PLMs based
on model checking techniques [Lauenroth, Pohl 07]. In this technique, the goal is to check the variability
model, the PLM, and their interrelation to determine if th e definitions in these artefacts allow the
derivation of an inconsistent PLC. They use model checking as a proven technique for performing
consistency checks of behavioral specifications in single system engineering, through adaptation and
application of existing model checking algorithms.
The central idea of this approach is as follows:
For a given invariant i, an algorithm searches for a valid path from the start state to a state that violates
i.
A path is considered as valid if a PLC can be derived that contains this path and the considered
invariant. If the derivation of a PLC with such a path is possible, the PLM is inconsistent. The
identification of such paths requires the following steps:
 1) Capture the behaviour of the product line in a single au tomaton.
 2) Search for states violating an invariant in the variable global system automaton.
 3) Search for valid paths from the start state to the states causing the violations.
This technique can be resumed by means of the follow logical expression and algorithm for PLM
inconsistency verification:

)),((invaSet, PLMiPiPLCPpathi

Algorithm for PLM inconsistency verification:
For invariant i:

Search in PLC a valid path P from initial state to a state that violates i.
If a PLC exists with P, PLM is inconsistent

In [Batory, Thaker 06], the authors propose a technique for support the automatic creation of a product
line software implementation based on feature models. They focus on the safe composition of products
by ensuring that there is no undefined element (e .g. classes, method) referred to in a composed
program implementation. Again, Batory and Thaker deal with static properties of the product line and do
not support a consistency check of behavioral properties. For example, they proposed verification
logical formulas like Refinement Constraint: If features X, Y, and Z, are refined by feature F:

F ⇒ X ∨ Y ∨ Z

 69

Lessons learned from consistency verification:

Numerous research contributions for checking consistency in single system engineering have been
proposed [Heitmeyer et al. 96], [Hunter, Nuseibeh 98], [Huzar et al. 05]. Whereas those approaches
support consistency checking during the engineering of a single software system, their use for checking
consistency in product line requirements specification is not suitable since those approaches do not
provide adequate support to handle the variabilit y in product line requirements specifications.
Existing approaches for consistency checking of requirements specifications in product line engineering
focus on the requirements specification derived in application engineering for a particular product
[Fantechi et al. 04], [Padmanabhan, Lutz 05]. Consistency checking of requirements specification is thus
only performed in application engineering and not in domain engineering. In application engineering, a
correction of the inconsistency quite likely influenc es not only the product currently derived, but also the
domain artifacts as well as products previously derived from the product line.
We consider the approaches presented in [Wang et al. 05], [Bayer et al. 99], [Padmanabhan, Lutz 05] ,
[Batory, Thaker 06] and [Lauenroth, Pohl 07] are important for our work. All these approaches are
important for consistency analysis in product line implementation.

4.3.2. Correctness or Satisfiability of Constraints

In the literature we found several definitions of correct ness in PL models. According to [Bjorner 06] a
model of requirements is correct when it has been thoroughly validated with respect to all requirements
of stakeholders, and that the client has accepted the final document. For Czarnecki and Pietroszek, a
model is well-formed or correct if it conforms to the metamodel, i.e., it satisfies the multiplicities and the
Object-Constraint Language (OCL) constraints of the metamodel [Czarnecki, Pietroszek 06].
Alternatively, in [Wang et al. 05] authors say that a particular PL configuration is valid if its ontology is
checked to be consistent with the PL model ontology.
On the other hand, Zhang, Zhao and Mei hold that constraint satisfiability property ensures that there is
no inconsistency in tailoring of features [Zhang et al. 04]. The verification of feature models is converted
into satisfaction problems in the logic. Therefore, verification problems such as the detection of
inconsistent constraints or the detection of the conflicting or unnecessary binding resolutio n can be
automatically revealed.

 70

In the literature, we have also found that Batory and Thaker work in the satisfiability of constraints issue
from the point of view of the safe composition of products by ensuring that there is no undefined
element (e.g. classes, method) referred to in a composed program implementation [Batory, Thaker 06].

Techniques proposed for correctness or satisfiability of constraints verification:

Czarnecki and Pietroszek propose an automatic verification procedure which can estab lish that no ill-
formed template instances will be produced given a correct configuration of the template’s feature model
[Czarnecki, Pietroszek 06]. According with their approach, it is necessary to express the desired well-
formedness constraints in the OCL with respect to the metamodel of the target modelling language of
the template instances. This key capability is achieved through a new semantics of OCL for templates.
The semantics maps OCL constraints to propositional formulas, which are then fed into a SAT solver.

Figure 4-3-1: Example of a UML class model template, taken from [Czarnecki, Pietroszek 06]

The feature model in Figure 4-3-1 (a) denotes 52 correct configurations. A sample configuration is
shown in the same figure using a so-called check-box rendering of a configuration tool [Czarnecki, Kim
05]. In this rendering, optional features are shown as check boxes. The boxes of selected features are
checked. The boxes of eliminated features are crossed. Figure 4-3-1 (b) shows an example of a UML
class model template, which is a UML class model annotated with presence conditions.

 71

The key idea of a feature-based model template is that, given a particular feature configuration, an
instance of the template can be automatically created by removing the model elements which presence
conditions are evaluated FALSE.

Table 4-3-1: Abbreviations of feature names from Figure 4-3-1 (a), taken from [Czarnecki, Pietroszek
06]

For the feature model in Figure 4-3-1 (a) and assuming the abbreviations in Table 4-3-1, the formula to
verify qFM is as follows:
qFM =

root: cs^

parent-child: (ct  cs) ^ (mc  ct) ^ (ml  ct) ^ (ds  ct) ^ (tn  ct) ^ (pi  cs) ^ (aa  pi) ^

(i2  aa) ^ (i3  aa) ^

group: (aa  choice1,2(i2, i3)) ^

transverse: (tn i2)

where
choice1,2(i2, i3) = i2 ^ ¬i3 v ¬i2 ^ i3 v i2 ^ i3 = i2 v i3

Let us consider the following example, taken from [Czarnecki, Pietroszek 06], in which the template in
Figure 4-3-1 has an annotation error leading to a dangling association for any configuration with
Categories which are False. The resulting malformed instance for one such correct configuration is
shown in Figure 4-3-2. The annotation error in Figure 4-3-1 (b) can be corrected by changing the
annotation of the non-aggregate association between Category and Product from MultipleClassification |
!Categories to just MultipleClassification.

 72

Figure 4-3-2: Sample configuration leading to a dangling association , taken from [Czarnecki, Pietroszek
06]

[Zhang et al. 04] propose a method for product line model’s validity verificat ion based in logic. In this
approach, Ci represent a particular constraint i.

inIi CIFeatureSetIFeature .., 

The follow table presents a list of constraints and his logical representation that it is possible to find in a
product line model:

f1 require f2 f1 f2

f1 exclude f2 (f1 f2)

Mutex-Group(f1,f2,…fn)  fj ,fk{ f1,f2,…fn }, jk,(fj fk)

None-Group(f1,f2,…fn) True
All-Group(f1,f2,…fn) (1 j  n fj)  (1 j  n fj)

single-binding(f1,f2,…fn)  1 i  n (1 j  n, j  i fj) fi

multiple-binding(f1,f2,…fn) i=1,…,n fi

all-binding(f1,f2,…fn) i=1,…,n fi

single-bound(f1,…fn) require

multiple-bound(g1,…gn)
single-bound(f1,…fn) 

 multiple-bound(g1,…gn)
Table 4-3-2: formalisation of typical constraints. Taken from [Zhang et al. 04]

 73

The idea in this technique is to apply the set of typical constraint to product line model and to evaluate it
like a classical logical formula that can be true or false. The process is not automatic and the details of
implementation are not showed.

On the other hand, Batory and Thaker show how, from a PLM described in terms of logical expressions,
many properties of safe composition can be evaluated by AHEAD product lines tool using feature
models and SAT solvers [Batory, Thaker 06]. Their technique considers verifications like this:
Refinement Constraint: If features X, Y, and Z, are refined by fe ature F, then

F  X v Y v Z

Let PLf be the propositional formula of product line PL:
(PLf ^ F ^ ¬X ^ ¬Y ^ ¬Z) = false

Also, in the Batory and Thaker’s technique, the propositional formula of a grammar is considered as the
conjunction of the formulas for each production, each cross -tree constraint, and the formula that selects
the root feature (i.e., all products have the root feature). Thus, all constraints except ordering constraints
of a feature model can be mapped to a propositional formula . This relationship of feature models and
propositional formulas is essential to make a safe derivation of a particular product. The following
example evidences the use of grammars like descriptors of PLMs.

// grammar of our automotive product line

Car : [Cruise] Transmission Engine+ Body ;

Transmission : Automatic | Manual ;

Engine : Electric | Gasoline ;

// cross-tree constraints

Cruise ⇒ Automatic ;

Lessons learned from correctness or satisfiability of c onstraints verification:

In the approach proposed by Czarnecki and Pietroszek in [Czarnecki, Pietroszek 06], creating and
evolving model templates there has been an error-prone process because, for example, it is easy to
forget a required constraint in the feature model or to overlook an annotation in the annotated model.
While particular instances of the template that are being currently used may be correct, instantiating the

 74

template for other configurations, which we would expect to be correct, could lead to incorrect template
instances.
In this approach the verification process is applied at product line configurations and not at product line
model directly. Otherwise, the verification process only makes verification of structural properties of the
particular configurations and does not consider dynamic properties of the product line model. On the
other side, verifications rules are not generalized mathematically by any configuration.
Batory and Thaker deal with static properties of the product line and do not support a consistency check
of behavioral properties [Batory, Thaker 06]. Although the work that they have developed is supported
by a computational tool (AHEAD), their work is oriented to safe composition of PL Cs and not to verify
the PLM itself.

4.3.3. Validity or richness

According to [Mannion 02], a valid product line model is one in which it is possible to select at least one
set of single requirements from the model that satisfies the relationship between the requirements in the
model. An invalid product line model is one from which it is not possible to make such a selection .
In the same way, in [Benavides et al. 07] we found that a feature model is valid if it exists a product
satisfying all the constra ints.

Techniques proposed for validity:

Mannion proposes to use propositional connectives for modelling variability and dependency between
requirements, and so a logical expression can be developed for the model. And then to check
satisfaction of this logical expression on each particular configuration that can be derived from PLM .
This approach can be used to validate the model as a whole. The problem of this technique is the
combinatory explosion generated in the evaluation process.
Benavides propose to use an algorithm to evaluate following logical expressions in order to search a
PLC that satisfies all set of PLM constraints and so verifies the validity of these PLM:

k

k

PLMPLC

PLM





Set Constraint

Set Constraint

And in particular :

   i

n

ii CPLMC
1

,Constraint

 75

Differently to Mannion, it is not necessary to evaluate all possible particular configurations, because
Benavides’ validity definition deals with only one configuration that respects the set of PLM’s
constraints.

Lessons learned from validity:

Definitions of validity are not standardised in literature and neither techniques to verify it. The maturity
level of Benavides’ definition made possible to implement it in a PLM verification computational tool.

4.3.4. Suitability or utility

According to [Zhang et al. 04], the suitability ensures that every feature in the set of features has the
possibility of being removed. If this property is not sa tisfied, it means that there is one or more features
that will not have the chances to be removed after the current binding time. Th at is to say, these
features actually have been bound. The possible causes may be that the operators have ignored the
binding of these features, or have done some improper tailoring or binding actions, or some constraints
themselves are wrong.

Techniques proposed for Suitability verification:

According to [Zhang et al. 04], the set of constraints in a feature model are formalised in a set of logical
sentences. Then at each binding time, after an undecided feature is bound or removed, the truth value
of this feature will become the logical constant True or False respectively. Thus, the verification of
feature models is converted into satisfaction problems in the mathematical logic. Therefore, properties
such as feature possibility of being removed from the model, can be automatically revealed through
evaluation of the following formula:

     fCIikPLCPLCI

PLMCf

inikik 



 ..11),1(,...,

,)DependencyTransverse ,endencyVariantDep(, Feature

Lessons learned from Suitability verification:

We have adapted Zhang et al's proposition to be able to apply it on our meta-model. Thanks to the
logical expression proposed by them, it is possible to automatize the suitability verification process in
the tool that we will present in the chapter V.

 76

4.3.5. Usability, liveliness or decidability

According to [Zhang et al. 04], the usability ensures that every feature in the set of susceptible features
to be chosen has the possibility of being bound in the future. If this property is not sa tisfied, it means
that there is one or more features that will not have the chances to be used in a PLC. That is to say,
these features actually have been removed from the feature model. The possible causes may be that
the operators have ignored the tailoring actions on these features, or have done some improper tailoring
or binding actions, or some constrains themselves are wrong. These causes can be eliminated by
putting these features to set of features not susceptible to be chosen, or by undoing some actions at the
current binding time, or by revising constraints on features. They propose evaluation of follow formula in
order to evaluate usability property:

    fCIikPLCPLCI

PLMCf

inikik 



 ..11),1(,...,

,)DependencyTransverse endency,VariantDep(, Feature

Techniques proposed for Usability verification:

We have found Zhang et al’s technique [Zhang et al. 04] based on logical evaluation of constraints. In
this technique, properties such as feature possibility of being selected from the model, can be
automatically revealed through evaluation of the follow ing formula:

    fCIikPLCPLCI

PLMCf

inikik 



 ..11),1(,...,

,)DependencyTransverse endency,VariantDep(, Feature

Lessons learned from Usability verification:

We have adapted Zhang et al's proposition to be able to apply it on our meta-model. Thanks to the
logical expression proposed by them, it is possible to automatize the usability verification process in the
tool that we will present in the chapter V.

 77

4.3.6 Verifiability

According to [Mannion, Camara 03] a verifiable single system (PLC) is one for which its product line
logical expression evaluates to TRUE. Otherwise the single system is unverifiable.

Techniques proposed for verifiability:

According to [Mannion, Camara 03], a product line model can be repres ented using propositional logic.
By considering each requirement as an atom and each relationship between requirements as a logical
expression, a logical expression for the product line model can be developed. A selected combination or
requirements draw from the product line model can then be tested using this exp ression. In order to
illustrate this technique, let us consider the following “mobile phone product line example”:

Figure 4-3-3: mobile phone product line model, taken from [Mannion, Camara 03]

The logical expression for the mobile phone product requirements shown in Figure 4-3-3 are:

((R1 ^ (R1.1 ^ R1.2 ^ R1.3))^ (G1)

 78

(R2) (G2)
(R3 ^ R3.1) ^ (G3)
(R4 ^ R4.1) ^ (G4)

(R5 ^ (R5.1  R5.2)) ^ (G5)

(R6 ^ (R6.1 v R6.2 v R6.3 v (R6.4 ^ R6.4.1))) ^ (G6)

(R7 (R8 ^ (R8.1 v R8.2 v R8.3))) (G7)

It is possible to instantiate the requirements in the logical expression to TRUE or FALSE depending on
whether they appear in the single system or not. A verifiable single system is one for which the product
line logical expression evaluates to TRUE. Otherwise this PLC is unverifiable.

Figure 4-3-4: requirement selection and equivalent boolean vector representation.

During the construction of a single system, TRUE (T) is assigned to those requirements that a re
selected and FALSE (F) is assigned to those not selected.
Suppose some requirements are freely selected (indicated by √ in Figure 4-3-4) from the mobile phone
product line model. The product line logical expression becomes:
((T^(T^T^T^T))^ (G1)
(T) (G2)
(T^(T^T)) (G3)
(T^T) (G4)

(T^(T F))^ (G5)

 79

(T^(FvTvTv(T^T)))^ (G6)

(T (T^(FvTvF))) (G7)

(G1), (G2), (G3), (G4), (G5), (G6) and (G7) each one evaluate to TRUE. Hence
G1^G2^G3^G4^G5^G6^G7 evaluates to TRUE.
But this technique considers only structural verification of PLM through evaluation of PLCs transformed
into logical expressions, which is very expensive from a computational point of v iew.

Lessons learned from verifiability:

Mannion and Camara’s approach is easy to automatize, but only consider evaluation of verifiability on
PLCs. For the moment, we have not found a technique that permits to evaluate the verifiability's aspects
in PLMs, we will take this lack as an open issue in our future research work.

4.4. General lessons

General lessons can be resumed in Table 4-4-1. This table permits to present what criterion i s being
verified using some technique and how verification process is being achieved.

 Technique

Criterion

Matching Queries Model checking Manual
testing

Counter -
example
testing

Consistency Semantic Web
Ontologies
comparison.
PLC’s
ontologies
against PLM
ontology
[Wang et al.
05]

Make SQL
queries looking
for
inconsistencies
in the
constraints and
SQL queries
looking for
PLCs that did
not satisfy a

For a given
invariant i, an
algorithm searches
for a valid path from
the start state to a
state that violates i
[Lauenroth, Pohl
07]

Safe composition of

 80

Each
commonality
in the PLM
must be
presented in
each PLC
[Bayer et al.
99]

particular
commonality
[Padmanabhan,
Lutz 05]

products by
ensuring that there
is no undefined
element [Batory
and Thaker 06]

Correctness or
Satisfiability of
Constraints

 OCL constraints are
transformed to
propositional
formulas, which are
then fed into a SAT
solver [Czarnecki,
Pietroszek 06]

From a PLM
described in terms
of logical
expressions, many
properties of safe
composition can be
evaluated by
AHEAD product
lines tool. Safe
composition is
made by means of
classical grammar
derivations [Batory,
Thaker 06]

For each
feature, to
apply the
set of
PLM’s
typical
constraint
[Zhang et

al. 04]

Validity or
richness

 To use an algorithm
looking for a
particular

 To develop a
logical
expression for

 81

configuration that
satisfied all set of
PLM constraints
[Benavides et al.

07]

the PLM and
to check its
satisfaction on
each
particular
configuration
[Mannion 02].

Suitability or
utility

 Feature
possibility of
be removed
from the
model, can be
automatically
revealed
through
evaluation of
a logical
expression
[Zhang et al.

04]

Usability ,
liveliness or
decidability

 Feature possibility
of being used or
decidability to use it
in a PLC, can be
automatically
revealed through
evaluation of a
logical expression
[Zhang et al. 04]

Verifiability A PLC is verifiable
if its product line
logical expression
evaluates to TRUE.

 82

An algorithm is
proposed to do this
evaluation
[Mannion, Camara
03].

Table 4-4-1: Approaches presented to evaluate critters of PLM verification using certain techniques

4.5. Conclusion

The first part of this chapter was dedicated to survey the current state of the art of research in
verification process. Next, we have presented our PLM meta-model in order to define the set of
concepts and their inter-relation. These concepts and constraints had been used to formalize each
characteristic to be verified in a PL or a PLC model. For each characteristic, we have presented the set
of techniques used for its verification and some lessons that we will take into account in the definition
and improvement stages of our approach.
The next Chapter presents MAP and NATURE formalisms. Next, we use these formalisms in order to
define our multi-process model and explaining systematically each of his sections.

 83

Part V

Verification Multi -method

 84

5 The Approach

Concisely, we propose three tasks to achieve in order to verify a PLM. In our approach, the firs step is
feature model construction supported by a computational tool. In thi s step, industrial product line models
can be constructed according to FORE formalism [Streitferdt 03]. The second step is to formalize
constraints on features into first order logic sentences. For the second step we propose a first set of
criteria that imperatively have to be respected by all feature product line model. In the third step w e
check a PLC (and so on for each PLC), and their interrelation with PLM to determine if these PLC
satisfied PLM’s structure. With the aim of modeling PLM's process of verification, we have decided to
use the Map formalism, this formalism and the process proposed by us, will be dealt at following
sections.

5.1 Context and MAP formalism

We use the Map formalism proposed in [Rolland et al. 99] and [Benjamen 99] to express the process
model of our approach. Map provides a representation system allowing us to combine multiple ways of
working into one complex process model. It is based on a nondeterministic ordering of two fundamental
concepts, intentions and strategies.
An intention represents a goal that can be achieved by the performance of the process. It refers to a
task (activity) that is a part of the process and is expressed at the intentional level. A strategy represents
the manner in which the intention can be achieved. Therefore, the map is a directed labelled graph with
notes representing intentions and labelled edges expressing strategies. As shown in Figure 5-1-1, a
map consists of a number of sections each of which is a triplet <Ii, Ij, Sij>. The directed nature of the
map identifies which intention can be done after a given one. A map includes two specific intentions,
start and stop, to begin and to end the process respectively. There are several paths from start to stop

in the map for the reason that several different strategies can be proposed to achieve the intentions.

 85

M ap

S ection

In ten tionS tra tegy

source

ta rge t

1 ..*

S ta rt S top

1

com posed o f

11

1 ..* 0 ..*

0 ..*

Figure 5-1-1: The process map meta-model

According to the Figure 5-1-1, a process map is composed of a collection of sections (at least one). Any
section belongs to a single map. Each section has one source intention, one target intention, and is
related to a single strategy.

Intention I

Intention J

Strategy S1

Strategy S2

Strategy S3

Figure 5-1-2: The concept of section

As we can see in figure 5-1-2, a strategy is an approach, a manner to achieve an intention. The
strategy, as part of the triplet <Ii,Ij,Sij> characterizes the flow from Ii to Ij and the way Ij can be achieved.
The specific manner in which an intention can be achieved is captured in a section of the map whereas
the various sections having the same intention Ii as a source and Ij as target show the different
strategies that can be adopted for achieving Ij when coming from Ii. Similarly, there can be different
sections having Ii as source and Ij1, Ij2,Ijn as targets. This shows the different intentions that can be
achieved after the achievement of Ii.

 86

5.2 MAP model of our approach

Map is a formalism that permits to draw multi-process models in an easy and intuitive manner. So, Map
permits integrating techniques that have been developed in an independent way, to combine them in a
coherent process. The next process model is an integration of different process model adapted from
literature. That is, a multi-process model designed by the Map formalism. Broadly speaking, properties
of a PLM that must be considered in a verification process can be categorized into structural and
semantic properties. Properties that deal with structural correctness can be verified before start ing
verification process of semantic properties. In order to do these two verification p rocesses there is no
single strategy to achieve it. Some of the most popular strategies permitting automatic verification of a
conceptual model are formal proofs, model checking (at the same time composed of: constraint
satisfaction problem CSP, boolean satisfaction problem SAT and binary decision diagram BDD),
matching with another model and search ing of a counter example. On the other hand, in order to verify
certain properties of a PLM, some PLCs must be considered. By this reason , verification of PLCs is
included into multi-method presented in Figure 5-2-1.
Table 4-4-1 (<criterion, technique>) has permitted us defining the different strategies that can be used to
achieve a determined intention in a process of product lines models verification. In this work we only
consider correctness verification of product line models and validity of product models. By this reason
the process model in Figure 5-2-1 deals with static and semantic correctness of PLMs and validity of
PLCs models. Others properties that have been analysed in precedent chapters will be integrated at this
process model in feature works.

 87

Figure 5-2-1: Process model of our approach using the Map formalism

5.3 Context models of the MAP

The oriented-contextual models define the process by combining observable situations with a set of
specific intentions. The work to accomplish is described in the process as being dependent on both
situation and intention. Central concept in context-oriented models: couple <situation, intention>

Using the concept of a decision allows to apply the properties of decision -oriented models previously
seen. The decisions are applied to situations where the process is now in order to transform this
situation into a new desired one. Strong re lationship between situation and decision helps focus the
guidance, track and explanations on the specific situations of the process .

The context-driven process model is based on the NATURE process modeling formalism [Jarke et al.
99], [Rolland et al. 96]. According to this formalism, a process model can be expressed as a hierarchy of

Start

Stop

Completeness

strategy Completeness

strategy

Completeness

strategy

Verify PLM semantic

correctness

Refinement strategy

Verify PLM structural

correctness

Refinement strategy

Verify PLC validity

Refinement strategy

Manual testing

strategy

Querying

strategy

Model checking

strategy

Manual testing

strategy

Manual testing

strategy

Model checking

strategy Matching

strategy

Counter-

example testing

strategy Model checking

strategy

Matching

strategy

Model checking

strategy

Counter-

example testing

strategy

 88

contexts. A context is viewed as a couple <situation, intention> . The situation represents the part of the
product undergoing the process, and the intention reflects the goal to be achieved in this situation.
NATURE proposes three types of guidelines, namely choice, plan and executable. The body of a choice
guideline offers different alternative ways for achieving the process intention. Arguments are provided to
help in the selection of the most appropriate alternative. A plan guideline can be looked as dealing with
a macro issue which is decomposed into sub-issues, each of which corresponds to a sub-decision. An
executable guideline corresponds to an operationalizable intentio n that is directly applicable through a
set of activities. The body of an executable guideline proposes a set of activities to be performed for
achieving its process intention.

For instance, in CG1 below:
<PLM, execute invariants> is a choice guideline that includes: <PLM, execute a constraint satisfaction

problem analysis>, <PLM, execute a boolean satisfaction problem analysis> and <PLM, execute a

binary decision diagram analysis> .

At the same time <PLM, execute a boolean satisfaction problem analysis> is a plan guideline, marked
by the symbol ‘@’ in order to reuse it in other place of the tree structure .

And in the same way, <PLM, PLM = binary data structure> and <PLM, execute require-relation

invariant> are examples of executable guidelines, because they are directly operationalized. <PLM,
execute “Find contradictions in mandatory relations” invariants> is a guideline that evaluates the
following logical formulae or invariant:

 
)()()()(

)()(.,),(

CKPCPMandatoryCPchildOfC

CreChildFeatuPureFatherFeatPLMKfeatureCfeaturePfeature

i

i





In this section we present the context guidelines for sections developed in our approach and supported
by the computational tool described in chapter V.

CG1: Section <Start, verify PLM structural correctness, Model checking strategy>

Verify PLM structural

correctness Start Model checking

strategy

 89

<PLM, verify structural correctness>

Next we present the list of invariants that must be evaluated in each executable guideline proposed in
CG1 with blue colour.

< PLM, execute “Verify FORE Properties” invariants >
It is necessary to execute:

1. Root unicity invariant :

1.  frootfPLMfeaturef

2. Child – Father unicity invariant:

1)()())()(()(

)()(.),(





iiiii

ii

PCPCPOptionallyCPMandatoryCPchildOfC

CreChildFeatuPureFatherFeatPLMCfeaturePfeature



<PLM, execute a boolean satisfaction problem analysis>

<PLM, execute invariants>

<PLM, execute a binary decision diagram analysis>

<PLM, PLM=binary data structure>

<PLM, execute feature-uniqueness algorithm>

<PLM, execute @>

@

<PLM, execute “Find

contradictions between

transversal dependencies

and variant dependencies”

invariant>

<PLM, execute “Find

contradictions in optional

relations” invariants>

<PLM, execute “Find

contradictions in

mandatory relations”

invariants>

<PLM, execute “Find

unbound or mal

formed cardinalities”

invariants>

<PLM, execute “Find

contradictions between

transversal dependencies

and cardinalities”

invariants>

<PLM, execute

“Verify FORE

Properties”

invariants >

<PLM, execute

“Find contradictions

between transversal

dependencies”

invariants>

<PLM, execute “Find

features impossible to

achieve” invariants >

<PLM, execute

“Find cyclic

relations”

invariants >

a1
a2

a3

a1: you want to execute a constraint satisfaction problem analysis on PLM and you have the set of rules to apply

a2: you want to execute a boolean satisfaction problem analysis on PLM and you have the set of invariants to apply

a3: you want to execute a binary decision diagram analysis on PLM and you have the set of invariants to apply

<PLM, execute a

constraint satisfaction

problem analysis>

 90

3. Cardinality relation invariant:

 

   )*(0*0

,,...,,...,...,...,,...,

),...,(),,(

1

1

1

1

1

knimmnm

CCCCCCCC

CCrechildFeatuPurefatherFeatnmDyCardinalit

n

ki

n

ki

m

ji

m

ji

aka






































































 

4. Invariant evaluating optionality of relations intervening in a cardinality :

 

 )*(0*),(),...,(

),...,(),,(

1

1

knmmnmCOptionalCOptional

CCCrechildFeatuPurefatherFeatnmCyCardinalit

k

k





<PLM, execute “Find contradictions in optional relations” invariants>
It is necessary to execute:

1. Optionally relationship constraint invariant:

 
)()()()(

)()(.,),(

CKPCPOptionallyCPchildOfC

CreChildFeatuPureFatherFeatPLMKfeatureCfeaturePfeature

i

i







2. Invariant to validate if a cardinality is right or not:

 

   

  truejnoptionalfcountfff

ffffffffjinmnm

PLMnmycardinalitffrechildFeatufeatureSetfureparentFeat

z

j

izjij

jkkikjii

xmmn

x

jia













 
))(()),...,

,...,,,...,...,(((],[,,

)..()),,...,((),(

1

111

1

11

<PLM, execute “Find contradictions in mandatory relations” invariants>
It is necessary to execute:

1. Mandatory relationship constraint invariant:

 
)()()()(

)()(.,),(

CKPCPMandatoryCPchildOfC

CreChildFeatuPureFatherFeatPLMKfeatureCfeaturePfeature

i

i





<PLM, execute “Find unbound or badly formed cardinalities” invariants>
It is necessary to execute:

1. Invariant to validate if a cardinality is right or not:

 

   

  truejnoptionalyfcountfff

ffffffffjinmnm

PLMnmycardinalitffrechildFeatufeatureSetfureparentFeat

z

j

izjij

jkkikjii

xmmn

x

jia













 
))(()),...,

,...,,,...,...,(((],[,,

)..()),,...,((),(

1

111

1

11

 91

2. Invariant to evaluate cardinalities whit value 0,0:
 

falsemffmmnnm

fchildOfffchildOff

PLMnmycardinalitffrechildFeatufeatureSetfureparentFeat

ji

ajai

jia







))0(...()0()()0(

)(),...,(

)..()),,...,((),(

<PLM, execute “Find contradictions between transversal dependencies and cardinalities” invariants>
It is necessary to execute:

1. An algorithm considering interactions between transverse dependencies and cardinalities , this
is not still available.

<PLM, execute “Find contradictions between transversal dependencies and variant dependencies”
invariant>
It is necessary to execute:

1. Require-child invariant:

kikikiki fmfmfmchildOffmPLMfmfmfeatures   ,),(
2. Exclude definition and invariant:

)()()(.),,(

)(),(.),(:

jkijijjikji

kikiki

fffmandatoryffchildOffPLMffffeatures

fmfmfmfmexcludePLMfmfmfeaturesinitionExcludeDef







3. Require definition and invariant:

)()()(.),,(

)(),(.),(:Re

jkijijjikji

kikiki

fffoptionallyffchildOffPLMffffeatures

fmfmfmfmrequirePLMfmfmfeaturesitionquireDefin







<PLM, execute “Find contradictions between transversal dependen cies” invariants>
It is necessary to execute:

1. Require-exclude definition:

kikikiki fmfmfmchildOffmPLMfmfmfeaturesitionquireDefin   ,),(:Re

2. Transversal dependencies contradiction invariant:

)))(()()((

)(),(

)(),(.),(

)(),(.),(

jkkjjk

jkkjkj

kikiki

kikiki

fancestorOffffff

frequiresfPLMfffeatures

fmfmfmfmexcludePLMfmfmfeatures

fmfmfmfmrequirePLMfmfmfeatures











 92

<PLM, execute “Find features impossible to achieve” invariants >
It is necessary to execute:

1. Require-exclude definition:

kikikiki fmfmfmchildOffmPLMfmfmfeaturesitionquireDefin   ,),(:Re

2. Transversal dependencies contradiction invariant:

)))(()()((

)(),(

)(),(.),(

)(),(.),(

jkkjjk

jkkjkj

kikiki

kikiki

fancestorOffffff

frequiresfPLMfffeatures

fmfmfmfmexcludePLMfmfmfeatures

fmfmfmfmrequirePLMfmfmfeatures











CG2: Section <Start, verify PLM structural correctness, Model checking strategy>

<(PLM, PLC), verify PLM semantic correctness>

<(PLM, PLC), execute usability, liveliness or decidability invariant>
It is necessary to execute:

1. Liveliness, usability or decidability invariant :

    fCIikPLCPLCI

PLMCf

inikik 



 ..11),1(,...,

,)DependencyTransverse endency,VariantDep(, Feature

<(PLM, PLC), execute suitability or utility invariant>
It is necessary to execute:

1. Utility or suitability invariant

Verify PLM semantic

correctness
Model checking

strategy

Verify PLM structural

correctness

<(PLM, PLC), execute usability,

liveliness or decidability

invariant>

<(PLM, PLC), execute

suitability or utility invariant>

<(PLM, PLC), execute validity

or richness algorithm>

<PLM, execute verifiability

algorithm>

 93

     fCIikPLCPLCI

PLMCf

inikik 



 ..11),1(,...,

,)DependencyTransverse ,endencyVariantDep(, Feature

<(PLM, PLC), execute validity or richness algorithm>
It is necessary to execute:

1. An algorithm that permits to evaluate:

k

k

PLMPLC

PLM





Set Constraint

Set Constraint

And in particular :

   i

n

ii CPLMC
1

,Constraint

<(PLM, PLC), execute verifiability algorithm>
It is necessary to execute:

1. An algorithm that permits to evaluate:

trueSubGSubGSubGSubGG jiji  .,ressionlogicalExp

CG3: Section <verify PLM structural correctness, verify PLM structural correctness, Refinement
strategy

<PLM, verify PLM structural correctness>

Verify PLM structural

correctness
Refinement strategy

<PLM, implement manual

testing strategy>

<PLM, implement formal proofs

strategy>

<PLM, implement model

checking strategy: CG1>

a1
a2

a3

a1: you want to refine the PLM structural correctness verification process by means of “manual testing” strategy

a2: you want to refine the PLM structural correctness verification process by means of “formal proofs” strategy

a3: you want to refine the PLM structural correctness verification process by means of “model checking” strategy

 94

CG4: Section <verify PLM structural correctness, verify PLM semantic correctness, model
checking strategy>

<PLM, verify PLM semantic correctness>

CG5: Section <verify PLM semantic correctness, verify PLM semantic correctness, refinement
strategy>

<PLM, verify PLM semantic correctness>

<PLM, implement manual

testing strategy>

<PLM, implement model

checking strategy: CG2>

a1
a2 a3

a4

<PLM, implement formal

proofs strategy>

a1: you want to refine the PLM semantic correctness verification process by means of “stakeholder reviews” strategy

a2: you want to refine the PLM semantic correctness verification process by means of “manual testing” strategy

a3: you want to refine the PLM semantic correctness verification process by means of “formal proofs” strategy

a4: you want to refine the PLM semantic correctness verification process by means of “model checking” strategy

Verify PLM semantic

correctness
Refinement strategy

Verify PLM semantic

correctness
Model checking

strategy

Verify PLM structural

correctness

<PLM, implement model checking strategy CG2>

<PLM, implement

stakeholder reviews

strategy>

 95

CG6: Section <verify PLM structural correctness, verify PLC validity , model checking strategy>

CG7: Section <verify PLM semantic correctness, verify PLC validity , model checking strategy>

<(PLM, PLC, PLM structure & PLM semantic = “correct”), verify PLC validity>

<(PLM, PLC, PLM structure & PLM semantic = “correct”), verify PLC validity>

<(PLM, PLC), execute tree invariants>
It is necessary to execute:

1. Root unicity invariant

1).(,  frootfPLCPLMffeaturePLC

2. Child-parent unicity invariant

1)()())()(()(

)()(.),(





iiiii

ii

PCPCPoptionalCPMandatoryCPchildOfC

CreChildFeatuPureFatherFeatPLMCfeaturePfeature



Verify PLC validity
Model checking

strategy

Verify PLM semantic

correctness

Verify PLM structural

correctness

Model checking

strategy

<(PLM, PLC), execute invariants> <(PLM PLC), execute satisfiability of constraints

algorithm>

a1
a2

a3

a1: you want to find values or states in which all constraints are satisfied

a2: you want to evaluate logical expressions

a3: you want to evaluate a binary data structure representing a boolean function

<(PLM, PLC), execute a

constraint satisfaction

problem analysis>

<(PLM, PLC), execute a

boolean satisfaction

problem analysis>

<(PLM, PLC), execute a

binary decision diagram

analysis>

<(PLM, PLC), execute

tree invariants>

<(PLC, PLM), execute PLM

satisfaction invariants>

 96

<(PLC, PLM), execute PLM satisfaction invariants>
It is necessary to execute:

1. Satisfaction of PLM’s mandatory relationships invariant

 
)()()()()(

)(.,),(

CKPCPMandatoryCPchildOfCCreChildFeatu

PureFatherFeatPLCPLMKfeatureCfeaturePfeature

i

i





2. Satisfaction of PLM’s optionally relationships invariant

 
)()()()()(

)(.,),(

CKPCPOptionallyCPchildOfCCreChildFeatu

PureFatherFeatPLCPLMKfeatureCfeaturePfeature

i

i







3. Satisfaction of PLM’s require relationships invariant

)(),(.,),(PLCfcPLCfcfcfcrequirePLCfcPLMfcfcfeatures kikiiki 

4. Satisfaction of PLM’s exclude relationships invariant

)),(()(),(

.),(,),,(

)(),(.,),(

PLCfcfcPLCfcfcchildOffcfcfcexclude

PLCfcfcPLMfcfcfcfeatures

PLCfcPLCfcfcfcexcludePLCfcPLMfcfcfeatures

kjijkji

jikji

kikiiki







5. Algorithm to verify satisfiability of PLM’s constraints

)),((et,invariantS PLMiPiPLCPpathi

For invariant i:

 Search in PLC a valid path P from an initial state into a one that violates i.

If a PLC exists with P, PLM is inconsistent

 97

CG8: Section <verify PLC validity, verify PLC validity, Refinement strategy>

<(PLM, PLC), verify PLC validity>

5.4 Discussion

Now that the approach has been presented, this section will dis cuss several of its contributions and
limitations.
There are two aspects that must be taken into account in a verification process of PLM’s correctness,
the structural and the semantic correctness of the model. In the verification process of PLM's structural
correctness, we have included the list of the notation FORE’s characteristics, that they are largely
treated in literature. From the point of view of the structural correctness, we have enriched the range of
properties to verify in a PLM and we have proposed the corresponding logic invariants to evaluate each
one. We have included not only the properties of a model designed with the notation FORE, but also
another one like: correctness in optional relations, correctness in mandatory relations, correctnes s in
cardinalities, correctness in transversal dependencies and variant dependencies interactions,
correctness in transversal dependencies interactions, every feature must be possible to achieve and no
cyclic relations are permitted. And from the point of view of the semantic correctness, we have unified
dispersed criteria found in literature and have select some of the most important characteristics to be

Verify PLC validity Refinement strategy

<(PLM, PLC), implement model

checking strategy: CG6/CG7>

<(PLM, PLC), implement

matching strategy>

<(PLM, PLC), implement counter

example testing strategy>

a1
a2

a3

a1: you want to refine the PLC validity verification process by “model checking” strategy

a2: you want to refine the PLC validity verification process by “matching” strategy

a3: you want to refine the PLC validity verification process by “counter-example” strategy

 98

verified in a PLM. With regard to the unificat ion of criteria, we claim that the terms Usability, liveliness

and decidability refer to the same concept; we have established also equivalency of concepts among
suitability and utility; as well as for the terms validity and richness. With respect to verification, some
logic invariants to evaluate usability, su itability, validity and verifiability properties have been proposed.
The different paths to execute each one of the previous logic invariants on a PLM are defined in the
multi-process model in Figure 5-2-1.
For the verification of each of correctness' characteristics, we have used propositional logic and first -
order logic for writing out every invariant to verify. In order to evaluate a propositional logic formula, we
have used in some cases satisfiability criterion and validity criterion in others. A formu la F is satisfiable if
there is an interpretation K such that K |= F. A formula F is valid if for all interpretations K, K |= F.
Determining satisfiability and validity of formulae are important tasks in logic. Satisfiability and validity
are dual concepts, and switching from one to the other is easy. F is valid if ¬F is unsatisfiable. For
example, suppose that F is valid; then for any interpretation K, K |= F. By the semantics of negati on, K
|≠ ¬F, so ¬F is unsatisfiable. Conversely, suppose that ¬F is unsatisfiable. For any interpretation K, K |≠
¬F, so that K |= F by the semantics of negation. Thus, F is valid. Because of this duality between
satisfiability and validity, we are free to focus on either one or the other in the evaluation of a logical
expression, depending on which is more convenient for the particular case.
As for limitations, formulas or invariants proposed can not be directly used by any available SAT tools.
Although the aforementioned invariants have been used in our PLMV&V tool, its syntax is not enough
independent of implementation as for being used by some SAT solver standard. This limitation will be
treated in future research .

5.5 Conclusion

In the present chapter, we suggested a specific approach for the verification of product line models.
Benefits of this approach to PLM verification are (i) its foundations in the well accepted requirements
engineering framework, which allows the approach to be very general; (ii) this approach not only gathers
the proposals of verification found in literature, but proposing another innovative rules and standardizes
them through a same language and a same multi -model of verification; (iii) this is an approach not only
focusing on single-system models (PLC models like the most of the literature do) , but extended to the
evaluation of PLMs.
Based on the general approach, we validate the approach making use of a case study and automate it
through a computational tool called PLMV&V. These matters will be further explored in the next chapter,
where we present our validation with a real industrial case and our tool implementation of the approach.

 99

Part VI

Case Study and Tool Support

 100

6 Case Study: Stago’s Product Line Model

6.1 Introduction

Diagnostica Stago, Inc. is one of the most important providers of hemostasis products in the world. This
society offers a set of hemostasis instrumentation and optimized reagent kits for research as well as for
routine analysis. Diagnostica Stago, Inc. is a French industry with a staff close to 1500. Diagnostica
Stago devotes its research and innovative skills to the development of increasingly effective medical
diagnostic products and instrumentation .

Through Stago's product lines model we will explain the use of multi-process verification model
described in Chapter V. On the aforementioned PLM, we will apply the logic invariants explained in
Chapter V with the aim of identifying the different errors that the model may have. Because of reasons
of space and simplicity, some details about implementation of each logical formula will not be showed.
We will have to restrict our analysis in order to summarize how each logical expression allows the
identification of errors in a PLM. Errors identified by an algorithm or by a logical expression are
highlighted in red in the respective model. The aforementioned formulas will be applied by means of
traversing algorithms on DAGs and tree automatons than have been implemented in PLMV&V, that is
the computational tool for verification of product lines models described in the second part of this
chapter.

6.2 Stago’s Product Line Model

Figure 6-2-1 shows the Stago’s product line model. We have introduced some typical errors in the
model in order to detect them through applications of invariants proposed in our PLM and PLC
verification method. The Stago’s product line model modified is showed in figure 6 -2-2.

 101

Figure 6-2-1: Stago’s product line model

Figure 6-2-2: Stago’s product line model modified

6.3 Stago’s Product Line Model Verification

The types of errors identified in the PLM corresponding to Figure 6-2-2 and the invariant logical
expressions to identified its, are presented next. This case study deals with model checking strategies to
achieve three intentions proposed in our multi -method approach.

Diagnose thrombosis/haemostasis

Analyze

Prepare
reactive

environme
nt

Calibrat
e

Set up analysis
methodology

Obtain analysis
results Avoid

contamination
Ensure

traceability

Measure
reaction

Prepare
patient
blood

By
RFI
D By

identificato
r

For
urgent

test

By
batch

Separate
constituent

s
Micro-
filter

Centrifug
e

Mix
Incubate Agitat

e

Photometri
c

Immunologi
c

Chronometric

Manuall
y

By
external
system

Print
results

By printer
In the

screen

By
id

Clean Evacuate
waste

1..*

1

By
barcod

e

By RFID
By printing

on tubes

Chronometri
c

Update the
patient
medical
history

Load
products

and
reagents

Identify
products and

reagents

Dig out
reagent

Drop
off

reagent

Drop off
triggering
reagent

1..*

Launch
tests

FIFO

By
test
type

By
patient

Drop off
intermediat
e reagent

Heat
triggering
reagent Dilute

patient
blood

Prepare
reagents

Dig out
plasma Drop

off
plasma

Diagnose thrombosis/haemostasis

Analyze

Measure
reaction

Calibrat
e

Set up analysis
methodology

Obtain analysis
results Avoid

contamination
Ensure

traceability

Measure
reaction

Prepare
patient
blood

By
RFI
D By

identificato
r

For
urgent

test

By
batch

Separate
constituent

s
Micro-
filter

Centrifug
e

Mix
Incubate Agitat

e

Photometri
c

Immunologi
c

Chronometric

Manuall
y

By
external
system

Print
results

By printer
In the

screen

By
id

Clean Evacuate
waste

1..*

1

By
barcod

e

By RFID
By printing

on tubes

Chronometri
c

Update the
patient
medical
history

Load
products

and
reagents

Identify
products and

reagents

Dig out
reagent

Drop
off

reagent

Drop off
triggerin
g reagent

1..*
Launch

tests

FIFO

By
test
type

By
patient

Drop off
intermediat
e reagent

Heat
triggering
reagent Dilute

patient
blood

Prepare
reagents

Dig out
plasma Drop

off
plasma

4..
5

0..
2

Mandato
ry
Option
al
Requi
re
Exclu
de

<<E>
>

<<E>
>

<<E>
>

<<E>
>

<<E>
>

<<E>
>

<<E>
>

<<E>
>

0..
1

 102

In next paragraphs, we will apply the verification process , particularly the intention “Verify PLM structural
correctness”, to PLM represented in Figure 6-2-2. That is, in a more graphic way, we will execute the
following part of the model from the defined process in Figure 5 -2-1.

6.3.1 Section <Start, verify PLM structural correctness, Model checking strategy>

And then, we will apply in a systematic way the instructions of the direct sequency, selection and
execution proposed for this section of the process model.

Execution directives of this MAP section are presented in blue.

6.3.1.1 < PLM, execute “Verify FORE Properties” invariants >

It is necessary to execute:

1. Root unicity invariant :

1.  frootfPLMffeature
With application of this invariant we have not found any problem because this PLM have only
one root element.

Diagnose thrombosis/haemostasis

Analyze

Measure
reaction

Calibrat
e

Set up analysis
methodology

Obtain analysis
results Avoid

contamination
Ensure

traceability

Measure
reaction

Prepare
patient
blood

By
RFI
D By

identificato
r

For
urgent

test

By
batch

Separate
constituent

s
Micro-
filter

Centrifug
e

Mix
Incubate Agitat

e

Photometri
c

Immunologi
c

Chronometric

Manuall
y

By
external
system

Print
results

By printer
In the

screen

By
id

Clean Evacuate
waste

1..*

1

By
barcod

e

By RFID
By printing

on tubes

Chronometri
c

Update the
patient
medical
history

Load
products

and
reagents

Identify
products and

reagents

Dig out
reagent

Drop
off

reagent

Drop off
triggerin
g reagent

1..*
Launch

tests

FIFO

By
test
type

By
patient

Drop off
intermediat
e reagent

Heat
triggering
reagent Dilute

patient
blood

Prepare
reagents

Dig out
plasma Drop

off
plasma

4..5

0..2

Mandato
ry
Option
al
Requi
re
Exclu
de

<<E>
>

<<E>
>

<<E>
>

<<E>
>

<<E>
>

<<E>
>

<<E>
>

<<E>
>

0..1

Verify PLM structural

correctness Start Model checking

strategy

 103

2. Child – Father unicity invariant:

1)()())()(()(

)()(.),(





iiiii

ii

PCPCPoptionalCPMandatoryCPchildOfC

CreChildFeatuPureFatherFeatPLMCfeaturePfeature



In this equation, we take each child feature, and for one of them, we evaluate if the number of
variability relations between this characteristic “C” and a potential group of parents “Pi”, a group
of at least one element, it is equal to one.
If it is not equal to one, the logical expression is evaluated “False”, and an error type “cycle” is
identified between the characteristic C and i ts parents group Pi.
In the model, we can see the characteristic “Evacuate” is related with “Diagnose
thrombosis/haemostasis”, and at the same time it is relat ed with “Avoid”, it means

2)()( ii PCPC 

3. Cardinality relation invariant:

 

   )*(0*0

,,...,,...,...,...,,...,

),...),((),,(

1

1

1

1

1

knimmnm

CCCCCCCC

CCreChildFeatuPureFatherFeatnmDyCardinalit

n

ki

n

ki

m

ji

m

ji

aka






































































 

This invariant proposes that features group {C1,…,Ck} that make part of a cardinality D (m, n),
must be children of the same father ‘P’. The set of features grouped in cardinality relations must
be comprised among cardinality values (‘m’ is the inferior value and ‘n’ the superior value). The
value of ‘m’ must belong to set of natural numbers joined with ‘0’ and the value of ‘n’ must
belong to set of natural numbers joined with the symbol ‘*’. Besides, value of ‘n’ must not be
inferior than value of ‘m’, neither superior to number features (‘k’) than intervene in cardinality
relation ‘Da’.
In the previous model, i = 1 and j = 4, they correspond to the counters of each relation grouped
by the cardinality, in which m = 4 and n = 5. In this logical expression it is not accomplished that
‘n’ should be lower than ‘j’ (n < j), therefo re the expression is evaluated FALSE.
Cardinality must have two values (‘m’ and ‘n’). In the previous PLM it is a cardinality relation with
only one value. This logical expression permits ‘m’ be equal to ‘n’, therefore the correct way to
write the cardinality that presents a problem, would be [1,1] .

 104

4. Invariant evaluating optionality of relations intervening in a cardinality:

 

 )*(0*),(),...,(

),...),((),,(

1

1

knmmnmCOptionalCOptional

CCCreChildFeatuPureFatherFeatnmCyCardinalit

k

k





All relations joined by a cardinality relation must be of type “Optional”. In the previous PLM we
highlight in red all relations that are not of type “Optional” and are members of a cardinality
relationship. At each case, invariant evaluating optionality of relations intervening in a cardinality
is evaluated FALSE.

6.3.1.2 <PLM, execute “Find contradictions in o ptional relations” invariants>

These errors are detected executing o ptionally relationship constraint invariant:

 
)()()()(

)()(.,),(

CKPCPOptionallyCPchildOfC

CreChildFeatuPureFatherFeatPLMKfeatureCfeaturePfeature

i

i







And invariant to validate if a cardinality is right or not:

 

   

  truejnoptionalfcountfff

ffffffffjinmnm

PLMnmycardinalitffrechildFeatufeatureSetfureparentFeat

z

j

izjij

jkkikjii

xmmn

x

jia













 
))(()),...,

,...,,,...,...,(((],[,,

)..()),,...,((),(

1

111

1

11

Diagnose thrombosis/haemostasis

Analyze

Measure
reaction

Calibrat
e

Set up analysis
methodology

Obtain analysis
results Avoid

contamination
Ensure

traceability

Measure
reaction

Prepare
patient
blood

By
RFI
D By

identificato
r

For
urgent

test

By
batch

Separate
constituent

s
Micro-
filter

Centrifug
e

Mix
Incubate Agitat

e

Photometri
c

Immunologi
c

Chronometri
c

Manuall
y

By
external
system

Print
results

By printer
In the

screen

By
id

Clean Evacuate
waste

1..*

1

By
barcod

e

By RFID
By printing

on tubes

Chronometri
c

Update the
patient
medical
history

Load
products

and
reagents

Identify
products and

reagents

Dig out
reagent

Drop
off

reagent
Drop off
triggerin
g reagent

1..*
Launch

tests

FIFO

By
test
type

By
patient

Drop off
intermediat
e reagent

Heat
triggering
reagent Dilute

patient
blood

Prepare
reagents

Dig out
plasma Drop

off
plasma

4..5

0..
2

Mandato
ry
Option
al
Requi
re
Exclu
de

<<E>
>

<<E>
>

<<E>
>

<<E>
>

<<E>
>

<<E>
>

<<E>
>

<<E>
>

0..
1

 105

The first equation pretends to identify a couple of features ‘P’ and ‘C’ connected through an optional
relation, where ‘P’ is the father feature and the ‘C’ is the child. Next, we identified a feature ‘K’ among
the set of PLM’s features, in such a way that ‘K’ is connected with ‘C’ by means of a required
relationship. If ‘K’ exists, the logical expression is evaluated FALSE. This equation is evaluated FALSE
in the two cases in red (model immediately above), because the equation’s right side does not come
true. In one of those cases, feature “Update the medical patient” (‘C’) is an optional child of “Obtain
Analysis” (‘P’) and exists a feature “Print results” (‘K’) that is connected with “Update the patient
medical” (‘C’) by means of a required relation.

With the second equation, a third error of the model is detected, just like the two previous ones
concerning the contradictions in optional relations. In this logical expression, the idea is to search for
each group of features joined by cardinality relations (f i,,…,fj) and sharing the same father (fa). Also, it is
evaluated that cardinality limits are right. In our example, we see that i = 1 and j = 4, corresponding to
each counters of relations grouped by the cardinality relation, besides m = 4 and n = 5. Logic al
expression evaluate that n should be lower than j, that is n < j, therefore the expression is evaluated
FALSE.

Notice than in the logical expression to evaluate cardinality relations we do not take into account
mandatory relations, because FORE notatio n requires that all features intervening in cardinality relations
must be of an optional type.

 106

6.3.1.3 <PLM, execute “Find contradictions in mandatory relations” invariants>

These errors can be detected by executing mandatory relationship constraint invariant:

 
)()()()(

)()(.,),(

CKPCPMandatoryCPchildOfC

CreChildFeatuPureFatherFeatPLMKfeatureCfeaturePfeature

i

i





With this equation it is possible to detect errors in mandatory relations. Features like “Identify products”,
“By identificator”, “Prepare reagents” and “Mix” are being excluded by o ther features that could be
mandatory, or not in the model. In the first logical expression, we search pairs of features joined by a
mandatory relation from ‘P’ to ‘C’ and for each found pair, we search for one exclusion relationship from
any feature of the model (‘K’) towards ‘C’. If the feature ‘K’ exists, then second part of the logical
expression is evaluated FALSE.

Diagnose thrombosis/haemostasis

Analyze

Measure
reaction

Calibrat
e

Set up analysis
methodology

Obtain analysis
results Avoid

contamination
Ensure

traceability

Measure
reaction

Prepare
patient
blood

By
RFI
D By

identificato
r

For
urgent

test

By
batch

Separate
constituent

s
Micro-
filter

Centrifug
e

Mix
Incubate Agitat

e

Photometri
c

Immunologi
c

Chronometric

Manuall
y

By
external
system

Print
results

By printer
In the

screen

By
id

Clean Evacuate
waste

1..*

1

By
barcod

e

By RFID
By printing

on tubes

Chronometri
c

Update the
patient
medical
history

Load
products

and
reagents

Identify
products
reagents

Dig out
reagent

Drop
off

reagent

Drop off
triggerin
g reagent

1..*

Launch
tests

FIFO

By
test
type

By
patient

Drop off
intermediat
e reagent

Heat
triggering
reagent Dilute

patient
blood

Prepare
reagents

Dig out
plasma Drop

off
plasma

4..
5

0..0

Mandato
ry
Option
al
Requi
re
Exclu
de

<<E>
>

<<E>
>

<<E>
>

<<E>
>

<<E>
>

<<E>
>

<<E>
>

<<E>
>

0..
1

 107

6.3.1.4 <PLM, execute “Find unbound or mal formed cardinalities” invariants>

This error can be identified by executing invariant to validate if a cardinality is right or not:

 

   

  truejnoptionalyfcountfff

ffffffffjinmnm

PLMnmycardinalitffrechildFeatufeatureSetfureparentFeat

z

j

izjij

jkkikjii

xmmn

x

jia













 
))(()),...,

,...,,,...,...,(((],[,,

)..()),,...,((),(

1

111

1

11

And invariant to evaluate cardinalities whit value 0,0:
 

falsemffmmnnm

fchildOfffchildOff

PLMnmycardinalitffrechildFeatufeatureSetfureparentFeat

ji

ajai

jia







))0(...()0()()0(

)(),...,(

)..()),,...,((),(

With first equation it is possible to detect error s on the model concerning the overflowing of superior
value in cardinality relationship. In the model, we have i=1 and j=4, that correspond to counters of the
whole relations grouped by cardinality, and also m=4 and n=5. Logical expression evaluation does not
fulfil n must be lower than j, that is n < j, therefore entire logical expression is evaluated FALSE.

With second logical expression, it is possible to evaluate cardinality’s relations and to recognize
erroneous cardinalities like those where both boundaries have value 0 (0 ,0) or those where the superior
limit is lower than the inferior one or those where inferior limit is a negative number, or those where any
feature is selected when inferior limit is different to zero. In our case study, second logical expression
has been useful in order to detect the cardinality’s error (0,0).

Diagnose thrombosis/haemostasis

Analyze

Measure
reaction

Calibrat
e

Set up analysis
methodology

Obtain analysis
results Avoid

contamination
Ensure

traceability

Measure
reaction

Prepare
patient
blood

By
RFI
D By

identificato
r

For
urgent

test

By
batch

Separate
constituent

s
Micro-
filter

Centrifug
e

Mix
Incubate Agitat

e

Photometri
c

Immunologi
c

Chronometric

Manuall
y

By
external
system

Print
results

By printer
In the

screen

By
id

Clean Evacuate
waste

1..*

1

By
barcod

e

By RFID
By printing

on tubes

Chronometri
c

Update the
patient
medical
history

Load
products

and
reagents

Identify
products and

reagents

Dig out
reagent

Drop
off

reagent

Drop off
triggerin
g reagent

1..*
Launch

tests

Drop off
intermediat
e reagent

Heat
triggering
reagent Dilute

patient
blood

Prepare
reagents

Dig out
plasma Drop

off
plasma

4..5
Mandato
ry
Option
al
Requi
re
Exclu
de

<<E>
>

<<E>
>

<<E>
>

<<E>
>

<<E>
>

<<E>
>

<<E>
>

<<E>
>

0..
1

FIFO

By
test
type

0..0
By

patient

 108

6.3.1.5 <PLM, execute “Find contradictions between transversal dependencies and cardinalities”
invariants>

We have not developed yet an invariant to deal with contradictions between transversal dependency
and cardinality.
In this case, it is necessary an algorithm considering interactions between transverse dependencies and
cardinalities.
6.3.1.6 <PLM, execute “Find contradictions between transversal dependencies and va riant
dependencies” invariant>

Diagnose thrombosis/haemostasis

Analyze

Measure
reaction

Calibrat
e

Set up analysis
methodology

Obtain analysis
results Avoid

contamination
Ensure

traceability

Measure
reaction

Prepare
patient
blood

By
RFI
D By

identificato
r

For
urgent

test

By
batch

Separate
constituent

s
Micro-
filter

Centrifug
e

Mix
Incubate Agitat

e

Photometri
c

Immunologi
c

Chronometric

Manuall
y

By
external
system

Print
results

By printer
In the

screen

By
id

Clean Evacuate
waste

1..*

1

By
barcod

e

By RFID
By printing

on tubes

Chronometri
c

Update the
patient
medical
history

Load
products

and
reagents

Identify
products and

reagents

Dig out
reagent

Drop
off

reagent

Drop off
triggerin
g reagent

1..*
Launch

tests

FIFO

By
test
type

By
patient

Drop off
intermediat
e reagent

Heat
triggering
reagent Dilute

patient
blood

Prepare
reagents

Dig out
plasma Drop

off
plasma

4..
5

0..
2

Mandato
ry
Option
al
Requi
re
Exclu
de

<<E>
>

<<E>
>

<<E>
>

<<E>
>

<<E>
>

<<E>
>

<<E>
>

<<E>
>

0..
1

Diagnose thrombosis/haemostasis

Analyze

Measure
reaction

Calibrat
e

Set up analysis
methodology

Obtain analysis
results Avoid

contamination
Ensure

traceability

Measure
reaction

Prepare
patient
blood

By
RFI
D By

identificato
r

For
urgent

test

By
batch

Separate
constituent

s
Micro-
filter

Centrifug
e

Mix
Incubate Agitat

e

Photometri
c

Immunologi
c

Chronometric

Manuall
y

By
external
system

Print
results

By printer
In the

screen

By
id

Clean Evacuate
waste

1..*

1

By
barcod

e

By RFID
By printing

on tubes

Chronometri
c

Update
patient
history

Load
products

and
reagents

Identify
products

Dig out
reagent

Drop
off

reagent

Drop off
triggerin
g reagent

1..*
Launch

tests

FIFO

By
test
type

By
patient

Drop off
intermediat
e reagent

Heat
triggering
reagent Dilute

patient
blood

Prepare
reagents

Dig out
plasma Drop

off
plasma

4..
5

0..
2

Mandato
ry
Option
al
Requi
re
Exclu
de

<<E>
>

<<E>
>

<<E>
>

<<E>
>

<<E>
>

<<E>
>

<<E>
>

<<E>
>

0..
1

 109

These errors can be detected by intersecting include and exclude invariants. In fourth errors stressed on
the model a feature child that can be “optional” or “mandatory” is at the same time required and
excluded, or optional and required. Interpreting this result we can deduce that it is an error.
Require-child invariant:

kiikkiki fmfmfmchildOffmPLMfmfmfeatures   ,),(

Exclude definition and invariant:

)()()(.),,(

)(),(.),(

jkijijjikji

kikiki

fffmandatoryffchildOffPLMffffeatures

fmfmfmfmexcludePLMfmfmfeatures







Require definition and invariant:

)()()(.),,(

)(),(.),(

jkijijjikji

kikiki

fffoptionallyffchildOffPLMffffeatures

fmfmfmfmrequirePLMfmfmfeatures







With the first logical expression (require-child invariant), error existing among features “prepare
reagents” and “heat triggering” can be detected. The aforementioned features are joined through a
transversal relationship, respecting right side restrictions of the logical expression. At the same time,
they are joined by means of a “childOf” relationship, and not respecting restri ctions of the left side
expression. For this reason, the entire expression is evaluated FALSE.

With the logical expression “exclude invariant” it is possible to detect three cases of error, each one
related with features “identify products”, “by identificator” and “prepare reagements”. Since the previous
features are all joined with their respective parents through a mandatory relationship, and at the same
time each one is being excluded by a third feature, the expression is evaluated FALSE for each of three
cases.

The error highlighted in the feature “update patient history” is detected with the logical expression
“require invariant” because “update patient history” (fj) and “obtain analysis” (fi) are joined through an
optional relationship and, on the same model it exists a relation “require” among features “print result”
(fk) and “update patient history” (fj). Give n that it exists (fk “require” fj), the logical expression is
evaluated FALSE and the error is put in evidence.

 110

6.3.1.7 <PLM, execute “Find contradictions between transversal dependencies” invariants>

These errors can be detected by require-exclude contradiction invariant. In a PLM it is not possible that
a feature (k) can require another feature (j) or one of their children and at the same time, this feature k
excludes feature j.
Require-exclude definition:

kiikkiki fmfmfmchildOffmPLMfmfmfeatures   ,),(

and contradiction invariant:

)))(()()((

)(),(

)(),(.),(

)(),(.),(

jkkjjk

jkkjkj

kikiki

kikiki

fancestorOffffff

frequiresfPLMfffeatures

fmfmfmfmexcludePLMfmfmfeatures

fmfmfmfmrequirePLMfmfmfeatures











Two errors highlighted in red can be identified by the previous logical expression. In the first case,
feature “by” (fk) requires feature “by external” (fj) and at the same time, fk excludes feature “by
identificator”, which is fj's ancestor. In the second case, feature “min” (fk) requires feature “incubate” (fj)
and at the same time, fj excludes fk. In both cases, the logical left side expression is evaluated TRUE
and the right side one FALSE, this implies that complete formulae must be evaluated FALSE.

Diagnose thrombosis/haemostasis

Analyze

Measure
reaction

Calibrat
e

Set up analysis
methodology

Obtain analysis
results Avoid

contamination
Ensure

traceability

Measure
reaction

Prepare
patient
blood

By
RFI
D By

identificato
r

For
urgent

test

By
batch

Separate
constituent

s
Micro-
filter

Centrifug
e

Mix
Incubate Agitat

e

Photometri
c

Immunologi
c

Chronometric

Manuall
y

By
external
system

Print
results

By printer
In the

screen

By
id

Clean Evacuate
waste

1..*

1

By
barcod

e

By RFID
By printing

on tubes

Chronometri
c

Update the
patient
medical
history

Load
products

and
reagents

Identify
products and

reagents

Dig out
reagent

Drop
off

reagent

Drop off
triggerin
g reagent

1..*
Launch

tests

FIFO

By
test
type

By
patient

Drop off
intermediat
e reagent

Heat
triggering
reagent Dilute

patient
blood

Prepare
reagents

Dig out
plasma Drop

off
plasma

4..
5

0..
2

Mandato
ry
Option
al
Requi
re
Exclu
de

<<E>
>

<<E>
>

<<E>
>

<<E>
>

<<E>
>

<<E>
>

<<E>
>

<<E>
>

0..
1

 111

6.3.1.8 <PLM, execute “Find features impossible to achieve” invariants>

An error of impossible features to achieve is not yet automatically identified with an i nvariant. It will be
considered in the future work.

6.3.1.9 <PLM, execute “Find cyclic relations” invariants>

These errors can be detected executing next acyclic invariant:

Diagnose thrombosis/haemostasis

Analyze

Measure
reaction

Calibrat
e

Set up analysis
methodology

Obtain analysis
results Avoid

contamination
Ensure

traceability

Measure
reaction

Prepare
patient
blood

By
RFI
D By

identificato
r

For
urgent

test

By
batch

Separate
constituent

s
Micro-
filter

Centrifug
e

Mix
Incubate Agitat

e

Photometri
c

Immunologi
c

Chronometric

Manuall
y

By
external
system

Print
results

By printer
In the

screen

By
id

Clean Evacuate
waste

1..*

1

By
barcod

e

By RFID
By printing

on tubes

Chronometri
c

Update the
patient
medical
history

Load
products

and
reagents

Identify
products and

reagents

Dig out
reagent

Drop
off

reagent

Drop off
triggerin
g reagent

1..*
Launch

tests

FIFO

By
test
type

By
patient

Drop off
intermediat
e reagent

Heat
triggering
reagent Dilute

patient
blood

Prepare
reagents

Dig out
plasma Drop

off
plasma

4..
5

0..
2

Mandato
ry
Option
al
Requi
re
Exclu
de

<<E>
>

<<E>
>

<<E>
>

<<E>
>

<<E>
>

<<E>
>

<<E>
>

<<E>
>

0..1

Diagnose thrombosis/haemostasis

Analyze

Measure
reaction

Calibrat
e

Set up analysis
methodology

Obtain analysis
results Avoid

contamination
Ensure

traceability

Measure
reaction

Prepare
patient
blood

By
RFI
D By

identificato
r

For
urgent

test

By
batch

Separate
constituent

s
Micro-
filter

Centrifug
e

Mix
Incubate Agitat

e

Photometri
c

Immunologi
c

Chronometric

Manuall
y

By
external
system

Print
results

By printer
In the

screen

By
id

Clean Evacuate
waste

1..*

1

By
barcod

e

By RFID
By printing

on tubes

Chronometri
c

Update the
patient
medical
history

Load
products

and
reagents

Identify
products
reagents

Dig out
reagent

Drop
off

reagent

Drop off
triggerin
g reagent

1..*
Launch

tests

FIFO

By
test
type

By
patient

Drop off
intermediat
e reagent

Heat
triggering
reagent Dilute

patient
blood

Prepare
reagents

Dig out
plasma Drop

off
plasma

4..
5

0..
2

Mandato
ry
Option
al
Requi
re
Exclu
de

<<E>
>

<<E>
>

<<E>
>

<<E>
>

<<E>
>

<<E>
>

<<E>
>

<<E>
>

0..
1

 112

 

trueffendencyVariantDeporylDependencTransversaff

endencyVariantDeporylDependencTransversaPLMffPLMffeature

kk

k





),()...,(

.,..,,

11

1

The cycles in red have the particularity to contain at least, one transverse relation (require, exclude).
With the previous logic invariant, we look for cycles of features joined through variant or transversal
relations. If at least one cycle is detected, right -hand side of the logical expression is evaluated FALSE
and consequently, all the logical expression is evaluated FALSE, evidencing the existence of one cycle.
One example of cycle detected by the aforementioned invariant is: “Manual” childOf “By identificator”
childOf “Identify products” excluded_by “Manual”.

Next, we will apply the verification process, particularly the intention “Verify PLM semantic correctness”,
to PLM represented in Figure 6-2-1. So, in a graphic way, we will execute the following section of the
process model defined in the figure 5 -2-1.

6.3.2 Section <Start, verify PLM structural correctness, Model checking strategy>

6.3.2.1 <(PLM, PLC), execute usability, liveliness or decidability invariant>

Diagnose thrombosis/haemostasis

Analyze Calibrat
e

Set up analysis
methodology

Obtain analysis
results Avoid

contamination
Ensure

traceability

Measure
reaction

Prepare
patient
blood

By
RFI
D

By
identificato

r

For
urgent

test

By
batch

Mix
Incubate

Manuall
y

By
external
system

Print
results

By printer In the
screen

By
id

Clean Evacuate
waste

By printing
on tubes

Load
products

and
reagents

Identify
products and

reagents

Drop
off

reagent
Drop off

triggering
reagent

Launch
tests

FIFO

By
test
type

By
patient

Drop off
intermediat
e reagent

Prepare
reagents

Verify PLM semantic

correctness
Model checking

strategy

Verify PLM structural

correctness

 113

It is necessary to execute:
Liveliness, usability or decidability invariant :

    fCIikPLCPLCI

PLMCf

inikik 



 ..11),1(,...,

,)DependencyTransverse endency,VariantDep(, Feature

Respecting the set of model's constraints, all features of the PLM described in figure 5-2-1 could be
used in order to derivate previous PLC model.

6.3.2.2 <(PLM, PLC), execute suitability or utility invariant>

It is necessary to execute:

Utility or suitability invariant

     fCIikPLCPLCI

PLMCf

inikik 



 ..11),1(,...,

,)DependencyTransverse ,endencyVariantDep(, Feature

Previous PLC model is an example of configuration in which most of the option al features have not
been selected from the PLM. It is a problem if we remove some mandatory features from the PLM,
because there might be other features depending of the feature eliminated. For instance, if we want
to eliminate feature Analyse only, it is not possible to do that because features like Identify products,
Load products, Prepare reagents, Prepare patient, Launch tests, Measure, Set up analysis
methodology and all their children must disappear as well from the model. We believe that it is
necessary to develop a special mechanism to deal with this issue.

Diagnose thrombosis/haemostasis

Analyze Calibrat
e

Set up analysis
methodology

Obtain analysis
results Avoid

contamination
Ensure

traceability

Measure
reaction

Prepare
patient
blood

By
RFI
D

By
identificato

r

For
urgent

test

By
batch

Mix
Incubate

Manuall
y

By
external
system

Print
results

By printer In the
screen

By
id

Clean Evacuate
waste

By printing
on tubes

Load
products

and
reagents

Identify
products

Drop
off

reagent
Drop off

triggering
reagent

Launch
tests

FIFO

By
test
type

By
patient

Drop off
intermediat
e reagent

Prepare
reagents

 114

6.3.2.3 <(PLM, PLC), execute validity or richness algorithm>

It is necessary to execute:

An algorithm that allows to evaluate:

k

k

PLMPLC

PLM





Set Constraint

Set Constraint

And in particular :

   i

n

ii CPLMC
1

,Constraint

Previous PLC model is a proof that there is a particular configuration that satisfied all PLM set of
constraints.

6.3.2.4 <PLM, execute verifiability algorithm>

It is necessary to execute:

An algorithm that permits to evaluate:

trueSubGSubGSubGSubGGsionicalExpres jiji  .,log

In order to apply previous formulae, we need to divide the product line model into an ordered set of
sub sub-models, and to make the same thing with each sub-model and so on, even arriving at the
level of leaves. Due to space reasons, this procedure is not going to be applied to the model. Our
PLM example is evaluated TRUE after being divided into sub -models and being evaluated of a
recursive manner.

Diagnose thrombosis/haemostasis

Analyze Calibrat
e

Set up analysis
methodology

Obtain analysis
results Avoid

contamination
Ensure

traceability

Measure
reaction

Prepare
patient
blood

By
RFI
D

By
identificato

r

For
urgent

test

By
batch

Mix
Incubate

Manuall
y

By
external
system

Print
results

By printer In the
screen

By
id

Clean Evacuate
waste

By printing
on tubes

Load
products

and
reagents

Identify
products and

reagents

Drop
off

reagent
Drop off

triggering
reagent

Launch
tests

FIFO

By
test
type

By
patient

Drop off
intermediat
e reagent

Prepare
reagents

 115

Afterwards, we will apply the verification process, particularly the intent ion “Verify PLC validity”, to a
PLC model derived from PLM represented in Figure 6 -2-1. It means, in a graphic way, we will
execute the following two sections of the process model defined in the figure 5 -2-1.

6.3.3 Section <verify PLM structural correctness, verify PLC validity, model checking strategy>
 & Section <verify PLM semantic correctness , verify PLC validity, model checking strategy>

6.3.3.1 <(PLM, PLC), execute tree invariants>

It is necessary to execute:

1. Root unicity invariant

1).(,  frootfPLCPLMffeaturePLC

This invariant is evaluated TRUE because previous PLC model has only one root element.

Diagnose thrombosis/haemostasis

Analyze Calibrat
e

Set up analysis
methodology

Obtain analysis
results Avoid

contamination
Ensure

traceability

Measure
reaction

Prepare
patient
blood

By
RFI
D

By
identificato

r

For
urgent

test

By
batch

Mix
Incubate

Manuall
y

By
external
system

Print
results

By printer In the
screen

By
id

Clean Evacuate
waste

By printing
on tubes

Load
products

and
reagents

Identify
products and

reagents

Drop
off

reagent
Drop off

triggering
reagent

Launch
tests

FIFO

By
test
type

By
patient

Drop off
intermediat
e reagent

Prepare
reagents

Verify PLC validity
Model checking

strategy

Verify PLM semantic

correctness

Verify PLM structural

correctness

Model checking

strategy

 116

2. Child-parent unicity invariant

1)()())()(()(

)()(.),(





iiiii

ii

PCPCPOptionallyCPMandatoryCPchildOfC

CreChildFeatuPureFatherFeatPLCPLMCfeaturePfeature



This invariant is evaluated TRUE because each feature in previous PLC model has only one
parent element.

6.3.3.2 <(PLC, PLM), execute PLM satisfaction invariants>

It is necessary to execute:

1. Satisfaction of PLM’s mandatory relationships invariant

 
))()()()(

)(.,),(

PCPMandatoryCPchildOfCCreChildFeatu

PureFatherFeatPLCPLMKfeatureCfeaturePfeature

i

i





This PLC model respects all mandatory relationships founded in Stago’s PLM.

2. Satisfaction of PLM’s optionally relationships invariant

 
)()()()(

)(.,),(

PCPOptionallyCPchildOfCCreChildFeatu

PureFatherFeatPLCPLMKfeatureCfeaturePfeature

i

i





This PLC model includes some features declared as optional in Stago’s PLM.

3. Satisfaction of PLM’s require relationships invariant

)(),(.,),(PLCfcPLCfcfcfcrequirePLCfcPLMfcfcfeatures kikiiki 

Diagnose thrombosis/haemostasis

Analyze Calibrat
e

Set up analysis
methodology

Obtain analysis
results Avoid

contamination
Ensure

traceability

Measure
reaction

Prepare
patient
blood

By
RFI
D

By
identificato

r

For
urgent

test

By
batch

Mix
Incubate

Manuall
y

By
external
system

Print
results

By printer In the
screen

By
id

Clean Evacuate
waste

By printing
on tubes

Load
products

and
reagents

Identify
products and

reagents

Drop
off

reagent
Drop off

triggering
reagent

Launch
tests

FIFO

By
test
type

By
patient

Drop off
intermediat
e reagent

Prepare
reagents

 117

The Stago’s PLM didn't have transverse relationships, therefore evaluation of this invariant on the
intersection among our examples of PLM and PLC model is always TRUE.

4. Satisfaction of PLM’s exclude relationships invariant

)),(()(),(

.),(,),,(

)(),(.,),(

PLCfcfcPLCfcfcchildOffcfcfcexclude

PLCfcfcPLMfcfcfcfeatures

PLCfcPLCfcfcfcexcludePLCfcPLMfcfcfeatures

kjijkji

jikji

kikiiki







The Stago’s PLM didn't have transverse relationships, therefore evaluation of this invariant on the
intersection among our examples of PLM and PLC model is always TRUE.

5. Algorithm to verify satisfiability of PLM’s constraints

)),((et,invariantS PLMiPiPLCPpathi

For invariant i:

 Search in PLC a valid path P from an initial state into a one that violates i.

 If it exists a PLC with P, PLM is inconsistent

This algorithm detects three PLM’s paths, one of which must be included in every PLC model, and
no one is presented on our particular configuration model. First path is: “Diagnose
thrombosis/haemostasis”--“Analyze”--“Measure”--“Chronometric”. Second path is: “Diagnose
thrombosis/haemostasis”--“Analyze”--“Measure”--“Photometri”--“Immunologi”. Third path is:
“Diagnose thrombosis/ haemostasis”--“Analyze”--“Measure”--“Photometri”--“Chronometri”. Because
the choice between “Chronometric” and “Photometri” is determined by a cardinality (1, *) and the
choice between Immunology and “Chronometri” is also determined by a variability (1,*). No one of
these paths is presented on our PLC example and an error is evidenced by the precedent algorithm.

6.4 Conclusion

The purpose of this chapter was to illustrate and validate the PLM correctness verification approach
introduced in Chapter 5. We started with a presentation of the particular PLM used in this case study,
followed by a execution of sections of our process Map presented in Figure 5-2-1, corresponding to
model checking strategies. Model checking is one strategy that permits to evaluate logical expressions
written in propositional logic and first order logic formalisms. With this example we thus showed that the
approach is operational and can be applied to rea l cases.

 118

7 Tool Support

7.1 Presentation
We have developed a computing tool in order to support the verification method of PLM and PLC,
presented in chapter IV.
The name of the tool is PLMV&V, is an acronym of Product Line Model Verification and Valida tion.

Characteristics of the application:
In the construction process of PMLVyV tool, we have use d the following tools:

 Microsoft .NET Framework v2.0.50727 (free distribution by Microsoft at
http://www.microsoft.com/downloads/Search.aspx?displaylang=en#)

 Microsoft Visual Studio 2005 Professional Edition

 XmlExplorer Controls V1.0.0.0 (free distribution by The Code Project
http://www.codeproject.com)

7.2 Architecture

The project is composed of fourth DLL, distributed as is shown in Figure 7-1-1.

id P LM yV

P LM V yV .E X E

P LM V yV .B us s .D LL

P LM V yV .D a ta .D LL

P LM V yV .C ontro ls .D LL

P LM V yV .U til i tie s .D LL X m lE x p lo re r .C ontro ls

Figure 7-1-1: Architecture of the application PLMV&V.

http://www.microsoft.com/downloads/Search.aspx?displaylang=en#
http://www.codeproject.com

 119

Application PLMVyV.EXE

Description:
In this application, the user can do design and verification of product line models. It also provides
interface facilities for design of PLMs through use cases and description by restriction formalisms. At
present, these two formularies only work for writing of te xt, but we intend to improve its implementation
in futures versions.

Figure 7-1-2 shows class diagram of the application PLMVyV.EXE

c d P LM V yV

F o rm
frm C ons tra in ts

F o rm
frm Fe a tu re s

F o rm
frm U C

T a b P a g e
Ta bP a ge C la s s P LV yV

F o rm
frm C a rd ina lityD e pe nde nc y

F o rm
frm Tra ns v e rs e D e pe nde nc y

F o rm
frm V a ria n tD e pe nde nc y

« i n te rfa c e »
IFo rm S a v e

F o rm
frm P LM V yV

P rogra m

0 . . *

0 . . *0 . . *

1

0 . . * 0 . . *
0 . . *

1

Figure 7-1-2: Class diagram of the application PLMVyV.EXE

In the class diagram, the Class Program corresponds to the main class of the application PLMVyV.EXE.
This class is composed of one and only one frmPLMVyV class. frmPRMVyV classes correspond to the
main MDI formulary. This class is composed of zero or several frmUC clases, each frmUC is a formulary
that permits to design PLMs through use cases formalism. Also of zero or several frmConstraints
classes, each frmConstraints permits to describe PLMs through textual restrictions. And it is also

 120

composed of zero or several frmFeature clases, each class is responsible of the implementation of
formularies for PLMs using features, particularly the FORE [ref] formalism. Other classes are
TabPageClassPLMVyV that is in charged of panel tools which permit designing PLMs,
frmVariantDependency that permits to manage variant dependencies from the model,
frmTransverseDependency that permits to manage cardinality dependencies from the model and
frmCardinalityDependency that permits to manage transversal dependencies of the model.

DLL: PLMVyV.Controls.DLL

Description:
In this DLL it is possible to find the controls develo ped for the project, they split into 4 groups, as follow:
Containers: in this group it is possible to find panels that can spread out and hide. These panels are
employed to handle the properties of each PLM
Administrators of properties: in this group of co ntrols it is possible to find the controls permitting to edit
the properties of features. NumericTextBox is a panel that permits to edit numeric elements. Some of its
usages are to select the top and left of an element. SelectorValueProperty is another pan el showing a
bottom that permits to select colour and type of script for a particular PLM’s feature.

Classes: are the instances of a particular class that can be located in the working space in order to list a
group of properties. In this group, there are two types of controls, ClassPLVyV and FeaturePLVyV.
ClassPLVyV has all the functionality to dimension and to move the controls. FeaturePLVyV is
ClassPLVyV's specialization with all the functionalities of an element of the model.

Relations: these set of objects permit to do different relations on the model, like
TransverseDependency, VariantDependency and Cardinality relations.

Figure 7-1-3 shows the class diagram of PLMVyV.Controls.DLL.

 121

c d C ontro ls

U s e rC o n t ro l
C la s s P LV yV

Fe a tu re P LV yV

P a n e l
E x pa ndP a ne l

E x pa ndP a ne lP rope rty

« i n te rfa c e »
IDe le te C la s s

« i n te rfa c e »
IL is tDe s c rip tionP rope rty

D e s c rip tionP rope rty

T e x tB o x
N um e ric Te x tB ox

U s e rC o n t ro l
S e le c to rV a lue P ro pe rty

C a rd ina lity

« e n u m e ra t i o n »
Type Tra ns v e rs e D e pe nde nc y

Tra ns v e rs e D e pe nde nc y

« e n u m e ra t i o n »
Type V a ria n tV a ria n tD e pe nde nc y

V a ria n tD e pe n de nc y

-sv p F o n t

3-sv p F o re C o l o r-tx tH e i g h t
4-tx tL e f t

-t x tT o p

-tx tW i d th

-_ C a rd i n a l i t y D e p e n d e n c y

-_ L i n kC o n c e p t

-sv p A rra y T ra n sv e rse D e p e n d e n c y

3

-sv p A rra y V a ri a n tD e p e n d e n c y

-sv p B a c kC o l o r

-_ C l a ss

-_ C l a ss1 2

-_ C l a ss2

-_ T y p e

-_ C l a ssC o n c e p t

2

-_ C l a ssF e a tu re

-_ T y p e

-sv p C a rd i n a l i t y D e p e n d e n c y

Figure 7-1-3: Class diagram of PLMVyV.Controls.DLL.

DLL: PLMVyV.Buss.DLL

Description:
Control all business rules of different types of models to implement (feature, use case and restriction
models). Into its functionalities are: to verify availability of necessary files and objects corresponding to
each model.

Figure 7-1-4 shows the class diagram of PLMVyV.Buss.DLL.

 122

c d B u s s

C ons tra in ts B us sFe a tu re B us sP ro j e c tB u s sU C B us s

Figure 7-1-4: Class diagram of PLMVyV.Buss.DLL.

DLL: PLMVyV.Data.DLL

Description:
Control the storages in the different files that compose a project, the file of each model as well the
contents of the aforementioned files.

Figure 7-1-5 shows the class diagram of PLMVyV.Data.DLL.

c d D a ta

C ons tra in ts D a ta P roduc tL ine D a ta

P ro j e c tD a ta

U C D a ta

0 . . *0 . . *0 . . *

Figure 7-1-5: Class diagram of PLMVyV.Data.DLL

Persistence of Constraints Data and UC Data is making through text files, whereas Product Line Data is
made through a file XML that must be in accordance with schema described in Figure 7-1-6.

 123

PLMVyV.xsd

Figure 7-1-6: Schema for storage of Constraints Data and UC Data content.

DLL: PLMVyV.Utilities.DLL

Description:
Manage general functions of the project. Some of utilities are : administration of especial types of data,
utilities to access disk, utilities for handling XML files, utilities for handling types of personalized
exceptions and, in general, to manage all constants of the project.

Figure 7-1-7 shows the class diagram of PLMVyV.Utilities.DLL

 124

c d U ti l i tie s

C a rd ina lityC la s sFe a tu re C la s s

F ile D a ta

Tra ns v e rs e D e pe nde nc yC la s s

V a ria n tD e pe nd e nc yC la s s

E x c e p t i o n
B us s E x c e p tion

E x c e p t i o n
D a ta E x c e p tion

E x c e p t i o n
U nha nd le dE x c e p tio n

N S FontR G B C olor

U til i tie s C ons ts U til i tie s IOU til i tie s X M L

-_ F o n t-_ B a c kC o l o r
-_ F o re C o l o r

Figure 7-1-7: Class diagram of PLMVyV.Utilities.DLL

7.3 System Functionality

In broad strokes, the system permits to create fourth types of models:

 Feature product line models

 Particular configurations of feature product line models.

 Use case product line models

 Restriction product line models

In this release we have implemented components for PLMs and PLCs construction. A project is a set of
one or several models, one by default. We have impl emented the following functions:

1. To create a PLM, where it can be applicable:

 125

2. Exporting and importing the model to XMI file. Due to these functions it is possible to communicate
with and from other applications. The second function is not still implanted.

3. On PLMV&V it is also possible to validate some characteristics on a PLM, like unbound cardinality,
root unicity and cyclic relations. Other validations issues that we want to implement on future
releases are: contradiction in optionally relation, contrad iction in mandatory relation, contradiction in
transversal dependency – cardinality, contradiction in transversal dependency – variant
dependency, contradiction between transversal dependencies, iden tification of features that we can
not access.

4. To validate a particular product line model configuration. This functionality allows the verification of
a PLC model compared to a PLM. The set of verified characteristics on a PLC are: root unicity,
correctness (same PLM’s root, PLM’s mandatory dependencies are ful filled in the PLC model,
inclusion of PLC’s features into PLM’s feature set, all transverse dependencies defined in the PLM
are included in the PLC model, all cardinalities defined in the PLM are respected in the PLC model)

5. PLMV&V also permits to create a particular configuration of the product line model. On this model
we can export and import it in a XMI file, the second function is not still implemented.

Functionalities of the system are represented in Figure 7-1-8.

 126

ud P L M yV

U s e r

C re a te U C M od e l

C re a te C ons tra in ts
M ode l

P roduc t L ine M od e l

C re a te P ro j e c t

E x p ort M o de l to
X M I

Im po rt M od e l to
X M I

V e rify P roduc t L ine
M ode l

P rodu c t L ine
C on figu ra tion

V e rify P a rtic u la r
P rodu c t L ine
C on figu ra tion

« i n v o ke s»

« i n v o ke s»

« i n v o ke s»

« i n c l u d e »

« i n c l u d e »

« i n c l u d e »

« i n c l u d e »

« i n c l u d e »

« i n c l u d e »

Figure 7-1-8: PLMV&V’s use cases diagram.

Example 7-1-1:
This example shows how an actor can create a project and use the most important functionalities of the
system.
As soon as the application is opened, the user can create either a project or a specific model. By
default, when the project is created, three interfaces are available to create different types of PLM.

 127

Figure 7-1-9: Interface to create a new project or a new model

In our example, user has created a new project called Demo and saved it in “documents and settings”
folder.

Figure 7-1-10: New project interface

In Figure 7-1-11, user active ToolBox and Properties windows in order to create a new PLM in feature
notation.

 128

Figure 6-1-11: Interface permitting to create and configure a PLM

The next figure shows a PML in construction using features notation.

Figure 7-1-12: DAG of PLM in construction.

7.4 Manual of the Application

Menu bar is composed of:

1. File, that contains: (i) New, this option allows to create a new project or model. When a new
model is created in an open project, the model becomes a new element of the project. (ii) Open,

 129

when a model is opened in a project, this model becomes a new element of the project. (iii)
Save, “Save as” and “Save all”, permit to store the current active model with the same name,
with different name and the entire project, respectively. (iv) Print, this option shows a
preliminary view of the current model and lets us print it. (v) Exit permit to get out of the
application, if a change is still pending to sav e, an alert message is showed.

2. View is composed of: (i) Project Explorer, this option shows the project exploration bar. (ii)
Results show the bar with this name. (iii) ToolBox, show the tool box, only if a feature PLM is
active. (iv) Properties show the properties box, only if a PLM based on features is active.

3. Tools: this option allows showing the system’s configuration options, but it is not still
implemented.

 130

4. Window is composed of: (i) Cascade, it allows organizing all the project’s models in the form of
cascade. (ii) Title vertical, it allows organizing all the project’s models in a vertical way. Title
horizontal, it allows organizing all the project’s models in a horizontal way. Close all is an option
that allows closing of the project’s models, if a model has been changed, an alert message is
showed. Arrange Icons is an option that organizes all icons of the project. The model that is
currently active is showed in blue.

5. Verification
This menu’s element is activated only when a model is activated .

5.1 PLM Verification

 131

This option allows verifying correctness property in PLMs and PLCs models. In future releases
the rest of properties will be implemented. When “Verify Correctness” i s chosen, next window is
automatically showed permitting select different options to be verified on the current model.

And in the output bar, the resulting verification will be showed.

5.2 PLC Verification

PLC Verification allows verifying a PLC model against its corresponding PLM. At the moment
“Model Checking Strategy” option is only available. “Matching Strategy” will be implemented in
future releases. Selecting “Model Checking Strategy”, a list of PLCs models members of the
project will be showed.

 132

And in the output bar, the resulting verification will be showed.

6. Options Menu is composed of: (i) Export model to XMI, this functionality allows exporting a

feature model in a XMI file. (ii) Import model to XMI allows to o pen a XMI file and to show the
content of the file graphically.

Next, we will present the project’s bars of PLMV&V:

1. Project administrator allows seeing the different models organised by type of project. In order to
open a model, it is only necessary to click on it.

 133

2. Tool box - Model: provides all elements that allow the construction of a feature model.

 Is useful for selecting an element of the model.

 Is useful for selecting an element that will be moved from one place to another one or from a
model to a different one.

When an element is selected it is ready to be moved:

 Optional and Mandatory dependencies, respectively. These ones are useful for creating
Variant-Dependency relationships between features. The link must be made between parent
and child features.

 Require and Exclude dependencies, respectively. These ones are useful for creating
Transverse-Dependency relationships between two features. Any click made on an empty place
of the model, make a flexion point in the line of relation.

 134

 This control lets us delete an element from the model.

3. Tool box – Configuration: Lists all components that can be added in a particular product line

configuration model. Used elements are discussed above.

4. Feature properties bar: permits to edit all properties of a model’s element.

(Name): is the mane of the corresponding feature in the model.

BlackColor: feature’s background color.

 135

Cardinality: cardinality of the selected child and optional features.

DependencyConcept: Allows giving the name of a dependent concept.

Font: Type of font features.

ForeColor: font’s color.

Height: height of features box.

ID: features identificator, is used to establish relations between features.

IsRoot: this field allows indicating if the current feature is the model’s root .

Left: left location features.

Text: textual description features showed on the model .

Top: vertical location features.

Transverse: this field allows to do or to add a TransverseDependency from the current feature.

Variant: this field allows to do or to add a VariantDepend ency from the current feature.

Width: features width.

5. Relationship properties bar: permits to edit all properties of a relationship

 136

(Name): is the name of the corresponding relationship.

Id: relationship identificator, is used to establish cardinalities and a list of model’s relationships.

Text: text of the associated relationship.

Type: the type of a relationship can be optional or mandatory.

7.5 Limitations of application

 Product Line models using use cases formalism will n ot be implemented in this release.

 Product Line models using constraints formalism will not be implemented in this release.

 PLM is not modifiable from XML file

 PLMV&V is only available as a desktop application

 PLMV&V is only available in English language

 The manipulation of carnalities must be done using the editor of properties

7.6 Conclusion

In the second part of this chapter we have presented the automation of our PLM correctness verification
process. In order to automat it, we have developed a comput ational tool called PLMV&V, and we have
presented its architecture, functionality, as well as a use guideline, some limitations and proposals to be
implemented in future releases. With this application we thus showed that both, the approach and the
tool, are operational and can be applied to an industrial case.

 137

Part VII

Perspectives and Conclusion

 138

Perspectives

At the present time we work on PL defined by the features models with simple configuration’s restraints
(If F1 so F2 or if F1 so not F2). Besides, new PL models appear in which configuration restraints are
different (for instance, restraints on attribute value, on groups of attributes, etc) that can not be solve by
simples SAT solvers. It is on this direction our search must persist.

Conclusion

The goal of this paper was to investigate the verification of product lines models. We believe that this
goal was reached. Even though there are still open questions, the present paper can be seen as a proof
of affirmation that it is possible to re duce every verification problem of a PLM designed with feature
notation, to a validation of constraint problem.

We have focused in definition of a multi -process method for verify correctness in feature product line
models. There are two aspects that must have been taken into account in a verification process of
PLM’s correctness, the structural and the semantic correctness of the model. From the point of view of
the structural correctness, we have enriched the range of properties to verify in a PLM and we have
proposed the corresponding logic invariants to evaluate each one. We have included not only the
properties of a model designed with the notation FORE, but also another one like: correctness in
optional relations, correctness in mandatory relations, co rrectness in cardinalities, correctness in
transversal dependencies and variant dependencies interactions, correctness in transversal
dependencies interactions, every feature must be possible to achieve and no cyclic relations are
permitted. And from the point of view of the semantic correctness, we have unified dispersed criteria
found in literature and have select some of the most important characteristics to be verified in a PLM.
Some logic invariants to evaluate usability, suitability, validity and veri fiability properties have been
proposed. The different paths to execute each one of the previous logic invariants on a PLM are defined
in the multi-process model in Figure 5-2-1.
For the verification of each of correctness's characteristics, we have used p ropositional logic and first-
order logic for writing out of every invariant to verify. In order to evaluate a propositional logic formula,
we have used in some cases satisfiability criterion and validity criterion in others.

 139

Benefits of our approach to PLM verification are (i) its foundations in the well accepted requirements
engineering framework, which allows the approach to be very general; (ii) this approach not only gathers
the proposals of verification found in literature, but proposing another innov ative rules and standardizes
them through a same language and a same multi -model of verification; (iii) this is an approach not only
focusing on single-system models (PLC models like the most of the literature do), but extended to the
evaluation of PLMs.

Based on the general approach, we validate it making use of a case study and automate it through a
computational tool called PLMV&V.

As limitation, we have that formulas or invariants proposed can not been directly used by any available
SAT tools. Although the aforementioned invariants have been used in our PLMV&V tool, its syntax is not
enough independent of its implementation as for being used by some SAT solver standard.

 140

 141

Part VIII

Appendix

 142

PLMV&V tool and its explanation video available in:

http://sites.google.com/site/plmcommunity/

In this URL you can download free version of:
PLMV&V.exe
PLMV&V_explanation_video.wmv

http://sites.google.com/site/plmcommunity/

 143

Bibliography

[Alexandria] http://www.theoinf.tu -ilmenau.de/~riebisch/pld/index.html

[Alférez et al. 07] M. Alférez, U. Kulesza, A. Garcia, A. Moreira, J. Araújo, and V. Amaral. Towards

Volatility Analysis in Software Product Line Engineering, presented at Second International Workshop
on Aspect-Oriented Product Line Engineering held in conjunct ion with GPCE'07 (Generative
Programming and Component Engineering), Saltzburg, Austria, 2007.

[Antkiewicz, Czarnecki 04] M. Antkiewicz, K. Czarnecki. FeaturePlugin: feature modeling plug -in for
Eclipse. Proceedings of the OOPSLA workshop on eclipse technology eXchange, 2004.
http://swen.uwaterloo.ca/~kczarnec/

[Bachmann et al. 2003] F. Bachmann, M. Goedicke, J. Leite, R. Nord, K. Pohl, B. Ramesh, and A.
Vilbig; “A Meta-Model for Representing Variability in Product Family Development”, In: Proceedings of

the 5th International Workshop on Product Family Engineering (PFE -5), Siena, Italy, 2003, pp. 66–80.

[Balzer 91] R. Balzer, Tolerating inconsistency, in: Proceedings of the 13th IEEE International
Conference on Sofware Engineering (ICSE13), IEEE Computer Society Press, Austin, Texas, 1991, pp.
158-165.

[Bass et al. 99] Bass, L., Clements, P., Donohoe, P., McGregor, J., and Northrop, L. 1999. 4th Product

Line Practice Workshop Report , CMU/SEI-2000-TR-002, Software Engineering Institute, CMU.

[Batory 05] Don S. Batory. Feature Models, Grammars, and Propositional Formulas. In Proceedings of
the 9th International Software Product Line Conference (SPLC), pages 7 –20, 2005.

[Batory, Thaker 06] Batory, D.; Thaker, S.: Towards Safe Composition of Product -Lines. Dept.
Computer Sciences, University of Texas, TR -06- 33, 2006.

http://www.theoinf.tu-ilmenau.de/~riebisch/pld/index.html

 144

[Bayer et al. 99] Joachim Bayer, Oliver Flege, Peter Knauber, Roland Laqua, Dirk Muthig, Klaus
Schmid, and Tanya Widen. PuLSE: A Methodology to Develop Software Product Lines. Fraunhofer
Institute for Experimental Software Engineering, Germany and Lucent Technologies Software Product
Line Engineering Laboratories, U.S.A. May 1999.

[Benavides, Ruiz 05] D. Benavides, A. Ruiz -Cort´es, and P. Trinidad. Automated reasoning on feature
models. LNCS, Advanced Information Systems Engineering: 17th International Conference, CAiSE

2005, 3520:491–503, 2005.

[Benavides et al. 06a] D. Benavides, A. Ruiz-Cortés, P. Trinidad, and S. Segura. A survey on the
automated analyses of feture models. In Jornadas de Ingenier´ıa del Software y Bases de Datos

(JISBD), 2006.

[Benavides et al. 06b] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz -Cortés. Using java csp solvers
in the automated analyses of feature models. LNCS, 4143:389–398, 2006.

[Benavides et al. 06c] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz -Cortés. A first step towards a
framework for the automated analysis of feature models. In Managing Variability for Software Product

Lines: WorkingWith Variability Mechanisms , 2006.

[Benavides et al. 07] David Benavides, Sergio Segura, Pablo Trinidad and Antonio Ruiz -Cortés. FAMA:
Tooling a Framework for the Automated Analysis of Feature Models . First International Workshop on
Variability Modelling of Software -intensive Systems (VaMoS) January 16–18, 2007, Limerick, Ireland, pp
129-134

[Benjamen 99] Benjamen, A. (1999). Une approche multi -démarches pour la modélisation des
démarches méthodologiques. Unpublished doctoral dissertation, University of Paris 1 –Sorbonne,
France.

[Bjorner 06] Dines Bjorner Software Engineering 3 Domains, requirements and Softwa re Design.
Springer-Verlag 2006

[Boehm 81] Barry Boehm. Software Engineering Economics. Prentice Hall, NJ, USA, 1981

 145

[Boehm 84] Barry Boehm, Verifying and validating software requirements and design specifications,
IEEE Software 1 (1) (1984) 75-88.

[Bosch et al. 2002] J. Bosch, G. Florijn, D. Greefhorst, J. Kuusela, H. Obbink, and K. Pohl; “Variability
Issues in Software Product Lines” In: Proceedings of the 4th International Workshop on Product Family

Engineering (PFE-4), Bilbao, Spain, October 3–5, 2001, Springer, Berlin Heidelberg New York, LNCS
2290, 2002, pp. 13–21.

[Bradley, Manna 07] Aaron Bradley, Zohar Manna. The calculus of computation – Decision procedures
with applications of verification. St anford University. Springer-Verlag Berlin Heidelberg 2007

[Bryant 86] R. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transactions on

Computers, 35(8):677–691, 1986.

[Bühne et al. 03] S. Bühne, G. Halmans, and K. Pohl; “Modeling Dependencies between Variation
Points in Use Case Diagrams”, In: Proceedings of the 9th International Workshop on Requirements

Engineering – Foundation for Software Quality (REFSQ’03), Klagenfurt/Velden, Österreich, June , 2003.

[Bühne et al. 06] Bühne, S.; Halmans, G.; Lauenroth, K.; Pohl, K.: Scenario based Application
Requirements Engineering. In: Software Product Lines - Research Issues in Engineering and
Management. Springer, Heidelberg, 2006, pp. 161 -194.

[Clark, Wheelwright 1995] K. Clark and S. Wheelwright; Leading Product Development, Free Press,
New York,1995.

[Classen 07] Andreas Classen. Master work: Problem-Oriented Modelling and Verification of Software
Product Lines. Facultés Universitaires Notre -Dame de la Paix, Namur Institut d’Informatiq ue. 2007

[Cockburn 00] Alistair Cockburn, Writing Effective Use Cases, Addison -Wesley, 2000.

[Cook 71] S. Cook. The complexity of theorem-proving procedures. In Conference Record of Third

Annual ACM Symposium on Theory of Computing , pages 151–158, 1971.

 146

[Coplien et al. 98] J. Coplien, D. Hoffman, and D. Weiss. Commonality and variability in software
engineering. IEEE Software, 35: 8:705 –754, 1998.

[Czarnecki, Kim 05] K. Czarnecki and C. H. P. Kim. Cardinality -based feature modeling and constraints:
a progress report. In International Workshop on Software Factories , San Diego, California, Oct 2005.
Paper available at http://www.ece.uwaterloo.ca/ ∼kczarnec/sf05.pdf.

[Czarnecki, Pietroszek 06] Krzysztof Czarnecki, Krzysztof Pietroszek. Verifying Feature -Based Model
Templates Against Well-Formedness OCL Constraints 2006

[Davis 92] Davis, P.K., "Generalizing concepts of verification, validation, and accreditation (VV&A) for
military simulation," RAND, October 1992a (to be published as R -4249-ACQ).

[Easterbrook et al. 95] S. Easterbrook, B. Nuseibeh, Managing inconsistencies in an evolving
specification, in: Proceedings of the Second International Symposium on Requirements Engineering
(RE95), York, England, 1995, pp. 48 -55.

[Easterbrook 96] Steve Easterbrook. The role of independent v&v in upstream software development
processes. In Proceedings, 2nd World Conference on Integrated Design and Process Technology
(IDPT), Austin, Texas, December 1996.

[Eriksson et al. 05] Magnus Eriksson, J¨urgen B¨orstler, and Kjell Borg. The PLUSS Approach - Domain
Modeling with Features, Use Cases and Use Case Realizations. In Proceedings of the 9th International
Software Product Line Conference (SPLC), pages 33 –44, 2005.

[Fantechi et al. 04] Fantechi, A.; Gnesi, S.; Lami, G. ; Nesti, E.: A Methodology for the Derivation and
Verification of Use Cases for Product Lines. In Proceedings of SPLC 2004, 2004, pp. 255 –265.

[Faulk 01] Faulk, S.R.: Product-line requirements specification: An approach and case study. In
Proceedings of RE01, 2001.

[Fey et al. 02] D. Fey, R. Fajta, and A. Boros; “Feature Modeling - A Meta-Model to Enhance Usability
and Usefulness”; In: Proceedings of the 2nd International Conference on Software Product Lines

(SPLC-2), San Diego, USA , Springer, Berlin Heidelberg New York, LNCS 2379, 2002, pp. 198 –216.

 147

[Firesmith 03] Donald Firesmith, Specifying Good Requirements, Journal or Object Technology (JOT),
Vol. 2, No. 4, July-August 2003

[Griss et al. 98] M. Griss, J. Favaro, and M. d’Alessandro. Integrating feature modeling with the RSEB.
In Proceedings of the Fifth International Conference on Software Reuse (ICSR), pages 76–85,
Vancouver, BC, Canada, June 1998.

[Halmans, Pohl 03] G. Halmans and K. Pohl; “Communicating the Variability of a Software Product
Family to Customers”, Software and Systems Modeling , vol. 2, no. 1, March 2003, pp. 15–36.

[Heitmeyer et al. 96] Heitmeyer, C.; Jeffords, R.; Labaw, B.: Automated consistency checking of
requirements specifications. In: ACM Transactions on Software Engineering and Methodology, Vol. 5,
No. 3, 1996, pp. 231-261.

[Hooks 93] Ivy Hooks, Writing Good Requirements, Published in the Proceedings of the Third
International Symposium of the NCOSE – Volume 2, 1993.

[Hunter, Nuseibeh 98] Hunter, A.; Nuseibeh, B.: Managing inconsistent specifications: reasoning,
analysis, and action. In: ACM TOSEM. Vol. 7, No. 4, 1998, pp. 335 -367.

[Huzar et al. 05] Huzar, Z. et al.: Consistency Problems in UML -Based Software Development. In: N.
Jardim Nunes et al. (Eds.): UML 2004 Satelli te Activities, LNCS 3297, 2005, pp. 1 –12.

[IEEE 98] IEEE Std 830-1998, IEEE Recommended Practice for Software Requirements Specifications,
IEEE 1998.

[IEEE 04] IEEE Computer Society, Guide to the Software Engineering Body of Knowledge (SWEBOK),
version 2004, (chapter 2).

[ISO/IEC 01] ISO, “ISO/IEC 9126-1 – Software engineering – Product quality – Part 1: Quality Model”,
2001.

 148

[Jacobson et al. 97] Ivar Jacobson, Martin Griss, and Patrik Jonsson. Software Reuse. Architecture,
Process and Organization for Business Success. Addison-Wesley Publishing Co., 1997.

[Jackson 01] Michael A. Jackson. Problem frames: analyzing and structuring software development
problems. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2001.

[Jaffe et al. 91] M. S. Jaffe, N. G. Leveson, M. P. E. Heimdahl, B. E. Melhart, Software requirements
analysis for real-time process-control systems, IEEE Transactions on Software Engineering 17 (3)
(1991) 241-258.

[Jarke et al. 99] Jarke, M., Rolland, C., Sutcliffe, A., & Domges , R. (1999). The NATURE requirements

engineering. Aachen: Shaker Verlag.

[Kaiya 02] H. Kaiya, H. Horai, M. Saeki, AGORA: Attributed goal -oriented requirements analysis
method, in: Proceedings of the Tenth IEEE Joint International Requirements Engineering Conference
(RE02), Essen, Germany, 2002, pp. 13-22.

[Kang et al. 90] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson. Feature -Oriented Domain
Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21, Software Engineering
Institute, Carnegie Mellon University, November 1990.

[Kang et al. 98] Kyo C. Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim, Euiseob Shin, and Moonhang Huh.
Form: A feature-oriented reuse method with domain-specific reference architectures. Annales of
Software Engineering, 5 :143–168, 1998.

[Kang et al. 02] K. Kang, J. Lee, and P. Donohoe; “Feature -Oriented Product Line Engineering”, IEEE

Software, vol. 19, no. 4, 2002, pp. 58 –65.

[Kuloor, Eberlein 02] Chethana Kuloor, Armin Eberlein. Requirements Engineering for Software Product
Lines. 2002

[Krzysztof et al. 05] Krzysztof Czarnecki, Simon Helsen, and Ulrich W. Eisenecker. Formalizing
cardinality-based feature models and their specialization. Software Process: Improvement and Practice,
10(1):7–29, 2005.

 149

[Lami 05] Giuseppe Lami, QuARS: A Tool for Analyzing Requirements, Technical Report, September
2005

[Lamsweerde et al. 98] A. van Lamsweerde, R. Darimont, E. Letier, Managing conicts in goal -driven
requirements engineering, IEEE Transactions on Software Engineering: special issue on Managing
Inconsistency in Software Development 24 (11) (1998) 908-926.

[Landry, Oral 93] Landry, M., and Oral, M., "In search of a valid view of model validation for operations
research", European Journal of Operational Research 66/2, 161-167. 1993

[Lauenroth, Pohl 07] Kim, Klaus Pohl. Dynamic Consistency Checking of Domain Requirements in
Product Line Engineering

[Letier, Lamsweerde 02] E. LetiLauenroth, K.; Pohl, K.: Towards Automated Consistency Checks of
Product Line Requirements Specifications. In Proc. of ASE07, 2007, pp. 373 -376er, A. van
Lamsweerde, Requirements analysis: Deriving operational
software specifications from system goals, in: Proceedings of the Tenth ACM SIGSOFT Symposium on
Foundations of Software Engineering, ACM Press, Charleston, South Carolina, 2002, pp. 119 -128.

[Leveson 00] N. Leveson, Completeness in formal speci_cation language design for processcontrol
systems, in: Proceedings of the Third Workshop on Formal Methods in Software Practice, Portland,
Oregon, 2000, pp. 75-87.

[Macaulay 96] L. A. Macaulay. Requirements Engineering. Springer - Verlag. 1996.

[Mader et al. 07] Angelika Mader, Hanno, Wupper, Mieke Boon, Jelena Marincic. Taxonomy of
Modelling Decisions for Embedded Systems Verification . 2007.

[Mannion 02] M. Mannion, Using first-order logic for product line model validation, in: SPLC2, LNCS, vol.
2379, Springer, Berlin, 2002, pp. 176 –187.

[Mannion, Camara 03] Mike Mannion, Javier Camara, Theorem Proving for Product Line Model
Verification. Software Product -family Engineering: 5th International Workshop, PFE 2003

 150

[Metzger et al. 07] Andreas Metzger, Patrick Heymans, Klaus Pohl, Pierre -Yves Schobbens and
Germain Saval. Disambiguating the documentation of variability in software product lines: A separation
of concerns, formalization and automated analysis. From 15 th IEEE International Requirement
Engineering Conference. India Habitat Centre, New Delhi, October 15 -19 2007.

[McGregor et al. 2002] J.D. McGregor, S. Jarrad, L.M. Northrop, and K. Pohl; “Initiating Software
Product Lines”, IEEE Software, vol. 19, no. 4, July 2002, pp.24 –27.

[Mylopoulos et al. 99] J. Mylopoulos, L. Chung, E. Yu, From object -oriented to goal-oriented
requirements analysis, Commun. ACM 42 (1) (1999) 31 -37.

[Mueller 06] Erik T. Mueller . Commonsense Reasoning. Morgan Kaufmann, 2006.

[Nuseibeh 96] B. Nuseibeh, To be and not to be: on managing inconsistency in software development,
in: Proceedings of the Eight IEEE International Workshop on Software Speci_cations and Design
(IWSSD'96), IEEE Computer Society Press, 1996, pp. 164-169.

[Nuseibeh, Easterbrook 00] Bashar Nuseibeh and Steve Easterbrook. Requirements engineering: a
roadmap. In Proceedings of the 22nd International Conference on Software Engineering (ICSSE) -
Track: The Future of Software Engineering, pages 35 –46, New York, NY, USA, 2000. ACM Press.

[Padmanabhan, Lutz 05] Padmanabhan, P.; Lutz, R. R.: Tool -Supported Verification of Product Line
Requirements. In: Automated Software Engineering, Vol. 12, No. 4, 2005, pp. 447 -465.

[Pohl et al. 05] Klaus Pohl, Gunter Bockle, and Frank van der Linden. Software Product Line
Engineering: Foundations, Principles and Techniques. Springer, July 2005

[Pohl, Metzger 06] Klaus Pohl and Andreas Metzger. Variability management in software pro duct line
engineering. 28th International Conference on Software Engineering (ICSE’06), May 2006.

[Ponsard et al. 05] C. Ponsard, P. Massonet, A. Rifaut, J.F. Molderez, A. van Lamsweerde and H. Tran
Van. Early Verification and Validation of Mission Critic al Systems. Electronic Notes in Theoretical
Computer Science 133 (2005) 237–254, 2005 Elsevier B.V. Belgium

 151

[Probert et al. 03] Robert L. Probert, Yanping Chen, Behrad Ghazizadeh, D. Paul Simsb, Maurus
Cappa. Formal verification and validation for e -commerce: theory and best practices . Information and
Software Technology 45 (2003) 763 –777

[PureVariants] [pure-systems GmbH] http://www.software-acumen.com/purevariants/feature -models/
http://www.pure-systems.com/fileadmin/downloads/pv-clearquest-whitepaper-en.pdf

[Riebisch et al. 02] M. Riebisch, K. Böllert, D. Streitferdt and I. Philipp ow, Extending Feature Diagrams
with UML Multiplicities, in Proceedings of the Sixth Conference on Integrated Design and Process
Technology (IDPT 2002), Pasadena, CA, June 2002.

[Rolland et al. 96] Rolland, C., & Prakash, N. (1996). A proposal for context -specific method
engineering. Proceedings of the IFIP WG 8.1 Conference on Method Engineering (pp. 191-208),
Atlanta, Georgia. Chapman and Hall.

[Rolland et al. 99] Rolland C., Prakash N., Benjamen A.: A Multi -model View of Process Modelling,
Requirements Engineering J. 4(4), pp.169 -187, 1999.

[Savolainen, Kuusela 01] Savolainen, J., Kuusela, J. Consistency Management of Product Line
Requirements. In Proceedings of RE01, 2001.

[Schobbens et al. 06] Pierre-Yves Schobbens, Patrick Heymans, Jean-Christophe Trigaux, and Yves
Bontemps. Generic semantics of feature diagrams. Computer Networks (2006),
doi:10.1016/j.comnet.2006.08.008, special issue on feature interactions in emerging application
domains, page 38, 2006.

[Shanahan 99] Murray Shanahan. The event calculus explained. Lecture Notes in Computer Science,
1600:409–430, 1999.

[Sommerville, Kotonya 98]. Sommerville, I. Kotonya, G. Requirements Engineering: Processes and
Techniques. John Wiley & Son Ltd. 1998.

[Spinczyk, Beuche 04] O. Spinczyk, D. Beuche, Modeling and Building Software Product Lines with
Eclipse, in proceedings of the international Conference on Object -Oriented Programming, Systems,
Languages, and Applications, 2004.

http://www.software-acumen.com/purevariants/feature-models/
http://www.pure-systems.com/fileadmin/downloads/pv-clearquest-whitepaper-en.pdf

 152

[Streitferdt 03] D. Streitferdt, Family -Oriented Requirements Engineering, PhD Thesis, Technical
University Ilmenau, 2003.

[Svahnberg et al., 2001] Svahnberg, M., Gurp, J. V., and Bosch, J. (2001). "On the notion of variability in
software product lines". In Proceedings of the Working IEEE/IFIP Conference on Software Architec ture
(WICSA’01), pages 45–54, Amsterdam, The Netherlands.

[Tsang 95] Edward Tsang. Foundations of Constraint Satisfaction . Academic Press, 1995.

[van Gurp et al. 01] Jilles van Gurp, Jan Bosch, and Mikael Svahnberg. On the Notion of Variability in
Software Product Lines. In Proceedings of the Working IEEE/IFIP Conference on Software Architecture
(WICSA’01), 2001.

[V.d. Maßen and Lichter 02] T. von der Maßen and H. Lichter; “Modeling Variability by UML Use Case
Diagrams”, In: Proceedings of the International Workshop on Requirements Engineering for Product

Lines (REPL’02), 2002, pp. 19–25.

[Wang et al. 05] Hai Wang, Yuan Fang Li, Jing Sun, Hongyu Zhang, Verify Feature Models using
Protégé-OWL. May 10–14, 2005, Chiba, Japan. ACM 1595930515/05/0005.

[Weiss, Lai 1999] D.M. Weiss and C.T.R. Lai; Software Product-Line Engineering – A Family-Based

Software Development Process, Addison-Wesley, Reading, Massachusetts, 1999.

[Wiegers 99] Karl E. Wiegers, Writing Quality Requirements, Software Development magazine, May
1999

[Zave, Jackson 97] Pamela Zave and Michael A. Jackson. Four dark corners of requirements
engineering. ACM Transactions on Software Engineering and Methodology, 6(1):1 –30, 1997.

[Zave 01] Zave, P. 2001. Requirements for evolving systems: a telecommunications perspective. 5th
Int’l Symp. Requirements En g., pp. 2-9.

 153

[Zhang et al. 04] Wei Zhang, Haiyan Zhao and Hong Mei. A propositional Logic-based Method for
Verification of Feature Models. 6th International Conference on Formal Engineering Methods, ICEFEM
2004, held in Seattle, WA, USA in November 2004.

[Zowghi, Gervasi 03] Didar Zowghi, Vincenzo Gervasi. On the Interplay Between Consistency,
Completeness, and Correctness in Requirements Evolution. Preprint submitted to Elsevier Science 1
April 2003

	In broad strokes, the system permits to create fourth types of models:

