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Abstract 
 
 
Requirements for a product line have thus to be expressed in terms of features shared by all members 
of the product line, known as commonality, and distinct features of individual members, known as 
variability. Identifying and representing variability is an important aspect of product line devel opment. In 
order to be able to model and manage common and variable features, they have to be documented in a 
variability model. 
Feature diagram (FD) is a notation that is currently used to express variability models. Feature diagrams 
model the variability of features at a relatively high level of granularity. Their main purposes are (i) to 
capture feature commonalities and variabilities, (ii) to represent dependencies between features, and 
(iii) to determine combinations of features that are all owed and disallowed in the product line model 
(PLM). All the above can present multiple problems in the models of produ ct lines, problems that, from 
an industrial point of view, are highly expensive. Just like Pohl and other authors, we have not found in 
literature a method covering up the different criteria to be verified on a PLM. In the same way, we have 
found a lack of criteria unification with regard to the characteristics that must be verified, and a lack of 
language unification used in the rigid processes of verification found in literature.  «To our knowledge, 
specialised techniques for software product line inspections, reviews, or walkthroughs have not be en 
proposed» [Polh et al. 05]. On the other hand, consistency checking of the requirement specification  in 
domain engineering is still an open issue  [Lauenroth, Pohl 07]. 
Motivated by these lacks, we suggest a PLM verification process focused in correctness evaluation on 
these types of models. We firstly do a bibliographic search that permit us make an inventor y of some 
techniques. We then go on to formalisation work of each criterion, particularly those for model 
verification, with propositional logic. Next, we have do integration work through MAP formalism, in order 
to propose a PLM correctness verification process that can be carried out in different ways. We have 
validated this approach through a real case study and implementation of the proposed MAP process 
model in a computational tool.  
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1 Introduction 
 
The use of computers and software products has enormous ly increased in the last years. In order to 
obtain high-quality products along with higher productivity, it is required to carefully analyze, model, 
specify and manage system requirements. And this tendency is extended to industry fields like 
automobiles and electronic device production. Requirements engineering is introduced to address such 
issues early in the development process. A well-established requirement engineering process ensures 
that product requirements are properly elicited, analyzed, documented, verified and managed.  
Several other attempts have been made to increase the prod uctivity and quality of goods. A very 
promising approach is the reuse or the production guided by product line practices. The main goal is to 
develop a model that represents the family of products, which is then customized to configure individual 
products. A product family is a collection of similar products  with requirements that are common across 
the family and others features or requirements that are unique to individual products. In this approach it 
is possible to reuse product components and apply variability with decreased costs and time . Therefore 
well-established requirements engineering process, in order to produce the product line model and well -
established model verification and validation process are essential for any product line practice.  One 
error in the product line model entails a problem in each product of the family. For this reason, an 
appropriate process of verification and validation (V&V), centred in the product line model and not only 
in each particular configuration,  is necessary to guarantee the success in this paradigm of production. 
 
We have found in our literature search, that there is no standard theory on V&V applied to product line 
models. Neither is there a standard “box of tools”  from which tools are taken in a natural order to verify a 
product line model or a particular configuration model ; see [Davis 92] and [Landry and Oral 93]. Neither 
is there a list of criteria, expressed in a common language, which must be applied on models through 
V&V process. In our research work, we have made a list from dispersed criteria or invariants to be 
evaluated on a product line model or on a particular product model. Also, we have unified the language 
for these set of criteria desired to be verified in a product line model. Thus, our objective is to propose a 
Verification process in order to improve the weakness identified above.  
 
1.1 Requirements Engineering  
 
Requirements engineering (RE), in software engineering, is a term used to describe all the tasks that 
are into the instigation, scoping and definition of a new or modified computer system. Requirements 
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engineering is an important part of the software engineering process; whereby business analysts or 
software developers identify the necessities or the requirements of a customer; having identified these 
requirements they are then in a position to find a solution.  
 
RE provides the global context for our work. As every research domain, there are many definitions 
about what requirements engineering (RE) is, Nuseibeh and Easterbrook, in their 2000 ICSE roadmap 
paper for RE [Nuseibeh, Easterbrook   00] introduce RE as follows: "The success’ main measure of a 
software system is the degree to which it meets the purpose for what it was intended. Broadly speaking, 
software systems requirements engineering is the process of discovering this purpose, by identifying 
stakeholders and their needs, and documenting these in a form that is amenable to analysis, 
communication, and subsequent implementation."  
 
Earlier it was considered that RE was relatively easy and corresponding to introduce the software 
development process. However, it became clear soon, that RE is a very important and problematic 
stage. As many failures at system developing have been caused by mistakes admitted during the RE 
and it was too expensive or even impossible to correct them and to satisfy clients’ requirements in the 
given time. Now, in some development models, RE process must get involved during all software's life 
cycle. 
 
At RE stage it is possible to construct a stable model of the future system on the basis of requirements 
prior to the beginning of designing and development process to prevent failures in the future and to 
formalise what the future system must be. Complete requirements represent a declarative description of 
the future system. That's why Software Engineering (SE) research ers emphasized on the fact that 
requirements describe what is to be done, but not how they are implemented [Cockburn 00].  

 
1.1.1 Requirements engineering process 
 
In this work we assume a classical vision of RE, in which the process starts with stakeholder 
identification. RE then goes on with requirements acquisition or elicitation . Then we move on to 
requirements analysis and concept formation. Once a set of consistent and a set of relatively complete 
requirements have been gathered and analysed, proper requirements specification or requirements 
facet modelling can take place. It is sure that during requirement modelling we find that requirements 
verification is needed. At the end of requirements modelling we have to perform a requirement 
validation, which serves to make sure that the requirement development phase has achieved the right 
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requirements. A final stage of requirements management or requirements satisfiability and feasibility  is 
needed to complete a full and proper requirements development process. It is a little description  of each 
RE process's main activities:  

 
a. Stakeholders identification  

At the very outset of a development project identify all possible and potential requirement 
stakeholders. In order to face this phase, we propose some recommendations to consider. It is 
better to include a large number of elicited requirements than to exclude some of them which might 
cause trouble later on, and even more, when such requirements rightfully intervene . Be prepared, 
throughout a project, to revise the list of requirement stakeholders. At the very outset of a 
development project define, together w ith designated requirement stakeholders, their role, their 
rights and duties, etc. Through the requirement stakeholders' identification is necessary revising the 
roles of stakeholders.   

 
b. Requirements acquisition or elicitation 

Requirement elicitation is the first stage in considering the problem that software system should be 
able to solve. This process is carried out once the context definition and the software’s goal have 
been established. The task of requirements elicitation is to establish boundaries and requirements 
for the software system. It is carried out by interaction with stakeholders and detailed studying of 
corresponding knowledge domains. Requirement elicitation has  always been a human activity. 
There are several techniques and methods of requirement elicitation. The most widespread 
techniques are interviews, scenarios, prototypes, facilitated meetings, observation, etc.  
At this stage the relationship between developers of the system and the customer should be 
established.  
The requirement elicitation is variously termed "requirements ’ capture", "requirements’ discovery" 
and "requirements’ acquisition". 
Having been gathered during this stage, requirements  may be checked for quality using different 
methods and tools [Lami 05], [Hooks 93], [Firesmith 03]. The quality of requirements is an important 
feature for the following stages. Several rules for writing quality requirements are discussed in 
[Wiegers 99] and some examples are  given. 
 

c. Requirements analysis and concept formation 
After some requirements were discovered they must be analysed to:  

 Necessity (need for the requirement);  
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 detect and resolve drawbacks in them (for example, consistency, conflicts, ambiguity 
situations, completeness, etc); 

 improve their quality; 

 they must be structured and refined;  

 discover the bounds and properties of the system;  

 discover how system will interact with the environment;  

 another necessary analysis. 
  
After this stage the requirements have to be described clear enough to enable their specification, 
verification and validation. 
For providing more convenient analysis procedures, requirements may be structured by different 
characteristics. For example, whether the requirement is functional or non -functional: 
Functional requirements describe the functions that the software is to execute (formatting some text, 
modulating a signal). They are sometimes known as capabilities. 
Non-functional requirements are the ones that act to constraint the solution. Non-functional 
requirements are sometimes known as constraints or quality requirements. They can be further 
classified according to whether they are performance requirements, maintainability requirements, 
safety requirements, reliability requirements, or o ne of other types of software requirements.  
One of the most common procedures in requirements analysis is negotiation. It may be used to 
resolve problems with requirements where conflicts happen between two stakeholders requiring 
mutually incompatible features (conflicting requirements). Requirements that seem problematic are 
discussed and the stakeholders involved present their views about the requirements. After 
negotiation the requirements are prioritised and a compromise set of requirements may be agree d 
upon. Generally, this will involve making changes to some of the requirements, what also may 
cause new problems appearing. 
Other techniques used for requirements analysis are: requirements classification, conceptual 
modelling, requirements’ negotiation, prioritization, architectural design and requirements allocation.   

 
d. Requirements specification or requirements modelling 

First of all, let's start with the definition of Software Requirements Spec ifications (SRS) process. 
There will probably be different definitions more or less completed.  
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The definitions in the work are commonly based on an excellent source for definitions in Software 
Engineering discipline - the IEEE Computer Society [IEEE 98] , [IEEE 04]. Here, the SRS process is 
defined as "a process result of which are unambiguous and complete specification documents".  
It is accepted to consider the SRS is a complete description of the system behaviour to be 
developed. It includes a set of use cases that describe all of the interactions that users will h ave 
with the software, numerical values, limits and measurable attributes which may be checked on the 
working system. 
Briefly, SRS is a document (paper or electronic), which defines (specifies) the Software System.  
 

e. Requirements verification 
 

Requirement verification is the process in which some requirements specifications (RS) are being 
analysed in order to find out whether what is being described satisfied certain properties. Some of 
these properties are consistency between the RS model elements, correctness, validity or 
satisfiability of the RS model constraints, suitability and usability of each RS model element and 
richness of the model.  

 
f. Requirements validation 

 
Requirement validation is the process, and the resulting docum ents, in which some requirement 
specification models are being inspected by both requirement stakeholders and requirement 
engineers, and in which, whatever is being prescribed, is being validated with reference to the 
elicitation report and with respect to whatever the requirement stakeholders might now realise about 
their expectations. In order to achieve this validation, some properties, like correctness, 

unambiguousness, completeness, stability, verifiability, modifiability and traceability, must be 
considered. 

 
g. Requirement management or requirement satisfiability and feasibility  
 

Requirement management is a relatively new branch in RE process. It is the activity concerned with 
the effective control of information related to s ystem requirements. Requirement management 
process is carried out together with other engineering processes. The beginning of th is process 
should be planned at the same time that the process of initial requirement  elicitation starts. Directly 
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requirement management process should begin right after the draft vers ion of the requirements’ 
specification is ready. 

 
 
1.2 Product Lines Engineering 
 
When we talk about Product Lines Engineering [Pohl et al. 05] we might think in the way that goods 
have being produced and all the different changes experienced throughout. Formerly goods were 
handcrafted for individual customers. Gradually, the number of people who could afford to buy various 
kinds of products increased. Pioneer with the invention of the production line in the domain of 
automobiles, Ford starts the production  for a mass market much more cheaply than individual product 
creation on a handcrafted basis. However, the production line reduced the possibiliti es for diversification 
and that is why Ford was only able to produce black cars.  
  
Roughly, both types of products, individual and mass produced can be identified in the software domain 
as well: they are denoted as individual software and standard software. Generally, each of these types 
of products has its drawbacks. Individual software products are rather expens ive, while standard 
software products lack sufficient diversification.  
  
Example from the Camera World  
In 1987, Fuji released the Quicksnap, the first single -use camera. It caught Kodak by surprise: Kodak 
had no such product in a market that grew from then  on by 50% annually, from 3 million in 1988 to 43 
million in 1994. However, Kodak won back market share and in 1994, it had conquered 70% of the US 
market. How did Kodak achieve it? First, a series of clearly distinguishable, different camera models 
was built based on a common platform. Between April 1989 and July 1990, Kodak reconstructed its 
standard model and created three additional models, all with common components and the same 
manufacturing process. Thus, Kodak could develop the cameras faster and wi th lower costs. The 
different models appealed to different customer groups. Kodak soon had twice as many models as Fuji, 
conquered shelf space in the shops and finally won significant market share this way (for details see 
[Clark and Wheelwright 1995]).  
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1.2.1 Importance of PLE 
 
As we have already discussed, the main goal that product line engineering pursues is to provide 
customised standard products at reasonable costs. In this section, we briefly outline the key features 
and motivations for developing goods under the product line engineering paradigm.  
 
Reduction of Development Costs 
 
One of the most relevant purposes of an engineer is to create solutions that provide human benefices 
and economical profits. An essential reason for introducing product li ne engineering is the reduction of 
costs. When artefacts from the platform are reused in several different kinds of systems, and a standard 
work is implemented; this implies a cost reduction for each system. Before the artefacts can be reused, 
strategies investments and even a detailed planning are necessary for creating them. This means that 
the company has to make an up-front investment to create the platform before it can reduce the costs 
per product by reusing platform artefacts. Figure 1 -3-1 shows the accumulated costs needed to develop 
n different systems. The solid line sketches the costs of developing the systems independently, while 
the dashed line shows the costs for product line engineering. In the case of some few systems, the 
costs for product line engineering are relatively high, whereas they are significantly lower for larger 
quantities (one of the main microeconomics theories). The location at which both curves intersect marks 
the break-even point. At this point, the costs are the same for developing the systems separately as for 
developing them by product line engineering. Empirical investigations revealed that, for software, the 
break-even point is already reached around three systems.  
A similar figure is shown in [Weiss and Lai 1999], where the break-even point is located between three 
and four systems. The precise location of the break -even point depends on various characteristics of the 
organisation and the market it has envisaged: the customer base, the expertise, and the range and 
kinds of products. The strategy that is used to initiate a product line also influences the break -even point 
significantly [McGregor et al. 2002].  
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Figure 1-2-1: Costs for developing n kinds of systems as single systems compared to product  line 
engineering 
 
Enhancement of Quality 
The artefacts in the platform must be reviewed and tested in many products and different processes. 
They have to prove their proper and correct functioning in more than one kind of product. The extensive 
quality assurance implies detecting faults, failures and improper work methods to correct them, thereby 
increasing the quality and reliability of all products.  
 
Reduction of Time to Market 
Often, a very critical success factor for a product is not only the shelf life but when you begin w ith a 
project is time to launch it in the market. For single -product development, we assume it is roughly 
constant, mostly comprising the time to develop the product. For product line engineering, the time to 
market indeed is initially higher, as the common artefacts have to be planned and built first. Yet, after 
having passed this hurdle, the time to market is considerably shortened as many artefacts can be 
reused for each new product (see Figure 1 -3-2). 
 



 16 

 
Figure 1-2-2: Time to market with and without pro duct line engineering 
 
1.2.2 The PLE process  
 
As shown in Figure 1-2-3, the PLE process is split along this line into two sub processes: domain 
engineering and application engineering [Pohl et al. 05]. 
 

 
Figure 1-2-3: Schema of the PLE process [Pohl, Metzger 06]. 
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Domain Engineering 
 
The principle of PLE is to exploit common elements of a number of different systems by developing 
them as one single core while still allowing differences between these systems. Commonalities, i.e. 
functions or properties that systems of the future product line have in common [Coplien et al. 98], and 
differences (generally called variabilities [van Gurp et al. 01]), however, have to be defined into the PL 
model during this sub-process.  
The domain engineering process is the process in which the scope is decided. Based on this scope, the 
commonalities and differences of systems in the PL are defined.  
 
Application Engineering 
 
This process is based on the Domain Engineering once commonalities have been exploited and 
implemented as reusable artefacts and variability have been defined as variation points. The application 
engineering process now exploits this variability to apply it at the correct moment of the process.  
Each variation point is analysed and one of its variants chosen (we can say that the variation point is 
bound). Once all variation points are bound to variants, a particular s ystem of the PL is initiated. The 
reusable artefacts will  be then assembled and after successful integration tests,  the development of the 
new products is finished. 
 
1.2.3 Commonality and Variability  
 
To facilitate mass customisation, the artefacts used in different products have to be sufficiently 
adaptable and flexible to fit into the different systems produced in the product line. This means  that 
throughout the development process we have to identify and describe where the products of the product 
line may differ in terms of features that they provide, the requirements they fulfil, or even in terms of th e 
underlying architecture, etc. Thus we have to provide flexibility in all those artefacts to support mass 
customisation. 
A very well known case is that of the different cars of the same product line which may have different 
windshield wipers and washers. Ingeneers design cars in a way that allows a common approach to 
support the different motors for these different windshield wipers/washers, their different sizes, etc. Such 
flexibility comes with a set of constraints. If you drive a convertible, you do not want a rear window 
washer splashing water onto the seats! Therefore, the selection of a convertible car means the flexibility 
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that the availability of the windshield wipers and washers is restricted, so that the rear window washer is 
disabled when the car roof is open.  
This flexibility is a precondition for mass customisation; it also means that we can predefine what 
possible realisations shall be developed (there are only a certain number of windshield wiper 
configurations conceivable). In addition, it means that we define exactly the places wh ere the products 
can differ so that they can have as much in common as possible. The flexibility described here is called 
"variability" in the product line context. This variability is the basis for mass customisation.  
 
1.3 Product Line Models 
 
Product line models or product line diagrams are commonly used to define the valid combinations of 
elements in a product line. Not all elements are compatible.  
There are two types of requirements specifications [Faulk 01] in product line engineering : The product 
line (or domain) requirements specification and the product (or application) requirements specification. 
The Product Line Requirements Specification (PLRS) or Product Line Model (PLM) as we will refer to 
this concept in the rest of document is developed during  domain engineering. It contains all the common 
and variable requirements of all products of the product line. Requirements specification of a particular 
product of the product line is commonly named Product Requirements Specification (PRS) or Product 
Line Configuration (PLC), we will use the latest in the rest of document. The PRS for a particular product 
is derived from the PML [Pohl  et al. 05], [Bühne et al. 06]. 
When deriving a PLC, all common requirements defined in the PLM become part of each PLC. The  
variable requirements can be added to a PLC by selecting variants from the variability model and 
thereby adding the variable requirements related to the selected variants. We can not only make a 
derivation, we also can create an independent configuration,  and then contrasting it with its  product line 
model. Another existing relation between both can be to try to deduce PLM from a set of PLCs.  
 
Product line model notations 
 
The Feature Diagram (FD) notation used in Figure 1-4-1 is built based on the FORE formalism. FORE 
(Family Oriented Requirements Engineering) [Streitferdt 03] is a method proposed by Riebisch and his 
work group at Alexandria project [Alexandria]. We have chosen  this formalism because it  offers all of the 
modeling facilities of previous notations to its launching. Besides, it includes some of the characteristics 
and construction rules particularly important at the moment of implementing the method proposed in this 
work.  For example, FORE introduce the use of cardinalities [Riebisch et al. 02], enriching feature 
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diagrams with UML cardinalities.  Also, FORE proposes that all variant features grouped with relations 
of cardinalities be optional features.  
  
Some of the properties that characterise FORE notation are:  

 A feature diagram is a Directed Acyclic Graph (DAG) 

 A feature is a node of this graph  

 Relationships between features are represented by links. There are two types of relationship, 
variant dependency and transverse dependency.  

 Variant dependencies can be of kind mandatory or optional.  The sense of relations is 
determined by a white or black circle at the end of the line. Black circle represents a mandatory 
relationship between father and child features, that is, if father is chosen, then child feature 
must be selected too. White circle represents an optional relationship between father and child 
features, which is, if father is chosen, child can or can not be selected.  

 Transverse dependency can be of two kinds: an exclude relation or a require relation. An 

exclude relation is represented by a two headed arrow ( ) and a require relation is 

represented by one headed arrow ( ). The direction of relations is determined by an arrow at 

the end of a dotted line.  

 Optional relations with the same father can be grouped in a set. A relation can be member of 
one and only one set. 

 A set have a cardinality that indicates the minimal and maximal number of features than it is 
possible to choice. The set of possible values is: 0.1, 1, 0.N, 1.N, N,  p, 0.p, 1.p, p.N, m..p, 0..* 
and 1..*. 

 Graphically, the set of features grouped by a transverse dependency relationship is represented 
by a line or arch comprising all the implicated relations and a couple of symbols as shown in the 
previous numeral.  

 Grey rectangles are destined to represent features that have as function to facilitate the 
structure of the model [Streitferdt 03].  

  
Although this notation seems adequate to construct models of product lines by means of features and 
that eliminates most of the ambiguities, the notation FORE does not, nor its predecessor FODA,   
establish utilization rules to guide the engineer in the modelling process. It does not establish  either any 
rule permitting to identify a big  of ambiguities that exit even in this type of models. Th ose ambiguities will 
be treated with detail in chapters III, IV and VI . 
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Another notation is VFD (varied feature diagrams) introduced by Schobbens et al. in [Schobbens et al. 

06]. This one is just another notation among several other new or adapted FD notations that have been 
proposed since the original introduction of FDs as part of the FODA method [Kang  et al. 90]. Other 
extensions of FODA are the following: FORM, an extension of FODA [Kang et al. 98]. FeatuRSEB 
[Griss et al. 98], an integration of FODA and the Reuse-Driven Software Engineering Business (RSEB) 
[Jacobson et al. 97]  are two more propositions based on features. Van Gurp et al. extend FeatuRSEB 
to include binding times [Van Gurp et al. 01]. Riebisch et al. replaced operator nodes by more general 
cardinalities [Riebisch et al. 02]. Batory introduces propositional constraints defined among features    
[Batory 05]. Czarnecki suggest cardinalities and provide a formalisation for these diagrams  [Czarnecki 
et al. 05]. PLUSS [Eriksson et al. 05] is another extension of FeatuRSEB. All the above mentioned 
notations are only a subset of all existing FD notations.  
At the moment, there is no unified and universally accepted notation.  
However, most of the notations cited above can be defined using a general  parameterised FD defini tion, 
as proposed in section 1.3.2. 
 
1.3.1 Feature Diagrams 
 
Feature diagrams (FDs) are used to model and manage variability of a PL. FDs capture commonalities 
and variabilities by structuring the represented information in the form  of a feature tree, or a directed 
acyclic graph (DAG). The tree or the DAG represents the decomposition of one feature into an arbitrary 
number of sub-features. The root feature is called concept and represents the system itself.  
  
A FD is a hierarchical decomposition of the system into features and subfeatures. This hierarchy can be 
either a tree or DAG, which allows a feature to have more than one parent node. This structure is 
supported by FORE formalism, in opposition to FODA notation that is limited to  trees. Most authors who 
extended the tree structure to a DAG argued for more expressiveness.  
 
1.3.2 Formal semantic 
 
In literature we have found several formal definitions of feature models [Czarnecki, Pietroszek 06], 
[Metzger et al. 07]. These formal definitions have not adapted to our verification process based in 
evaluations of logical rules in order to check both static and dynamic properties of product line models 
and not only product line configurations.  
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For us, a Feature Diagram d (based in the FD metamodel that we will present in next sections)  is a 
eight-tuple (F, r, VD, AVD, TD, ATD, A, C) where: 
 
F is the set of features  
r   F is the root of d, r is unique |r| = 1 

VD  F X F is the set of variant depen dencies edges,    
AVD is an application of VD set at {  ,  },   representing optional dependency and   representing 
mandatory dependency. (f, f’)   VD will rather be noted f f’ for optional relations and f f’ for 
mandatory relations, where f is the child and  f’ is the father 

TD   F X F is the set of transverse dependency edges  

ATD is an application of TD set at { , },   representing require dependency and    representing 

exclude dependency. (f, f’)   TD will rather be noted f f’ for include relations and f f’ for exclude 

relations 

A nAVD is a finite set of arcs, each couple of variant dependencies participating in A must be  an 

optional dependency.   

C is an application of arcs set at  )*N X N(  that define the cardinality of A  

 
For the variant dependency v = (f, f’), with f, f’ in F, the node f is so-called father of v and the node f’ is 
so-called child of v. 
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Example 1-3-1: 
The follow is the graphic representation of Feature Diagram d = (F, r, VD, AVD, TD, ATD, A, C) defined 
by: 
F = { f1, f2, f3, f4, F5, F6  }; 
r = { f1 };  
VD = { (f2   f1), (f3   f1), (f4   f1), (f5   f2), (f6   f2) };  

TD= { (f4   f2), (f4   f6) }; 

A = { [0,2] (f2,f3) },  
 

 
Figure 1-3-1: example of product line model in FORE notation.  
 
1.4 Automated Analysis of Feature Models 
 
The automated analyses of FMs is usually performed in two steps: i) The FM is translated into a certain 
logic representation ii) Off -the-shelf solvers are used to extract information from the  result of the 
previous translation such as the number of possible products of the feature model, all t he products 
following a criterion, finding the minimum cost configuration, etc [Benavides et al. 06]. 
  
According to [Benavides et al. 07], the current implementation of the framework integrates three of the 
most commonly used logic representations proposed for the automated analyses of feature models: 
CSP, SAT and BDD. A complete performance test of solvers dealing with such representations and 
details about the translation of an FM into a CSP, SAT and BDD were introduced in [Benavides et al. 
06b], [Benavides, Ruiz 05]. 
  

F2 F3 F4 

F1 

 

F5 F6 

0,2 
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Three of the most commonly used logic representations proposed for the automated analyses of feature 
models: CSP, SAT and BDD. 
 
Constraint Satisfaction Problem (CSP)  
A Constraint Satisfaction Problem (CSP) [Tsang 95] consists on a set of finite domains variables, and a 
set of constraints restricting the values of the variables. Constraint Programming can be defined as the 
set of techniques such as algorithms or heuristics that deal with CSPs and the purpose is to find 
combinations of values in which all constraints are satisfied based on a common objective. The main 
ideas concerning the use of constraint programming on FM analysis were stat ed in [Benavides et al. 
05]. 
Constraint Programming is the most flexible proposal. It can be used to perform the most of the 
operations currently identified on feature models [Benavides et al. 06a]. However, constraint 
programming solvers reveal a weak time performance when executing certain operations on medium 
and large size feature models calculating the number of possible combinations of features due most of 
the time to a high number of variables [Benavides et al. 06c]. 
 
Boolean Satisfiability Problem (SAT) 
A propositional formula is an expression consisting on a set of boolean variables (literals) connected by 

logic operators (¬,^,v,  , ). The propositional satisfiability problem (SAT) [Cook 71] consists on 

deciding whether a given propositional formula is satisfiable, i.e., a logical values can be assigned to its 
variables in a way that makes the formula true. The basic concepts about the using of SAT in the 
automated analysis of FMs were introduced in [Batory  05]. 
The performance results of SAT solvers are slightly better than the results of CSPs . however this 
approach is not so powerful [Benavides et al. 06c]. The best of our knowledge, it is that there is not any 
approach in which feature models attributes c an be translated to SAT in order to perform operations as 
maximizing or minimizing attribute values.  
 
Binary Decision Diagrams (BDD) 
A Binary Decision Diagram (BDD) [Bryant 86] is a data structure used to represent a boolean function. A 
BDD is a rooted, directed, acyclic graph composed by a group of decision nodes and two terminal 
nodes called 0-terminal and 1-terminal. Each node in the graph represents a variable in a Boolean 
function and has two children nodes representing an assignment of the variable to  0 and 1. All paths 
from the root to the 1-terminal represents the variable assignments for which the represented Boolean 
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function is true meanwhile all paths to the 0 -terminal represents the variable assignments for which the 
represented Boolean function is false. 
Although the size of BDDs can be reduced according to some established rules, the weakness of this 
kind of representation is the size of the data structure which may vary between a linear to an 
exponential range depending on the variable ordering  [Bryant 86]. Calculating the best variable ordering 
is an NP-hard problem. However, the memory problem is clearly compensated by the time performance 
results offered by BDD solvers. While CSP and SAT solver are incapable of finding the total number of 
solutions of medium and large size feature models in a reasonable time, BDD solvers can work it out  in 
an insignificant amount of time, so it justifies its usage at least on counting operations.  
 
 
1.5 Conclusion   
 
The objective of this first chapter was to survey different RE and product line relevant definitions  to our 
work. This includes not only notations found in literature, but also owned definitions necessaries for our 
approach such as a formal semantic of a PLM. These definitions will be used in the rest of this 
document. In this chapter we also highlight the importance of product line engi neering for the industry 
and its relation with RE. 
The next chapter presents the problematic situation that has  motivated this research work and the way 
that we have used to tackle it. 
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2. Research problem, methodology and justification. 
 
2.1 Research problem 
 
We have observed that the few solutions developed over the past ten years have not been integrated 
into a coherent and flexible process of V&V. The penury of methods for the formal verification of 
conceptual models and the urgency of proposing well adapted approaches are recognized by the 
scientific community [Wang et al. 05], [Polh et al. 05], [Lauenroth, Pohl 07]. Likewise, the lack of tools for 
the industry was cited in the Fourth Product Line Engineering Workshop acts [Bass et al. 99], in 2001 by 
Zave [Zave, 01] and again recently by Padmanabhan and Lutz [Padmanabhan, Lutz 05].  
The recent award of Turing Prize '07 by Joseph Sifakis for his work in model checking confirms the 
importance of this topic, and the importance to continue its exploration.  
 
2.2 Research methodology 
 
The methodology followed in this investigation can be summarized in following steps:  

1. Bibliographic search that permit us make an inventory of some techniques  
2. Formalisation work of each criterion, particularly those for PLM verification, with propositional  

and first order logic notations [Bradley, Manna 07]. 
3. Integration work through MAP formalism, in order to propose a PLM correctness verification 

process that can be carried out of different ways . 
4. Approach validation through a real case study and implementation of the proposed MAP 

process model in a computational tool.  
 
3.3 Justification 
 
Graphical representation of PLMs can be directly represented in logical constraints that can be 
evaluated by means of SAT solvers or constraint scheduling. MAP is a formalism that allow s 
representing multi-process. That is, a MAP representation is not a sequence predefined of tasks.  It is 
rather a set of tasks that may be organized in a different way, in terms of situation and intention of the 
person using the map. 
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We have used propositional logic and first order logic in order to represent the set of invar iant or logic 
rules that must respect a PLM. Propositional logic and first order logic  are also known as propositional 
calculus and predicate calculus, respectively, because they are calculi for reasoning about propositions 
(“the sky is blue”, “this comment references itself”) and predicates (“x is blue”, “y references z”), 
respectively. Propositions are either true or false, while predicates evaluate to true or false depending 
on the values given to their parameters (x, y, and z).  And to represent the process we have used MAP 
formalism. Loosely speaking, a Map [Rolland et al.  99] is a navigational structure in the form of a graph 
where nodes are intentions and edges are strategies. It is possible to follow different strategies for each  
couple of target/source intentions, thus dynamically determining different solution  paths between start 
and end. So a Map is a modelling formalism that permits to represent several processes on the same 
design. 
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Part III 
 
 

State of the art on V&V in RE  
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3. State-of-the-art on Validation and Verification in Requirements Engineering 
 
3.1 Definition of Verification  
 
Formal verification is the process of checking whether a design satisfies some requirements ( called 
properties or invariants in this document).  
Verification work typically proceeds as follows [Bjorner 06]: “Desired properties of the requirement’s 
model, properties that do not transpire immediately from the proofs by symbolic testing or formal proofs, 
or model checking, is, or are, performed in order to check that the desired property(ies) holds of the 
requirements model”. 
 
3.2 Definition of Validation  
 
By requirements validation we shall understand a process with some resulting documents  in which 
some requirements’ prescriptive artefacts (documents, models, etc.) are being inspected by both 
requirements’ stakeholders and requirements ’ engineers. This includes the pointing in, the pointing out, 
if necessary, of inconsistencies, incompletenesses, conflicts and errors of prescription that may change 
the elicitation report. 
 
According to [Bjorner 06], in order to perform domain validation, the validators need the following (input) 
documents: (i) the list of domain stakeholders; (ii) the domain acquisition documents: questionnaire, and 
the collection of indexed description units; (iii)  the rough-sketch, terminology, narrative, and possibly the 
formalisation documents that constitute the domain description proper; and (iv) the domain analysis and 
concept formation documents. That is, the validators need access to basically all documents produced 
in the domain modelling effort. In order to complete domain validation, the validators produce the 
following output documents: (i) A  possibly updated domain stakeholder document; (ii) Possible updated 
domain acquisition documents, (iii) Possible updated rough sketches, terminology, narrative and the 
formalisation documents; and (iv) A domain validation report. We now cover some aspects of the 
necessarily informal validation process.  
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Figure 3-2-1: Domain validation input and output documents  
 
Validation works typically proceeds as follows [Bjorner 06]: requirements engineers, requirements 
stakeholders and review, line by line, the domain model, holding it up against the previously elicited 
requirement prescriptions’ units, while then noting down any discrepancies.  
In doing requirements’ validation, requirements ’ stakeholders usually read the informal, yet precise and 
detailed narrative prescriptions. No assumption is made as to their ability to read formalisations. On the 
contrary, it is assumed that they cannot read formal specifications.  
 
3.3 Verification vs. Validation  
 
The following authors give their point of view concerning the difference between verification and 
validation:  
 
According to Boehm, in verification we examine whether our requirements model is logic or according to 
such requirements engineers want it to be, “Verification gets the requirements model right”  [Boehm 81]. 
In validation we examine the requirements ’ model to make sure we are modelling what the 
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requirements’ stakeholders think that the domain is, “Validation gets the right requirements model”.  
Usually verification precedes validation.  
 
According to Kuloor and Eberlein, “Requirements are verified to check their completeness, precision 
and suitability in the requirements verification stage  [Kuloor, Eberlein 02]. Formal reviews, prototyping 
and requirements testing are some of the techniques used for requirements verification. A product 
family has more than one product and most of the requirement s are common across the family”.  
 
Ponsard et al., suggests that “verification is about making sure the system is correct, especially with 
respect to formal semantics of the goal model. Validation is about making sure the system being built is 
the system the user is expecting” [Ponsard et al. 05]. 
Verification: 

A set of goals G1, ... , Gn refines  

a goal G in a domain theory D if  

the following conditions holds: 

GDGGGssCompletene n ,,...,,: 21  

 niGDGMinimality jij ,...,2,1,:    

falseDGGGyConsistenc n ,,...,,: 21  

 
In [Probert et al. 2003] authors claim that to verify a model is to make sure that it is created correctly, 
which means there is no defect or error present. Examples include deadlocks, live -locks, and implicit 
(missing) definitions in the model that are introduced  via the design process itself.  
“To validate a model is to make sure we create the right model, which means the model created has to 
match the requirements. Simulation involves making an executable program based on a system 
specification and running this executable progr am to understand and debug the behavi our of the system 
specification”. 
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Figure 3-3-1: Relationship between verification  and validation proposed by Probert et al.   
 
According to [Bahill, Henderson 2005], verifying requirements is the process aiming to proving that each 
requirement has been satisfied. Verification can be done by logical argument, inspection, modelling, 
simulation, analysis, expert review, test or demonstration.  Bahill and Henderson also define validating 
requirements as the process to ensure that the set of requirements is correct, complete, and consistent; 
a model can be created to satisfy the requirements; a real-world solution can be built and tested to 
prove that it satisfies the requirements.  
  
Otherwise, Easterbrook holds that the terms Verification and Validation are commonly used in software 
engineering to mean two different types of analysis  [Easterbrook 96]. The usual definitions are:  
Verification: Are we building the system correctly?  
Validation: Are we building the correct system? 
     
Requirements’ verification and validation ends up with a report which either accepts the requirements ’ 
model, or points out needs to correct the elicitation report, the requirements analysis and concept 
formation report, and the requirements model.  
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Thus requirements verification and validation can be expected to be an interactive process alternating 
with further requirements elicitation report work, possibly with further requirements analysis and concept 
formation work; and ending with further requirements verification and validation work.  
 
In the following section we will split the characteristics found in the literature which  we consider relevant 
to evaluate in an RS document. Two groups will be created, based on the criterion described above 
verification / validation. Some characteristics should be verified and validated to ensure a complete 
evaluation. 
 
In the rest of the document we will assume verification and validation as two complementary processes. 
We will consider verification as the first step of the validation process. In this sense, the fundamental 
strategy of verification is to identify and to reduce errors in a model, that is, verification deals with 
mathematics. And validation addresses the question of the f idelity of the model to specific conditions of 
the real world, that is, v alidation deals with requirements. 
 
 
3.4 Desirable characteristics to verify  
 
In general, the most important elements  to respect in order to guarantee an acceptable requirement 
specification quality level are defined in [Lami 2007] and can be resumed in the next fourth tables:  
  

Indicator Description 

Vagueness When parts of the sentence are inherently vague (e.g., contain words with non -unique 
quantifiable meanings). For example: easy, strong, good, bad, useful, significa nt, 
adequate and recent. 

Subjectivity When sentences contain words used to express personal opinions or feelings. For 
example: similar, similarly, having in mind, take into account and as [adjective] as 
possible 

Optionality When the sentence contains an optional part ( a part that can or cannot be 
considered). For example: possibly, eventually, in case of, if possible, if appropriate, if 
needed 

Implicity When the subject or object of a sentence is generically expressed by demonstrative 
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adjectives (e.g., this, these, that, those) or pronouns (e.g., it, they). Implicit adjective 
(e.g., previous, next, following, last), or preposition (e.g., above, below).   

Weakness When a sentence contains a weak verb.  For example: could, might and may. 

Table 3-4-1: Ambiguity Indicators for RE’s verification and validation   
 
 

Indicator Description 

Multiplicity When a sentence has more than one main verb or more than one subject.  

Readability The readability of sentences is measured by  the Coleman-Liau Formula of readability.  
The reference value of this formula for an easy -to-read technical document is 10. If 
the value is greater than 15, the document is difficult to read.  

Table 3-4-2: Understandability Indicators for RE’s verification  and validation 
 
 

Indicator Description 

Under-
specification 

When a sentence contains a word identifying a class of objects without a modifier 
specifying an instance of this class. 

Table 3-4-3: Completion Indicators for RE’s verification and validation  
 
 

Indicator Description 

Vagueness See Table 3-4-1 

Subjectivity See Table 3-4-1 

Optionality See Table 3-4-1 

Implicity See Table 3-4-1 

Weakness See Table 3-4-1 

Under-
specification  

The use of words that need to be instantiated (i.e., access [write, remot e, authorized 
access] 

Multiplicity The use of multiple subjects, objects, or verbs, which suggests there are actually 
multiple requirements. 

Table 3-4-4: Expressiveness Defect Indicators for RE’s verification and validation  
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Numerous definitions exist in literature for requirements’ quality concepts likely to be verified, as a result 
of environmental specialization, variety of purpose, granularity level, etc. The following are some of the 
characteristics that must be verified in a n RS document or model. 
 
3.4.1 Completeness  
 
A requirement model specification is completed if full labels and references to all figures, tables, 
diagrams, definitions of all terms and units of measure are included in the RS document. According to 
[Bjorner 06] a requirements’ model is completed if no holes can be pointed out, that is, everything 
needed to be prescribed has been prescribed. Completeness is  thus relative. It is only written  what 
“needs” be described, not what “can” be described.  
 
According to [Zowghi, Gervasi 03], a measure for the “degree of completeness” of a set S subject to     
R   D, we consider the ratio between the  size of a maximal subset of S that is entailed by R   D 
(maximal entailed subset, or mes) and the size of the whole set S, i.e.: 
 

S

SDRmes
SDRcompl

),(
),,(


  

 
This measure, too, has value 1 when completeness holds, and assumes progressively  lower values, 
down to 1, for decreasing completeness. 
 
3.4.2 Consistency of the requirements model  
 
Zowghi and Gervasi claim that consistency requires the inexistency of two or more requirements in a 
specification contradict ing each other [Zowghi, Gervasi 03]. 
As a measure for the “degree of consistency” we consider the ratio between  the size of a maximal 
consistent subset (mcs) of R   D and the size of the  whole set, i.e.: 
 

DR

DRmsc
DRcons
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For consistent R and D,  cons (R;D) = 1, whereas the measure tends to 0 the inconsistency degree 

increases. 
 
A wide variety of possible causes of inconsistency in software development have been identified in the 
research literature. For example, in [Nuseibeh 96], the author views inconsistency as it arises between 
the views of multiple stakeholders in software development. In addition, Easterbrook [Easterbrook et al. 

95] regard an inconsistency similarly as any situation in which two parts of a specification do not obey 
some relationship that should be hold between them. Something similar proposes Bjorner [Bjorner 06], 
who claims that inconsistency of a requirements prescription is referred to some pairs (or more) of text 
where one text prescribes one (set of) property (properties), while another text (of the pair or more) 
prescribes (prescribe) an “opposite” property (set of properties), th at is: Property P and Property not P.  
 
In [Lamsweerde et al. 98] it is possible to find most current techniques for inconsistency handling in the 
current literature consider binary -relation conflicts only. 
 
There are potentially many ways to resolve inconsistencies [Balzer 91]. Consistency in requirements 
models thus implies a lack of contradiction within the presented information. Both a direct refutation of 
previously stated requirement and an indirect denial of this description can constitute contradicti ons 
within the requirements’ model. Direct refutation represents statements within the model that are 
incompatible with each other. The truth of the first statement of a requirement directly negates the truth 
of the second statement. Moreover, information within the model can be refuted in an indirect manner. A 
given set of facts could establish a potential situation that, given the proper set of circumstances, would 
contradict other facts within the model. In practice whether a statement is an implicit con sequence is a 
matter of degree. Therefore, establishing consistency within a requirements ’ model is primarily a 
semantic task. 
 
3.4.3 Correctness 
 
Correctness in specification requirements is verified by checking both, consistency and completeness 
[Zowghi, Gervasi 03].  
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Figure 3-4-1: Relationship between Specification, Domain and Requirement in an evolutionary 
framework.  
 
In figure 3-4-1, arrows represent evolution steps between successive versions of requirements and 
domain descriptions. 
Several revisions of the requirements are considered, each one serving  the role of a specification with 
respect to the previous one. This situation may be found in practice when we consider the common 
case of a product family undergoing several release cycles, but also,  at a finer grain, inside a single 
release cycle. 
Monotonic domain refinement: if we are performing an evolution step, from Ri and Di to the 
subsequent versions Ri+1 and Di+1, and we are only adding new information about the domain, i.e. 
Di+1 j= Di. Then, 
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That is, if we can prove that:  
Consistency: our new requirements are consistent with the domain (i.e., they are not asking for 
something that is impossible in the real world), and that Completeness w.r.t. Ri: the new requirements 
and domain description, together, do not contradict the previous requirements, then (Ri+1 U Di+1) |= Ri 
U Di holds. 
Monotonic requirements refinement: if we are performing an evolution step, from Ri and Di to the 
subsequent versions Ri+1 and Di+1, and  we are only adding new requirements, i.e. Ri+1 |= Ri. Then,  
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In other words, if we can prove that:  
Consistency: our new requirements are consistent with the domain described so far, and that  
Completeness w.r.t. Di:  the new requirements and domain description, together, do not contradict the 
previous domain description, then (Ri+1 U Di+1) |= Ri U Di holds.  
Where Ri: requirement specification i, Di: domain specification i.  
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3.4.4 Satisfiability, faithful or constraint consistency  
 
According to [Zhang et al. 04], in a product line modelling process, satisfiability ensures that there is no 
inconsistency in tailoring and binding actions at the moment of deriving a particular product line 
configuration form the product line model. If this pr operty is not satisfied, constraints on features or 
those tailoring and binding actions should be reconsidered to eliminate inconsistencies. This definition is 
not implemented by means of a computational tool and the level of operationalisation and formali sation 
is not developed. Zhang et al. propose a logical formula in order to automate the satisfiability verification 
process, but their implementation into a compu ting application is not yet done . 
 
3.4.5 Suitability of each RS model element  
 
Within the framework of software development, ISO/IEC 2001 defines suitability as the presence and 
appropriateness of a set of functions for specified tasks . And in the context of product line modelling, 
[Zhang et al. 04] claim that suitability ensures that every feature without being selected has the 
possibility of being removed at any time. If this property is not sa tisfied, it means that there is  one or 
more features that will not have the chances to be removed at some moments of its life cycle . That is to 
say, these features actually have been bound. Zhang et al. say that possible causes may be that the 
operators have ignored the binding of these features, or have done some improper tailoring or binding 
actions, or some constraints themselves are wrong. Zhang et al. propose a logical formula in order to 
automate the suitability verification process, but their implementation into a compu ting application is not 
yet done. 
 
3.4.6 Usability of each RS model element 
 
According to [Zhang et al. 04] usability ensures that every feature in the product line model has the 
possibility of being added at any time. They hold also that if the property is not satisfied, it means that 
there is one or more features that will not have the chances to be bound after the current binding time . 
That is to say, these features actually have been removed from the feature model. The possible causes 
may be that the operators have ignored the tailoring actions on these features, or have done some 
improper tailoring or binding actions, or some constra ints themselves are wrong. They propose to 
eliminate these causes by putting these features to removed feature s ets, or by undoing some actions at 
the current binding time, or by revising constraints on features. Zhang et al. propose a logical formula in 
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order to automate the usability verification process, but their implementation into a computing 
application is not yet done.  
 
3.4.7 Verifiability of the RS model  
 
In [IEEE 98] and [IEEE 04] we find that  an RS is verifiable if, and only if, every requirement stated 
therein is verifiable. A requirement is verifiable if, and only if, there exists some fi nite cost effective 
process in which a person or machine can check that the software product meets the requirement. In 
general any ambiguous requirement is not verifiable. 
 
According to Bjorner, this criterion relates to the implementation stage. For a requirement to have been 
met by an implementation means that it can be proven or tested  [Bjorner 06]. Some requirements can 
not be so tested, at least not objectively and not quantifiable.  In the case of product line, we think that all 
models can be verified and this premise has been the one that has motivated this research work.  
 
 
3.5 Desirable characteristics to validate  
 
There are numerous definitions in the lite rature for requirements quality concepts  to validate, as a result 
of environmental specialization, variety of purpose, granularity level, etc. The following are some of the 
desirable characteristics that must be validated in a RS document or model.  
 
3.5.1 Completeness 
 
According to Boehm, to be considered complete, the requirements ’ document must respect three 
fundamental characteristics [Boehm 84]:  
a) To include all significant requirements, whether relating to functionality, performance, design 
constraints, attributes, or external interfaces. In particular any external requirements imposed by a 
system specification should be acknowledged and treated.  
b) To include definition of the responses of the software to all realizable classes of input data in all 
realizable classes of situations. Note that it is important to specify the responses to both valid and 
invalid input values. 
c) To include full labels and references to all figures, tables, and diagrams in the RS and definition of all 
terms and units of measure. 
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The first two properties imply a closure of the existing information and are typically referred to as internal 
completeness. The third property, however, concerns the external completeness of the document. 
External completeness ensures that all of the information required for problem definition is found within 
the specification. This definition for external completenes s shows why it is impossible to define and 
measure absolute completeness of specification. The only truly complete specification of som ething 
would be defined if no external elements intervene in the aforementioned specification . A compromising 
position would be to determine whether a specification is sufficiently complete. Decision on what is 
sufficient completeness would have to be defined with respect to the type of system being implemented. 
For example, in safety-critical systems sufficient completeness may be defined with respect to system 
safety design constraints as well as requirements derived from hazard analysis  [Leveson 00]. Clearly 
one of the available techniques that could assist in the determination of external completeness of the 
specification is domain modeling.  
Jaffe et al have developed a set of formal criteria to identify missing, incorrect, and ambiguous 
requirements for process-control systems [Jaffe et al. 91]. This work has been continued by Leveson in 
the design of formal specification languages  [Leveson 00]. Throughout the development of various 
formal specification languages, Leveson has found that propositional log ic notation does not scale well 
to complex expressions in terms of readability and to overcome this concern, she has developed a 
tabular representation of disjunctive normal form called AND/OR tables.  In the same way, in goal 
oriented methods such as I* [Mylopoulos et al. 99] and AGORA [Kaiya 02], goal refinement and 
elaborations are used in the form of AND/OR graph to validate requirements specification for 
completeness. 
In addition, Letier and Lamsweerde suggest that goals must be made explicit in the req uirements 
engineering process because goals drive the elaboration of requirements to support them and that they 
provide a criterion for measuring requirements completeness  [Letier, Lamsweerde 02].  
 
3.5.2 Consistency of the requirements 
 
In [IEEE 98] and [IEEE 04] reports, their authors hold that if an RS does not agree with some higher-
level document, such as a system requirements specification, then it is not correct.  
In the following list they present some types of requirements inconsistence:  
a) The specified characteristics of real -world objects may conflict.  
b) There may be logical or temporal conflict between two specified actions.  
c) Two or more requirements may describe the same real-world object but use different terms for that 
object. The use of standard terminology and definitions promotes consistency.  
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But they do not propose any method or technique that permits to identify and rectify t hese types of 
inconsistencies with the stakeholders or other artefact help.  
 
3.5.3 Correctness 
 
In [IEEE 98] and [IEEE 04] reports, we find that if an RS does not agree with some higher-level 
document, such as a system requirements specification, then it is not correct.  So that, an RS is correct 
if, and only if, every requirement stated therein is one that the softwa re shall meet. 
Our literature research has showed that as there is no tool or procedure that ensures correctness. The 
RS should be compared with any applicable superior specification, such as a system requirements ’ 
specification, with other project documen tation, and with other applicable standards, to ensure that it 
agrees. Alternatively the customer or user can determine if the RS correctly reflects the actual needs. 
Traceability makes this procedure easier and less prone to error. Completeness is a relat ive property 
and may be determined only in relation to an external reference.  
According to [Zowghi, Gervasi 03],  [IEEE 98] and [IEEE 04],  correctness of a requirements ’ specification 
describes the correspondence of that specification with the real needs of  the intended users much the 
same way that correctness of a piece of software refers to the agreement of the software part with its 
specification. In the real-world RE is an evolutionary and incremental process and hence the 
inconsistency analysis which is part of this process must also be performed in an evolutionary and 
incremental manner. This means that consistency checking is part of the construction of the 
requirements specifications and should be performed in parallel.  
In the same way, Bjorner claims that a requirements’ model is correct (validated) when it has been 
thoroughly validated with respect to all requirements stakeholders, and that the client has accepted the 
final document [Bjorner 06]. 
 
3.5.4 Importance and/or stability  
 
According to [IEEE 98] and [IEEE 04], an RS is ranked for importance and/or stability if each 
requirement in it has an identifier to indicate either the importance or stability of that particular 
requirement. Typically, all of the requirements that relate to a software pro duct are not equally 
important. Some requirements may be essential, especially for life -critical applications, while others may 
be desirable. 
Bjorner proposes a simple ranking of individual requirements into  [Bjorner 06]: 
a)  Essential requirements (must be implemented); 
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b)  Worthwhile requirement (would be very nice if implemented) ; and  
c) Optional requirements (implement if not too costly), and with this ranking being stable during the 
requirements engineering phase. 
This characteristic is implemented in  the majority of RE applications in the market. In these tools, ranked 
is typically made by engineers and the rank possibilities are not s o complicated, per contra, is a  process 
well defined and largely implemented in order to classify requirements by char acteristics mentioned 
above. 
 
3.5.5 Modifiability 
 
According to [IEEE 98] and [IEEE 04] an RS is modifiable if, and only if, its structure and style are such 
that any changes to the requirements can be made easily, completely, and consistently while retain ing 
the structure and style. Modifiability generally requires an RS to:  
a) Have a coherent and easy-to-use organization with a table of contents, an index, and explicit cross 
referencing; 
b) Not be redundant (i.e., the same requirement should not appear in  more than one place in the RS);  
c) Express each requirement separately, rather than intermixed with other requirements.  
 
It is claimed that requirements change all the time.  Whenever such changes actually do happen, one 
needs to modify the existing requirements’ model [Bjorner 06]. To do so, it is of paramount importance 
that the requirements’ prescription documents follow a hopefully existing domain description document. 
This makes it easier to find, we claim, where changes to the requirements ’ prescription model need be 
made, and, given that the final criterion is met, to trace repercussions of the change.  
 
3.5.6 Satisfability 
 
Bjorner claims that a requirements’ model is satisfactory if it satisfies the following  criteria [Bjorner 06]: 
correctness (validated by stakeholders), unanbiguity, completeness, consistency, stability, verifiability, 
modifiability, traceability and faithfulness.  Therefore, satisfaction property can not be validated directly, 
that is, it is necessary to validate the previous RE qual ity properties in order to achieve satisfiability 
validation. These set of properties are discussed in this section one by one.  
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3.5.7 Traceability 
 
In [IEEE 98] and [IEEE 04] reports, an RS is traceable if the origin of each of its requirements is clear  
and if it facilitates the referencing of each requirement in future development or enhancement 
documentation. 
On the other hand, Bjorner holds that a requirements model is traceable if every requirement Rs , is 
annotated with its origin (whom, when, where) , and that the reason (rationale) for the requirements is 
well-documented [Bjorner 06]. Furthermore, traceability means that one can simply find all those other 
requirements Rs1, Rs2, …, Rsn, on which the meaning of the given requirement depends, that is, Rs 
relies on Rs1, Rs2, …, Rsn, or whose meaning depends on the given must therefore be provided by 
suitable requirements documentation tools.   
Traceability is widely explored and implanted in almost all modern software systems. And dependence 
between requirements is each day more and more an automatic activity.  
 
3.5.8 Unambiguousness 
 
One more time in [IEEE 98] and [IEEE 04], an RS is unambiguous if, and only if, every requirement 
stated therein has only one interpretation. As a minimum, this requires that each characteristic of the 
final product be described using a single unique term. In cases where a term used in a particular context 
could have multiple meanings, the term should be included in a glossary where its meaning is made 
more specific. 
 
Lami claims that a requirement specification is not ambiguous, when it is  [Lami 07]: 
a)  Not vague: When parts of the sentence are not inherently vague (e.g., do not contain words with 
non-unique quantifiable meanings. Like: easy, strong, good, bad, useful, signifi cant, adequate and 
recent). 
b)  Not subjective: When sentences contain words used to express personal opinions or feelings (e.g., 
similar, similarly, having in mind, take into account, as [adjective] as possible, etc).  
c)  Not optional: When the sentence do not contains an optional part (i.e., a part that can or cannot be 
considered. Like: possibly, eventually, in case of, if possible, if appropriate, if needed, etc).  
c)  Explicit: When the subject or object of a sentence is explicitly expressed (e.g., use of demonstrative 
adjectives like: this, these, that, those or pronouns like: it, they. Implicit adjectives like: previous, next, 
following, last or prepositions like: above, below).  
d)  Not weak: When a sentence do not contains a weak verb (i.e., could, mi ght, may). 
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According to [Bjorner 06] a requirements model is unambiguous if it does not have inconsistencies, no 
vaguenesses and no double meaning remain in the final requirements model. In other words: it is 
precise. 
 
For us, a product line model is unam biguous if it has not inconsistencies in his variability and transversal 
relationships, and also if it does not admit multiple interpretations, like for example to have a mandatory 
and optional feature at the same time or a feature that is excluded and also required by one or two 
mandatory features. 
 
3.5.9 Understandability  
 
In the context of natural language analysis for RE,  Lami holds that a requirement specification is 
understandable when a sentence does not have more than one main verb or more than one  subject 
(e.g., the use of multiple subjects, objects, or verbs, which suggests there are a ctually multiple 
requirements) and when each sentence is readable [Lami 07]. He also holds that readability of 
sentences is measured by the Coleman-Liau Formula of readability. The reference value of this formula 
for an easy-to-read technical document is 10. If the value is greater than 15, the document is difficult to 
read. 
 
This characteristic will be not considered to be evaluated on product line model because the context of 
application is rather applied on requirement textual description.  
 
3.5.10 Verifiability with reference to stakeholders and elicitation report  
 
For us, a RS is verifiable if, and only if, every requirement stated therein is verifiable. A requirem ent is 
verifiable if, and only if, there are some finite cost-effective process in which a person or machine can 
check that the software product meets the requirement. In general any ambiguous requirement is not 
verifiable. 
 
3.6 Verification and validation  techniques 
 
According to [Mader et al. 07], formal verification is a strong means to obtain the necessary certainty. Its 
success lies in the ongoing development of sophisticated algorithms, data structures and tools; the size 
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of (automatically) verifiable problems is increasing; new classes of verifiable problems are being found; 
and also hardware progress allows dealing with larger and larger systems. Many cases have 
demonstrated the usefulness or potential usefulness of computer aided verification.  
At the same time, formal verification has a number of dangers. It is very reductionistic in the sense that it 
provides certainty about a model of only one  fragment of reality.  
 
According to [Kuloor, Eberlein 02], formal reviews, prototyping and requirements tes ting are some of the 
techniques used for requirements verification. Within the context of formal verification, product line 
engineering presents a big and actual issue for the industry. A product family has more than one 
product and most of the requirements are common across the family. Any defect or misunderstanding in 
such requirements would affect the entire family. There are requirements that are specific to each 
product. Hence requirements verification is very important for product lines. Requirements verification 
can be conducted in a similar way as they are conducted in single product development. But in the 
same manner, we have not clear if all the verification techniques used for a single product can also be 
used for product lines. And in the same way that [Lauenroth, Pohl 07], we consider that it is an open 
issue in RE research. 
 
Techniques for verification: 
 
Testing  
By requirements resting we shall understand that a requirements’ prescription is provided with set 
values for all relevant arguments (the set data), with the prescription then being evaluated for those 
arguments. A way of performing a requirements’ test is by a systematic search for a counter -example to 
claim (of proof) of correctness. Testing has been and is still today a heuristic -based science. An 
important element in performing testing is formal text analysis. If requirements prescription parts have 
been formalised, then theory-based testing technologies have or can be developed and can be used for 
testing. 
 
Formal proofs 
By a formal proof we shall understand a given requirements ’ prescription, a statement (a theorem) to be 
proved, and the proof that the requirements ’ prescription satisfies the statement: this proof refers to a 
proof system for the language in which the requirements ’ prescription is expressed (axioms and 
inference rules), and is otherwise a sequence, composed from steps, where each step in the sequence 
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is like a theorem (a lemma), a statement, and where pairs of steps in the proof sequence are related by 
the axioms and the inference rules. 
 
Model checking 
By model checking we shall understand a method for formally verifying usual concurrent systems, 
frequently extremely large, have been reduced to manageable finite state systems. Requirements ’ 
prescriptions about such finite state systems are typically expressed as temporal logic formulas. 
Efficient symbolic algorithms are used to traverse the model defined by the system and check if the 
requirements prescription holds or not. Three most important techniques for model checking are CSP, 
SAT and BDD described in section 1.4. 
 
Techniques for validation: 
 
Requirements Reviews  
Requirements Reviews are techniques that check system’s requirements for completeness, relevance 
and precision [Sommerville, Kotonya 98]. They can be either formal or informal. Formal reviews include 
a group session to verify the requirements. Informal reviews involve a discussion between the 
requirements engineer and the customer. Since there are several products involved Formal Reviews 
have to be conducted to verify product line requirements. The review team should include domain 
experts, requirements engineers, customers and stakeholders. Review can be conducted as a group 
meeting facilitated by the requirements engineer. At first , the product family in general including all the 
common and variable requirements is considered for review. All the comments must be documented. 
Any changes required must be recorded. Next, requirements for each product in the family are 
reviewed. The reviewing process should also ensure that the family and its member requirements are 
properly mapped. Informal reviews can be conducted between the requirements ’ engineer and 
customers to validate the product specific requirements.  
 
Prototyping  
Prototyping is a technique during which products are partially implemented in order to learn more about 
certain problems or to demonstrate that certain featu res are working as intended [Sommerville, Kotonya 
98]. Requirements for a product family can be verified by developing prototypes. In  this case the 
prototype representing the common features can be reused for all the members across the family. For 
example, a prototype developed to illustrate the user interface facility of a system can be reused for all 
products.  
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Requirements Testing  
The process of testing the product against each requirement is called Requireme nts Testing [Macaulay 
96]. Product family requirements can also be verified by defining test cases for each requirement. While 
defining the test cases it is possible to unearth  some of the defects in the early stage of the 
development. In the case of product line development , test cases must be defined for both common and 
variable requirements. 
 
3.7 Conclusion  
 
The objective of this third chapter was to survey the different definitions of verification and validation in a 
RE context, to compare them and listing the characteristics that must be verified and validated in a 
requirement specification artefact . This chapter includes not only methods and notations used in V&V 
process approaches, but also explains the three most popular techniques for verifying and validating a 
requirement specification document. 
The next Chapter focuses on verification of a particular requirement specification artefact . In the 
subsequent chapters we will centred our effort in product line models verification process definition and 
implementation. 
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Part IV 
 
 

Verification of Product Line Models  
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4. Verification of Product Line Models  
 
4.1 Methods proposed in literature 
 
Formal verification is a strong means to obtain the necessary certainty. Its success lies in the ongoing 
development of sophisticated algorithms, data structures and to ols. The size of automatically verifiable 
problems is increasing; new classes of verifiable problems are being found.  Hardware progress also 
allows us, or at least tries, to automate the verification of this kind of problems. Each day we find out 
more and more tools or potential tools of computer assisted verification. 
 
At the same time, formal verification fails on its reductionistic view of problems in the sense that it 
provides certainty about a model of only a fragment of reality.  We know that verification process for a 
real-world system cannot consist of formal techniques only, but also requires interaction with 
stakeholders and its environment in order to  validate the system from a more real point of view. In this 
work we will focus on the verification issue. We will deal w ith validation feature in future reports. 
 
In this section we will work on verification process found in literature. We argue that the importance of 
positive results from formal verification depends on the quality of the verification process and techniques 
used. Next we present twelve most relevant methods found in  literature. 
 
1. A method for formal verification of a feature model is proposed by [Wang et al. 05]. They present an 

approach to modeling and verifying feature diagrams using Semantic Web ontologies.  In the 
proposed method, the feature configuration is constructed as a separate ontology and t he reasoning 
engine is invoked to check its consistency. The configuration is valid if the ontology is checked to be 
consistent with respect to the feature diagram ontology. They use Protégé-OWL and RACER to 
detect the inconsistence in a particular feature configuration, looking for errors in relations between 
features and inconsistent constraints between features . 
In the following diagram, Wang et al show how RACER detect constraint inconsistency between a 
set of value constraints of a particular configura tion “E” and the product line model constraints.  
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Figure 4-1-1: RACER detect an inconsistency, taken from [Wang et al. 05] 

 
2. A propositional logic-based method for verification of feature models at different binding times 

(construct-time, reuse-time, compile-time, install-time, load-time) is proposed by [Zhang et al. 04]. In 
this method, the constraints in a feature model are formalised in a set of logical sentences. Each 
binding time, after an undecided feature is bound or removed, the truth value of this  feature will 
become the logical constant True or False respectively. With this conversion the constraint 
satisfiability problem is transformed in satisfaction problems  in the mathematical logic. So, 
verification problems such as the detection of inconsistent constraints or the detection of the 
conflicting or unnecessary binding  resolution can be automatically revealed.  Zhang et al propose 
three properties SUS (i.e. Satisfability, Usability and Suitability ) to verify feature models.  
We have modified the original formula proposed by Zhang et al in order to permit feature model 
verification independently of the binding time concept. Thus, it is proposed to check: 
Liveliness (Usability): the usability ensures that every feature in Undefined Feature Set has the  
possibility of being bound or added in the future  model.  
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Utility (Suitability): the suitability ensures that every feature in Feature Set has the possibility of 
being removed from the feature model .  
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Satisfiability: the satisfiability ensures that there is no inconsistency in constraints. If this property is 
not satisfied, constraints on features should be reconsidered to eliminate inconsistencies.  
 

ini CfPLMCf ..1,)DependencyTransverse ,endencyVariantDep(, Feature   

 
Zhang et al propose five main steps in the process of feature model verification. The firs step is 
feature model construction. In this step, features, refinement relations between features and 
constraints on features associated with a product -line are systematically identified. The sec ond step 
is to formalise constraints on features into logic sentences. The third step is to compute atomic -set 
contained in a feature model, and use these atomic -sets to simplify constraints by replacing features 
involved in constraints with their correspo nding atomic-sets. After the third step, operators can apply 
the SUS criteria to verify constraints on features, and further take binding resolutions at each 
binding-time (the fifth step) and repeatedly apply the SUS criteria to verify these resolutions. T he 
fourth step can be automated by using model checkers, suc h as SMV. The approach can be 
summarized with the next process diagram:  



 53 

 
Figure 4-1-2: process of feature model verification  proposed by Zhang et al 

 
3. Another verification procedure pretends to check feature-based model templates against Object-

Constraint Language (OCL) well-formedness rules. [Czarnecki, Pietroszek 06] present an 
automated verification procedure for ensuring that no ill -structured template instance will be 
generated from a correct feature-based configuration. This method use a feature-based model 
template composed of a feature model and an annotated model expressed in some general 
modeling language such as UML or a domain-specific modelling language. The approach allows 
expressing the desired well-formedness constraints in OCL with respect to the metamodel of the 
target modelling language. Next, this set of constraints is transformed into a model in the chosen 
modelling language. So, a feature-based template is correct if, and only if, every correct 
configuration results in a correct template instance.  Though, in this approach it is easy to forget a 
necessary constraint in the feature model or an annotation in the annotated model.  Their approach 
can be applied to a domain requirement specification . However, Czarnecki and Pietroszek only deal 
with static properties of the UML.  
 
The follow diagram, taken from [Czarnecki, Pietroszek 06] , shows the context used in the 
verification procedure. 
 

1: Feature model 
construction 

2: To formalise constraints on features into logic sentences  

3: To compute atomic-set and replacing features involved in 
constraints with their atomic-set  

4: Operators can apply the SUS criteria to verify constraints 
on features  

5: Take binding resolutions at each binding-time and apply 
the SUS criteria to verify these resolutions   

Can be automated by tool supporting 

Can be automated by tool supporting 

Can be automated by using model checkers (SMV) 
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Figure 4-1-3: Context of the Czarnecki and Pietroszek’s verification procedure 
 
It is clear that in the following figure, the class diagram, that has been generated from the PL 
configuration, is not well formed because of the dangling association “MultipleClassification | 
!Categories” 

 
Figure 4-1-4: Example of a UML class model template, taken from [Czarnecki, Pietroszek 06]  
 
So, the key idea of a feature-based model template is that, given a particular feature configuration, 
an instance of the template can be automatical ly created by removing the model elements wh ich 
presence conditions are evaluated FALSE. 

 
4. An initial research path to address volatility analysis in software PL engineering issues, based on 

aspect-oriented and model-driven techniques is presented in [Alférez et al. 07]. This approach 
motivates the use of feature models in conjunction with use case and activity diagrams , so that 
every requirement is ideally related to only a feature. But in this verification approach, oriented to 
satisfaction of requirements , it is possible that a use case be related with several features.  
Figure 4-1-5 describe the process by means of which the generation of the use case model related 
to a SPL configuration and the generation of activity diagrams related to a SPL configuratio n is 
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done. The mapping between features, use cases, activity steps, is defined by creating links between 
those elements in their respective meta -models. 

 
Figure 4-1-5: an overview of the process, taken from [Alférez et al. 07] 

 
5. Padmanabhan and Lutz propose a tool-supported verification of product line requirements 

[Padmanabhan, Lutz 05]. They use logic to define constraint rules for the consistency of 
requirements and support consistency checks of the PRS. Their approach is implemented in a 
requirement engineering tool called DECIMAL (DECIsion Modeling AppLication). DECIMAL is an 
interactive, GUI-driven requirements verification tool that automatically checks for completeness 
and consistency between a new product and the product line to which it belongs.  DECIMAL also 
performs range and type correctness checking to verify that the values of variabilities selected for 
the new member fall in the range and are of the same data type as specified for the product line. 
The tool does not provide run-time checks and neither check to see if the constraints themselves 
are consistent. They do not support consistency checks of the DRS.  

 
In Figure 4-1-6 a SQL query looking for inconsistencies in the constraints  and a SQL query looking 
for product-line member that did not s atisfy a particular commonality are shown. The utilized method 
consist in automatically checks that dependency relationships among variabilities are maintained in 
the new system.  
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Figure 4-1-6: SQL queries for consistency and completeness verification in  DECIMAL 

 
6. Product Line Software Engineering (PuLSE) is a customizable product line practice proposed in 

[Bayer et al. 99]. The PuLSE process has three basic elements: Deployment Phases, Technical 
Components and Support Components.  Deployment phases are logical steps in the PuLSE practice 
that describe the activities needed to define and develop a family of products.  PuLSE technical 
components include the technical expertise required to carry out various PuLSE activities. PuLSE 
support components provide the guidelines required to solve any non-technical issue such as 
organization issue, project entry points and process evolution.  On the other hand PuLSE provides 
very little information about requirements specification, verification and traceability.  Moreover 
PuLSE permits to carry out a consistency verification procedure over one member of the product 
line with respect to PL model. Besides, we have found evolutions of PuLSE, such as KobrA that is 
an object-oriented customization of PuLSE. However, KobrA focuses more on the design and 
implementation of a domain framework.  

  
The follow figures show the generic storyboard of a PL and one particular storyboard’s 
configuration.  



 57 

 

 
Figures 4-1-7 and 4-1-8: Examples taken from [Bayer et al. 99]. 

 
7. Pure:variants is a tool developed by ‘Software Acumen’ enterprise as a Eclipse plug-in 

[PureVariants], [Spinczyk, Beuche 04]. In the context of pure::variants, model verification  is the 
process of checking the validity of feature family, and variant description models. Two kinds of 
model validation are supported, i.e. validating the XML structure of models using a corresponding 
XML Schema in order to check if the XML structure of a pure::variants model is correct.  And 
performing a configurable set of checks using the model check framework in order to allow the 
validation of models using a configurable and extensible  set of rules (called "model checks"). There 
are no restrictions on the complexity of  model checks. 
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As feature selections are made, pure::variants checks their va lidity and, if necessary, automatically 
resolves dependency conflicts or highlights conflicts if they cannot be resolved automatically. Once 
a valid selection has been made, an evaluation of the Family models, containing component 
definitions, is performed .  
This evaluation process produces an abstract (XML) description of the  variant in terms of software 
components (components, modules, files etc.). This description is used to control a transformation 
process that in-turn generates the finished product var iant (source code and other artefacts).  
The next figure show a computer’s product line model, in which several particular configurations can 
be derived and verified like we have described above.  

 
Figure 4-1-9: Example of computer’s product line model , taken from [PureVariants] 

 
8. FeaturePlugin is an Eclipse plug-in proposed in [Antkiewicz, Czarnecki 04].  Verification process in 

FeaturePlugin is yet under construction and refinement because, by the moment, the tool only 
supports static verifications of the models. FeaturePlugin also support additional constraints, i.e., 
those that cannot be expressed as feature or group cardinalities. Common examples are implies 
and excludes constraints. In general, additional constraints in cardinality based feature models 
require tree-oriented navigation and query facilities, iteration mechanisms or quantifiers, and ways 
of counting feature clones in the scope of a given feature within a configuration. Furthermore, logic, 
arithmetic, set, and string operators on feature attr ibutes and feature sets are desirable. Such 
constraints can be adequately expressed using XPath 2.0 . 
FeaturePlugin can check the additional constraints for a given configuration. For exampl e, the 
configuration in Figure 4-1-10 satisfies all the constraints from Figure 4-1-11. Figure 4-1-11 shows 
three examples. The first constraint is an example of a local constraint requiring that the attribute of 
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InDays is positive. The second constraint involves several features and states that selecting 
FraudDetection implies that CreditCard and/or DebitCard are selected. The third constraint 
existentially quantifies over feature clones and states that at least one custom shipping method 
should have a rate of more than 0.  

 
Figure 4-1-10: configuration of EShop, taken from [Antkiewicz, Czarnecki 04]. 
 

 
Figure 4-1-11: constraints evaluated from on the configuration from figure # -1, taken from 
[Antkiewicz, Czarnecki 04].  

 
9. FAMA is a framework for the automated analysis of feature m odels proposed by [Benavides et al. 

07]. The automated analyses of FMs is usually performed in two steps:  
i) The FM is translated into a certain logic representation  
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ii) Off-the-shelf solvers are used to extract information from the result of the previous translation 
such as the number of possible products of the feature model, all the products following a criteria, 
finding the minimum cost configuration, etc [Benavides et al. 06].  
The current implementation of FAMA integrates three of the most promising logic representations 
proposed in the area of the automated analysis of feature models: CSP, SAT and BDD, but more 
solvers can be added if needed. The implementation is based on an Eclipse plug – in and uses XML 
to represent FMs so it can interoperate with other tools that support it.  
 
The operations fully supported by FAMA and showed in Figure 4-1-12 are: 
• Finding out if an FM is valid, i.e. there is  a product satisfying all the constraints.  This verification is 
showed in Figure 4-1-13 for a particular configuration.  
• Finding the total number of  possible products of an FM (number of products).  
• List all the possible products of a feature model (list of products).  
• Calculate the commonality of a feature, i.e. the number of products where a feature appears in.  
 

 
Figure 4-1-12: operations and selection of solvers in FAMA (taken from [Benavides et al. 07]) 
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Figure 4-1-13: verification of constrains satisfiability for a particular configuration (taken from 
[Benavides et al. 07]).  

 
10. Another method for product line models verification is proposed in [Batory, Thaker 06]. Batory and 

Thaker focus on the safe composition of products by ensuring that there is no undefined element 
(e.g. classes, method) referred to in a composed program implementation. Again, they deal with 
static properties of the product line  model and product line configurations  and do not support a 
consistency check of behavioral properties . They propose some logical expressions dealing with 
refinement constraint, parent constraints  and reference constraints. Like for example:  
If features X, Y, and Z, are refined by feature F:  
 F   X v Y v Z 

Let PLf be the propositional formula of product line PL:  
 (PLf ^ F ^ ¬X ^ ¬Y ^ ¬Z) = false  

 
11. Gomaa and Shin suggest a multiple-view approach for modelling variability in software product lines 

and verify properties like consistency of relations between objects and traceability assurance  
[Gomaa, Shin 04]. They extend UML (Unified Modeling Language) notations with variation points 
and define a central feature notation. All variabilities are then linked together in a multiple -view 
meta-model. In addition to assuring traceability, the meta -model can be used in order to check 
whether all relations between objects are correct, like f or instance checking that each class 
corresponds to a feature. This can be achieved thanks to definition of rules at meta-level and 
checking that multiple-view model must follow the rules defined in the multiple -view metamodel. 
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The next figure (Figure 4-1-14) shows the method proposed by Gomaa and Shin: 

 
Figure 4-1-14: multiple-view approach for modelling variability and consistency checking (taken 
from [Gomaa, Shin 04]). 

 
12. Classen proposes a problem-oriented modelling and verification method of software product lines 

[Classen 07]. He suggests to use the problem frames approach as a complement to feature  
diagrams; (i) because it is based on the well established requirements engineering  framework 
mentioned before, thus enforcing the distinction of the three m ain descriptions, and (ii) because it 
emphasizes and provides appropriate means for modelling the physical context. According to 
Classen, a PLM is consistent if the set of specification S and the set of domain description ( W) 
satisfy the set of requirements R (expressed in a PLM). That is (S, W) |= R 

 
The idea behind the feature interaction detection approach is essentially to verify the first proof 
obligation of the requirements engineering framework by Zave and Jackson [Zave, Jackson 97], 
S,W |= R, for all valid configurations of a PLM. A given configuration can be checked for interactions 
by verifying its proof obligation, wh ich constituents can be found in the feature descriptions. If the 
verification of the proof obligation is to be automated, all descr iptions have to be expressed in a 
formalism that allows for automated reasoning. Classen’s approach uses the event calculus (EC) 
[Shanahan 99] for that purpose, because it is intuitive and well suited for commonsense 
descriptions such as those found in the domain properties for instance. The whole process can then 
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be mostly automated: (i) valid configurations of a pro duct line are derived from the feature diagram  
and (ii) each configuration is verified using the Decreasoner EC implementation.  
 
The first proof obligation of this reference model serves as correctness proof for a feature or a 
system. The three constituent descriptions of the proof obligation (specifications S, domain 
descriptions W and the requirement R) are coherently modelled  (see Figure 4-1-15) using Jackson’s 
Problem Frames approach [Jackson 01], and formally expressed using the EC [Mueller 06], 
[Shanahan 99]. This in turn allows to automate the verification of the first proof obligation through 
automated model checking. Finally, the variability of the PL is modelled using FDs [Schobbens et al. 
06]. Feature interaction detection is then done by verifying the proof obligation for each possible 
product of the product line, as defined in the PLM . 
 

 
Figure 4-1-15: mapping a FD to several problem  diagrams (taken from [Classen 07]).  

 
 
4.2 PLM Meta-Model 
 
Variability can be defined either as an integral part of development artefacts  or in a separate variability 
model. Many research contributions have suggested the integration of variability in tradi tional software 
development diagrams or models such as use case models, feature models, message sequence 
diagrams, and class diagrams. Kang et al and Fey et al use feature models to represent variability 
[Kang et al. 02], [Fey et al. 02]. Bühne et al, Halmans and Pohl, von der Maßen and Lichter introduce 
variability in use case models [Bühne et al. 03], [Halmans and Pohl 03], [V.d. Maßen, Lichter 02]. Bosch 
et al. and Svahnberg et al deal with variability in implementation  structures [Bosch et al. 02], [Svahnberg 
et al. 01] and nearly Pohl et al propose an orthogonal variability model as an artefact that “relates the 
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variability defined to other software development models such as feature models, use case models, 
design models, component models, and test mod els” [Pohl et al. 05]. 
We will work with FORE approach [Streitferdt 03]. We propose the metamodel depicted in Figure 4-2-1 
for our tool- supported verification method.  
 

 
Figure 4-2-1: Proposed metamodel for feature product line models.  
 
The two central elements of the product line metamodel are Product Line Model (PLM) and Product Line 
Configuration (PLC). A PLM is composed of three elements, the “Feature”, “Variant Dependency” and 
“Transverse Dependency”.  And a PLC is composed of “Features”.  
The Feature class is specialised in two classes “FatherFeature” and “ChildFeature”. This specialisation 
is complete and disjoint. Consequently, every Feature is either of the class “Fath erFeature” or 
“ChildFeature”.  One or several “ChildFeature” are associated by the relation “ChildOf” with a 
“FatherFeature” class.  
 
Each model element depicted in Figure 4-2-1 has at least one attribute, all grouped in the class 
“Attribute”, i.e. identifier and textual annotation that allow us, for instance, to record the particula rities of 
each element. For the sake of simplicity, the attributes are not shown in  the metamodel. 
 
Variability Dependency 
A “VariantDependency” is the association class between “FatherFeature” and “ChildFeature” classes. 
The “VariantDependency” class is specialised in “Mandatory” and “Optional” as a complete and disjoint 
heritage relationship. The multiplicities of the association enforce that a “FatherFeature” must be 
associated with at least one “ChildFeature” and each “ChildFeature” must be associated with one 
“FatherFeature”.  
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The optional variability dependency states that a variant  child related to the variation  father can be a 
part of a particular product line configuration but does not need to be a part of it. The set of child 
features related to parent features by means of optional dependencies is called the variability of a 
feature product line model. The mandatory variability dependency implies that child feature must be part 
of a particular configuration if the father feature is chosen. This does not imply that mandatory features 
have to be included in all configurations of the software product line. A mandatory  feature is only part of 
an application if the related feature father is part of it. The set of child features related to parent features 
through mandatory dependencies is caller the commonality of the feature product line model.  
 
Transversal Dependency 
A “TransverseDependency” is the association class between two features that are not related by father-
child relationship. We specialise the “TransverseDependency” relationship class into an “Excludes” and 
a “Requires” relationship. The specialisation is defined as complete and disjoint. The multiplicities of the 
association enforce that each feature can be associated through a transverse dependency with one or 
several variants. 
The “Excludes” transverse dependency states that a feature A can constraint other feature B in the 
sense that if A exists in a particular product line configuration, then feature B can not be chosen in the 
same configuration. The “Requires” transverse dependency stated that a feature A can constraint other 
feature B in the sense that if feature A is chosen, then feature B must be chosen in the same product 
line configuration. 
 
Alternative Choice 
A variability model must offer the facility to define the minimum and the  maximum number of features to 
be selected from a given group of variants. Consequently, we define a modelling element that allows us 
to group optional features and to define multiplicities for each group . For each “FeatureSet” we have a 
“Cardinality” with two attributes, “Min” and “Max”. They are needed to specify the range for the 
permissible numbers of variants to be selected from the group. Additionally, the “Cardinality” class has 
the constraint that the “ChildFeature” that are part of a group must refer to the same “FatherFeature”. 
 
 
4.3. {Characteristics to verify  in PL models} + {techniques}* + {lessons}* 
 
In the literature, we have found some characteristics that we can considerate in a process of product 
line model verification. These characteristics are defined and discussed in this section; also we go to 
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present the techniques used to their implementation and some lessons learned from this literature 
analysis to our product line model verification appro ach. 
 
4.3.1. Consistency 
 
In the literature we found several definitions of consistency  in PLMs. According to [Lauenroth, Pohl 07] 
the PLC of a product line is consistent, if a viable implementation exists. A necessary criterion for 
consistency is the absence of contradictions in the specification.  
Requirements in the PLM can contradict each other. This implies that a PLM must, however, not be 
consistent. For example, Savolainen and Kuusela argue that inconsistencies (i.e. contradictions) 
between product line requirements can be intentionally introduced: “… within the product family there 
are also intentional inconsistencies” [Savolainen, Kuusela 01]. For example, it is possible that one 
product of a product line P has to fulfil the requirement A, whereas another product of the product line  P 
has to fulfil the requirement ¬A. Consequently, a PLM may contain contradicting requirements.  
In contrast, a PLC must be consistent. However, from contradicting requirements in the PLM we cannot 
necessarily deduce that any derived PLC is inconsistent. A set of contradicting requirements in the PLM 
will imply an inconsistency in a PLC only if the set of contradicting  requirements of the PLM can be part 
of the same PLC. Since the variability model determines if a set of con tradicting requirements may 
become part of the same PLC, the definition of consistency of a PLM must take the product line 
variability into account. 
Laurent and Pohl also claim that the PLM of a product line is consistent, if all PLCs of all possible 
products (determined by the variability model of the PLM) are consistent. The computational cost for 
automate these definition is too high, for this reason Laurent and Phol’s last definition of consistency  is 
lacking from a pragmatic point of view, and there are not known tools that implement  it.  
 
In addition, in [Batory,Thaker 06] authors deal with static properties of the PLC and do not support a 
consistency check of behavioral properties.  Some years back, [Bayer et al. 99] had said than a PLC is 
consistent if satisfied the set of PLM commonalities. And as complement to the previous definition, 
[Padmanabhan, Lutz 05], a PLC is valid if there are not inconsistencies by reference to PLM’s 
constraints. 
 
On the other hand, for [Wang et al. 05], a PLC is valid if its ontology is checked to be consistent with the 
PLM’s ontology. According to [Classen 07], a PLM is consistent if the set of specification and the set of 
domain description satisfy the set of require ments (or the PLM).  
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We can say that a PLM is consistent if and only if it satisfied:  
1. The right dependency relationships among the features (constraints, cardinality-range, types, etc);   
2. A particular Product Line Configuration construction respect  all the commonalities; 
3. It is possible to derive at lea st one particular configuration from the product line model.  
 
Techniques proposed for consistency verification:  
 
In [Wang et al. 05], the authors present an approach to modeling and verifying feature diagrams using 
Semantic Web Ontologies. The technique proposed shows how to check PLC’s ontology with respect to 
the PLM’s ontology in order to verify consistency. This technique needs to transform the PL feature 
model and each PLC feature model into PLM’s and PLC’s ontology respectively and to compare each 
one with the PLM’s ontology. This comparison is made by means of a reasoning engine that is invoked 
to check its consistency. The configuration is valid if the ontology is checked to be consistent with 
respect to the feature diagram ontology. Wang et al’s approach use Protégé-OWL and RACER to 
successfully detect the inconsistence in a PLC . 
 
Another technique is proposed by [Bayer et al. 99]. This technique pretends to check that each 
commonality in the PLM must be present in each PLC, if this correspondence relation is  not satisfied for 
PLC k, then PLC k is not consistent. We can represent it by the following logical constraint: 

cfPLCffeaturePLMcyCommonalit  .,  

 
Padmanabhan and Lutz propose to make SQL queries looking for inconsistencies in the constraints  and 
SQL queries looking for PLCs that did not satisfy a particular commonality  [Padmanabhan, Lutz 05]. 
This technique addresses the issue of requirements verification for product lines through a requirements 
engineering tool called DECIMAL (DECIsion Modeling AppLication). DECIM AL is an interactive, GUI-
driven requirements verification tool that automatically checks for completeness and consistency 
between a new product and the product line to which it belongs and automates completeness, 
consistency, range, and type checks to verify that the values of variabilities selected for the new 
member fall in the range and are of the same data type as specified for the product line . On the other 
hand, DECIMAL still does not check to see if the constraints themselves are consistent.  
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Lauenroth and Pohl propose a consistency checking technique for dynamic properties of PLMs based 
on model checking techniques [Lauenroth, Pohl 07]. In this technique, the goal is to check the variability 
model, the PLM, and their interrelation to determine if th e definitions in these artefacts allow the 
derivation of an inconsistent PLC. They use model checking as a proven technique for performing 
consistency checks of behavioral specifications in single system engineering, through adaptation and 
application of existing model checking algorithms. 
The central idea of this approach is as follows:  
For a given invariant i, an algorithm searches for a valid path from the start state to a state that violates 
i.  
A path is considered as valid if a PLC can be derived that contains this path and the considered 
invariant. If the derivation of a PLC  with such a path is possible, the PLM is inconsistent. The 
identification of such paths requires the following steps:  
 1) Capture the behaviour of the product line in a single au tomaton. 
 2) Search for states violating an invariant in the variable global system automaton.  
 3) Search for valid paths from the start state to the states causing the violations.  
This technique can be resumed by means of the follow logical expression and algorithm for PLM 
inconsistency verification: 
 

 )),(( invaSet, PLMiPiPLCPpathi  

 
Algorithm for PLM inconsistency verification:  
For invariant i: 

Search in PLC a valid path P from initial state to a state that violates i.  
If a PLC exists with P, PLM is inconsistent 

 
In [Batory, Thaker 06], the authors propose a technique for support the automatic creation  of a product 
line software implementation based on feature models. They focus on the safe composition of products 
by ensuring that there is no undefined element (e .g. classes, method) referred to in a composed 
program implementation. Again, Batory and Thaker  deal with static properties of the product line and do  
not support a consistency check of behavioral properties.  For example, they proposed verification 
logical formulas like Refinement Constraint:  If features X, Y, and Z, are refined by feature F:  

F ⇒ X ∨ Y ∨ Z 
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Lessons learned from consistency verification:  
 
Numerous research contributions for checking consistency in single system engineering  have been 
proposed [Heitmeyer et al. 96], [Hunter, Nuseibeh 98], [Huzar et al. 05]. Whereas those approaches 
support consistency checking during the engineering of a single software system, their use for checking 
consistency in product line requirements specification is not suitable since those approaches do not 
provide adequate support to handle the variabilit y in product line requirements specifications.  
Existing approaches for consistency checking of requirements specifications in product line engineering 
focus on the requirements specification derived in application engineering for a particular product 
[Fantechi et al. 04], [Padmanabhan, Lutz 05 ]. Consistency checking of requirements specification is thus 
only performed in application engineering and not in domain engineering. In application engineering, a 
correction of the inconsistency quite likely influenc es not only the product currently derived, but also the 
domain artifacts as well as products previously derived from the product line.  
We consider the approaches presented in [Wang et al. 05], [Bayer et al. 99], [Padmanabhan, Lutz 05] , 
[Batory, Thaker 06] and [Lauenroth, Pohl 07] are important for our work. All these approaches are 
important for consistency analysis in product line implementation.  
 
4.3.2. Correctness or Satisfiability of Constraints  
 
In the literature we found several definitions of correct ness in PL models. According to [Bjorner 06] a 
model of requirements is correct when it has been thoroughly validated with respect to all requirements 
of stakeholders, and that the client has accepted the final document.  For Czarnecki and Pietroszek, a 
model is well-formed or correct if it conforms to the metamodel, i.e., it satisfies  the multiplicities and the 
Object-Constraint Language (OCL) constraints of the metamodel [Czarnecki, Pietroszek 06]. 
Alternatively, in [Wang et al. 05] authors say that a particular PL configuration is valid if its ontology is 
checked to be consistent with the PL  model ontology. 
On the other hand, Zhang, Zhao and Mei hold that constraint satisfiability property ensures that there is 
no inconsistency in tailoring of features [Zhang et al. 04]. The verification of feature models is converted 
into satisfaction problems in the logic. Therefore, verification problems such as the detection of 
inconsistent constraints or the detection of the conflicting or unnecessary binding resolutio n can be 
automatically revealed. 
 



 70 

In the literature, we have also found that Batory and Thaker work in the satisfiability of constraints issue 
from the point of view of the safe composition of products by ensuring that there is no undefined 
element (e.g. classes, method) referred to in a composed  program implementation [Batory, Thaker 06].  
 
Techniques proposed for correctness or satisfiability of constraints verification: 
 
Czarnecki and Pietroszek propose an automatic verification procedure which can estab lish that no ill-
formed template instances will be produced given a correct configuration of the template’s feature model  
[Czarnecki, Pietroszek 06]. According with their approach, it is necessary to express the desired well-
formedness constraints in the OCL with respect to the metamodel of the target modelling language of 
the template instances. This key capability is achieved through a new semantics of OCL for templates. 
The semantics maps OCL constraints to propositional formulas, which are then fed into  a SAT solver. 

 
Figure 4-3-1: Example of a UML class model template, taken from [Czarnecki, Pietroszek 06] 
 
The feature model in Figure 4-3-1 (a) denotes 52 correct configurations.  A sample configuration is 
shown in the same figure using a so-called check-box rendering of a configuration tool [Czarnecki, Kim 
05]. In this rendering, optional features are shown as check boxes. The boxes  of selected features are 
checked. The boxes of eliminated features are crossed. Figure 4-3-1 (b) shows an example of a UML 
class model template, which is a UML class model annotated with presence conditions.  
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The key idea of a feature-based model template is that, given a particular feature configuration, an 
instance of the template can be automatically created by removing the model elements which presence 
conditions are evaluated FALSE. 
 

 
Table 4-3-1: Abbreviations of feature names from Figure 4-3-1 (a), taken from [Czarnecki, Pietroszek 
06] 
 
For the feature model in Figure 4-3-1 (a) and assuming the abbreviations in Table 4-3-1, the formula to 
verify qFM is as follows: 
qFM = 

root: cs^ 

parent-child: (ct   cs) ^ (mc   ct) ^ (ml   ct) ^ (ds   ct) ^ (tn   ct) ^ (pi   cs) ^ (aa   pi) ^ 

(i2   aa) ^ (i3   aa) ^ 

group: (aa   choice1,2(i2, i3)) ^ 

transverse: (tn  i2) 

where 
choice1,2(i2, i3) = i2 ^ ¬i3 v ¬i2 ^ i3 v i2 ^ i3 = i2 v i3 

 
Let us consider the following example, taken from [Czarnecki, Pietroszek 06], in which the template in 
Figure 4-3-1 has an annotation error leading to a dangling association for any configuration  with 
Categories which are False. The resulting malformed instance for one such correct configuration is 
shown in Figure 4-3-2. The annotation error in Figure 4-3-1 (b) can be corrected by changing the 
annotation of the non-aggregate association between Category  and Product from MultipleClassification | 
!Categories to just MultipleClassification.  
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Figure 4-3-2: Sample configuration leading to a dangling association , taken from [Czarnecki, Pietroszek 
06] 
 
[Zhang et al. 04] propose a method for product line model’s validity verificat ion based in logic. In this 
approach, Ci represent a particular constraint i.  

inIi CIFeatureSetIFeature ..,   

The follow table presents a list of constraints and his logical representation that it is possible to find in a 
product line model: 
 
f1 require f2  f1 f2 

f1 exclude f2 ( f1 f2) 

Mutex-Group(f1,f2,…fn)  fj ,fk{ f1,f2,…fn }, jk,( fj fk) 

None-Group(f1,f2,…fn) True 
All-Group(f1,f2,…fn) (1 j  n fj)  (1 j  n fj) 

single-binding(f1,f2,…fn)  1 i  n (1 j  n, j  i fj) fi 

multiple-binding(f1,f2,…fn) i=1,…,n fi 

all-binding(f1,f2,…fn)  i=1,…,n fi 

single-bound(f1,…fn) require 

multiple-bound(g1,…gn) 
single-bound(f1,…fn)  

 multiple-bound(g1,…gn) 
Table 4-3-2: formalisation of typical constraints. Taken from [Zhang et al. 04] 
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The idea in this technique is to apply the set of typical constraint to product line model and to evaluate it 
like a classical logical formula that can be true or false. The process is not automatic and the details of 
implementation are not showed.  
 
On the other hand, Batory and Thaker show how, from a PLM described in terms of logical expressions,  
many properties of safe composition can be evaluated by AHEAD product lines tool using feature 
models and SAT solvers [Batory, Thaker 06]. Their technique considers verifications like this: 
Refinement Constraint:  If features X, Y, and Z, are refined by fe ature F, then 

F   X v Y v Z 

Let PLf be the propositional formula of product line PL:  
(PLf ^ F ^ ¬X ^ ¬Y ^ ¬Z) = false 
 
Also, in the Batory and Thaker’s technique, the propositional formula of a grammar is considered as the 
conjunction of the formulas for each production, each cross -tree constraint, and the formula that selects 
the root feature (i.e., all products have the root feature). Thus, all constraints except ordering constraints 
of a feature model can be mapped to a propositional formula . This relationship of feature models and 
propositional formulas is essential to make a safe derivation of a particular product. The following 
example evidences the use of grammars like descriptors of PLMs.  
 
// grammar of our automotive product line  

Car : [Cruise] Transmission Engine+ Body ;  

Transmission : Automatic | Manual ;  

Engine : Electric | Gasoline ;  

// cross-tree constraints 

Cruise ⇒ Automatic ; 

 
Lessons learned from correctness or satisfiability of c onstraints verification: 
 
In the approach proposed by Czarnecki and Pietroszek in [Czarnecki, Pietroszek 06], creating and 
evolving model templates there has been an error-prone process because, for example, it is easy to 
forget a required constraint in the feature model or to overlook an annotation in the annotated model. 
While particular instances of the  template that are being currently used may be correct, instantiating  the 
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template for other configurations, which we would expect to be correct, could lead to incorrect template 
instances. 
In this approach the verification process is applied at product line configurations and not at product line 
model directly. Otherwise, the verification process only makes verification of structural properties of the 
particular configurations and does not consider dynamic properties of the product line model.  On the 
other side, verifications rules are not generalized mathematically by any configuration. 
Batory and Thaker deal with static properties of the product line and do  not support a consistency check 
of behavioral properties [Batory, Thaker 06]. Although the work that they have developed is supported 
by a computational tool (AHEAD), their work is oriented to safe composition of PL Cs and not to verify 
the PLM itself. 
 
4.3.3. Validity or richness 
 
According to [Mannion 02], a valid product line model is one in which it is possible to select at least one 
set of single requirements from the model that satisfies the relationship between the requirements in the 
model. An invalid product line model is one from which it is not possible to make such a selection .  
In the same way, in [Benavides et al. 07] we found that a feature model is valid if it exists a product 
satisfying all the constra ints.  
 
Techniques proposed for validity: 
 
Mannion proposes to use propositional connectives for modelling variability and dependency between 
requirements, and so a logical expression can be developed for the model.  And then to check 
satisfaction of this logical expression on each particular configuration that can be derived from PLM . 
This approach can be used to validate the model as a whole. The problem of this technique is the 
combinatory explosion generated in the evaluation process.  
Benavides propose to use an algorithm to evaluate following logical expressions in order to search a 
PLC that satisfies all set of PLM constraints and so verifies the validity of these PLM:  

k
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
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Differently to Mannion, it is not necessary to evaluate all possible particular configurations, because 
Benavides’ validity definition deals with only one configuration that respects the set of PLM’s 
constraints. 
 
Lessons learned from validity: 
 
Definitions of validity are not standardised in literature and neither techniques to verify it. The maturity 
level of Benavides’ definition made possible to implement it in a PLM verification computational tool.  
 
4.3.4. Suitability or utility 
 
According to [Zhang et al. 04], the suitability ensures that every feature in the set of features has the 
possibility of being removed. If this property is not sa tisfied, it means that there is  one or more features 
that will not have the chances to be removed after the current binding time. Th at is to say, these 
features actually have been bound. The possible causes may be that the operators have ignored the 
binding of these features, or have done some improper tailoring or binding actions, or some constraints 
themselves are wrong. 
 
Techniques proposed for Suitability verification: 
 
According to [Zhang et al. 04], the set of constraints in a feature model are formalised in a set of logical 
sentences. Then at each binding time, after an undecided feature is bound or removed, the truth value 
of this feature will become the logical constant True or False respectively. Thus, the verification of 
feature models is converted into satisfaction problems in the mathematical logic. Therefore, properties 
such as feature possibility of being removed from the model, can be automatically revealed through 
evaluation of the following formula: 

     fCIikPLCPLCI

PLMCf

inikik 



 ..11 ),1(,...,

,)DependencyTransverse ,endencyVariantDep(, Feature 
 

Lessons learned from Suitability verification:  
 
We have adapted Zhang et al's proposition to be able to apply it on our meta-model. Thanks to the 
logical expression proposed by them, it is possible to automatize the suitability verification process in 
the tool that we will present in the chapter  V. 
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4.3.5. Usability, liveliness or decidability  
 
According to [Zhang et al. 04], the usability ensures that every feature in the set of susceptible features 
to be chosen has the possibility of being bound in the future. If this property is not sa tisfied, it means 
that there is one or more features that will not have the chances to be used in a PLC. That is to say, 
these features actually have been removed from the feature model. The possible causes may be that 
the operators have ignored the tailoring actions on these features, or have done some improper tailoring 
or binding actions, or some constrains themselves  are wrong. These causes can be eliminated by 
putting these features to set of features not susceptible to be chosen, or by undoing some actions at the 
current binding time, or by revising constraints on features.  They propose evaluation of follow formula in 
order to evaluate usability property:  
 

    fCIikPLCPLCI

PLMCf

inikik 



 ..11 ),1(,...,

,)DependencyTransverse endency,VariantDep(, Feature 
 

 
Techniques proposed for Usability verification: 
 
We have found Zhang et al’s technique [Zhang et al. 04] based on logical evaluation of constraints. In 
this technique, properties such as feature possibility of being selected from the model, can be 
automatically revealed through evaluation of the follow ing formula: 
 

    fCIikPLCPLCI

PLMCf

inikik 



 ..11 ),1(,...,

,)DependencyTransverse endency,VariantDep(, Feature 
 

 
Lessons learned from Usability verification: 
 
We have adapted Zhang et al's proposition to be able to apply it on our meta-model. Thanks to the 
logical expression proposed by them, it is possible to automatize the usability verification process in the 
tool that we will present in the chapter  V. 
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4.3.6 Verifiability 
 
According to [Mannion, Camara 03] a verifiable single system (PLC) is one for which its product line 
logical expression evaluates to TRUE. Otherwise the single system is unverifiable.  
 
Techniques proposed for verifiability: 
 
According to [Mannion, Camara 03], a product line model can be repres ented using propositional logic. 
By considering each requirement as an atom and each relationship between requirements as a logical 
expression, a logical expression for the product line model can be developed. A selected combination or 
requirements draw from the product line model can then be tested using this exp ression. In order to 
illustrate this technique, let us consider the following “mobile phone product line example”: 
 

 
Figure 4-3-3: mobile phone product line model, taken from [Mannion, Camara 03]  
 
The logical expression for the mobile phone product requirements shown in Figure 4-3-3 are: 
 
((R1 ^ (R1.1 ^ R1.2 ^ R1.3))^     (G1) 
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(R2)       (G2) 
(R3 ^ R3.1) ^      (G3) 
(R4 ^ R4.1) ^      (G4) 

(R5 ^ (R5.1  R5.2)) ^     (G5) 

(R6 ^ (R6.1 v R6.2 v R6.3 v (R6.4 ^ R6.4.1))) ^  (G6) 

(R7 (R8 ^ (R8.1 v R8.2 v R8.3)))   (G7) 

 
It is possible to instantiate the requirements in the logical expression to TRUE or FALSE depending on 
whether they appear in the single system or not. A verifiable single system is one for which the product 
line logical expression evaluates to TRUE. Otherwise this PLC is unverifiable. 

 
Figure 4-3-4: requirement selection and equivalent boolean vector representation.  
 
During the construction of a single system, TRUE (T) is assigned to those requirements that a re 
selected and FALSE (F) is assigned to those not selected.  
Suppose some requirements are freely selected (indicated by √ in Figure 4-3-4) from the mobile phone 
product line model. The product line logical expression becomes: 
((T^(T^T^T^T))^   (G1) 
(T)    (G2) 
(T^(T^T))   (G3) 
(T^T)    (G4) 

(T^(T F))^   (G5) 
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(T^(FvTvTv(T^T)))^  (G6) 

(T (T^(FvTvF)))  (G7) 

 
(G1), (G2), (G3), (G4), (G5), (G6) and (G7)  each one evaluate to TRUE. Hence 
G1^G2^G3^G4^G5^G6^G7 evaluates to TRUE. 
But this technique considers only structural verification of PLM through evaluation of PLCs transformed 
into logical expressions, which is very expensive from a computational point of v iew.  
 
Lessons learned from verifiability: 
 
Mannion and Camara’s approach is easy to automatize, but only consider evaluation of verifiability on 
PLCs. For the moment, we have not found a technique that permits to evaluate the verifiability's aspects 
in PLMs, we will take this lack as an open issue in  our future research work. 
 
 
4.4. General lessons  
 
General lessons can be resumed in Table 4-4-1. This table permits to present what criterion i s being 
verified using some technique and how verification process is being achieved. 
 

      Technique 
 
Criterion 

Matching  Queries  Model checking Manual 
testing 

Counter - 
example 
testing 

Consistency Semantic Web 
Ontologies 
comparison. 
PLC’s 
ontologies 
against PLM 
ontology 
[Wang et al. 
05] 
 

Make SQL 
queries looking 
for 
inconsistencies 
in the 
constraints and 
SQL queries 
looking for 
PLCs that did 
not satisfy a 

For a given 
invariant i, an 
algorithm searches 
for a valid path from 
the start state to a 
state that violates i 
[Lauenroth, Pohl 
07] 
 
Safe composition of 
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Each  
commonality 
in the PLM 
must be 
presented in 
each PLC 
[Bayer et al. 
99] 

particular 
commonality 
[Padmanabhan, 
Lutz 05] 

products by 
ensuring that there 
is no undefined 
element [Batory 
and Thaker 06] 

Correctness or 
Satisfiability of 
Constraints 

  OCL constraints are 
transformed to 
propositional 
formulas, which are 
then fed into a SAT 
solver [Czarnecki, 
Pietroszek 06] 
 
From a PLM 
described in terms 
of logical 
expressions, many 
properties of safe 
composition can be 
evaluated by 
AHEAD product 
lines tool. Safe 
composition is 
made by means of 
classical grammar 
derivations [Batory, 
Thaker 06] 

For each 
feature, to 
apply the 
set of 
PLM’s 
typical 
constraint 
[Zhang et 

al. 04] 
 
 

 

Validity or 
richness 

  To use an algorithm 
looking for a 
particular 

 To develop a 
logical 
expression for 
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configuration that 
satisfied all set of 
PLM constraints 
[Benavides et al. 

07] 

the PLM and 
to check its 
satisfaction on 
each 
particular 
configuration 
[Mannion 02]. 

Suitability or 
utility 

    Feature 
possibility of 
be removed 
from the 
model, can be 
automatically 
revealed 
through 
evaluation of 
a logical 
expression 
[Zhang et al. 

04] 

Usability , 
liveliness or 
decidability 

  Feature possibility 
of being used or 
decidability to use it  
in a PLC, can be 
automatically 
revealed through 
evaluation of a 
logical expression 
[Zhang et al. 04] 

  

Verifiability   A PLC is verifiable 
if its product line 
logical expression 
evaluates to TRUE. 
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An algorithm is 
proposed to do this 
evaluation 
[Mannion, Camara 
03]. 

Table 4-4-1: Approaches presented to evaluate critters of PLM verification using certain techniques  
 
4.5. Conclusion  
 
The first part of this chapter was dedicated to survey the current state of the art of research in 
verification process. Next, we have presented our PLM meta-model in order to define the set of 
concepts and their inter-relation. These concepts and constraints had been used to formalize each 
characteristic to be verified in a PL or a PLC model. For each characteristic, we have presented the  set 
of techniques used for its verification and some lessons that we will take into account in the definition 
and improvement stages of our approach.  
The next Chapter presents MAP and NATURE formalisms. Next, we use these formalisms in order to 
define our multi-process model and explaining systematically each of his sections.  
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Part V 
 
 

Verification Multi -method 
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5 The Approach 
 
Concisely, we propose three tasks to achieve in order to verify a PLM. In our approach, the firs step is 
feature model construction supported by a computational tool. In thi s step, industrial product line models 
can be constructed according to FORE formalism [Streitferdt 03]. The second step is to formalize 
constraints on features into first order logic sentences. For the second step we propose a first set of 
criteria that imperatively have to be respected by all feature product line model. In the third step w e 
check a PLC (and so on for each PLC), and their interrelation with PLM to determine if these PLC 
satisfied PLM’s structure. With the aim of modeling PLM's process of verification, we have decided to 
use the Map formalism, this formalism and the process proposed  by us, will be dealt at following 
sections. 
 
5.1 Context and MAP formalism 
 
We use the Map formalism proposed in [Rolland et al. 99] and [Benjamen 99] to express the process 
model of our approach. Map provides a representation system allowing us to combine multiple ways of 
working into one complex process model. It is based on a nondeterministic  ordering of two fundamental 
concepts, intentions and strategies. 
An intention represents a goal that can be achieved by the performance of the  process. It refers to a 
task (activity) that is a part of the process and is expressed  at the intentional level. A strategy represents 
the manner in which the intention can be achieved. Therefore, the map is a directed labelled graph with 
notes representing intentions and labelled edges expressing strategies. As shown in Figure 5-1-1, a 
map consists of a number of sections each of which is a triplet <Ii, Ij, Sij>. The directed nature of the 
map identifies which intention can be done after a given one. A map  includes two specific intentions, 
start and stop, to begin and to end the process respectively. There are several paths from start to stop 

in the map for the reason  that several different strategies can be proposed to achieve the intentions.  
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Figure 5-1-1: The process map meta-model 
 
According to the Figure 5-1-1, a process map is composed of a collection of sections (at least one). Any 
section belongs to a single map. Each section has one source intention, one target intention, and is 
related to a single strategy. 
 

Intention I

Intention J

Strategy S1

Strategy S2

Strategy S3

  
Figure 5-1-2: The concept of section 
 
As we can see in figure 5-1-2, a strategy is an approach, a manner to achieve an intention. The 
strategy, as part of the triplet  <Ii,Ij,Sij> characterizes the flow from Ii to Ij and the way Ij can be achieved.  
The specific manner in which an intention can be achieved is captured in a section of the map whereas  
the various sections having the same intention  Ii as a source and Ij as target show the different 
strategies that can be adopted for achieving Ij when coming from Ii. Similarly, there can be different  
sections having Ii as source and Ij1, Ij2, ....Ijn as targets. This shows the different intentions that can be 
achieved after the achievement of Ii. 
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5.2 MAP model of our approach 
 
Map is a formalism that permits to draw multi-process models in an easy and intuitive manner. So, Map 
permits integrating techniques that have been developed in an independent way, to combine them in a 
coherent process. The next process model is an integration of different process model adapted from 
literature. That is, a multi-process model designed by the Map formalism. Broadly speaking, properties 
of a PLM that must be considered in a verification process can be categorized into structural and 
semantic properties. Properties that deal with structural correctness can be verified before start ing 
verification process of semantic properties. In order to do these two verification p rocesses there is no 
single strategy to achieve it. Some of the most popular strategies permitting automatic verification of a 
conceptual model are formal proofs, model checking (at  the same time composed of: constraint 
satisfaction problem CSP, boolean satisfaction problem SAT and binary decision diagram BDD), 
matching with another model and search ing of a counter example. On the other hand, in order to verify 
certain properties of a PLM, some PLCs must be considered. By this reason , verification of PLCs is 
included into multi-method presented in Figure 5-2-1. 
Table 4-4-1 (<criterion, technique>) has permitted us defining the different strategies that can be used to 
achieve a determined intention in a process of product lines models verification.  In this work we only 
consider correctness verification of product line models and validity of product models. By this reason 
the process model in Figure 5-2-1 deals with static and semantic correctness of PLMs and validity of 
PLCs models. Others properties that have  been analysed in precedent chapters will be integrated at this 
process model in feature works. 
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Figure 5-2-1: Process model of our approach using the Map formalism 
 
5.3 Context models of the MAP 
 
The oriented-contextual models define the process by combining observable situations with a set of 
specific intentions. The work to accomplish is described in the process as being dependent on both 
situation and intention. Central concept in context-oriented models: couple <situation,  intention> 
 
Using the concept of a decision allows to apply the properties of decision -oriented models previously 
seen. The decisions are applied to situations where the process is now in order to transform this 
situation into a new desired one. Strong re lationship between situation and decision helps focus the 
guidance, track and explanations on the specific situations of the process . 
 

The context-driven process model is based on the NATURE process modeling formalism [Jarke et al. 
99], [Rolland et al. 96]. According to this formalism, a process model can be expressed as a hierarchy of  

Start 

Stop 

Completeness 

strategy Completeness 

strategy 

Completeness 

strategy 

Verify PLM semantic 

correctness 

Refinement strategy 

Verify PLM structural 

correctness 

Refinement strategy 

Verify PLC validity  

Refinement strategy 

Manual testing 

strategy 

Querying 

strategy 

Model checking 

strategy 

Manual testing 

strategy 

Manual testing 

strategy 

Model checking 

strategy Matching 

strategy 

Counter-

example testing 

strategy Model checking 

strategy 

Matching 

strategy 

Model checking 

strategy 

Counter-

example testing 

strategy 
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contexts. A context is viewed as a couple <situation, intention> . The situation represents the part of the 
product undergoing the process, and the intention reflects the goal to be achieved in this situation. 
NATURE proposes three types of guidelines, namely choice, plan and executable. The body of a choice 
guideline offers different alternative  ways for achieving the process intention. Arguments are provided to 
help in the selection of the most appropriate alternative. A plan guideline can be looked as dealing with 
a macro issue which is decomposed into sub-issues, each of which corresponds to a sub-decision. An 
executable guideline corresponds to an operationalizable intentio n that is directly applicable through a 
set of activities. The body of an executable guideline proposes a set of activities to be  performed for 
achieving its process intention. 
 
For instance, in CG1 below:  
<PLM, execute invariants> is a choice guideline that includes: <PLM, execute a constraint satisfaction 

problem analysis>, <PLM, execute a boolean satisfaction problem analysis>  and <PLM, execute a 

binary decision diagram analysis> . 
 
At the same time <PLM, execute a boolean satisfaction problem analysis>  is a plan guideline, marked 
by the symbol ‘@’ in order to reuse it in other place of the tree structure . 
 
And in the same way, <PLM, PLM = binary data structure> and <PLM, execute require-relation 

invariant> are examples of executable guidelines, because they are directly operationalized. <PLM, 
execute “Find contradictions in mandatory relations” invariants>  is a guideline that evaluates the 
following logical formulae or invariant:  

 
)()()()(

)()(.,),(

CKPCPMandatoryCPchildOfC

CreChildFeatuPureFatherFeatPLMKfeatureCfeaturePfeature

i

i




 

 
In this section we present the context guidelines for sections developed in our approach and supported 
by the computational tool described in chapter V.  
 
CG1: Section <Start, verify PLM structural correctness, Model checking strategy> 

 
 

Verify PLM structural 

correctness Start Model checking 

strategy 



 89 

<PLM, verify structural correctness> 

 
 
Next we present the list of invariants that must be evaluated in each executable guideline proposed in 
CG1 with blue colour. 
 
< PLM, execute “Verify FORE Properties” invariants >  
It is necessary to execute:  

1. Root unicity invariant :  

1.  frootfPLMfeaturef  

2. Child – Father unicity invariant: 

1)()())()(()(

)()(.),(





iiiii

ii

PCPCPOptionallyCPMandatoryCPchildOfC

CreChildFeatuPureFatherFeatPLMCfeaturePfeature


 

<PLM, execute a boolean satisfaction problem analysis> 

<PLM, execute invariants> 

<PLM, execute a binary decision diagram analysis> 

<PLM, PLM=binary data structure> 

<PLM, execute feature-uniqueness algorithm> 

<PLM, execute @> 

@ 

<PLM, execute “Find 

contradictions between 

transversal dependencies 

and variant dependencies” 

invariant> 

<PLM, execute “Find 

contradictions in optional 

relations” invariants> 

<PLM, execute “Find 

contradictions in 

mandatory relations” 

invariants> 

<PLM, execute “Find 

unbound or mal 

formed cardinalities” 

invariants> 

<PLM, execute “Find 

contradictions between 

transversal dependencies 

and cardinalities” 

invariants> 

<PLM, execute 

“Verify FORE 

Properties” 

invariants > 

<PLM, execute 

“Find contradictions 

between transversal 

dependencies” 

invariants> 

<PLM, execute “Find 

features impossible to 

achieve” invariants > 

<PLM, execute 

“Find cyclic 

relations” 

invariants > 

a1 
a2 

a3 

a1: you want to execute a constraint satisfaction problem analysis on PLM and you have the set of rules to apply 

a2: you want to execute a boolean satisfaction problem analysis on PLM and you have the set of invariants to apply 

a3: you want to execute a binary decision diagram analysis on PLM and you have the set of invariants to apply 

<PLM, execute a 

constraint satisfaction 

problem analysis> 
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3. Cardinality relation invariant:  

 

    )*(0*0
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4. Invariant evaluating optionality of relations intervening in a cardinality : 

 

  )*(0*),(),...,(

),...,(),,(

1

1

knmmnmCOptionalCOptional

CCCrechildFeatuPurefatherFeatnmCyCardinalit

k

k
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<PLM, execute “Find contradictions in optional relations” invariants>  
It is necessary to execute:  

1. Optionally relationship constraint  invariant: 

 
)()()()(

)()(.,),(

CKPCPOptionallyCPchildOfC

CreChildFeatuPureFatherFeatPLMKfeatureCfeaturePfeature

i

i






 

2. Invariant to validate if a cardinality is right or not:  

 

   

  truejnoptionalfcountfff

ffffffffjinmnm

PLMnmycardinalitffrechildFeatufeatureSetfureparentFeat
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jkkikjii

xmmn

x
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<PLM, execute “Find contradictions in mandatory relations” invariants>  
It is necessary to execute:  

1. Mandatory relationship constraint invariant:  

 
)()()()(

)()(.,),(

CKPCPMandatoryCPchildOfC

CreChildFeatuPureFatherFeatPLMKfeatureCfeaturePfeature

i

i




 

 
<PLM, execute “Find unbound or badly formed cardinalities” invariants> 
It is necessary to execute:  

1. Invariant to validate if a cardinality is right or not:  

 

   

  truejnoptionalyfcountfff

ffffffffjinmnm

PLMnmycardinalitffrechildFeatufeatureSetfureparentFeat
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2. Invariant to evaluate cardinalities whit value 0,0:  
 

falsemffmmnnm

fchildOfffchildOff

PLMnmycardinalitffrechildFeatufeatureSetfureparentFeat

ji

ajai

jia
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



))0(...()0()()0(

)(),...,(

)..()),,...,((),(

 

 
<PLM, execute “Find contradictions between transversal dependencies and cardinalities” invariants>  
It is necessary to execute:  

1. An algorithm considering interactions between transverse dependencies and cardinalities , this 
is not still available. 

 
<PLM, execute “Find contradictions between transversal dependencies and variant dependencies” 
invariant> 
It is necessary to execute: 

1. Require-child invariant: 

kikikiki fmfmfmchildOffmPLMfmfmfeatures   ,),(  
2. Exclude definition and invariant: 

)()()(.),,(

)(),(.),(:

jkijijjikji

kikiki

fffmandatoryffchildOffPLMffffeatures

fmfmfmfmexcludePLMfmfmfeaturesinitionExcludeDef







3.   Require definition and invariant:   

)()()(.),,(

)(),(.),(:Re

jkijijjikji

kikiki

fffoptionallyffchildOffPLMffffeatures

fmfmfmfmrequirePLMfmfmfeaturesitionquireDefin







 
<PLM, execute “Find contradictions between transversal dependen cies” invariants> 
It is necessary to execute:  

1. Require-exclude definition: 

kikikiki fmfmfmchildOffmPLMfmfmfeaturesitionquireDefin   ,),(:Re  

2. Transversal dependencies contradiction invariant: 

)))(()()((

)(),(

)(),(.),(

)(),(.),(

jkkjjk

jkkjkj

kikiki

kikiki

fancestorOffffff

frequiresfPLMfffeatures

fmfmfmfmexcludePLMfmfmfeatures

fmfmfmfmrequirePLMfmfmfeatures
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




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<PLM, execute “Find features impossible to achieve” invariants >  
It is necessary to execute: 

1. Require-exclude definition: 

kikikiki fmfmfmchildOffmPLMfmfmfeaturesitionquireDefin   ,),(:Re  

2. Transversal dependencies contradiction invariant:  

)))(()()((

)(),(

)(),(.),(

)(),(.),(

jkkjjk

jkkjkj

kikiki

kikiki

fancestorOffffff

frequiresfPLMfffeatures

fmfmfmfmexcludePLMfmfmfeatures

fmfmfmfmrequirePLMfmfmfeatures











 

 
CG2: Section <Start, verify PLM structural correctness, Model checking strategy> 
 

 
 

<(PLM, PLC), verify PLM semantic correctness>  

 
 
<(PLM, PLC), execute usability, liveliness or decidability invariant> 
It is necessary to execute:  

1. Liveliness, usability or decidability invariant : 

    fCIikPLCPLCI

PLMCf

inikik 



 ..11 ),1(,...,

,)DependencyTransverse endency,VariantDep(, Feature 
 

 

<(PLM, PLC), execute suitability or utility invariant> 
It is necessary to execute:  

1. Utility or suitability invariant  

Verify PLM semantic 

correctness 
Model checking 

strategy 

Verify PLM structural 

correctness 

<(PLM, PLC), execute usability, 

liveliness or decidability 

invariant> 

<(PLM, PLC), execute 

suitability or utility invariant> 

<(PLM, PLC), execute validity 

or richness algorithm> 

<PLM, execute verifiability 

algorithm> 
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     fCIikPLCPLCI

PLMCf
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,)DependencyTransverse ,endencyVariantDep(, Feature 
 

 
<(PLM, PLC), execute validity or richness algorithm>  
It is necessary to execute:  

1. An algorithm that permits to evaluate: 

k

k

PLMPLC

PLM





Set Constraint

Set  Constraint
 

And in particular : 

   i

n

ii CPLMC
1

,Constraint  

 
<(PLM, PLC), execute verifiability algorithm>  
It is necessary to execute:  

1. An algorithm that permits to evaluate: 

trueSubGSubGSubGSubGG jiji  .,ressionlogicalExp  

 
CG3: Section <verify PLM structural correctness, verify PLM structural correctness, Refinement 
strategy 

 
<PLM, verify PLM structural correctness>  

 
 

Verify PLM structural 

correctness 
Refinement strategy 

<PLM, implement manual 

testing strategy> 

<PLM, implement formal proofs 

strategy> 

<PLM, implement model 

checking strategy: CG1> 

a1 
a2 

a3 

a1: you want to refine the PLM structural correctness verification process by means of “manual testing” strategy 

a2: you want to refine the PLM structural correctness verification process by means of “formal proofs” strategy 

a3: you want to refine the PLM structural correctness verification process by means of “model checking” strategy 
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CG4: Section <verify PLM structural correctness, verify PLM semantic correctness, model 
checking strategy> 
 

 
 

<PLM, verify PLM semantic correctness> 

 
 
CG5: Section <verify PLM semantic correctness, verify PLM semantic correctness, refinement 
strategy> 
 

 
 

<PLM, verify PLM semantic correctness> 

 
 
 
 

<PLM, implement manual 

testing strategy> 

<PLM, implement model 

checking strategy: CG2> 

a1 
a2 a3 

a4 

<PLM, implement formal 

proofs strategy> 

a1: you want to refine the PLM semantic correctness verification process by means of “stakeholder reviews” strategy 

a2: you want to refine the PLM semantic correctness verification process by means of “manual testing” strategy 

a3: you want to refine the PLM semantic correctness verification process by means of “formal proofs” strategy 

a4: you want to refine the PLM semantic correctness verification process by means of “model checking” strategy 

Verify PLM semantic 

correctness 
Refinement strategy 

Verify PLM semantic 

correctness 
Model checking 

strategy 

Verify PLM structural 

correctness 

<PLM, implement model checking strategy CG2> 

<PLM, implement 

stakeholder reviews 

strategy> 
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CG6: Section <verify PLM structural correctness, verify PLC validity , model checking strategy> 
 
CG7: Section <verify PLM semantic correctness, verify PLC validity , model checking strategy> 
 
 

 
 

<(PLM, PLC, PLM structure & PLM semantic = “correct”), verify PLC validity> 

<(PLM, PLC, PLM structure & PLM semantic = “correct”), verify PLC validity> 

 
 
<(PLM, PLC), execute tree invariants>  
It is necessary to execute: 

1. Root unicity invariant 

1).(,  frootfPLCPLMffeaturePLC  

2. Child-parent unicity invariant 
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Verify PLC validity 
Model checking 

strategy 

Verify PLM semantic 

correctness 

Verify PLM structural 

correctness 

Model checking 

strategy 

<(PLM, PLC), execute invariants> <(PLM PLC), execute satisfiability of constraints 

algorithm> 

a1 
a2 

a3 

a1: you want to find values or states in which all constraints are satisfied 

a2: you want to evaluate logical expressions 

a3: you want to evaluate a binary data structure representing a boolean function 

<(PLM, PLC), execute a 

constraint satisfaction 

problem analysis> 

<(PLM, PLC), execute a 

boolean satisfaction 

problem analysis> 

<(PLM, PLC), execute a 

binary decision diagram 

analysis> 

<(PLM, PLC), execute 

tree invariants> 

<(PLC, PLM), execute PLM 

satisfaction invariants> 
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<(PLC, PLM), execute PLM satisfaction invariants>  
It is necessary to execute:  

1. Satisfaction of PLM’s mandatory relationships invariant  
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2. Satisfaction of PLM’s optionally relationships invariant 
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3. Satisfaction of PLM’s require relationships invariant 
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4. Satisfaction of  PLM’s exclude relationships invariant 
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5.   Algorithm to verify satisfiability of PLM’s constraints  

 )),(( et,invariantS PLMiPiPLCPpathi  

For invariant i: 

        Search in PLC a valid path P from an initial state into a one that violates i.  

If a PLC exists with P, PLM is inconsistent 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 97 

CG8: Section <verify PLC validity, verify PLC validity, Refinement strategy>  
 

 
 

<(PLM, PLC), verify PLC validity> 

 
 
 
5.4 Discussion  
 
Now that the approach has been presented, this section will dis cuss several of its contributions and 
limitations. 
There are two aspects that must be taken into account in a verification process of PLM’s correctness, 
the structural and the semantic correctness of the model.  In the verification process of PLM's structural 
correctness, we have included the list of the notation FORE’s characteristics, that they are largely 
treated in literature.  From the point of view of the structural correctness, we have enriched the range of 
properties to verify in a PLM and we have proposed the corresponding logic invariants to evaluate each 
one. We have included not only the properties of a model designed with the notation FORE, but also 
another one like: correctness in optional relations, correctness in mandatory relations, correctnes s in 
cardinalities, correctness in transversal dependencies and variant dependencies interactions, 
correctness in transversal dependencies interactions, every feature must be possible to achieve and no 
cyclic relations are permitted. And from the point of view of the semantic correctness, we have unified 
dispersed criteria found in literature and have select some of the most important characteristics to be 

Verify PLC validity Refinement strategy 

<(PLM, PLC), implement model 

checking strategy: CG6/CG7> 

<(PLM, PLC), implement 

matching strategy> 

<(PLM, PLC), implement counter 

example testing strategy> 

a1 
a2 

a3 

a1: you want to refine the PLC validity verification process by “model checking” strategy 

a2: you want to refine the PLC validity verification process by “matching” strategy 

a3: you want to refine the PLC validity verification process by “counter-example” strategy 
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verified in a PLM. With regard to the unificat ion of criteria, we claim that the  terms Usability, liveliness 

and decidability refer to the same concept; we have established also equivalency of concepts among 
suitability and utility; as well as for the terms  validity and richness. With respect to verification, some 
logic invariants to evaluate usability, su itability, validity and verifiability properties have been proposed. 
The different paths to execute each one of the previous logic invariants on a PLM are defined in the 
multi-process model in Figure 5-2-1. 
For the verification of each of correctness' characteristics, we have used propositional logic and first -
order logic for writing out every invariant to verify. In order to evaluate a propositional logic formula, we 
have used in some cases satisfiability criterion and validity criterion in others. A formu la F is satisfiable if 
there is an interpretation K such that K |= F. A formula F is valid if for all interpretations K, K |= F. 
Determining satisfiability and validity of formulae are important tasks in logic. Satisfiability and validity 
are dual concepts, and switching from one to the other is easy. F is valid if ¬F is unsatisfiable. For  
example, suppose that F is valid; then for any interpretation K, K |= F. By the semantics of negati on, K 
|≠ ¬F, so ¬F is unsatisfiable. Conversely, suppose that ¬F is unsatisfiable. For any interpretation K, K |≠ 
¬F, so that K |= F by the semantics of negation. Thus, F is valid. Because of this duality between 
satisfiability and validity, we are free to  focus on either one or the other in the evaluation of a logical 
expression, depending on which is more convenient for the particular case.  
As for limitations, formulas or invariants proposed can not be directly used by any available SAT tools. 
Although the aforementioned invariants have been used in our PLMV&V tool, its syntax is not enough 
independent of implementation as for being used by some SAT solver standard. This limitation will be 
treated in future research .  
 
5.5 Conclusion 
 
In the present chapter, we suggested a specific approach for the verification of product line models.  
Benefits of this approach to PLM verification are (i) its foundations in the well accepted requirements  
engineering framework, which allows the approach to be very general; ( ii) this approach not only gathers 
the proposals of verification found in literature, but proposing another innovative rules and standardizes 
them through a same language and a same multi -model of verification; (iii) this is an approach not only 
focusing on single-system models (PLC models like the most of the literature do) , but extended to the 
evaluation of PLMs. 
Based on the general approach, we validate the approach making use of a case study and automate it 
through a computational tool called PLMV&V. These matters will be further explored in the next chapter, 
where we present our validation with a real industrial case  and our tool implementation of the approach. 
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6 Case Study: Stago’s Product Line Model 
 
6.1 Introduction  
 
Diagnostica Stago, Inc. is one of the most important providers of hemostasis products in the world. This 
society offers a set of hemostasis instrumentation and optimized reagent kits for research as well as for 
routine analysis. Diagnostica Stago, Inc. is a French industry with a staff close to 1500. Diagnostica 
Stago devotes its research and innovative skills to the development of increasingly effective medical 
diagnostic products and instrumentation . 
 
Through Stago's product lines model we will explain the use of multi-process verification model 
described in Chapter V. On the aforementioned PLM, we will apply the logic invariants explained in 
Chapter V with the aim of identifying the different errors that the model may have. Because of reasons  
of space and simplicity, some details about implementation of each logical formula will not be showed. 
We will have to restrict our analysis in order to summarize how each logical expression allows the 
identification of errors in a PLM. Errors identified by an algorithm or by a logical expression are 
highlighted in red in the respective model. The aforementioned formulas will be applied by means of 
traversing algorithms on DAGs and tree automatons than have been implemented in PLMV&V, that is 
the computational tool for verification of product lines models described in the second part of this 
chapter. 
 
6.2 Stago’s Product Line Model 
 
Figure 6-2-1 shows the Stago’s product line model. We have introduced some typical errors in the 
model in order to detect them through applications of invariants proposed in our PLM and PLC 
verification method. The Stago’s product line model modified is showed in figure 6 -2-2. 
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Figure 6-2-1: Stago’s product line model 
 

 
Figure 6-2-2: Stago’s product line model modified  
 
6.3 Stago’s Product Line Model Verification  
 
The types of errors identified in the PLM corresponding to Figure 6-2-2 and the invariant logical 
expressions to identified its, are presented next. This case study deals with model checking strategies to 
achieve three intentions proposed in our multi -method approach.  
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In next paragraphs, we will apply the verification process , particularly the intention “Verify PLM structural 
correctness”, to PLM represented in Figure 6-2-2. That is, in a more graphic way, we will execute the 
following part of the model from the defined process in Figure 5 -2-1. 
 
6.3.1 Section <Start, verify PLM structural correctness, Model checking strategy>  

 
And then, we will apply in a systematic way the instructions of the direct sequency, selection and 
execution proposed for this section of the process model.  
 
Execution directives of this MAP section are presented in blue. 
 
6.3.1.1 < PLM, execute “Verify FORE Properties” invariants >  
 

 
 
It is necessary to execute:  

1. Root unicity invariant :  

1.  frootfPLMffeature  
With application of this invariant we have not found any problem because this PLM have only 
one root element. 
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2. Child – Father unicity invariant: 
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In this equation, we take each child feature, and for one of them, we evaluate if the number of 
variability relations between this characteristic “C” and a potential group of parents “Pi”, a  group 
of at least one element, it is equal to one. 
If it is not equal to one, the logical expression is evaluated “False”, and an error type “cycle” is 
identified between the characteristic C and i ts parents group Pi. 
In the model, we can see the characteristic “Evacuate” is related with “Diagnose 
thrombosis/haemostasis”, and at the same time it is relat ed with “Avoid”, it means 
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3. Cardinality relation invariant:  
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This invariant proposes that features group {C1,…,Ck} that make part of a cardinality D (m, n), 
must be  children of the same father ‘P’.  The set of features grouped in cardinality relations must 
be comprised among cardinality values (‘m’ is the inferior value and ‘n’ the superior value).  The 
value of ‘m’ must belong to set of natural numbers joined with ‘0’ and the value of ‘n’ must 
belong to set of natural numbers joined with the symbol ‘*’.  Besides, value of ‘n’ must not be 
inferior than value of ‘m’, neither superior to number features (‘k’) than intervene in cardinality 
relation ‘Da’. 
In the previous model, i = 1 and j = 4, they correspond to the counters of each relation grouped 
by the cardinality, in which m = 4 and n = 5.  In this logical expression it is not accomplished that 
‘n’ should be lower than ‘j’ (n < j), therefo re the expression is evaluated FALSE. 
Cardinality must have two values (‘m’ and ‘n’). In the previous PLM it is a cardinality relation with 
only one value. This logical expression permits ‘m’ be equal to ‘n’, therefore the correct way to 
write the cardinality that presents a problem, would be [1,1] . 
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4. Invariant evaluating optionality of relations intervening in a cardinality:  
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All relations joined by a cardinality relation must be of type “Optional”. In the previous PLM we 
highlight in red all relations that are not of type “Optional” and are members of a cardinality 
relationship. At each case, invariant evaluating optionality of relations intervening in a cardinality 
is evaluated FALSE. 

 
6.3.1.2 <PLM, execute “Find contradictions in o ptional relations” invariants> 
 

 
 
These errors are detected executing o ptionally relationship constraint invariant: 
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And invariant to validate if a cardinality is right or not:  
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The first equation pretends to identify a couple of features ‘P’ and ‘C’ connected through an optional 
relation, where ‘P’ is the father feature and the ‘C’ is the child. Next, we identified a feature ‘K’ among 
the set of PLM’s features, in such a way that ‘K’ is connected with ‘C’ by means of a required 
relationship. If ‘K’ exists, the logical expression is evaluated FALSE. This equation is evaluated FALSE 
in the two cases in red (model immediately above), because the equation’s right  side does not come 
true. In one of those cases, feature “Update the medical patient” (‘C’) is an optional child of “Obtain 
Analysis” (‘P’) and exists a feature “Print results” (‘K’) that is connected with “Update the patient 
medical” (‘C’) by means of a required  relation. 
 
With the second equation, a third error of the model is detected, just like the two previous  ones 
concerning the contradictions in optional relations. In this logical expression, the idea is to search for 
each group of features joined by cardinality relations (f i,,…,fj) and sharing the same father (fa). Also, it is 
evaluated that cardinality limits are right. In our example, we see that i = 1 and j = 4, corresponding to 
each counters of relations grouped by the cardinality relation, besides m = 4 and n = 5. Logic al 
expression evaluate that n should be lower than j, that is n < j, therefore the expression is evaluated 
FALSE. 
 
Notice than in the logical expression to evaluate cardinality relations we do not take into account 
mandatory relations, because FORE notatio n requires that all features intervening in cardinality relations 
must be of an optional type. 
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6.3.1.3 <PLM, execute “Find contradictions in mandatory relations” invariants>  
 

 
These errors can be detected by executing mandatory relationship constraint invariant:  
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With this equation it is possible to detect errors in mandatory relations. Features like “Identify products”, 
“By identificator”, “Prepare reagents” and “Mix” are being excluded by o ther features that could be 
mandatory, or not  in the model. In the first logical expression, we search pairs of features joined by a 
mandatory relation from ‘P’ to ‘C’ and for each found pair, we search for one exclusion relationship from 
any feature of the model (‘K’) towards ‘C’. If the feature ‘K’ exists, then second part of the logical 
expression is evaluated FALSE. 
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6.3.1.4 <PLM, execute “Find unbound or mal formed cardinalities” invariants>  
 

 
 
This error can be identified by executing invariant to validate if a cardinality is right or not:  
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And invariant to evaluate cardinalities whit value 0,0:  
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With first equation it is possible to detect error s on the model concerning the overflowing of superior 
value in cardinality relationship. In the model, we have i=1 and j=4, that correspond to counters of the 
whole relations grouped by cardinality, and also m=4 and n=5. Logical expression evaluation does not 
fulfil n must be lower than j, that is n < j, therefore entire logical expression is evaluated FALSE.  
 
With second logical expression, it is possible to evaluate cardinality’s relations and to recognize 
erroneous cardinalities like those where both boundaries have value 0 (0 ,0) or those where the superior 
limit is lower than the inferior one or those where inferior limit is  a negative number, or those where any 
feature is selected when inferior limit is different to zero. In our case study, second logical expression 
has been useful in order to detect the cardinality’s error (0,0).  
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6.3.1.5 <PLM, execute “Find contradictions between transversal dependencies and cardinalities” 
invariants> 
 

 
 
We have not developed yet an invariant to deal with contradictions between transversal dependency 
and cardinality.  
In this case, it is necessary an algorithm considering interactions between transverse dependencies and 
cardinalities. 
6.3.1.6 <PLM, execute “Find contradictions between transversal dependencies and va riant 
dependencies” invariant> 
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These errors can be detected by intersecting include and exclude invariants. In fourth errors stressed on 
the model a feature child that can be “optional” or “mandatory” is at the same time required and 
excluded, or optional and required. Interpreting this result we can deduce that it is an error.  
Require-child invariant: 

kiikkiki fmfmfmchildOffmPLMfmfmfeatures   ,),(  

Exclude definition and invariant: 

)()()(.),,(

)(),(.),(

jkijijjikji

kikiki

fffmandatoryffchildOffPLMffffeatures

fmfmfmfmexcludePLMfmfmfeatures







 

Require definition and invariant: 

)()()(.),,(

)(),(.),(

jkijijjikji

kikiki

fffoptionallyffchildOffPLMffffeatures

fmfmfmfmrequirePLMfmfmfeatures







 

 
With the first logical expression (require-child invariant), error existing among features “prepare 
reagents” and “heat triggering” can be detected. The aforementioned features are joined through a 
transversal relationship, respecting right side restrictions of the logical expression. At the same time, 
they are joined by means of a “childOf” relationship, and not respecting restri ctions of the left side 
expression. For this reason, the entire expression is evaluated FALSE.  
 
With the logical expression “exclude invariant” it is possible to detect three cases of error, each one 
related with features “identify products”, “by identificator” and “prepare reagements”. Since the previous 
features are all joined with their respective parents through a  mandatory relationship, and at the same 
time each one is being excluded by a third feature, the expression is evaluated FALSE for each of three 
cases. 
 
The error highlighted in the feature “update patient history” is detected with the logical expression 
“require invariant” because “update patient history” (fj) and “obtain analysis” (fi) are joined through an 
optional relationship and, on the same model it exists a relation “require” among features “print result” 
(fk) and “update patient history” (fj). Give n that it exists (fk “require” fj), the logical expression is 
evaluated FALSE and the error is put in evidence.  
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6.3.1.7 <PLM, execute “Find contradictions between transversal dependencies” invariants>  
 

 
 
These errors can be detected by require-exclude contradiction invariant. In a PLM it is not possible that 
a feature (k) can require another feature (j) or one of their children and at the same time, this feature k 
excludes feature j. 
Require-exclude definition: 

kiikkiki fmfmfmchildOffmPLMfmfmfeatures   ,),(  

and contradiction invariant:  
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

 

 
Two errors highlighted in red can be identified by the previous logical expression.   In the first case, 
feature “by” (fk) requires feature “by external” (fj) and at the same time, fk excludes feature “by 
identificator”, which is fj's ancestor. In the second case, feature “min” (fk) requires feature “incubate” (fj) 
and at the same time, fj excludes fk. In both cases, the logical left side expression is evaluated TRUE 
and the right side one FALSE, this implies that  complete formulae must be evaluated FALSE. 
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6.3.1.8 <PLM, execute “Find features impossible to achieve” invariants>  
 

 
 
An error of impossible features to achieve is not yet automatically identified with an i nvariant. It will be 
considered in the future work.  
 
6.3.1.9 <PLM, execute “Find cyclic relations” invariants>  
 

 
 
These errors can be detected executing next acyclic invariant: 
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 
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The cycles in red have the particularity to contain at least, one transverse relation (require, exclude). 
With the previous logic invariant, we look for cycles of features joined through variant or transversal 
relations. If at least one cycle is detected, right -hand side of the logical expression is evaluated FALSE 
and consequently, all the logical expression is evaluated FALSE, evidencing the existence of one cycle. 
One example of cycle detected by the aforementioned invariant is: “Manual” childOf  “By identificator” 
childOf “Identify products”  excluded_by “Manual”. 
 
Next, we will apply the verification process, particularly the intention “Verify PLM semantic correctness”, 
to PLM represented in Figure 6-2-1. So, in a graphic way, we will execute the following section of the 
process model defined in the figure 5 -2-1. 
 
6.3.2  Section <Start, verify PLM structural correctness, Model checking strategy>  
 

 
 
 
6.3.2.1 <(PLM, PLC), execute usability, liveliness or decidability invariant>  
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It is necessary to execute:  
Liveliness, usability or decidability invariant : 

    fCIikPLCPLCI

PLMCf

inikik 



 ..11 ),1(,...,

,)DependencyTransverse endency,VariantDep(, Feature 
 

Respecting the set of model's  constraints, all features of the PLM described in figure 5-2-1 could be 
used in order to derivate previous PLC model. 
 

6.3.2.2 <(PLM, PLC), execute suitability or utility invariant>  
 

 
 
It is necessary to execute:  

Utility or suitability invariant  

     fCIikPLCPLCI

PLMCf

inikik 



 ..11 ),1(,...,

,)DependencyTransverse ,endencyVariantDep(, Feature 
 

 
Previous PLC model is an example of configuration in which most of the option al features have not 
been selected from the PLM. It is a problem if we remove some mandatory features from the PLM, 
because there might be other features depending of the  feature eliminated. For instance, if we want 
to eliminate feature Analyse only, it is not possible to do that because features like Identify products, 
Load products, Prepare reagents, Prepare patient, Launch tests, Measure, Set up analysis 
methodology and all their children must disappear as well from the model. We believe that it is 
necessary to develop a special mechanism to deal with this issue.  
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6.3.2.3 <(PLM, PLC), execute validity or richness algorithm>  
 

 
 
It is necessary to execute:  

An algorithm that allows to evaluate: 

k

k

PLMPLC

PLM





Set Constraint

Set  Constraint
 

And in particular : 

   i

n

ii CPLMC
1

,Constraint  

Previous PLC model is a proof that there is a particular configuration that satisfied all PLM set of 
constraints. 

 
6.3.2.4 <PLM, execute verifiability algorithm>  
 
It is necessary to execute:  

An algorithm that permits to evaluate: 

trueSubGSubGSubGSubGGsionicalExpres jiji  .,log   

In order to apply previous formulae, we need to divide the product line model into an ordered set of 
sub sub-models, and to make the same thing with each sub-model and so on, even arriving at the 
level of leaves. Due to space reasons, this procedure is not going to be applied to the model. Our 
PLM example is evaluated TRUE after being divided into sub -models and being evaluated of a 
recursive manner. 
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Afterwards, we will apply the verification process, particularly the intent ion “Verify PLC validity”, to a 
PLC model derived from PLM represented in Figure 6 -2-1. It means, in a graphic way, we will 
execute the following two sections of the process model defined in the figure 5 -2-1. 

 
6.3.3 Section <verify PLM structural correctness, verify PLC validity, model checking strategy>  
         & Section <verify PLM semantic correctness , verify PLC validity, model checking strategy>  
 
 

 
 
 
6.3.3.1 <(PLM, PLC), execute tree invariants>  
 

 
 
It is necessary to execute:  

1. Root unicity invariant 

1).(,  frootfPLCPLMffeaturePLC  

This invariant is evaluated TRUE because previous PLC model has only one root element.  
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2. Child-parent unicity invariant 

1)()())()(()(

)()(.),(





iiiii

ii

PCPCPOptionallyCPMandatoryCPchildOfC

CreChildFeatuPureFatherFeatPLCPLMCfeaturePfeature


 

This invariant is evaluated TRUE because each feature in previous PLC model has only one 
parent element. 

 
6.3.3.2 <(PLC, PLM), execute PLM satisfaction invariants>  
 

 
 
It is necessary to execute:  

1. Satisfaction of PLM’s mandatory relationships invariant  

 
))()()()(

)(.,),(

PCPMandatoryCPchildOfCCreChildFeatu

PureFatherFeatPLCPLMKfeatureCfeaturePfeature

i

i




 

This PLC model respects all mandatory relationships founded in Stago’s PLM.  
 
2. Satisfaction of PLM’s optionally relationships invariant 

 
)()()()(

)(.,),(

PCPOptionallyCPchildOfCCreChildFeatu

PureFatherFeatPLCPLMKfeatureCfeaturePfeature

i

i




 

This PLC model includes some features declared as optional in Stago’s PLM.  
 
3. Satisfaction of PLM’s require relationships invariant 

)(),(.,),( PLCfcPLCfcfcfcrequirePLCfcPLMfcfcfeatures kikiiki   
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The Stago’s PLM didn't have transverse relationships, therefore evaluation of this invariant on the 
intersection among our examples of PLM and PLC model is always TRUE.  
 
4. Satisfaction of PLM’s exclude relationships invariant 

)),(()(),(

.),(,),,(

)(),(.,),(

PLCfcfcPLCfcfcchildOffcfcfcexclude

PLCfcfcPLMfcfcfcfeatures
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The Stago’s PLM didn't have transverse relationships, therefore evaluation of this invariant on the 
intersection among our examples of PLM and PLC model is always TRUE.  
 
5. Algorithm to verify satisfiability of PLM’s constraints  

 )),(( et,invariantS PLMiPiPLCPpathi  

For invariant i: 

       Search in PLC a valid path P from an initial state into a one that violates i.  

 If it exists a PLC with P, PLM is inconsistent 

 
This algorithm detects three PLM’s paths, one of which must be included in every PLC model, and 
no one is presented on our particular configuration model. First path is: “Diagnose 
thrombosis/haemostasis”--“Analyze”--“Measure”--“Chronometric”. Second path is: “Diagnose 
thrombosis/haemostasis”--“Analyze”--“Measure”--“Photometri”--“Immunologi”. Third path is: 
“Diagnose thrombosis/ haemostasis”--“Analyze”--“Measure”--“Photometri”--“Chronometri”. Because 
the choice between “Chronometric” and “Photometri” is determined by a cardinality (1, *) and the 
choice between Immunology and “Chronometri” is also determined by a variability (1,*). No one of 
these paths is presented on our PLC example and an error is evidenced by the precedent algorithm.  

 
6.4 Conclusion  
 
The purpose of this chapter was to illustrate and validate the PLM correctness verification approach 
introduced in Chapter 5. We started with a presentation of the particular PLM used in this case  study, 
followed by a execution of sections of our process Map presented in Figure  5-2-1, corresponding to 
model checking strategies. Model checking is one strategy that permits to evaluate logical expressions 
written in propositional logic and first order logic formalisms.  With this example we thus showed that the 
approach is operational and can be applied to rea l cases. 
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7 Tool Support  
 
7.1 Presentation 
We have developed a computing tool in order to support the verification method of PLM and PLC, 
presented in chapter IV. 
The name of the tool is PLMV&V, is an acronym of Product Line Model Verification and Valida tion.  
 
Characteristics of the application: 
In the construction process of PMLVyV tool, we have use d the following tools: 

 Microsoft .NET Framework v2.0.50727 (free distribution by Microsoft at  
http://www.microsoft.com/downloads/Search.aspx?displaylang=en# ) 

 Microsoft Visual Studio 2005 Professional Edition  

 XmlExplorer Controls V1.0.0.0 (free distribution by The Code Project 
http://www.codeproject.com) 

 
7.2 Architecture  
 
The project is composed of fourth DLL, distributed as is shown in Figure 7-1-1. 
 

id  P LM yV

P LM V yV .E X E

P LM V yV .B us s .D LL

P LM V yV .D a ta .D LL

P LM V yV .C ontro ls .D LL

P LM V yV .U til i tie s .D LL X m lE x p lo re r .C ontro ls

 
Figure 7-1-1: Architecture of the application PLMV&V. 

http://www.microsoft.com/downloads/Search.aspx?displaylang=en#
http://www.codeproject.com
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Application PLMVyV.EXE 
 
Description: 
In this application, the user can do design and verification of product line models. It also provides 
interface facilities for design of PLMs through  use cases and description by restriction formalisms. At 
present, these two formularies only work for writing of te xt, but we intend to improve its  implementation 
in futures versions. 
 
Figure 7-1-2 shows class diagram of the application PLMVyV.EXE  
 

c d  P LM V yV

F o rm
frm C ons tra in ts

F o rm
frm Fe a tu re s

F o rm
frm U C

T a b P a g e
Ta bP a ge C la s s P LV yV

F o rm
frm C a rd ina lityD e pe nde nc y

F o rm
frm Tra ns v e rs e D e pe nde nc y

F o rm
frm V a ria n tD e pe nde nc y

« i n te rfa c e »
IFo rm S a v e

F o rm
frm P LM V yV

P rogra m

0 . . *

0 . . *0 . . *

1

0 . . * 0 . . *
0 . . *

1

 
Figure 7-1-2: Class diagram of the application PLMVyV.EXE 
 
In the class diagram, the Class Program corresponds to the main class of the application PLMVyV.EXE. 
This class is composed of one and only one frmPLMVyV class. frmPRMVyV classes correspond to the 
main MDI formulary. This class is composed of zero or several frmUC clases, each frmUC is a formulary 
that permits to design PLMs through use cases formalism. Also of zero or several frmConstraints 
classes, each frmConstraints permits to describe PLMs through textual restrictions. And it is also 



 120 

composed of zero or several frmFeature clases, each class is responsible of the implementation of 
formularies for PLMs using features, particularly the FORE [ref] formalism. Other classes are 
TabPageClassPLMVyV that is in charged of panel tools which permit designing PLMs, 
frmVariantDependency that permits to manage variant dependencies from the model, 
frmTransverseDependency that permits to manage cardinality dependencies from the model and 
frmCardinalityDependency that permits to manage transversal dependencies of the model.  
 
DLL: PLMVyV.Controls.DLL 
 
Description: 
In this DLL it is possible to find the controls develo ped for the project, they split into 4 groups, as follow:  
Containers: in this group it is possible to find panels  that can spread out and hide. These panels are 
employed to handle the properties of each PLM 
Administrators of properties: in this group of co ntrols it is possible to find the controls permitting to edit 
the properties of features. NumericTextBox is a panel that permits to edit numeric elements. Some of its 
usages are to select the top and left of an element. SelectorValueProperty is another pan el showing a 
bottom that permits to select colour and type of script for a particular PLM’s feature.  
 
Classes: are the instances of a particular class that can be located in the working space in order to list a 
group of properties. In this group, there are  two types of controls, ClassPLVyV and FeaturePLVyV. 
ClassPLVyV has all the functionality to dimension and to move the controls. FeaturePLVyV is 
ClassPLVyV's specialization with all the functionalities of an element of the model.  
 
Relations: these set of objects permit to do different relations on the model, like 
TransverseDependency, VariantDependency and Cardinality relations.  
 
Figure 7-1-3 shows the class diagram of PLMVyV.Controls.DLL. 
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Figure 7-1-3: Class diagram of PLMVyV.Controls.DLL. 
 
DLL: PLMVyV.Buss.DLL 
 
Description: 
Control all business rules of different types of models to implement (feature, use case and restriction 
models). Into its functionalities are: to verify availability of necessary  files and objects corresponding to 
each model. 
 
Figure 7-1-4 shows the class diagram of PLMVyV.Buss.DLL. 
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c d  B u s s

C ons tra in ts B us sFe a tu re B us sP ro j e c tB u s sU C B us s

 
Figure 7-1-4: Class diagram of PLMVyV.Buss.DLL. 
 
DLL: PLMVyV.Data.DLL 
 
Description: 
Control the storages in the different files that compose a project, the file of each model as well the 
contents of the aforementioned files.   
 
Figure 7-1-5 shows the class diagram of PLMVyV.Data.DLL. 
 

c d  D a ta

C ons tra in ts D a ta P roduc tL ine D a ta

P ro j e c tD a ta

U C D a ta

0 . . *0 . . *0 . . *

 
Figure 7-1-5: Class diagram of PLMVyV.Data.DLL 
 
Persistence of Constraints Data and UC Data is making  through text files, whereas Product Line Data is 
made through a file XML that must be in accordance with schema described in Figure 7-1-6. 
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PLMVyV.xsd
 

Figure 7-1-6:  Schema for storage of Constraints Data and UC Data content.  
 
DLL: PLMVyV.Utilities.DLL 
 
Description:  
Manage general functions of the project. Some of utilities are : administration of especial types of data, 
utilities to access disk, utilities for handling XML files, utilities for handling types of personalized 
exceptions and, in general, to manage all constants of the project.  
 
Figure 7-1-7 shows the class diagram of PLMVyV.Utilities.DLL 
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Figure 7-1-7: Class diagram of PLMVyV.Utilities.DLL 
 
7.3 System Functionality 

In broad strokes, the system permits to create fourth types of models:  

 Feature product line models  

 Particular configurations of feature product line models.  

 Use case product line models 

 Restriction product line models  
 
In this release we have implemented components for PLMs and PLCs construction. A project is a set of 
one or several models, one by default. We have impl emented the following functions: 
 
1. To create a PLM, where it can be applicable: 
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2. Exporting and importing the model to XMI file. Due to these functions it is possible to communicate 
with and from other applications. The second function is not still implanted.   

3. On PLMV&V it is also possible to validate some characteristics on a PLM, like unbound cardinality, 
root unicity and cyclic relations. Other validations issues that we want to implement on future 
releases are: contradiction in optionally relation, contrad iction in mandatory relation, contradiction in 
transversal dependency – cardinality, contradiction in transversal dependency – variant 
dependency, contradiction between transversal dependencies, iden tification of features that we can 
not access. 

4. To validate a particular product line model configuration. This functionality allows the verification of 
a PLC model compared to a PLM. The set of verified characteristics on a PLC are: root unicity, 
correctness (same PLM’s root, PLM’s mandatory dependencies are ful filled in the PLC model, 
inclusion of PLC’s features into PLM’s feature set, all transverse dependencies defined in the PLM 
are included in the PLC model, all cardinalities defined in the PLM are respected in the PLC model)  

5. PLMV&V also permits to create a particular configuration of the product line model. On this model 
we can export and import it in a XMI file, the second function is not still implemented.  

 
Functionalities of the system are represented in Figure 7-1-8. 
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Figure 7-1-8:  PLMV&V’s use cases diagram. 
 
Example 7-1-1: 
This example shows how an actor can create a project and use the most important functionalities of the 
system.  
As soon as the application is opened, the user can create either a project or a specific model. By 
default, when the project is created, three interfaces are available to create different types of PLM.  
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Figure 7-1-9: Interface to create a new project or a new model  
 
In our example, user has created a new project called Demo and saved it in “documents and settings” 
folder.  
 

 
Figure 7-1-10: New project interface 
 
In Figure 7-1-11, user active ToolBox and Properties windows in order to create a new PLM in feature 
notation. 
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Figure 6-1-11: Interface permitting to create and configure a PLM  
 
The next figure shows a PML in construction using features notation.  
 

 
Figure 7-1-12: DAG of PLM in construction.  
 
7.4 Manual of the Application 
 
Menu bar is composed of: 

1. File, that contains: (i) New, this option allows to create a new project or model. When a new 
model is created in an open project, the model becomes a new element of the project. (ii) Open, 
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when a model is opened in a project, this model becomes a new element of the project. (iii) 
Save, “Save as” and “Save all”, permit to store the current active model with the same name, 
with different name and the entire project, respectively. (iv) Print, this option shows a 
preliminary view of the current model and lets us print it. (v) Exit permit to get out of the 
application, if a change is still pending to sav e, an alert message is showed.  
 

 
 

2. View is composed of: (i) Project Explorer, this option shows the project exploration bar. (ii) 
Results show the bar with this name. (iii) ToolBox, show the tool box, only if a feature  PLM is 
active. (iv) Properties show the properties box, only if a PLM based on features is active.  
 

 
 

3. Tools: this option allows showing the system’s configuration options, but it is not still 
implemented. 
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4. Window is composed of: (i) Cascade, it allows organizing all the project’s models in the form of 
cascade. (ii) Title vertical, it allows organizing all the project’s models in a vertical way. Title 
horizontal, it allows organizing all the project’s models in a horizontal way. Close all is an option 
that allows closing of the project’s models, if a model has been changed, an alert message is 
showed. Arrange Icons is an option that organizes all icons of the project. The model that is 
currently active is showed in blue.  
 

 
 

5. Verification 
This menu’s element is activated only when a model is activated . 
 

 
 
5.1 PLM Verification 
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This option allows verifying correctness property in PLMs and PLCs models. In future releases 
the rest of properties will be implemented.  When “Verify Correctness” i s chosen, next window is 
automatically showed permitting select different options to be verified on the current model.   

 

 
 

And in the output bar, the resulting verification will be showed.  
  

 
 
5.2 PLC Verification 
 

 
 

PLC Verification allows verifying a PLC model against its corresponding PLM. At the moment 
“Model Checking Strategy” option is only available. “Matching Strategy” will be implemented in 
future releases. Selecting “Model Checking Strategy”, a list of PLCs models members of the 
project will be showed.  
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And in the output bar, the resulting verification will be showed.  
 

 
 
6. Options Menu is composed of: (i) Export model to XMI, this functionality allows exporting a 

feature model in a XMI file. (ii) Import model to XMI allows to o pen a XMI file and to show the 
content of the file graphically.  
  

 
 
 

Next, we will present the project’s bars of PLMV&V: 
 

1. Project administrator allows seeing the different models organised by type of project. In order to 
open a model, it is only necessary  to click on it. 



 133 

 

 
 

2. Tool box - Model: provides all elements that allow the construction of a feature model.  
 

 
 

 Is useful for selecting an element of the model.  
 

 Is useful for selecting an element that will be moved from one place to another one or from a 
model to a different one.  
  

When an element is selected it is  ready to be moved:  
 

  Optional and Mandatory dependencies, respectively. These ones are useful for creating 
Variant-Dependency relationships between features. The link must be made between parent 
and child features. 
 

  Require and Exclude dependencies, respectively. These ones are useful for creating 
Transverse-Dependency relationships between two features. Any click made on an empty place 
of the model, make a flexion point in the line of relation.  



 134 

 
 This control lets us delete an element from the model.  

 
3. Tool box – Configuration: Lists all components that can be added in a particular product line 

configuration model. Used elements are discussed above. 
 

 
 

4. Feature properties bar: permits to edit all properties of a model’s element.  
 

 
 
(Name): is the mane of the corresponding feature in the model.  
  
BlackColor: feature’s background color. 
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Cardinality: cardinality of the selected child and optional features.  
 
DependencyConcept: Allows giving the name of a dependent concept.  
  
Font: Type of font features. 
  
ForeColor: font’s color. 
 
Height: height of features box. 
 
ID: features identificator, is used to establish relations between features.  
 
IsRoot: this field allows indicating if the current feature is the model’s root . 
 
Left: left location features. 
 
Text: textual description features showed on the model . 
 
Top: vertical location features.   
 
Transverse: this field allows to do or to add a TransverseDependency from the current feature.  
 
Variant: this field allows to do or to add a VariantDepend ency from the current feature.  
 
Width: features width. 
 

5. Relationship properties bar: permits to edit all properties of a relationship  
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(Name): is the name of the corresponding relationship.  
 
Id: relationship identificator, is used to  establish cardinalities and a list of model’s relationships. 
 
Text: text of the associated relationship. 
 
Type: the type of a relationship can be optional or mandatory.  

 

 
7.5 Limitations of application 
 

 Product Line models using use cases formalism will n ot be implemented in this release.  

 Product Line models using constraints formalism will not be implemented in this release.  

 PLM is not modifiable from XML file  

 PLMV&V is only available as a desktop application  

 PLMV&V is only available in English language 

 The manipulation of carnalities must be done using the editor of properties  
 
 
7.6 Conclusion 
 
In the second part of this chapter we have presented the automation of our PLM correctness verification 
process. In order to automat it, we have developed a comput ational tool called PLMV&V, and we have 
presented its architecture, functionality, as well as a use guideline, some limitations and proposals to be 
implemented in future releases. With this application we thus showed that both, the approach and the 
tool, are operational and can be applied to an industrial case.  
 



 137 

 
 
 

Part VII 
 
 

Perspectives and Conclusion  
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Perspectives  
 
At the present time we work on PL defined by the features models with simple configuration’s restraints 
(If F1 so F2 or if F1 so not F2). Besides, new PL models appear in which configuration restraints are 
different (for instance, restraints on attribute value, on groups of attributes, etc) that can not be solve by 
simples SAT solvers. It is on this direction our search must persist.  
 

 
Conclusion  
 
The goal of this paper was to investigate the verification of product lines models. We believe that this 
goal was reached. Even though there are still open questions, the present paper can be seen as a proof 
of affirmation that it is possible to re duce every verification problem of a PLM designed with feature 
notation, to a validation of constraint problem.  
 
We have focused in definition of a multi -process method for verify correctness in feature product line 
models. There are two aspects that must have been taken into account in a verification process of 
PLM’s correctness, the structural and the semantic correctness of the model. From the point of view of 
the structural correctness, we have enriched the range of properties to verify in a PLM and we have 
proposed the corresponding logic invariants to evaluate each one. We have included not only the 
properties of a model designed with the notation FORE, but also another one like: correctness in 
optional relations, correctness in mandatory relations, co rrectness in cardinalities, correctness in 
transversal dependencies and variant dependencies interactions, correctness in transversal 
dependencies interactions, every feature must be possible to achieve and no cyclic relations are 
permitted. And from the point of view of the semantic correctness, we have unified dispersed criteria 
found in literature and have select some of the most important characteristics to be verified in a PLM. 
Some logic invariants to evaluate usability, suitability, validity and veri fiability properties have been 
proposed. The different paths to execute each one of the previous logic invariants on a PLM are defined 
in the multi-process model in Figure 5-2-1. 
For the verification of each of correctness's characteristics, we have used p ropositional logic and first-
order logic for writing out of every invariant to verify. In order to evaluate a propositional logic formula, 
we have used in some cases satisfiability criterion and validity criterion in others.  
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Benefits of our approach to PLM verification are (i) its foundations in the well accepted requirements 
engineering framework, which allows the approach to be very general; (ii) this approach not only gathers 
the proposals of verification found in literature, but proposing another innov ative rules and standardizes 
them through a same language and a same multi -model of verification; (iii) this is an approach not only 
focusing on single-system models (PLC models like the most of the literature do), but extended to the 
evaluation of PLMs. 
 
Based on the general approach, we validate it making use of a case study and automate it through a 
computational tool called PLMV&V. 
 
As limitation, we have that formulas or invariants proposed can not been directly used by any available 
SAT tools. Although the aforementioned invariants have been used in our PLMV&V tool, its syntax is not 
enough independent of its implementation as for being used by some SAT solver standard.
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Part VIII 
 
 

Appendix 
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PLMV&V tool and its explanation video available in: 
 

http://sites.google.com/site/plmcommunity/ 
 
In this URL you can download free version of: 
PLMV&V.exe 
PLMV&V_explanation_video.wmv 
 
 

http://sites.google.com/site/plmcommunity/
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