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Abstract

We decompose volatility of a stock market index both in time
and scale using wavelet filters and design a probabilistic indicator for
volatilities, analogous to the Richter scale in geophysics. The peak-
over-threshold method is used to fit the generalized Pareto probability
distribution for the extreme values in the realized variances of wavelet
coefficients. The indicator is computed for the daily Dow Jones In-
dustrial Average index data from 1896 to 2007 and for the intraday
CAC40 data from 1995 to 2006. The results are used for comparison
and structural multi-resolution analysis of extreme events on the stock
market and for the detection of financial crises.
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1 Introduction

Volatility of a stock market index is a natural candidate to characterize the
state of the stock market and compare the impact of important events, such
as financial crises. The need to compare events on the stock market arises in
many applications: from structural analysis, studying the dynamics of the
stock market in a general economic context, to asset allocation, for which
measuring the severity and time bounds of extreme fluctuations is of interest.
In principle, such analysis can be based on the values of some direct volatility
estimates. But these estimates are hard to interpret and their magnitude
varies for different assets. One way to overcome this inconvenience is to
design a universal indicator, based on a probability transform of volatility
measures.

Zumbach et al. (2000) proposed an intuitively appealing analogy with the
Richter-Gutenberg scale in geophysics and constructed an indicator of mar-
ket volatility, called a Scale of Market Shocks (SMS). The Richter-Gutenberg
scale is a measure of the logarithm of the seismic wave amplitude, which is
related to the total energy, liberated during an earthquake (Richter, 1958).
The SMS maps the exchange rate volatility to a logarithmic scale, suggest-
ing the analogy between volatility and mechanical work, i.e. the rate of
change of energy in time. The indicator was originally applied to the cur-
rency market, but by construction it can be used for any traded asset, for
which historical quotes are available.

The SMS accounts not only for the size but also for the scale of fluctua-
tions. According to the heterogeneous market hypothesis, first proposed by
Miiller et al. (1997), the price dynamics is driven by the actions of market
participants, operating at different frequencies. To make this idea clear,
compare an institutional investor who operates over medium and long term
targets and a small private investor exploiting short term market moves.
Hardly do they share the same opinion on what is trend and fluctuation
on the market. However, sometimes they would agree to characterize the
situation on the market as a crisis or a crash. The underlying intuition is
to describe volatility in the time domain and in the spectral domain simul-
taneously, thus attributing fluctuations to particular ranges of frequencies
(scales). Economically, these scales can be associated to the decision taking
and portfolio readjustment horizons of investors. The SMS takes the form
of an average realized volatility across different scales.

Maillet and Michel (2003, 2005) adapted the multiscale approach to the
stock market. The new indicator, called Index of Market Shocks (IMS), is
designed for the detection and comparison of severity of different crises. The
authors change the way of computing and aggregating volatilities at multiple
frequencies. Besides, Instead of modeling their probability distributions, the
principal components analysis is applied to estimate the hidden factors of
volatility, affecting various scales. These factors are then subject to the



probability transform.

Following the approach suggested in Zumbach et al. (2000) and Maillet
and Michel (2003, 2005), we study the multiscale indicators of volatility and
propose a new Market Volatility Scale (MVS). Though the general idea of
such indicators is very appealing, the existing implementations suffer from
several important drawbacks, which motivates our work. In our view, the
main problem with SMS is the scheme of multi-resolution analysis which is
based on sequential smoothing rather than on the scale-by-scale decomposi-
tion, which does not allow to determine the relative importance of different
horizons. This problem subsists for the IMS, which in addition makes the
computation of the indicator more complicated by introducing the latent
factors of volatility.

We argue that modeling latent factors instead of volatilities themselves
leads to the loss of simplicity and interpretation errors, and propose to
work with the scale components of volatility directly. The MVS, which
we introduce in this paper, uses the realized wavelet variance to represent
volatilities at multiple horizons. The log-normality assumption, which is
used for the probability transform in the IMS, is clearly too restrictive. This
is why we apply the peak-over-threshold approach to fit the generalized
Pareto density for the tails of the realized variances’ distribution at each
scale. This allows more accurate estimation of the probability of extreme
events, such as stock market crashes.

We test our approach on two types of data: high-frequency (15-minute
intervals) observations of the French CAC40 index from 1995 to 2006 and
daily observations of the Dow Jones Industrial Average (DJIA) index from
1896 to 2007. In these two examples the ranges of frequencies, to which we
refer, are not the same, but the computation algorithm is quite similar. We
detect periods of extreme volatility on the stock market, often provoked by
financial crises, and study their structural characteristics using the scale-
by-scale decomposition. This enables us to determine which component of
volatility (short-term, mid-term or long-term) is more important in each
detected period.

Potentially, the applications of multiscale decomposition of volatility can
go far beyond event comparison and structural analysis. Most promising are
volatility forecasting and asset allocation. These areas fall out of the scope
of this paper, but the tools and ideas introduced here can be used in further
studies.

The rest of the paper is organized as follows. In section 2 we briefly
overview the heterogeneous market hypothesis, the existing multiscale indi-
cators and discuss their main drawbacks. Section 3 introduces some wavelet
formalism, used for the scale-by-scle decomposition of volatility. Section 4
defines the Market Volatility Scale and the associated computation algo-
rithm. In section 4 we compute the MVS for the DJTA and CAC40 indexes
and present the main results. Section 4 concludes.



2 Multiscale Indicators of Volatility

Multiscale indicators of volatility are based on the model of financial mar-
ket with multiple horizons, known as the heterogeneous market hypothesis.
First suggested in Miiller et al. (1997), it attempts to explain well-known
stylized facts about volatility of stock returns, such as long-range correla-
tions in the time series of squared returns and absolute returns and volatility
clustering (Ding et al., 1993; Lux, 1996; Andersen and Bollerslev, 1997; see
Cont, 2001 for an overview on the subject). The central point is the scale-by-
scale analysis of volatility which assumes that market data contains patterns
specific to peculiar frequencies of observations and are thus of interest for
different types of market agents. The latter may include intra-day spec-
ulators, daily traders, portfolio managers and institutional investors, each
having their characteristic period of reaction to news and frequency of in-
tervention in the market. A multiscale dynamic model for volatility was
proposed in Miiller et al. (1997) and Dacorogna et al. (1998), who represent
current volatility as a function of squared returns over different horizons:
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where ¢ > 0 for all k& = 0,...,n (for k = 0 and k = n the inequality is
strict), and 7 is logarithmic return. Thus the sum ) 7_; 74_; represents
the log-return for the period of length j. By construction, the resulting
HARCH (Heterogeneous ARCH) model captures the hierarchical structure
of volatility correlations. More recently Corsi (2004) proposed a simple addi-
tive cascade model, inspired by the HARCH, which uses realized volatilities
over some representative scales (daily, weekly, monthly) to model current
daily realized volatility.

From a more theoretical perspective Ghashghaie et al. (1996) and Brey-
mann et al. (2000), inspired by the model of turbulence in hydrodynamics,
designed a multiplicative cascade model which decomposes the stochastic
volatility process into a set of scales, so that the volatility at each scale
depends on the volatility at lower frequency and some stochastic renewal
process. The probability of renewal is chosen so that the mean interval
between two renewals is equal to the time length of the associated scale.
Arneodo et al. (1998) shows that under the assumptions of the model the
covariance between logarithms of absolute returns at each scale should de-
crease with time as logarithmic function, so that returns simulated from the
model exhibit dynamic patterns fairly close to empirical evidence. For the
moment this model has mainly theoretical interest because the methods of
its identification on real data are not elaborated.

Zumbach et al. (2000) retain the multiscale concept, but their aim is to
characterize the vector of volatilities across various scales rather than impose



a dynamic model for predicting instantaneous volatility. The multiscale
indicator, called the Scale of Market Shocks (SMS) is a probability transform
of volatilities at different scales. It is based on an analogy with the Richter-
Gutenberg scale in geophysics (Richter, 1958).

The Richter scale is a measure of the logarithm of the total energy F
liberated during an earthquake, compared to a reference level Ejy:

R~In <%> (2)

According to recent evidence, the probability of occurrence of large earth-
quakes grouped within temporal clusters of high seismic activity obeys the
inverse power law (see Christensen et al., 2002; Mega et al., 2003). The
probability to observe an earthquake of energy E reads:

we)~ (3) ®)

with x the scaling parameter. Using (3) the Richter scale can be rewritten:
Ey 1
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By analogy with (4), Zumbach et al. (2000) map the exchange rate
volatility to a logarithmic scale. Volatility stands as a counterpart of me-
chanical work, i.e. the rate of change of energy in time. The corresponding
formula is:

SMS; = —aln P(0y) (5)

with P(o;) the distribution function associated with the volatility o; and
« a scaling parameter. Note that the analogy is not direct because the
probability distribution in (5) is not a pure power law and must be fitted.

The indicator is multiscale because the volatility used in (5) is computed
separately for various “scales” of observations. An estimate of the realized
price volatility for a given scale, used for that purpose, reads:

M—1 1/2
=(k) _ > iz 7}2,5 (6)
¢ M, —1

with J,Sk) the volatility of returns at scale £, r; 5 the log-returns computed for
time intervals d of length 73, (M), —1)~!, 75 the time length of scale k and M,
the number of observations available for that period. As the indicator was
constructed for inhomogeneous tick-by-tick data, (6) could not be applied
directly and the authors used smoothed volatilities, computed over moving
windows, of the form:

5 = | Ko do (7)
t—2T1y



with K () an appropriately chosen kernel function and w™ a scale dependent
weight. The final aggregated indicator is computed as the weighted average
for all scales in the following way:

SMS; = — f: wy In P (oggk)) , (8)
k=1

with w; a convolution kernel, measuring the contribution of scale 73 to
the overall volatility, and P(-) is the complement of the cumulative density
function.

A potential problem is that the scaling method suggested in Zumbach
et al. (2000) gives no idea about the range of scales to be considered and
their relative importance. Multi-resolution analysis consists in sequential
smoothing rather than scale-by scale decomposition. The authors assert
that the choice of the convolution kernel is not a crucial issue and it suffices
to take a function which satisfies some regularity conditions and tends to
zero at the edges of the range of frequencies, which is 15 minutes - 64 days
in their case. To our knowledge, this choice is made a priori and is not
based on any economic notion or on statistical properties of the time series.
The assumption that the mass point, or the most important frequency, is
located in the center of the range is also doubtful.

Besides that, the SMS does not account for the possible interdependence
between scales. The aggregated indicator is a function of transformed uni-
variate cumulative density functions and not of a multivariate cdf.

Maillet and Michel (2003, 2005) account for the dependence between
scales and propose a new indicator called the Index of Market Shocks (IMS).
Instead of scaled volatilities themselves, principal components are used in
its definition:

q
IMS; = — Z wj logy P(c;) 9)

i=1
with ¢, ..., cq normalized principal components (or factors underlying mul-

tiscale volatility), and w; the weights of each component determined as the
portion of variance of the data explained by the corresponding component.
The IMS also uses a different method of multi-resolution analysis. Instead of
computing volatilities for different scales by successively moving a window
of fixed length, the IMS uses different frequencies of sampling within each
interval to obtain the scale components of volatility.

Several shortcomings of the IMS can be mentioned. First, the method of
estimating volatilities at different scales by varying sampling frequency has
one important drawback which becomes very important if applied to low-
frequency data. If the length of computation window is fixed and volatilities
are calculated from the samples with different number of points, the results
of estimation will be different in terms of statistical error and become in-
comparable. For example, if the length of computation window is fixed at 60



business days, the daily estimate is an average of 59 points and the monthly
volatility is an average of only 3 points. Estimated monthly volatilities be-
come counter-intuitively less smooth than the times series of daily volatility
because of statistical errors. On the contrary, the daily average computed
over a 3-months interval smooths out all interesting dynamics, correspond-
ing in fact to the daily frequencies. Hence such multi-resolution analysis
becomes inadequate.

Second and more important, replacing volatilities by their linear com-
binations (factors) changes the meaning of the indicator, which is not ex-
plicited in Maillet and Michel (2003). The authors claim that the IMS has a
clear economic sense: since a logarithm in base 2 is used in (9), a one point
increase of the IMS corresponds to the volatilities vector twice as unlikely.
This is obviously true for the baseline Richter transformation in the form
analogous to (5), but not for (9), because the multivariate function of a
vector is not the same as the distribution function of a linear combination of
its components. Hence a one point increase of the IMS corresponds to the
factors vector half as likely. But the factors, obtained from the Principal
Components Analysis (PCA) do not necessarily have positive or negative
impact on the volatilities at all scales. They can have positive loadings in
some scales and negative in others. Thus it is possible that an important
change in some factor corresponds to a “redistribution” of volatility from
one scale to another rather than increase in volatility. As the PCA is done on
the variance-covariance matrix, the volatilities at different scales are treated
as if they were all of equal importance to investors. All this makes the
interpretation of the resulting indicator very problematic.

Modeling factors of volatility can be of interest if these factors are stable
and meaningful. In our view, this is not the case. First, the definition of
factors by the PCA is too restrictive: it relies on linear decorrelation and
may not have the power to identify factors if they are not symmetrically
distributed (Loretan, 1997) or if the underlying model is not a simultaneous
linear mix. It is unrealistic to suppose that the underlying model for multi-
scale volatility is a simultaneous mix, because it contradicts to the very idea
of the heterogeneous market.

Economic intuition suggests that investors acting on lower scales adjust
their market positions according to the change in information since the pre-
vious observation. Investors acting at high frequencies react to information
more often. But as the information set in the first case encompasses all the
information that has already been used by the short-term investors (possi-
bly accompanied by some long-term factors), it is natural to suppose that
the long-scale volatility is correlated with the lagged short-scale volatilities.
Yet the PCA allows for the instantaneous decorrelation only and the result-
ing factors can hardly correspond to the true hidden factors of volatilities.
Studying the properties of the volatilities vector empirically, we find that the
factor loadings in the PCA are unstable in time and principal components



are dependent if lags are considered.! Unable to propose a simple and viable
method of factor analysis, we prefer to model the volatility vector directly,
but in a way different from that proposed in Zumbach et al. (2000).

Finally, the probability transform used to compute the indicator is an
important issue. Maillet and Michel (2003) postulate the multi-normality for
log-volatilities (and principal components) at all scales, though they report
that the log-normality is violated for the high values of volatilities. This
can affect the values of the IMS during extreme events. Meanwhile, these
values are of great importance for analysis of financial crises. The SMS, in
its turn, uses a more sophisticated modification of the log-normal pdf, used
to account for the fat tails. In our view, this modification does not allow
enough flexibility, because an a priori judgment about the scaling properties
of financial time series has to be made. It can be accurate for some assets
and not for others. We argue that to define a universal indicator we do not
necessarily need an overall fit for volatility. Instead we focus on the extreme
events only, using the peak-over-threshold approach to fit the generalized
Pareto distribution for the tails (see section 4 for details).

As follows from the above discussion, the most important improvements
to be made in multiscale indicators of volatility concern the multi-resolution
analysis by itself and the fit of probability distribution for the volatilities
vector. These improvements are discussed in the following section.

3 The Scale-by-Scale Decomposition of Volatility
with Wavelets

In this section we propose a method of multiscale analysis of volatility, based
on the wavelet filters. We introduce the realized variance of wavelet coeffi-
cients, which is used to define the Market Volatility Scale in the following
section.

Wavelet analysis is widely used in signal processing in order to decompose
a given time series called “signal” into a hierarchical set of approximations
and details (multi-resolution analysis), and to decompose the energy of the
signal on scale-by-scale basis. For a detailed description of the use of wavelets
for time series analysis refer to Percival and Walden (2000) and Gengay et al.
(2001a). Within the financial markets context, wavelets were used for mul-
tiscale analysis in several studies. An early application of wavelets can be
found in Ramsey and Zhang (1995) who attempt to recover the dynamic
structures of the foreign exchange rates. Capobianco (2004) identifies pe-
riodical patterns in intra-day stock returns. Fernandez and Lucey (2007)
use wavelets to estimate value at risk for multiple investment horizons in a

!The discussion on factor analysis of multiscale volatility falls out of the scope of this
paper, these preliminary results can be obtained from the author on request.



portfolio management perspective. Lee (2004) studies the effects of volatil-
ity spillovers from the US to the South Korean stock markets at multiple
horizons.

The idea to use the wavelet decomposition for the analysis of volatility
cascade can be found in Arneodo et al. (1998). Gengay et al. (2001a) used
wavelets to investigate the scaling properties of foreign exchange volatility.
They decompose the variance of a time series of returns and the covariance
between two time series on a scale by scale basis through the application
of wavelet transforms and show that no unique scaling parameter can be
adapted for these time series. In particular, there are two different scaling
parameters corresponding to intraday and longer scales. In a recent paper
Fan et al. (2007) propose a wavelet-based method for removing the jump-
component from high-frequency returns and estimating realized variance.

We use the Maximum Overlap Discrete Wavelet Transform (MODWT)
to decompose variance both in time and scale. A brief overview of the
wavelet formalism which we use can be found in the Appendix. Let W;;
be the MODWT wavelet coefficients at level j and ‘7” the scaling coeffi-
cients corresponding to the maximum level of decomposition, obtained from
filtering some process x¢,t = 1,...,T. The scale-by-scale decomposition of
variance then holds:

J
2]* =I5 + 1Vl (10)
j=1

Now let Wj,t represent the random process resulting from filtering an
infinite sequence z; with the MODWT wavelet filter. The difference between
Wj,t and W;; is that the latter is obtained by circularly filtering a finite
sequence. The wavelet variance v;; of the process x; for the scale of length
7; at time ¢ is defined as the variance of W ;:

vie = Var{W;} = E{(W;, — E{W;})"} = E{W;,} (11)

If wavelet variance is constant in time, its natural estimator is:

1 N—
V= Z (12)
t=0

This estimator is biased because it includes wavelet coefficients depending
on the boundary conditions (i.e. the circularity assumption, used to filter a
finite-length time series). Its unbiased version can be computed by ignoring
such coefficients:

1 N-1 .
vi=— wW? 13
TTN-Lj+1 t:;—l Jit (13)
J



with L; the number of coefficients, affected by the circularity assumption,
which clearly depends on the length of the filter. The main disadvantage
of this unbiased estimator is that it does not allow the exact decomposition
of the sample variance, given by (10), so we prefer to keep all the wavelet
coefficients and use (12). The importance of each scale can be interpreted
as the portion of total variance corresponding to each scale. It can be
estimated from the decomposition of energy, defined in equation (10), by
replacing wavelet variances by their estimates.

In our context we need to characterize volatility dynamically, so the es-
timate (12), which suggests that the wavelet variance is constant, is not
quite appropriate. Dynamic estimates of v/;; can be obtained by applying
(12) locally for some moving window in time. This is the approach we take.
The length of the window, used to estimate the wavelet variances, is cho-
sen depending on the frequency of available data. For the data sampled
at 15-minute intervals we use daily windows (32 observations) without in-
tersections, which allows computing one value per day (analogous to the
way realized volatility is computed). We call this estimate “realized wavelet
variance” by analogy to the usual realized variance estimator. For daily
data, we use monthly moving windows and obtain monthly realized wavelet
variance. The final formula reads:

t

~ 1 —~
Vit = E Z W]%k (14)
k=t—K+1

with K the computation window length.

This definition is close to the one proposed in Fan et al. (2007). One
difference is that we do not remove jumps from the data. Such removal is de-
sirable when the final goal is a non-parametric estimation of the continuous
diffusion parameter and its forecasting. In the perspective of a multiscale
structural analysis of volatility we prefer to include the variance related to
jumps in its short-term component, because it may contain important infor-
mation about extreme events on the market. Another difference with Fan
et al. (2007) is that we consider wavelet variances at each scale separately
instead of summing them over all horizons.

The practical implementation of the MODWT algorithm requires treat-
ing the following issues: (i) the choice of wavelet filter, (ii) handling bound-
ary conditions, and finally (iii) the choice of the number of horizons, i.e.
levels of decomposition (see Percival and Walden, 2000, pp.135 - 145).

As for the first problem, the family of orthogonal and compactly sup-
ported wavelets is of particular interest. This family includes Daubenchies
extremal phase scaling filters (also called “daublet”) and least asymmetric
scaling filters (also called “symlets”) that are used most often. For these
wavelets, full reconstruction of the signal is possible and fast decomposition
algorithms are available. The filters of each type can be of different width,

10



usually taken from 2 to 20.

Though there are no universal criteria for the choice of the type of
wavelets and their width, this choice must be dictated by the objective
to balance two considerations. On the one hand, wavelet filters of too short
width can introduce undesirable artifacts (unrealistic blocks) into the multi-
resolution analysis. As the width of the wavelet filter increases, it can better
match to the characteristics of the time series, but on the other hand, the
influence of boundary conditions becomes more severe, the localization of
DWT coefficients decreases and the computation becomes more difficult.
Percival and Walden (2000, p. 136) suggest that the best strategy is to
choose the smallest width of wavelet that brings “reasonable” results. They
also point out that this strategy often results in the choice of the least asym-
metric filter with width equal to 8, denoted LA(8).

This wavelet was used in particular by Gengay et al. (2001a). They
report however that the use of LA(4) did not significantly alter the results.
In our case reducing the filter width had no significant influence on the
results of the multiscale analysis. So we decided to apply the LA(4) wavelet
for the multiscale decomposition and to use it as a matter of definition for
the construction of the MVS. This choice was motivated by the parsimony
arguments, but mostly by the need to minimize the impact of the boundary
conditions (discussed below in details), so that the results for the latest
observations of volatility could be adequate. The form of the wavelet and
scaling functions for this wavelet is represented on Figure 1.

The problem (ii) of handling boundary conditions arises because real
time series are of finite length and we need to apply wavelet filters at their
beginning and end. One possible solution is to use the so-called “circular
filtering” operation, which treats the beginning and the end of the time series
as if it were a portion of some periodic sequence. For financial time series
the circularity assumption is hardly appropriate. Another solution which we
retain in the absence of better alternatives is the “reflection” assumption:
the latest observations are reflected around the boundary to obtain a time
series of the necessary length. This assumption affects the results of scale by-
scale decomposition for several latest observations of volatility. If a period of
extremely high volatility is observed at the final date T and it started at some
date T'—n, we apply the MODWT for the period [T'— n; T| supposing that
this high volatility period will last till 7'+ n in future, thus possibly under-
or overestimating the persistence of fluctuations and potentially attributing
them to a wrong scale. Anyway, introducing a rule of this kind is inevitable
if we need to characterize currently observed fluctuations as short or long
term, since we do not know a prior: how long they will last.

The choice of the number of scales (iii) is a difficult issue. In some ap-
plications of multi-resolution analysis, it is dictated by some physical con-
siderations of scale. For example, to decompose a cardiogram collected at
a rate 180 samples per second, a natural level of decomposition can be 6,
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because is associated with the physical scale 0.36 seconds, which permits
to isolate large scale fluctuations (“baseline drift”) that are of little interest
(Percival and Walden, 2000, p. 145). Unfortunately, no such easy rule can
be established for financial time series. Apparently for the data sampled
at 15-minute intervals (32 observations per day) the level of decomposition
must be higher than 5 in order to isolate intraday fluctuations. Our choice
of the number of horizons is a compromise between the high enough portion
of energy, explained by the details, and the accuracy of the approximation,
which declines as the number of scales increases for a given number of obser-
vations. Concrete explications on the choice of the maximum decomposition
level for particular time series are presented in the following section.

4 A New Multi-Horizon Market Volatility Scale

The wavelet decomposition allows computing estimates of variance for a
range of scales. They can be used to construct synthetic indicators by ap-
plying the transformation of the form given by equation (5). But unlike the
SMS and the IMS, described in section (2), we first construct the indicator
for particular scales rather than aggregate them directly.

To reduce the number of horizons we aggregate some dyadic scales in
order to define three characteristic horizons, called Short (S), Medium (M)
and Long (L) scales. For s € {S, M, B} the synthetic variance reads:

vp = Z Vjt (15)

JEHS

with v(7;)) the realized wavelet variance for the scale of length 7; defined by
equation (14) and H; the set of horizons (scales) included in the range cor-
responding to s. The scale s = L includes the highest level of decomposition
and thus represents the realized variance of the scaling coefficients, corre-
sponding to the approximation in terms of the MODWT. The scale-specific
MVS is then defined by:

MVS; = —logy P(vy) (16)

with P(vf) the probability to observe the variance at the synthetic scale s
above v;.

We do not attempt to make an overall parameter fit for the volatilities’
distribution (such as normal or log-normal). Instead we focus on the tails
and propose to fit a Generalized Pareto distribution (GPD) for extremely
high variances. For non-extreme variances we use a simple empirical proba-
bility transform. This makes the indicator more flexible and more accurate.
The GPD density function reads:

flatpeo) = (1+6=0) (17)
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For x > 0 with 6 the threshold parameter, £ # 0 the shape parameter and
o the scale parameter. For positive &, if ¢ and 6 are equal, the GPD is
equivalent to Pareto distribution. If & < 0 then x has zero probability to
exceed —o /€.

Subsequent realized variances are highly correlated in time, especially
for the long scales. This leads to the clustering of extreme observations
and the did assumption, underlying the maximum likelihood estimation of
parameters, is violated. A simple declustering procedure is envisaged (see
Coles, 2001, Ch. 5). The details concerning the GPD fit can be found in the
following section.

Once the MVS for the three scales has been computed, the rule for
detecting periods of extreme volatility must be specified. Any definition of
such periods is arbitrary, so we try to propose an intuitively plausible one.
For that purpose we define two thresholds, noted © and ®, which will be used
to detect respectively the beginning and end of events. More precisely, the
event starts when one of the three MVS components overcomes © and ends
when all three components first fall below ®. The thresholds can be chosen
depending on the desired rareness of the events. Depending on applications,
we use two values for O: log,(100) and log,(20), corresponding to the tail
probabilities 0.01 and 0.05 respectively. For ® we use the value log,(10) for
tail probability 0.1.

It is useful not only to characterize volatility at different scales, but to
make an overall judgment about volatility on the market, which accounts
for all scales. For that purpose we need to determine the importance of
each scale. The additive decomposition of wavelet variance, described by
(10), suggests that the magnitude of realized variances at different scales
measures the impact of these scales onto the overall variance.

The problem is that a huge part of returns’ variance can be attributed
to the shortest scales, but the persistence of volatility at short scales is not
necessarily the same as at long scales. The persistence, or the level of long-
range dependence in some time series x; is characterized by the power-law
divergence at the origin of its spectrum:

O (u) ~ colul ™ (18)

with « the scaling parameter and cg a constant. The scaling parameter is
related to the Hurst exponent, denoted H, by:

a—+1
2

H = (19)
If the values of H for some stationary process lie in the range (0.5,1), the
process is said to have long memory.

The Hurst exponent can be estimated using wavelet variances. The
wavelet variance is closely related to the spectral density function of the
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time series. Namely, under some regularity conditions the wavelet variance
for scale 7; is approximately the mean value of the spectral density function
within the interval of frequencies [1/2/+1,1/27]:

1/27
oy /1 0. (w)du (20)

/2j+1

This gives us the possibility to study the scaling behavior separately for
different ranges of frequencies. For a pure power law with spectral density
Ox(u) o |ul|*, the wavelet variance is related to its scaling parameter « in
the following way:

vy o () (21)

These properties underlie the estimation of the scaling parameter by regress-
ing logv; on log 7; (see Gengay et al., 2001a).

We use the so-called logscale diagram method, first proposed in Veitch
and Abry (1999), to estimate the scaling parameter. The logscale diagram is
essentially a log-log plot of variance estimates of the wavelet details at each
scale, against scale, accompanied by the confidence intervals about these es-
timates at each scale. A weighted least estimate of the slope of the logscale
diagram in some range of scales (alignment region) is transformed to the
Hurst exponent using equation (19). The squared errors in the wavelet vari-
ance estimates are used as the weights. The estimator is semi-parametric,
because prior to the estimation, an analysis phase is required to determine
the lower and the upper cutoff scales, where linear alignment on the logscale
diagram is adequate. It is unbiased even for samples of finite length and
efficient. The method also provides an estimate of the constant cg in equa-
tion (18). A detailed discussion of the statistical properties can be found in
Veitch and Abry (1999).

Using a similar method, Gengay et al. (2001b) find two alignment regions
on the logscale diagram for high frequency exchange rates volatilities. The
scaling properties of the data change approximately at the daily horizon,
so that intraday changes have significantly lower level of persistence. We
reproduce their results with the 15-minute returns on the CAC40 index
and find a similar phenomenon in the daily returns on the DJIA index,
analyzed in a very long sample. In the latter case the break is observed at
approximately 3-weeks horizon (see the following section for details).

We propose to define the weights of scales in a way that makes them
dependent on the portion of total variance, attributed to each scale, but also
on the level of persistence associated with it. The latter can be measured by
the Hurst exponent. Our definition is inspired by the practice of volatility
“annualization”, common in the financial industry: a volatility estimate,
computed over a short period of time, is multiplied by the square root of the
length of a reference period (usually one year). The square root corresponds
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to the Hurst exponent, equal to 0.5 for the Brownian motion process of log-
returns. In our case the Hurst exponent is estimated for two ranges of scales.
We use a 3-month reference scale instead of one year to reduce the impact
of the errors in the Hurst exponent estimation on the weights of scales. The
definition of the scale weights reads:

5 AgRH
“ T AGRM + Ay R + AL RE:
. An R (22)
AsRHl + Ay RH2 + Ap RH2
e A RH>

N AgRHr + AprRH2 + Ap RH2
with A, s € {S, M, L} the mean variance for the corresponding scales, com-
puted over a sufficiently long window (i.e. a direct measure of the range
of scales in the decomposition of energy), R - the time length of the refer-
ence scale (we use 3 months), and H; 5 the scaling factors for the short and
medium-long scales respectively.

The final indicator, which aggregates the three scales, is then computed
in the following way:

MVS, = " MVS] +wMMVSM + " MVSE = - > wlog, P(v)) (23)
s€S,M,L

The resulting formula (23) resembles the definition of the IMS in equation

(9), but this similarity is spurious: all terms in (23) are defined in a different

way. The computation algorithm for the MVS, described above, can be
summarized as follows:

e choose the number of decomposition levels and compute the wavelet
and scaling coefficients from absolute logarithmic returns;

e compute realized variances of wavelet and scaling coefficients;

e estimate the Hurst exponent for different ranges of frequencies, deter-
mine if a break point is present (i.e. the limit between two alignment
regions on the logscale diagram with different scaling parameters) and
compute the weights of scales;

e aggregate the realized wavelet variances to three representative hori-
zons (short, medium and long scale);

e fit the GPD probability distribution for the tails of realized wavelet
variances at each of the three synthetic scales;

e compute the MVS for each of the three synthetic scales and the weighted
MVS, representative of all scales.

This algorithm is applied in the following section to compute the MVS for
the stock index data.
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5 Application to the Stock Market Data

In this section we compute the MVS for real stock market data and use the
indicator to detect and characterize periods of extreme volatility. Two differ-
ent data sets are used: values of the French CAC40 Index from 20,/03/1995 to
29/12/2006 sampled at 15-minute intervals (100, 881 observations) and daily
values of the Dow Jones Industrial Average Index (DJIA) from 26,/05/1896
to 10/10/2007 (28,864 observations). The first sample is the same as in
Maillet and Michel (2003, 2005), but extended till 2006. Absolute values of
the logarithmic returns are used to measure volatilities.

Obviously, in these two applications different ranges of scales are con-
sidered. The choice of the number of decomposition levels is a compromise
between the will to represent most of the overall variance of returns by the
details (and thus to attribute this variance to specific ranges of frequency)
and the constraints, imposed by the finite length of the sample. For the
CAC40 data we chose the 9-level decomposition with the LA(4) wavelet, so
that the approximation represents the scale 8 days and more (256 observa-
tions) and accounts for about 10% of the variance. For the DJIA sample
we use an 8-level decomposition with the approximation for the scale 128
days and more which explains about 16% of the variance. The results of
the variance decomposition by the MODWT according to equation (10) is
shown in Tables 1 and 2. In both cases the biggest portion of variance is
attributed to the shortest scale, and for longer scales it decreases rapidly.

We then compute the realized variance of the wavelet and scaling co-
efficients at each scale. 32 observations are used to obtain daily realized
variances of the CAC40 and 20 observations for the monthly realized vari-
ances of the DJIA2. For the CAC40 index a problem of treating overnight
returns arises. We follow the procedure, suggested in Hansen (2005), to
obtain an estimate of the realized variance of the whole day, which is a
weighted average of the squared overnight return and the realized variance
over the trading hours with the weights, minimizing the mean square error of
the estimate. Optimal weights are determined for the conventional realized
variance estimation, and then applied to the realized wavelet variances (i. e.
the wavelet coefficient, corresponding to the overnight return, is taken with
the same weight as would be attributed to the overnight return itself when
computing the conventional realized variance). Overnight returns are gen-
erally larger in absolute value than 15-minute returns, but this exceedance
is filtered out by the first level wavelet detail, so the Hansen correction for
the overnight returns is important only for the short-term component of
volatility.

The next step in the algorithm is the study of the scaling properties of
volatility over different ranges of frequencies. Figures (2) and (6) represent

2The exact number of observations may differ for weeks with less than 5 trading days.
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the logscale diagrams, used to estimate the Hurst exponent, as described
in the previous section. Applying the logscale diagram method to different
subsamples, we always find two alignment regions. For the CAC40 data:
scales 2 to 5 and 6 to 9, and for the DJIA data: scales 2 to 4 and 5 to
8. For both datasets the scaling parameter is significantly higher for the
longer scales, which means higher persistence. Similar results are reported
by Gencay et al. (2001b) for the exchange rate volatility. On Figure 4 a
logscale diagram for simulated log-normal returns is shown for comparison
(the sample is of the same length as the actual DJIA data on Figure 6).
Here the alignment is almost perfect for the scales 2-8 and no significant
difference between the estimates of the scaling parameter for the short and
long scale regions is present.

In order to account for the possible changes in the scaling behavior of
the time series we recompute the Hurst exponent on a rolling basis: for the
CACA40 it is reestimated each 512 observations (approximately each 16 days)
using a window of 32,512 observations (approximately 4 years), for the DJIA
it is reestimated each 256 observations (approximately each year) on a win-
dow of 13,000 observations (approximately 50 years). The point estimates of
the Hurst exponent and the associated confidence intervals are represented
on Figures 5 and 6. For the CAC40 high frequency data, the value of the
parameter for the short scales is stable around 0.6, while the average for the
long scales is about 0.8. The estimate of the Hurst exponent for the long
scales falls after each period of extremely high volatility (2001, 2002-2003),
and also during the recent period after the vanishing of the positive trend
in returns, characteristic to years 2003-2005. For the construction of the
aggregated MVS this implies that the relative importance of short scales
increases for the periods of very high volatility and uncertainty.

The realized wavelet variances are then aggregated. For the CAC40 data,
the short-term component of volatility, which corresponds to the “intraday”,
is the sum of the realized daily variances of wavelet coefficients at the scales
of width inferior to 1 day (details 1-5), the medium term - at the scales of
width between 1 and 16 days (details 6-9) and the long-term is the realized
daily variance of the scaling coefficients (approximation at scale 9). For the
DJIA data the short term aggregates the variances at the scales of less than
8 days width (details 1-4), the medium term is the range from 8 days to 128
days (details from 6 to 8) and the long term is the realized monthly variance
of scaling coefficients (approximation at scale 8).

The aggregated realized variances for the three synthetic scales, defined
above, are present on Figures 7 and 8 along with the traditional realized
variance estimates. For both indexes, the profile of the short scale wavelet
variance resembles almost perfectly the profile of the overall realized vari-
ance, though the magnitude of peaks is different. The peaks in the medium
and long scale components generally coincide with the peaks in the realized
variance, but many short-term fluctuations are filtered out completely. For
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the CAC40 data we observe extreme long-term volatility in 1998, 2000, 2001
and 2002. Note that during the boom of 2003-2006, when the overall realized
variance was relatively low, it was largely attributed to the long scale. The
positive trend in returns translates into a gradual increase of the long-term
variance, unlike the sharp and abrupt splashes of volatility observed dur-
ing the stock market crises. For the DJIA data the most important period
of extreme long-term variance is recorded during the Great Depression of
1929-1934. It largely surpasses in amplitude and duration the latest crashes
in 1987 and 2001.

We report the results of the GPD fit for the CAC40 index in Figure 9
and Table 3 and for the DJIA index in Figure 10 and Table 4. The pa-
rameters are estimated for the overall realized variance and for the three
scales, based on the whole sample and on two subsamples of equal length.
The threshold parameter 6 in the probability density function (17) equals
to the 0.9 empirical quantile for the CAC40 and 0.8 empirical quantile for
the DJIA. This choice allows both good quality of alignment and sufficient
number of observations (after declustering procedure, described below) for
the estimation. The study of the mean excess plot, commonly used to de-
termine the threshold, results in roughly the same values for the threshold.
The estimates of parameters o and £ are obtained by the maximum likeli-
hood method. The associated confidence intervals are computed using the
profile log-likelihood functions, as suggested in Gilli and Kéllezi (2006). This
method, based on reparameterizing the GPD distribution as a function of
the unknown quantile, allows easy interval estimation of the quantile as well
as of the parameters. Conventional bootstrap interval estimates for o and
&, not reported here, yield similar results.

Maximum likelihood estimation is based on the #id assumption for the
data, which is obviously violated for the realized wavelet variances, espe-
cially at the medium and long scales. To overcome this problem we use
a declustering procedure (see Coles, 2001). The cluster starts when the
variance exceeds the threshold ¢ and ends when r consecutive observations
fall below this threshold. We fix the value of r to be 20 daily observations
of the realized wavelet variance for the high frequency CAC40 data and
one monthly observation for the low frequency DJIA data. We then pick
the maxima within each cluster and use them instead of raw data for the
parameter estimation.

Note that the quality of the GPD fit is generally better for the variances
at different scales than for the overall realized variances, especially for the
quantiles above 0.97 (see the Q-Q probability plots on Figures 9 and 10).
The probability law is relatively close to Pareto distribution for all scales and
both subsamples (for the Pareto law we must have £ > 0 and # = ). For
the CAC40 data, the Pareto conditions on parameters are accurately verified
for the second subsample, while for the first subsample the point estimate
of the scale parameter ¢ is considerably above the value of 6, though its
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95% confidence interval estimate still contains . The same conslucions are
globally true for the DJIA, except for the long term component, for which
the estimate of ¢ is too low. But in the latter case the heterogeneity between
two samples (prior and after year 1952) is much more important, which is
obviously due to the evolution of the size and liquidity of the market since
the beginning of the XXth century. Notably, the 0.8 empirical quantile for
the realized monthly variance fell almost twice from 4.2 x 1077 to 2.2 x
1078, which is mainly attributed to short and medium term. To account for
evolution, we further estimate the parameters of the GPD distribution for
the DJTA data using 50-year rolling windows, thus the recent values of the
MVS are unaffected by the events before the mid 1950s.

Our study of the probability distribution evidences in favor of the anal-
ogy between volatility and earthquakes: probability of extreme volatility
clusters and high seismic activity clusters can both be described by the
Pareto law. Thus a tool similar to the Richter-Gutenberg scale in geo-
physics, can be adequate to measure volatility in finance.

Finally we proceed with the computation of the MVS for each scale and
its aggregation. Figure 6 shows the values of the CAC40 index, the realized
variance and the aggregated MVS, computed as a weighted average over
the three scale components, described above. The areas colored in gray
correspond to the periods of extremely high volatility (probability less than
0.01), as detected by the MVS. The quantitative information about these
periods is reported in Table 5. The beginning of each period is the date when
the MVS for one of the scales overcomes the threshold log,(100) = 6.6439,
which corresponds to 0.01 tail probability. The end of such period is the
date when the MVS for all scales falls below the threshold log,(10) = 3.3219,
which corresponds to 0.1 tail probability.

We report the duration of the periods, determined as the number of
trading days between the first and the last date, the maximum value of the
MVS over the period (for the three scale and for the weighted average?)
and the sum of the MVS values for the days, when one of the components
was above the critical threshold of log,(100), taken over the period of ex-
treme volatility (for the three scales and for the weighted average). Each
of the measures can be chosen to asses the gravity of the situation on the
stock market. Another important characteristics is the scale of the MVS
component, which first broke the critical threshold.

We detect six periods, corresponding to our criteria of extreme volatility.
The period associated to the Asian crisis (from 27/8/98 to 14/10/98) was
the longest in duration (34 open days) and in terms of the sum of the
weighted MVS values above the threshold. The crisis is found to be the
most “long-term” one, as evidenced by the values of the third component

3Note that the column reporting the maximum of the weighted MVS is not the mean
of maxima at each scale, because the latter occur at different times.
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of the MVS. The beginning of the crisis was signaled by the medium-term
component of the indicator. The period 19/7/02-9/8/02 is also characterized
by persistently high values of the long-term volatility component, which was
the first to break the critical threshold. The weighted average MVS is close
to, but never breaks the threshold during these crises, which means that the
peaks of volatility at different scales did not match in time.

The crisis following the September 11, 2001 events (11/9/01 - 1/10/01)
ranks third in terms of the sum of the weighted MVS values, but it is struc-
turally different from the two previously mentioned crises. The volatility is
higher at the short and medium scales, clearly because the beginning of the
crisis was sudden and driven by the factors, exogenous to the financial mar-
ket. The shock was strong enough to affect the long-term component, though
it does not overcome the critical value. The crisis of 2001 has the highest
value of the weighted MVS over the whole sample (7.8, or tail probability
about 0.005). Two periods of high volatility in year 2000 are characterized
by high volatility on the short and medium scale. The maximum aggregated
MVS for the period 14/4/00 - 3/5/00, which marks the beginning of a long
downturn in the market lasting till 2003 and is associated to the burst of the
so-called “new economy” bubble, is 7.4 and ranks second after the 2001 cri-
sis. Finally, fluctuations in May 2006 are labeled as extreme at the medium
scale only. The weighted MVS stays below the critical threshold.

The MVS presented so far is suitable for the a posteriori structural anal-
ysis of market events, but it cannot be used for the real time applications,
because the MVS values, as defined above, are not adapted. At each date
we use all available data to perform the scale-by-scale wavelet transform and
estimate the probabilities. Alternatively, we construct an adapted indica-
tor for the CAC40 index. The part of the sample before 2001 (6 years) is
used for initial estimates, which are updated dynamically as the new data
arrives. So only the information prior to each computation date is used.
At each iteration the last computed value of the MVS is retained. As we
noted before, this value depends on the assumptions used for the boundary
conditions. Here we use the reflection assumption, which implies that if at
the date of analysis we observe extreme volatility over some period of time
in the past, we expect that it will last exactly the same period of time in
future. This assumption affects the scale-by-scale decomposition and is the
cost to pay for the non-anticipating property of the MVS.

The results, obtained for the CAC40 index with the adapted MVS, are
reported in Figure 12 and Table 6. Clearly, using a smaller sample to esti-
mate probabilities produces more periods of extreme volatility. We detect
three periods in 2002 instead of one and a new 3-week period in 2003. But
structurally the results are the same. The 2001 crash is still the biggest
in terms of the average MVS and concentrates mainly on the medium and
short scales (but it also surpasses the 2002 crisis by the sum of the MVS
values). As before, the crisis in 2002 is characterized by the high long-term
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volatility: in July and October 2002 the long-term components of the MVS
mark the beginning of the extreme volatility periods. Generally, the conclu-
sions made with the adapted indicator are consistent with those presented
before.

The results of similar analysis for the DJTA index are reported in Figure 6
and Table 7. In this case the definitions of the short, medium and long term
are not the same - all the range of scales is shifted toward lower frequency
and the realized variance is computed over monthly intervals. It is less
variable than the daily realized variance, and critical levels of the MVS are
chosen lower than for the high frequency data: log,(20) for the beginning
and log,(10) for the end of the extreme volatility periods, which corresponds
to 0.05 and 0.10 tail probabilities respectively.

As explained above, we estimate the distribution of variances over 50-
year rolling windows (so the estimates till year 1944 are not adapted and
further estimates are adapted). This convention allows to account for the
changes in the structure of the financial market (and consequently, in the
distribution of volatilities), but as a side-effect it produces an artificial shift
in the 1990s - the period when the Great Depression falls out of the sample.
Thus, the market volatility in late 1973 - early 1974, related to the oil
crisis, Vietnam war and the Watergate scandal in the USA, followed by the
resignation of president Nixon, is clearly higher than normal, as can be seen
on Figure 6. But it does not reach the critical threshold, defined relatively
to the extreme events of the 1930-s. Compared to the more recent events
(say, from 1950 to 2000), this period would probably be detected as a period
of extreme volatility.

This example demonstrates that the MVS is a relative indicator, since
the underlying probability distribution is estimated from the historical data.
Thus particular attention should be paid to the choice of the sample length
and threshold values, especially when the sample is heterogeneous as in the
DJIA case. However, this does not undermine the value of the indicator:
it allows for the scale-by-scale structural analysis and comparison of events
with the past, even though its absolute values and thresholds depend on
arbitrary choices.

The results in Table 7 confirm that the Great Depression had an un-
precedentedly strong affect on the stock market. The period of extreme
volatility lasts for 54 months from the crash in 1929 till early 1934, when
the recovery starts. The volatility shock associated to the Black Thursday
(October 24, 1929) was so strong that all the three components of the MVS
simultaneously break the critical threshold. The market downturn during
the quick recovery (1937-1938), following the Great Depression, was first de-
tected in the medium-term component of the MVS. The subsequent events,
including those related to the beginning of the World War 11, had a smaller
impact on the volatility of the American stock market. Surprisingly, the
panic provoked by the bankruptcy of the Penn Central Road in May 1970
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had a stronger impact on the mid-term component of the MVS, than the
following recession of 1973-1974, though, as it can be seen on Figure 6, the
latter period is characterized by a persistently higher-than-average level of
volatility, measured by the aggregated MVS.

The end of year 1982 was marked by the change in the trend of the index
returns (from the bear market in 1967 - 1982 to the bull market in 1982-
2000), accompanied by a period of extremely high short-term volatility. The
following sharp rise in stock prices is interrupted by the crash of October
1987 (known by the Black Monday of October 19, 1987, though the first
significant fall of 3.81% occured 5 days before). The weighted MVS in
October 1987 has even higher value than the maximum recorded during the
Great Depression, though the overall impact during the subsequent yearly
period, measured by the sum of MVS extremes, is considerably lower.

The beginning of the Asian crisis in 1997 and its bottom in 1998, coupled
with the Russian crisis, did not drive the long-term MVS component above
the critical threshold. The medium and short-term volatility, however, was
very high, resulting in extreme values of the weighted MVS. A rather long
period from 2000 to 2003 is characterized by the burst of the “new economy”
bubble. The exogenous shock of September 11, 2001 aggravates the situa-
tion, already featured by very high volatility. At the bottom of this crisis
(late 2002 - early 2003) we detect the second period of extreme volatility
since 1987, that affects the long-term component of the MVS in a significant
way.

6 Conclusion

We design a new indicator of the stock market volatility, called the Mar-
ket Volatility Scale, which characterizes the fluctuations both in time and
frequency domains. Unlike the other multiscale indicators, proposed in the
existing literature, it is based on the wavelet variances of returns, which are
closely related to the spectrum of the time series of returns and allow an
accurate scale-by-scale decomposition of the variance. We introduce a time-
varying wavelet variance estimate, analogous to the conventional realized
variance, but measuring variation in a particular range of frequencies.

The realized variances of the wavelet and scaling coefficients are aggre-
gated to three representative scales (short term, medium term and long
term). The MVS is computed at each date as the logarithm of the proba-
bility to observe the realized wavelet variance higher than its value at this
date. This approach is inspired by the Richter-Gutenberg scale, used to
measure the magnitude of earthquakes. Our scale is thus universal and easy
to interpret, which is helpful for the comparison of events. When a loga-
rithm to the base 2 is used for the definition, a one-point increase in the
MVS corresponds to a volatility observation twice as unlikely.
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We model the probability distribution of volatilities in a flexible way,
using a generalized Pareto distribution fit for the clusters of extreme volatil-
ity. So we focus on the right tail, applying an empirical probability integral
transform for the rest of the probability distribution. This choice is moti-
vated by the need to be as accurate as possible in characterizing the rareness
of extreme events.

The MVS is first computed separately for each scale, and then the results
are aggregated to provide a general judgment on the market volatility at all
scales. The aggregated MVS takes the form of the weighted average over
the three scales. The weights are dependent on the scaling properties of the
time series of returns, which are studied using the logscale diagrams. We
show that the level of the long range dependence in volatility is not the same
for different ranges of frequencies, supporting earlier findings reported for
the high-frequency exchange rate volatility. Using the weights, depending
on the Hurst exponent, we measure the importance of scales not only by the
portion of the variance, attributed to them (clearly, most variance is due to
the short scale), but also by the level of persistence, which is higher for the
medium and long scales.

The MVS is computed for the daily Dow Jones Industrial Averages index
data from 1896 to 2007 and for the intraday CAC40 data from 1995 to
2006. It is used for the detection and scale-by-scale analysis of the periods
of extreme volatility. In particular, we report which scales of fluctuations
(short, medium or long-term) were most important during each period, and
at which scale the critical threshold, used to determine the beginning of the
period, was first overcome. The events can be ranked by the maximum value
of the MVS at each scale and by the sum of the MVS values over the whole
period of extreme volatility.

Clearly, the potential scope of application of the indicator and of the
underlying variance decomposition goes far beyond the comparison of events.
We mention several areas of further research which are of particular interest.
From the theoretical viewpoint, it is important to understand the mechanics
of the multiscale price dynamics. Wavelet variances can be an appropriate
tool in testing market microstructure models of this type, both on simulation
and real-data basis.

From a more practical perspective, the multiscale view of volatility can
be suggestive in asset allocation and portfolio management. A multiscale
indicator can be applied for conditioning the asset allocation process in
a regime-switching framework. Another important area of application is
volatility forecasting. In this paper we focused on structural rather than
dynamic properties of volatility. But the interdependence of scales and the
additivity property of wavelet variances make appealing the idea of the scale-
by-scale autoregression, which can be used to forecast the components of
volatility and then aggregate them.
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Appendix: Wavelet Transforms

Any wavelet decomposition is based on the so-called wavelet filter and the
associated scaling filter. A real-valued Discrete Wavelet Transform (DWT)
filter hy : 1 =0,...,L — 1 of width L is an infinite sequence such as h; = 0
for I < 0 and [ > L, which sums to zero, has unit energy and is orthogonal
to its even shifts:

L—-1 L—-1 L—-1
D h=0,)"hi =1, hhison =0 (A-1)
=0 =0 =0

The “quadrature mirror” filter corresponding to h; is called the scaling filter
and is given by:
g=(=1)"*"hp (A-2)

A Maximum Overlap Discrete Wavelet Transform (MODWT) wavelet
filter and scaling filter are rescaled versions of the corresponding DWT filters
defined by h; = h;/v/2 and §; = g;/V/2 respectively. Note that equation A-2
also holds for the MODWT filters. The usage of the MODWT filters instead
of the DWT aims mainly to define a transform which preserves the ability
to carry out multi-resolution analysis and variance decomposition, but does
not depend ont the choice of a starting point for a time series, which is the
case when the outputs from the recursive application of the DWT filters
are downsampled in the so-called “pyramid” algorithm. In the MODWT
algorithm wavelet coefficients Wlt and scaling coefficients V1 .+ are obtained
by filtering the circular shift of the vector X; rather than X itself:

L1 L-1
Wit = MTiimod N, Vie= Y Gi%i—1mod N (A-3)
1=0 1=0

The first stage of the MODWT pyramid algorithm consists in finding
solution to the equation:
W,
Vi

Bl

i x, (A-4)

with Wi and B defined according to (A-3). The first level maximum overlap
detail is given by D1 = Bl W1 and the first level approximation is Sl =
Al VA, so the signal admits the following additive (first-level) decomposition:

T = E{Wl + Efﬁ’l = 51 + §1 (A—5)
The energy of the signal, in its turn, can also be decomposed:

]I = 1WA + VA (A-6)
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The wavelet and scaling MODWT coefficients for higher levels of de-
composition j = 2,...,J are obtained by applying recursive formulas of the
pyramid algorithm without downsampling of the outputs:

L-1

Wj’t = Z ﬁl‘A}j_l’t_2j—1l mod N> t — 0, o ,N - 1, (A-?)
=0

ij,t = Zgl‘/j—l,t—m'*llmod Nyt=0,....,N -1 (A'S)
=0

The j-th level of the pyramid algorithm is defined by:

W
Vy

B;

Vi_ A-9
Aj =1 ( )

Finally, the j-th level detail Ej and the J-th level smooth §j are computed:
D= AT AT \BTW;, §;=AT... AT A}V, (A-10)

The multi-resolution analysis of signal X is thus its scale-by-scale additive
decomposition:

J
r=Y Dj+8, (A-11)
j=1
The scale-by-scale decomposition of energy reads:
J —~ ~
1> =D W52 + [Vall*. (A-12)
j=1
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Figures and Tables

Figure 1: The form of the LA(4) Wavelet
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The figure represents the form of the wavelet function ¢ (left) and scaling function
(right) for the wavelet filter LA(4)

Table 1: The MODWT variance decomposition for the CAC40 returns

Level DI D2 D3 D4 D5 D6 D7 D8 D9 A
7 1 2 4 8 16 32 64 128 256 > 256
(7)) x 10° 0.17 012 007 004 003 001 001 000 000 0.05
(r;/ 3, 7(r;) 039 026 015 0.09 0.06 0.02 0.0l 001 0.0l 0.10

Source: Euronext, values of the CAC40 index from 20/03/1995 to 29/12/2006 at 15-
minute intervals. The MODWT decomposition of variance with 9 levels is used (9 details
and an approximation). 7; is the time length of each scale (one unit of time corresponds
to 15 minutes). The variance of the wavelet coefficients at the first level (detail D1)
corresponds to the variance at physical scale 15 minutes. The variance at level j > 1
represents the range from 15 x 2972 to 15 x 297! minutes. The variance of the scaling
coefficients (A) at level 9 represents the range of scales superior to 15 28 = 3840 minutes,
which is roughly 8 trading days. v(r;) X 10° is the biased estimate of wavelet variance
according to formula (12). The last line of the table contains the portion of the total
variance, attributed to each scale.
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Table 2: The MODWT variance decomposition for the DJIA returns

Level D1 D2 D3 D4 D5 D6 D7 D8 A
Tj 1 2 4 8 16 32 64 128 > 128
v(r;) x 10° 252 1.27 0.66 0.44 032 024 021 0.14 1.12
v(rj/ Zi v(rj) 036 0.18 0.10 0.06 0.05 0.03 0.03 0.02 0.16

Source: Dow Jones Indexes, daily values of the DJIA index from 26/05/1896 to
10/10/2007. The MODWT decomposition of variance with 8 levels is used (8 details
and approximation). 7; is the time length of each scale (one unit of time corresponds
to one trading day). The variance of the wavelet coefficients at the first level (detail
D1) corresponds to the variance at physical scale one day. The variance at level j > 1
represents the range from x2772 to 277! trading days. The variance of the scaling
coefficients (A) at level 9 represents the range of scales superior to 27 = 128 days.
¥(7;) x 10° is the biased estimate of wavelet variance according to formula (12). The last
line of the table contains the portion of the total variance, attributed to each scale.

Figure 2: The Hurst exponent for the CAC40 index volatility for two sub-
samples

Subsample 1: Mar.95 - Jul.01 Subsample 2: Jul.01 - Sep.06
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-15 H=0.8 % -15 H=0.74 #
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Source: Euronext, values of the CAC40 index from 20/03/1995 to 29/12/2006 at 15-
minute intervals. The scaling factor is estimated by the Veitch-Abry logscale diagram
method. The logscale diagram is generated for two subsamples of equal length (50,440
observations each) and examined to find a lower cutoff and upper cutoff scales, where
alignment (a straight line) is observed. Two alignment regions are found: scales from 2 to
5 and scales from 6 to 9. The estimate of the scaling factor is obtained from the estimate
of the slope of the of the WLS regression, as described in the text. Computation by the
author.
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Figure 3: The Hurst exponent for the DJIA index volatility for two subsam-
ples

Subsample 1: May.96 — Sep.50 Subsample 2: Sep.50 — Oct.07
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Source: Dow Jones Indexes, daily values of the DJIA index from 26/05/1896 to
10/10/2007. The scaling factor is estimated by the Veitch-Abry logscale diagram method.
The logscale diagram is generated for two subsamples of equal length (14,432 observations
each) and examined to find a lower cutoff and upper cutoff scales, where alignment (a
straight line) is observed. Two alignment regions are found: scales from 2 to 4 and scales
from 5 to 8. The estimate of the scaling factor is obtained from the estimate of the slope
of the of the WLS regression, as described in the text. Computation by the author.

Figure 4: Estimation of the scaling parameter for the simulated Gaussian
data
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Logscale diagram for two simulated samples of Gaussian data of the sames size (14,432
observations) and of the same mean and variance as the data used for the DJIA index
on figure (6). The scaling factor is then estimated by the Veitch-Abry logscale diagram
method. The same two alignment regions as on figure (6) are explored. No significant
change in slope of the WLS regression line is observed.
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Figure 5: Dynamic estimation of the Hurst exponent for the CAC40 index
volatility

0.4

2001 2002 2003 2004 2005 2006

Source: Euronext, values of the CAC40 index from 20/03/1995 to 29/12/2006 at 15-
minute intervals. The scaling factor is reestimated each 512 observations (approximately
each 16 days) on a window of 32,512 observations (approximately 4 years) length. The

estimation is made by the Veitch-Abry logscale diagram method, described in the text.
Computation by the author.

Figure 6: Dynamic estimation of the Hurst exponent for the DJIA index
volatility

0.4

1950 1960 1970 1980 1990 2000

Source: Dow Jones Indexes, daily values of the DJIA index from 26/05/1896 to
10/10/2007. The scaling factor is reestimated each 256 observations (approximately each
year) on a window of 13000 observations (approximately 50 years) length. The estimation

is made by the Veitch-Abry logscale diagram method, described in the text. Computation
by the author.
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Figure 7: Realized wavelet variance of the CAC40 returns
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Source: Euronext, values of the CAC40 index from 20/03/1995 to 29/12/2006 at 15-minute
intervals. Realized daily variance includes overnight returns according to Hansen (2005)
method. “Intraday” realized daily variance is the sum of the realized wavelet variances for
the scales of width inferior to 1 day (details 1-5), “1-16 Days” realized daily variance is the
sum of the realized wavelet variances for the scales of width between 1 and 16 days (details
6-9), “> 16 Days” is the realized daily variance of the scaling coefficients (approximation
at scale 9). The LA(4) filter is used for the wavelet decomposition. Computation by the
author.
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Figure 8: Realized wavelet variance of the DJIA returns
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Source: Dow Jones Indexes, daily values of the DJIA index from 26/05/1896 to
10/10/2007. “1-16 Days” realized monthly variance is the sum of thye realized wavelet
variances for scales of width inferior to 16 (details 1-5), “16 Days - 1 year” realized monthly
variance is the sum of realized wavelet variances for details from 6 to 8, “> 16 Days” is the
realized monthly variance of scaling coefficients (approximation at scale 8). The LA(4)
filter is used for the wavelet decomposition. Computation by the author.
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Figure 9: GPD fit for the realized wavelet variance of the CAC40 returns
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Source: Euronext, values of the CAC40 index from 20/03/1995 to 29/12/2006 at 15-minute
intervals. The figure represents the results of the GPD fit for the realized daily variance of
the index and realized daily variances for different scale ranges, obtained by aggregation
of realized wavelet variances as described in the text. Each line of figures shows (from
left to right): the histogram of all data in logarithmic scale (2,954 observations), the fit
of the GPD density for the upper tail of the distribution and the probability QQ-plot.
Maximum likelihood estimation. The threshold parameter is chosen as the 0.9 empirical
quantile of each distribution. Computation by the author.
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Table 3: Parameters of the GPD fit for the realized wavelet variance of the
CAC40 returns

O x 10° £ o x 10° Qg9 x 10°
All Sample: 03/1995 - 12/2006
A% 33.8372 0.5236 47.7984 380.6894
0.2292; 1.0365]  [17.6859; 81.2570]  [380.6890; 381.0697]
Intraday 11.7858 0.501 20.8789 157.0575
[0.2371; 0.9427] [7.7256; 35.4937] [157.0572; 157.2143]
1—32days 0.5389 0.6782 1.2298 12.5549
[0.3862; 1.1530] [0.4554; 2.0903] [12.5545; 12.5671]
> 32 days 1.3778 1.2792 0.8117 30.0373
0.6486; 2.5726]  [0.3008; 2.0200]  [30.0368; 30.0669]
Subample: 03/1995 - 06/2001
v 37.7046 0.2088 76.643 356.7373
[-0.0447; 0.7812] [28.3583; 130.2927]  [356.7370; 357.0937]
Intraday 13.4835 0.4493 24.2599 166.9273
[0.1445; 1.0630] [8.9766; 41.2415] [166.9270; 167.0939]
1—-32days 0.7395 0.5163 1.4482 11.1065
(0.1929; 1.1439]  [0.5363; 2.4614]  [11.1061; 11.1173]
> 32 days 0.9093 1.5068 0.4341 26.9212
0.6417; 3.7712]  [0.1169; 1.7797]  [26.9207; 26.9477]
Subample: 06/2001 - 12/2006
1V 30.3373 0.9677 19.7181 379.8839
[0.4517; 2.0316] [7.2961; 49.2947] [379.8835; 380.2634]
Intraday 10.1567 0.7716 11.9121 150.4925
[0.3270; 1.6935] [4.4079; 29.7800] [150.4922; 150.6427]
1—32days 0.4029 0.9508 0.8557 15.0357
(0.4785; 1.8779]  [0.3169; 2.1388]  [15.0353; 15.0503]
> 32 days 1.5412 1.3049 0.492 19.9626

[0.6061; 2.9390]

[0.1823; 2.0168)]

[19.9623; 19.9823]

Source: Euronext, values of the CAC40 index from 20/03/1995 to 29/12/2006 at 15-
minute intervals. The fit is obtained by the maximum likelihood method. The threshold
parameter is chosen as the 0.9 empirical quantile of each distribution. Computation by

the author.
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Figure 10: GPD fit for the realized wavelet variance of the DJIA returns
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Source: Dow Jones Indexes, daily values of the DJIA index from 26/05/1896 to
10/10/2007. The figure represents the results of the GPD fit for the realized monthly
variance of the index and realized monthly variances for different scale ranges, obtained
by aggregation of the realized wavelet variances, as described in the text. Each line of
figures shows (from left to right): the histogram of all data in logarithmic scale (2,954
observations), the fit of the GPD density for the upper tail of the distribution and the
probability QQ-plot. Maximum likelihood estimation. The threshold parameter is chosen
as the 0.8 empirical quantile of each distribution. Computation by the author.
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Table 4: Parameters of the GPD fit for the realized wavelet variance of DJIA
returns

O x 10° 3 o x 10° Qg9 x 10°
AUl Sample: 06/1896 - 10,2007
A% 298.5244 0.5681 232.7840 789.4352
[0.3649; 0.8599] [160.6212; 395.7325]  [789.4348; 790.2242]
1-8 D 113.7658 0.6246 102.9759 340.7957
[0.4107; 0.9305]  [71.0539; 175.0588] [340.7954; 341.1362]
8-128 D 23.9888 0.8194 25.2972 89.2564
[0.5448; 1.2205]  [17.4555; 43.0049] [89.2560; 89.3453]
>128 D 21.3159 1.0740 5.9134 40.2136
[0.6234; 1.8614] [2.1884; 14.7833] [40.2132; 40.2535]
Subample: 06/1896 - 04/1952
v 410.5140 0.4377 375.9861 1127.3479
[0.1977; 0.8500] [259.4308; 639.1760] [1127.3476; 1128.4750]
1-8 D 155.3517 0.6163 111.7318 400.0798
0.3554; 1.0292]  [77.0952; 189.9437]  [400.0794; 400.4795]
8-128 D 34.7769 0.8072 27.1548 104.1403
[0.4696; 1.3586]  [10.0475; 46.1629]  [104.1399; 104.2440]
>128 D 22.9118 1.3701 3.9641 39.3502
[0.7086; 2.7493] [1.4670; 9.9099] [39.3499; 39.3892]
Subample: 05/1952 - 10/2007
v 216.6324 0.7106 121.6385 503.8929
[0.4073; 1.2040]  [45.0065; 206.7851] [503.8924; 504.3963]
1-8 D 81.5683 0.6619 60.7362 219.5061
[0.3779; 1.1242]  [22.4727; 103.2512] [219.5056; 219.7251]
8-128 D 14.0994 1.0602 10.3458 46.7705
0.6608; 1.6811]  [3.8284; 17.5875] [46.7702; 46.8169]
>128 D 19.5670 0.9022 5.0805 33.6049
[0.4055; 1.9608]  [1.8802; 12.7008] [33.6046; 33.6382]

Source: Dow Jones Indexes, daily values of the DJIA index from 26/05/1896 to
10/10/2007. Maximum likelihood estimation. The threshold parameter is chosen as the
0.8 empirical quantile of each distribution. Computation by the author.
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Figure 11: Market Volatility Scale for the CAC40 index
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Source: Euronext, values of the CAC40 index from 20/03/1995 to 29/12/2006 at 15-
minute intervals. The figure shows (from top to bottom) the values of the index, the
realized variance and the aggregated Market Volatility Scale (MVS), which is a weighted
average of the three scale components, as described in the text. Regions colored in gray
correspond to the periods of extremely high volatility (tail probability less than 0.01) as
detected by the MVS (see table 5). Computation by the author.

39



Table 5: Periods of extreme volatility detected by the MVS for the CAC40
index

Start End Length Scale Maximum MVS Aggregated MVS
W S M L W S M L
27/8/98 14/10/98 34 M |62 68 75 7.5|1434 48 6.7 1259
4/1/00  21/1/00 13 SM |63 72 6.7 40| 536 72 6.7 553
14/4/00  3/5/00 10 M |74 95 76 40| 422 59 7.6 444
11/9/01 1/10/01 14 SM |78 78 105 6.5 | 581 7.8 10.5 50.7
19/7/02  9/8/02 15 L 65 72 65 72| 634 40 38 643
17/5/06  24/5/06 5 M |44 59 70 23| 156 59 70 174

Source: Euronext, values of the CAC40 index from 20/03/1995 to 29/12/2006 at 15-
minute intervals. The beginning of the period of extreme volatility is the date when the
MVS for one of the scales overcomes the threshold log,(100) = 6.6439, which corresponds
to 0.01 probability. The end of such period is the date when the MVS for all scales falls
below the threshold log,(10) = 3.3219, which corresponds to 0.1 tail probability. Duration
of the period is the number of trading days between the first and the last date. The scale
refers to the component of the MV, which first broke the critical threshold: “S” stands
for the short scale (intraday), “M” stands for the medium scale (1 — 16 days) and “L”
stands for the long scale (> 16 days). The following four columns report the maximum
value of the MVS during the period of extreme volatility: “W?” stands for the weighted
average (aggregated) MVS over three scales, “S”, “M” and “L” for the short, medium and
long scales respectively. The next four columns contain the sum of the MVS values for the
dates, when one of the scale components was above log,(100), over the period of extreme
volatility. The same notations for the scales are used. Computation by the author.

Table 6: Periods of extreme volatility detected by the adapted version of
the MVS for the CAC40 index

Start End Length Scale Maximum MVS Aggregated MVS
W S M L W S M L
11/9/01 22/10/01 29 M 9.2 93 124 70| 1046 1.8 7.9 88.6
27/6/02  8/7/02 7 S 59 6.8 38 41| 243 6.8 38 209
24/7/02  28/8/02 25 ML |84 90 7.8 80| 962 55 7.8 838
4/10/02 15/11/02 30 L 55 5.7 46 76| 956 57 24 859
18/3/03  7/4/03 14 SM |63 7.1 67 49| 490 7.1 6.7 41.1
18/5/06  25/5/06 5 SM |51 7.7 89 05| 158 7.7 89 16.0
1/6/06 2/6/06 1 S 52 78 36 10| 52 78 36 1.0

Source: Euronext, values of the CAC40 index from 20/03/1995 to 29/12/2006 at 15-
minute intervals. The same as in Table (5), but the adapted version of the MVS is
used.
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Figure 12: Adapted version of the MVS for the CAC40 index
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Source: Euronext, values of the CAC40 index from 20/03/1995 to 29/12/2006 at 15
minutes intervals. The same as in Figure 6, but the wavelet transform and the GPD
fit for the MVS are recomputed dynamically at each date starting from 02/01/2001 till
29/12/2006 and using only previous observations. Only the last value of the MVS is kept
each time. Computation by the author.
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Figure 13: Market Volatility Scale for the DJIA index
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Source: Dow Jones Indexes, daily values of the DJIA index from 26/05/1896 to
10/10/2007. The figure shows (from top to bottom) the values of the index (bold vertical
lines correspond to the dates when the index is rebased to 100 for the visualisation pur-
pose), the realized variance and the aggregated MVS, which is a weighted average of the
three scale components, as described in the text. Regions colored in gray correspond to
the periods of extremely high volatility (tail probability less than 0.05) as detected by the
MVS (see table 7). Computation by the author.
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Table 7: Periods of extreme volatility detected by the MVS for the daily
DJIA index

Start End Length Scale Maximum MVS Aggregated MVS

W S M L W S M L
06/1896 11/1896 5 L 39 42 32 50| 173 39 14 199
03/1898 04/1898 1 SM |41 4.7 44 23| 4.1 4.7 44 23
12/1899 02/1900 2 SM |58 70 6.8 21| 82 70 6.8 4.1
05/1901 06/1901 1 S 39 51 39 10| 39 5.1 39 1.0
03/1907  05/1907 2 SM |50 6.1 57 21| 75 61 57 41
07/1914 02/1915 3 S 5.5 7.7 58 12| 143 45 43 16.1
05/1915 07/1915 2 SM |44 49 48 33| 75 49 48 5.7
12/1916 04/1917 4 SM (41 50 52 19| 123 50 5.2 102
03/1920 06/1920 3 L 27 29 13 44| 77 25 05 93
10/1929 04/1934 54 SML | 7.7 80 9.0 7212409 80 9.0 214.3
09/1937 12/1938 15 M 54 59 55 6.0 523 42 44 413
05/1940 08/1940 3 SM |44 55 54 06| 82 55 54 44
09/1946 11/1946 2 M 3.0 34 47 09| 58 3.4 47 41
05/1962 07/1962 2 M 33 39 54 06| 59 39 54 40
05/1970 07/1970 2 M 30 37 56 03] 5.1 3.7 56 3.2
08/1982 09/1982 1 SM |33 45 46 0.1 ] 33 45 46 0.1
10/1982 03/1983 3 S 34 48 41 17| 97 48 41 82
09/1986 10/1986 1 S 28 47 21 01| 28 4.7 21 0.1
10/1987 08/1988 10 SML | 9.5 108 9.2 80| 52.8 10.8 9.2 436
10/1989 11/1989 1 S 43 64 42 03| 43 64 42 0.3
08/1990 11/1990 3 SM |37 47 49 05| 92 47 49 72
02/1991 02/1991 1 S 31 44 28 04| 3.1 44 28 04
10/1997 12/1997 2 SM |52 64 63 10| 84 6.4 63 44
08/1998 12/1998 4 SM |52 64 59 22| 173 64 58 14.0
03/2000 11/2000 8 S 47 53 42 39| 230 53 42 188
03/2001 07/2001 4 M 42 48 50 23| 123 41 50 98
09/2001 11/2001 2 SM |64 72 64 38| 99 72 64 7.1
07/2002 06,/2003 11 SML | 6.1 66 59 68| 46.1 6.6 59 39.7

Source: Dow Jones Indexes, daily values of the DJIA index from 26/05/1896 to
10/10/2007. The beginning of the period of extreme volatility is the month when the
MVS for one of the scales overcomes the threshold log,(20) = 4.3219, which corresponds
to 0.05 probability. The end of such period is the month when the MVS for all scales falls
below the threshold log,(10) = 3.3219, which corresponds to 0.1 probability. Duration
of the period is the number of months between the first and the last date. The scale
refers to the component of the MV'S, which first broke the critical threshold: “S” stands
for short scale (1-8 days), “M” stands for the medium scale (from 8 to 128 days) and
“L” stands for the long scale (more than 128 days). The following four columns report
the maximum value of the MVS over the period of extreme volatility: “W” stands for
the weighted average (aggregated) MVS over the three scales, “S”, “M” and “L” for the
short, medium and long scales respectively. The next four columns contain the sum of
the MVS values, when one of the scale components was above log,(20), over the period
of extreme volatility. The same notations for the scales are used. Computation by the
author.
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