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Abstract

A pure hedonic game describes the situation where player’s utility depends
only on the identity of the members of the group he belongs to. The paper
provides a necessary and sufficient condition for the existence of core-partition
in hedonic games. The condition is based on a new concept of balancedness,
called pivotal balancedness. Pivotal balancedness involves especially the notion
pivotal distribution that associates to each coalition a sub-group of players in
the coalition. Then, we proceed to a review of several sufficient conditions for
core-partition existence showing how the results can be unified through suitably
chosen pivotal distributions.
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Résumé

La classe des jeux hédonistiques purs modélisent des situations d’interactions
sociales ou l'utilité de chaque joueur dépend seulement de 'identité du groupe
auquel il appartient. L’article propose une condition nécessaire et suffisante pour
Iexistence de partition stable, au sens du cceur, dans les jeux hédonistiques.
La condition, appelée balancement avec pivot, raffine la condition usuelle de
balancement. Elle fait notamment appel a des distributions pivots qui, & chaque
coalition, associe un sous-groupe de joueurs dans la coalition. Nous unifions les
résultats de la littérature sur les partitions stables en identifiant des distributions
pivots adéquates.
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ment.
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1 Introduction

Dreze and Greenberg [10] called hedonic aspect the dependence of a player’s
utility on the identity of the members of his group. In many different areas of
economics, the hedonic aspect plays a central role since it intends to explain
the formation and the existence of groups, clubs and communities. As example,
the utility over public goods of an individual in a group depends both on the
consumption level of the public good and on the identity of the members in the
group.

A hedonic game describes the situation where player’s utility depends only
on that hedonic aspect.

The model of hedonic games has been formally given and studied in Banerjee
et al. [2] and Bogomolnaia and Jackson [5] (earlier game theoretical analysis
in that line also includes Greenberg and Weber [11] and Kaneko and Wooders
[12]). Following these contributions, there has been a strong interest for the
theoretical analysis of hedonic games and as well as a revival in the analysis of
public goods that falls into the class of hedonic games. To illustrate the latter,
quote the recent contribution of Bogomolnaia et al. [4] who study the resolution
of public project location under some specific cost sharing rules. In that case,
the utility of a coalition is fully determined by the identity of the members of
the coalition.

Here, we turn to the theoretical analysis of hedonic games, specifically to
the existence of core-partition which is the natural cooperative game solution
in hedonic setting. A core-partition is a partition of the players such that there
is no coalition of players where each player in the coalition is better off (with
respect to his utility in the coalition) than in the partition. Hence in essence,
the core-partition has the same requirement as the core solution in coalition
structure studied in general cooperative games and defined first by Aumann
and Dreze [1].

The paper provides a necessary and sufficient condition for the existence of
core-partition in hedonic games.

In the literature, authors have alternatively offered sufficient conditions for
existence by specifying restrictions on feasible coalitions, individual preferences
or preference profile. In the case of restrictions on feasible coalitions, the exis-
tence and the uniqueness of core-partition is characterized by Papai [13], (see
also Greenberg and Weber [11] with consecutive games). In the case of restric-
tions on individual preferences, the existence is studied by Burani and Zwicker
[8], Dimitrov et al. [9] and Papai [14]. In our paper, the restrictions hold on
the whole preference profile.! In that general line, the contributions are due to
Banerjee et al. [2] and Bogomolnaia and Jackson [5], where they show mainly
two disconnected approaches to deduce the existence of core-partition in hedonic

1The restrictions on preference profile is the most general line to deal with conditions for
existence of core-partition. Obviously, a restriction on individual preferences is a restriction
on the preference profile. Second, restrictions on feasible coalitions can be restated on the
preference profile by evaluating the disregarded coalitions as the worst coalitions (with respect
to preferences).



games.

In a first approach, it has been noticed that a hedonic game admits a repre-
sentation in terms of NTU games (games with Non Transferable Utility). Then
it follows that Scarf’s balancedness condition [16] in NTU games provides a
sufficient condition for the existence of core-partition in the associated hedonic
game. As usual in many economic models, Scarf’s condition provides a power-
ful result for core-like solutions, while the difficulty with that condition is the
limited interpretative range of the balancedness.

A second approach is based on more interpretative mechanisms. The idea
is to involve the presence of sub-groups of players in each coalition that plays a
particular role. For instance in Banerjee et al. [2], a top coalition of a coalition
is a subset of the coalition such that each agent in the subset is better off than
in other subsets of the coalition. Banerjee et al [2] show that the existence of
at least one top coalition in each coalition of the game guarantees the existence
of a core-partition.

We define a new notion of balancedness, called pivotal balancedness, that
gathers the above two leading intuitions. To define the notion, consider the
notion of balanced family given by [6, 17]. A family of coalition is said to be
balanced if for each coalition in the family there is a weight such that, for each
player, the weights of the coalitions to which he belongs sum to 1. To define
a pivotally balanced family, one first associates to each coalition a non-empty
subset of players in the coalition, the resulting family is a pivotal distribution.
Given a family of coalitions, the restriction of the pivotal distribution on the
elements of the family is the pivotal distribution of the family. Now, a family of
coalitions is said to be pivotally balanced if its pivotal distribution is balanced.

In the setting of hedonic games, one deduces naturally a definition for piv-
otally balanced game. The game is said to be pivotally balanced if there exists
a pivotal distribution such that for each pivotally balanced family there exists
a partition of set of players such that each player prefers his coalition in the
partition than his worst coalition in the family.

Our main result, Theorem 2, states that a hedonic game admits a core-
partition if and only if the game is pivotally balanced. To describe further the
range of our result in the literature on core-like solutions, let us recall that,
for a TU game (Transferable Utility), Bondareva [6] and Shapley [17] proved
that the core is non-empty if and only if the game is balanced, using the notion
of balanced family. For a NTU game, Predtetchinski and Herings [15] and
Bonnisseau and Iehlé [7] proved that the core is non-empty if and only if the
game is II-balanced, where II-balancedness is a general notion of balancedness
defined relatively to a payoff. While the hedonic game may be viewed as a
NTU game, here we do not appeal the general notion of II-balancedness. It
stems from the fact that the associated NTU game admits a very particular
geometrical structure. Clearly, to characterize the core in hedonic games one
needs the intermediary concept of pivotal balancedness.

In Section 2, the formal model is given. We first recall the existence result
of Bogomolnaia and Jackson [5] based on balancedness. Then, we define the
notion of pivotal balanced game in order to establish the main result of the



paper, Theorem 2. A first intuition about the result is given through a very
simple example of hedonic game that is pivotally balanced but not balanced.

In Section 3, we review several sufficient conditions for the existence of core-
partition already established in the literature. In particular, we show that the
properties of ordinal balancedness [5], consecutiveness [5], top coalition [2] all
imply pivotal balancedness. To demonstrate these results, we construct explic-
itly the appropriate pivotal distributions in each case.

Section 4 contains the proof of Theorem 2. To prepare the proof, we describe
the representation of hedonic games in terms of NTU games. The NTU game
modelling of hedonic games has been already used in Banerjee et al. [2] and
Bogomolnaia and Jackson [5] to deduce the existence of core-partition through
Scarf’s theorem. The difference here is that Scarf’s result is not general enough
to prove our result. Instead, we use a result of Billera [3] for b-balanced games.

2 The model and the result

Let N be the finite set of players and A be the set of all non-empty subsets of
N. A group of players S € A is called a coalition. Given B C M and i € N,
let B(i) = {S € B | i € S} be the set of coalitions in B that contain 7. A
partition of N is a family 7 = {S1, ..., Sk} (K < |N|) where UK S, = N, and
Sk N Se =0 for any k, £ € {1,..., K}, k # £. The family of all partition in N is
denoted II(NN). For any partition 7 € II(N) and any player ¢ € N let 7(i) be
the unique coalition such that i € m(i). For each S € N/, 19 € RY is the vector
with coordinates equal to 1 in S and equal to 0 outside S.

Definition 1 A hedonic game is a pair (N; (>;)ien), where =; is a reflexive,
complete, and transitive binary relation on N (i).?

In the sequel, a hedonic game will be denoted (N, ), where > is the profile
of individual preferences.

Definition 2 Given m € II(N), a coalition T € N blocks w if T =; w(i) for
each i € T. A core-partition is a partition 7 that is blocked by no coalition.

Let us first recall the notion of balancedness. A family of coalitions B C N
is balanced if for each S € B there exists a balancing weight Ag € R, such that
> sen As1¥ = 1. The next definition is due to Bogomolnaia and Jackson [5].

Definition 3 Let (N, >) be a hedonic game. The game is ordinally balanced if
for each balanced family B there exists a partition m € P(N) such that for each
j € N, there is S € B(j) such that w(j) =; S.

The following result provides a sufficient condition for the existence of a
core-partition in hedonic games. It is the counterpart of Scarf ’s Theorem [16]
in the hedonic setting.

2Strict preference relation and the indifference relation are denoted by >; and ~; respec-
tively S=; T < [S»=; T and T %; SJand S ~; T < [S =; T and T =; S].



Theorem 1 (Bogomolnaia and Jackson (2002)) Let (N,>) be a hedonic
game. The game admits a core-partition if it is ordinally balanced.

The condition is not necessary as shown in the following example due to
Banerjee et al [2].

{172} ~1 {173} ~1 {1a273} ~1 {1}

{1,2} -9 {2,3} -9 {1,2,3} b)) {2}
{173} ~3 {273} =3 {13273} =3 {3}

The above hedonic game admits a unique core-partition: 7* = {{1,2}, {3}}.
But for the balanced family B = {{1,2},{2,3},{1,3}} (consider the weights
As = 3 for each S € B), S - n*(3) = {3} for all S € B(3). Thus, the game is
not ordinally balanced.

Our objective in this paper is to provide a necessary and sufficient condition
for the existence of a core-partition in hedonic games. Our result is based on a
refinement of the usual notion of balanced family. The refinement involves the
notion of pivotal distribution.

Definition 4 A family I = (1(S))sen is called pivotal distribution if for each
S e N, I(S) is a non-empty group of agents such that I(S) C S. The set of all
pivotal distributions is denoted by I.

The new notions of I-balanced family and pivotal balanced game can be
defined now.

Definition 5 Given a pivotal distribution I € Z. A family of coalitions B C N
is I-balanced if the family (I(S))sep is balanced.

Scarf’s notion of balanced family coincides with the particular case of I-
balanced family for a full pivotal distribution, i.e. I(S) = S for each S € N.
Hence, the notion of I-balancedness restricts clearly the number of balanced
families.

Remark 1 There is another equivalent formulation for I-balanced family. Given
a piwotal distribution I € Z, a family of coalitions B C N is I-balanced if for
each S € B there exists A\g € Ry such that ZSGB Ag119) = 1. [t leads back to
a b-balanced family  la Billera [3], where bg = 115) for each S € N and b =1
(See Section 4 for a formal definition).

Definition 6 Let (N,>) be a hedonic game. The game is pivotally balanced if
there exists a pivotal distribution I € T such that for each I-balanced family B
there exists a coalition partition 1 € P(N) such that for each j € N, there is
S € B(j) such that m(j) =; S.



Let us come back to the example given by Banerjee et al. [2]. Consider
the following pivotal distribution I where I({123}) = {1, 2}, I({1,2}) = {1,2},
I({1,3}) = {1}, 1({2,3}) = {2}, I({i}) = {3} for each i = 1,...,3. First note
that the problematic family {{1,2},{2,3},{1,3}} is not any more I-balanced.
Actually in this example, the I-balanced families include necessarily the single-
ton {3} since it is the only coalition S that satisfies 3 € I(S). Then, considering
the partition = = {{1,2},{3}}, the game is pivotally balanced since {1,2} is a
maximal element for both players 1 and 2.

We state now our main result. The proof is given in Section 4 as we need a
representation in terms of NTU games for the if part of the proof (see Theorem
3).

Theorem 2 Let (N, ) be a hedonic game. The game admits a core-partition
if and only if it is pivotally balanced.

3 About sufficient conditions

We review different properties that guarantee the existence of core-partition.
Given our main result, each of them can be restated as a condition of pivotal
balancedness. We describe two cases: consecutiveness, top coalition property,
where the pivotal is explicitly constructed and the game is shown to be pivotally
balanced. To proceed with the review, we follow mainly the contributions of
Bogomolnaia and Jackson [5] and Banerjee et al. [2].

3.1 Consecutiveness and ordinal balancedness

In Bogomolnaia and Jackson [5], the authors identify two classes of conditions for
the existence of core-partition in hedonic games: ordinal balancedness condition,
as presented in Theorem 1, and consecutiveness properties. We have already
seen that ordinal balancedness coincides with I-balancedness in the particular
case where I(S) = S for any S € N.

Turn now to consecutiveness and weak consecutiveness properties. An or-
dering of players is a bijection f : N — N. A coalition S € N is consecutive
with respect to an ordering of players f, if f(i) < f(j) < f(k) with i,k € S
implies j € S. A hedonic game is consecutive if there exists an ordering of
players f such S =; {i} for some ¢ implies that S is consecutive with respect to
f. A hedonic game (N, >) is weakly consecutive if there exists an ordering of
players f such that whenever a partition 7w € II(N) is blocked by some coalition
T, there exists T that is consecutive with respect to f that blocks .

3.1.1 The pivotal distribution: case 1

Let us show how the property of consecutiveness implies pivotal balancedness.
Let f be the ordering given by assumption. For each S € N, let I(S) be a
maximal subset of S (for set inclusion) such that it is consecutive (with respect



to f) and I(S) =; {i} for all i € I(S).> One can show that the game is pivotally
balanced with respect to that pivotal distribution.

Let B be a I-balanced family. Then, the family (I(S))seg is a balanced
family of consecutive coalitions. From a classical argument taken from Green-
berg and Weber [11, Proposition 1, p.109], we know that any balanced family
of consecutive coalitions contains a partition. Hence, one deduces that I(S)gsen
contains a partition 7 € II(N). Let ¢ € N, if all S € B(i) are consecutive it
follows that either w(i) = T, for some T € B(i), then m(i) >=; T or there exists
T € B(i) such that {i} »; T then, from the construction of I, w(i) =; T. If
there is a non consecutive coalition S € B(i) then {i} >; S by assumption. It
follows that 7(i) =; S from the construction of I. Thus, the game is pivotally
balanced.

3.2 Top-coalitions

Banerjee et al.[2] introduce the top coalition properties. They are also sufficient
conditions for the existence of core-partition in hedonic games. Given a coalition
U € N, a non-empty subset S C U is a top coalition of U if for any ¢ € S and
any T C U with i € T we have S »=; T. A game satisfies the top coalition
property if for any coalition U € N, there exists a top-coalition of U.

Banerjee et al. [2] also defined a weak top coalition property. We refer the
reader to [2, Definition 14] for further details. Note however that the construc-
tion of the pivotal distribution would be based on the same principle as the
argument below

3.2.1 The pivotal distribution: case 2

To obtain pivotal balancedness from top coalition property, we follow [2] and
let 71 be a top coalition of N, 7o a top coalition of N \ 7y, ..., mx a top coalition
of N\ Ufpr<rymr and so on. The procedure yelds eventually a partition 7 =
(71, ..., mx) € II(N) in K < |N| steps. For each S € N, let &% be the smallest
number such that ms NS # @ and set I(S) = mps N S. Then, the game is
pivotally balanced with respect to that distribution.

Indeed, let B be a I-balanced family. By way of contradiction, suppose that
the game is not pivotally balanced. Let ¢ € N such that for each S € B(i),
S =i m(i). Then necessarily S ¢ N \ Ugprcpympe for k such that m, = (i),
otherwise 7, is not a top coalition of N\U<jymx. Thus, there exists j € SN/
with ¥/ < k. Then, i ¢ I(S) from the construction of I. One deduces that for
each S € B(i), i ¢ I(S) which is in contradiction with the fact that B is I-
balanced. Then, the game is pivotally balanced.

3For each S € N, the set I(S) is non-empty since at least the singletons in S are candidates.



4 NTU games representation

To prove Theorem 2, one needs to use NTU games representation of hedonic
games. Let (NN, >) be a hedonic game. Following a strategy set up by Banerjee
et al. [2] and Bogomolnaia and Jackson [5], let us a define an associate NTU-
hedonic game. First, we define a utility profile consistent with (N, »), for each
i € N, let u; : N(i) — R be such that, for each S,T € N (i), u;(S) > u;(T)
iff S >=; T.* For each S € N, let Vg = {z € RY | z; < uy(9) for all i € S}
be the set of feasible payoffs of S, and V = {z € RY | 3x € II(N),z; <
u;(m(7)) for all i € N} be the set of payoffs such that there exists a partition
for which the payoffs are feasible.> The family of payoff sets ((Vs)senr, V) is
called NTU-hedonic game and is denoted V' (N, >). The core of V (N, >) is the
set OV \ int Ugen Vs.©

Theorem 3 Given a hedonic game (N, ), the following propositions are equiv-
alent:

1. The game amits a core-partition.
2. The NTU-hedonic game V (N, =) has a non-empty core.

3. The game is pivotally balanced.

Remark 2 The statement of Theorem 3 comes closer to a result of Kaneko and
Wooders [12, Theorem 2.7]. The authors provide a characterization in terms of
partitioning condition for the non-empty core in partition structure for a class
of NTU games with restriction on feasible coalitions. However, their result is
not comparable with Theorem 3.

In Billera [3], the notion of b-balancedness is defined. For each S € N, let
bs € RV \ {0} such that by € Ry if i € S and bl = 0 otherwise, and let
be Rf +- A family of coalition B C N is b-balanced if for each S € B, there
exists A\s € Ry such that ) g 3 Asbs = b. Given the hedonic game (N, =), the
associate NTU-hedonic game V (N, =) is b-balanced if for any b-balanced family
B C N, NgepVs C V. The result of Billera [3] implies that any b-balanced
NTU-hedonic game has a non-empty core. The result is used in the proof of
Theorem 3.

Proof.

(1) < (2) Obvious, from the construction of the game V(V, >). O

4Such a utility profile always exists since the number of coalitions is finite. Note also that
we need only one utility profile, but in general the profile is not uniquely defined.

5Usually to define the game in partition structure, one sets Vy = V and the set V is
omitted. Our formulation here is equivalent and used for convenience. In [7], the distinction
between V' and Vi has deeper implications.

6For any set Y C RN, Y and int Y will denote respectively its boundary and interior.



(1) = (3) Consider a core-partition ©* of (N,>) and construct the pivotal
distribution. For each S € N, define I(S) = {i € S | #*(i) »=; S}. Necessarily
the sets I(S), S € N/, are non-empty since 7* is a core-partition. Next, suppose
that the game is not pivotally balanced with respect to I. Thus, there exist
a family B C N and A\g € Ry for each S € B with > ¢ Ag17(9) =1, and
k € N such that for all S € B(k), S >, 7*(k). From the construction of the
pivotal distribution, one deduces that k ¢ I(S) for all S € B(k). Hence, B is
not I-balanced since (3 gcp k) As11(9)), =0 < 1. Tt leads to a contradiction.
O

(3) = (2) Suppose that (3) holds true and let I € 7 be the associated pivotal
distribution, we show first that V(IV,>) is b-balanced, the vectors (bs)senr
being given by (17(5))gcnr and b = 1. Let B be a b-balanced family of coalitions
and z € NgegVs. From Remark 1, B is I-balanced. From (3) there exists a
partition 7* such that such that for all ¢ € N, there is S € B(i) such that
u;(S) < w;(m*(4)). Since x € Vg for all S € B, it holds that for all ¢ € N and
S € B(i), z; < u;(S). Then, one gets z; < u;(w*(¢)) for all i € N, ie. z € V.

Hence, the game V (N, >-) is b-balanced & la Billera [3]. From the non-emptiness
result given in [3], the game V' (N, ) has a non-empty core. O
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