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ABSTRACT.  
 Recent developments in the area of the knowledge of quantum systems have led to 
consider as physical facts statements that appeared formerly to be more related to 
interpretation, with free options. Of such a nature are the quantum behaviors of individual 
particles (diffraction, etc.), neutrinos oscillations, distant quantum correlations (local non-
separability), Bose-Einstein condensation, cooling isolation of atoms and, recently, 
decoherence of quantum superposition states interacting with environment, that allows a 
better understanding of the transition from the quantum domain to the classical-macroscopic 
one. The debate on the interpretation of quantum mechanics has imperceptibly changed its 
nature through these developements, giving higher weight to a «physical interpretation» more 
clearly distinct from the philosophical one than in the old days of quantum mechanics. In 
particular, the concept of quantum state has undoubtedly acquired a direct physical meaning, 
in terms of properties of a physical system that is fully represented by a linear superposition 
of eigenstates, and able to propagate as such in space and time. The price for this new 
situation is an extension of meaning of the concepts of physical magnitude and physical state 
towards ones that do not correspond directly with numerical values. 
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“I think (…) that a theory cannot be produced from results of 
observations, but only from an invention”. 

“I am not ashamed to put the concept of «real state of a physical 
system» [“existing objectively, independently of any observation 
or measure, and that can in principle be described through the 
means of expression of physics”] at the very centre of my 
meditation”.  

 Albert Einstein1. 

 

“(…) It is interesting to speculate on the possibility that a future 
theory will not be intrisically ambiguous and approximate. Such 
a theory could not be fundamentally about «measurements», for 
that would again imply incompleteness of the system and 
unanalyzed interventions from outside. Rather, it should again 
become possible to say of a system not that such and such may 
be observed to be so, but that such and such be so. The theory 
would not be about observables, but about «beables»". 

 John S. Bell2 

 

 

 

                                            
1 Respectively : Einstein, letter to Karl Popper, 11.9.1935, published as an appendix in Popper 
[1959] ; Einstein [1953], p. 6-7.  
2 Bell [1973, 1984].  
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1 
  

INTRODUCTION.  
STATE FUNCTION AND «DIRECT REPRESENTATION»  

OF A QUANTUM SYSTEM OR STATE 
 

 Quantum physics is aimed at the deep structure of matter in general, 

from bodies of our environment and molecular associations of atoms up to atomic 

nuclei and to elementary particles actually or «virtually» contained in the latter, 

and up as well to cosmic objects and to the primordial phases of cosmology. It 

ensures the unity of matter in the variety of its organization patterns, the means of 

the theoretical understanding of this domain of physics being constituted around 

quantum mechanics. This last one is, in turn, applied to particular (atomic, 

nuclear) theoretical models, and enlarged, from a more fundamental point of view, 

to a quantum field theory, from quantum electrodynamics (QED)3 to electroweak 

and chromodynamic gauge field theories4. These recent developments have been 

performed within the conceptual frame of quantum mechanics and, as an effect, 

have confirmed its heuristic power and permitted at the same time physicists to 

get used to work with this tool-for-thought that is indispensable to explore 

quantum phenomena.  

 Quantum mechanics, as a theoretical scheme, is practised 

successfully, and today physicists, while applying strictly, in the working process 

of their physical thought on phenomena under study, the rules that govern the use 

of quantum magnitudes, no longer do worry very much about the «difficulties of 

the interpretation» that had heavily preoccupied the founding fathers and their 

immediate successors. As for interpretation, if they had to propose any, this would 

be for most of them the following : “what is important is that it works”. And, 

indeed, this might be a mark of unconcern or the expression of an immediately 

pragmatic philosophy that would remain blind to deeper reasons. This attitude 

comprises, in all events, a part of truth, of the kind of that we walk before 

knowing how : they have the theoretical (and even conceptual) tool and know to 

handle it before knowing exactly its nature, and worrying about it.  

 However, as soon as they ask themselves questions concerning the 

intelligibility of physical phenomena in the quantum area, they find again the 

terms of the old debate. But, differently from their elders, they meet these «from 

outside», so to speak, in this sense that these questions appear to them as posed 

only to a «second order» of the understanding : i.e., when they question 

themselves not about this understanding, that is itself provided by theory, a theory 

they know so well that it has become a «second nature» to their thought, but about 

the reasons of it.  

 To understand «to the first degree», that is at the level of their work in 

physics itself, is got at through handling the concepts and magnitudes that 

represent, reproduce or create the phenomena of interest. When physicists speak, 

                                            
3 On the history of quantum electrodynamics, see Schweber [1994].  
4 Cf., f. ex., Bimbot & Paty [1996]. 
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today, of an «elementary particle» (for example, a proton), they mean, indeed, that 

it is described by «quantum numbers» or quantities that are «eigenvalues» of 

operators representing the adequate physical magnitudes and they have abandoned 

the classical image of a directly visible corpuscle, that no longer belongs to their 

referential background. Quarks themselves are quantum particles considered in 

this sense. Such entities or physical «systems» or quantons5, conceived in the 

specific way of quantum physics, are implicitly supposed to constitute in a way or 

another, according to the modalities of their description, objective elements of the 

real world, that manifest themselves to knowledge. Symmetries of quantum 

particles and fields allow us to understand in that way their properties and their 

arrangements.  

 Philosophical and epistemological difficulties arise only when one 

intends to understand the nature of this understanding : this is what I mean by 

«intelligibility to the second degree». This difference of degree with the founding 

debates comes from that the theoretical tool, «formalism», in the usual expression, 

is now already justified as a representation by its success. Physics builds its tools 

in an abstract manner and contents itself with these being well conceived, without 

trying to naturalize their origin ; admittedly they are abstract, symbolic, 

mathematical, and elaborated by thought from necessities laid by phenomena 

(physics has indeed established rules for that purpose, such as for example 

statements in the form of principles). 

 From this one sees clearly, undoubtedly better than in the past, when it 

was necessary also to construct these tools, that the problem of interpretation is 

twofold, but separated : physical and philosophical. The physical interpretation 

deals essentially, as it was traditionally the case since the birth of modern physics 

(in XVIIth century), with the relationships between mathematically expressed 

magnitudes and the corresponding physical contents. The difference, from the 

physical point of view, between theoretical and conceptual elaborations aimed at 

quantum phenomena and systems, and those dealing with classical ones, is that 

the quantum are farther than the classical from the processes of observation by 

which these phenomena come to our senses.  

 Niels Bohr had rightly emphasized this difference of nature between 

the quantum and the classical. But he had formulated it in a manner that changed 

abruptly a simply physical state of things into a philosophical problematic about 

knowledge. There was, according to him, a barrier between the quantum and the 

classical, that was due to measurement, made necessary to know from perception. 

It resulted from there, in his view, that the knowledge of quantum phenomena can 

not grasp these directly as they stand in themselves, but has always to refer to 

classical representations. 

 The disjunction between the representation of quantum phenomena 

and that of classical ones can be pointed at in a philosophically more neutral 

manner : while classical physical phenomena and systems are homogeneous to the 

processes of their observation, quantum phenomena and systems are not, since 

observations and measurements relative to them belong ultimately to the domain 

of classical physics. But that does not entail any impossibility to represent 

                                            
5 This term has been introduced by Mario Bunge (Bunge [1973]). 
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«directly», that is to say in terms of properties and objects, quantum phenomena 

and systems, at least if one refers intelligibility not to perception but to 

understanding, as it seems logical. If one can conceive objects of a quantum area 

or «world» in this sense, the questions of physical interpretation will be therefore 

largely independent from those bearing on more general considerations on 

knowledge, i.e. philosophical interpretations. One would then have shifted, so to 

speak, from a concern for interpretation in general to a more precise interest for 

the physical meaning of quantum magnitudes provided inside quantum theory 

itself.  

 The philosophical aspects of interpretation would then be set at a 

different level, granting a large autonomy to quantum physical thought, sensibly 

the same as for the other areas of physics : the former would no longer have to 

sacrifice to a so-called «foundational» need of being based on a peculiar 

philosophical interpretation, as in the first times of quantum mechanics6. And one 

would have then satisfied, up to some point, the realist demand of the theoretical 

physicist asking, with John Bell, for a theory that is not fundamentally about 

measurements, that considers physical systems in their inner completeness, and of 

which one could tell “not that such and such may be observed to be so, but that 

such and such be so”. In other words, a theory that “would not be on observables” 

[magnitudes able to be observed], “but about beables” [magnitudes able to be]7. 

This being eventually obtained with the argument presented in what follows, 

without modifying in any way the form of standard quantum theory, and only by 

understanding it differently (to an intermediate degree of understanding, involving 

some kind of physical interpretation).  

 It remains to know how to «interpret physically» the theoretical, 

conceptual or factual states of things that were problematic in a physico-

philosophical mode for the «orthodox» or the «complementarity» «interpretation». 

We shall restrict ourselves, in what follows, to revisiting some characteristic and 

relatively simple quantum phenomena, renewed by recent results from high 

precision experiments, in the light of the proposed perspective on the physical 

interpretation of magnitudes and of theoretical formalism referred to the 

description of a world of properly quantum objects or systems. We shall see that 

they invite us directly to conceive quantum magnitudes in this manner, which 

entails the need to enlarge the meaning generally given to the concept of physical 

magnitude, and especially to that of state function representative of a physical 

system. 

 These phenomena served usually, since the beginnings of quantum 

mechanics, to illustrate the problems of interpretation. By a fair reversal of things, 

it is today possible to make arise directly from them the physical interpretation 

they are calling for. These phenomena are, first, local non-separability, whose 

epistemological status has undergone changes from a formal feature with optional 

physical meaning to an established physical fact, corroborated by experiments 

with distant correlated systems. Then, diffraction of quantum particles, performed 

not any more with many particle beams for statistical results, but with individual 

                                            
6 See Paty [2000a].  
7 Bell [1973, 198?]. See the complete quotation in the epigraph. 
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quantum systems for probabilities of individual events. Also, indistinguishability 

of identical particles, initially postulated or conceived as a formal property, and 

thenafter demonstrated by direct physical effects such as Bose-Einstein 

condensation, where a great number of identical atoms are accumulated in the 

same fundamental state up to a quasi-macroscopic level. Finally, recent 

experiments of «decoherence» have permitted to visualize superpositions of states 

in relation with mesoscopic systems in a situation of measurement by a classical 

device, in a tiny time interval before the dissipative loss of information occured 

from interaction with the environment.  

 All these results converge towards a specification of the physical 

meaning of quantum concepts and magnitudes implied by the corresponding 

phenomena, obliging to associate factual evidences and physical contents 

conceived in terms of properties of systems, with «formal» properties whose 

interpretation remained until then optional or problematical. We will analyze 

some aspects of this new situation, trying to make out in which way they may 

contribute to deepen, to modify, or to base our theoretical comprehension of 

quantum features, by reducing the latitude of arbitrary choice in the interpretation 

and by adapting the norms of our intelligibility. 

 

 

2 
 

LOCAL NON-SEPARABILITY 
AS A FACT AND AS A PRINCIPLE 

 

 The objection opposed by Einstein in 1935 to the claim that quantum 

mechanics is a fundamental theory that will serve as the basis for any further 

progress in physics, known as «EPR argument», and afterwards reformulated and 

refined by its main author, raised several questions that overlap with 

interpretation8. The problem set was to know whether the theory (quantum 

mechanics) describes, or not, real individual physical systems, and if it describes 

them completely, that is to say adequately to all aspects rightfully attached to their 

individuality and in a one-to-one manner. The orthodox interpretation (in the 

philosophical sense) challenged the legitimacy of speaking of elements of reality 

independently of their conditions of observation, and Bohr's reply to Einstein's 

argument was exactly founded upon this position9. It had no chance to be listened 

to by Einstein, who could not accept its principle. Any progress in the debate on 

this question supposes from then on to try to leave aside the philosophical diktat 

of Bohr's reply, and keep considering only physical theory and the content of its 

concepts.  

 The question, as contemplated by Einstein, was to know whether the 

theory is complete in the indicated sense (it was to him the minimal sense for a 

                                            
8 Einstein, Podolsky & Rosen [1935], Einstein [1948, 1949].  Cf. Paty [1988a, 1986 and in press, 
a].  
9 Bohr [1935]. 
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theory to be considered fundamental)10. If one can characterize an individual 

quantum system (be its theoretical representation probabilist or not), its state 

function has to represent it as such. If that is impossible because of some feature 

of the theory, then this theory can be only a statistical description (such was, 

indeed, the conclusion of the «EPR» argument). We will see further that this is 

also the point at stake with the interference of distinctive individual quantum 

systems when put actually in evidence. The EPR argument suppressed in principle 

the possibility to elude such a question in the name of an operationalist 

philosophical interpretation, and indeed the construction of rarefied beams later 

suppressed it effectively. Individualization for a system was indeed usually 

prevented by the alleged necessity to detect and measure it, if one wanted to know 

something of it (with a particle counter to know whether there came only one), 

and this act would destroy it immediately as a quantum system (it would project it 

on a classical particle state), forbidding all further knowledge of its quantum state 

(through the manifestation of wave properties). 

 In the EPR case, the system under study (U) was conceived in 

correlation to another one (V) while it did not maintain any dynamical interaction 

with it11. The correlation, expressed by the conservation of a magnitude (A) used 

in the description of these systems, and known for the initial state formed by the 

two subsystems12, allowed to determine the state of the first without perturbing it 

by a measurement, by deducing it from the state of the second, measured 

(supposedly) independently of it13. Measuring magnitude (A) of the second 

destroyed its state at the very moment of its determination, forbidding any 

meaning to the consideration of an alternative measurement for another magnitude 

(B) incompatible with the first : the initial system being no more available, no 

effective comparison can be made. But it would have nevertheless been logically 

possible, as a matter of principle, to perform the second measurement instead of 

the first, and it would have provided another state function for the second system ; 

from it, the first system would have been deduced, a priori different from the 

preceding result14. One could therefore have two different state functions to 

describe one and the same physical system : it would obviously be a theoretical 

                                            
10 In particular in Einstein, Podolski & Rosen [1935], Einstein [1948, 1949]. See Paty [1986, 
1988b, 1995a, and in press, a].  
11 The two systems U and V form at initial time one only system U  V  and are allowed thenafter 
to move away from each other at arbitrary distances (for instance, two photons emitted in 
correlation by an atom). 
12 For instance, the overall momentum, 
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13 Measurement of magnitude A  for the system V determines its state function, 
V

A
, and the 
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U

A
. 

14  Let 
V

B
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
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weakness. 

 But this reasoning was dependent on a statement that did not belong to 

quantum formalism and that was at this time considered as optional : the 

separability of two far distant systems, that is to say their mutual independence in 

their respective locations. Einstein gave a precise definition of this principle of 

separability15, although recognizing that he added it to quantum theory. Without 

this principle, he believed, however, one could not characterize separately 

localized individual systems, unless one admitted a non-physical interaction 

(instantaneous action at a distance) between them. He concluded from this that 

quantum mechanics does not describe individual physical systems, but only 

statistical ensembles of systems, for which the objection does not hold16. 

 Further progress, both theoretical with John Bell's theorem (1964), and 

experimental, with experiments of correlation from a distance, has essentially 

consisted in analyzing local separability, a concept identified by Einstein, and in 

testing it for quantum sytems. Bell's theorem on non locality demonstrated the 

existence of a contradiction between local separability and some predictions of 

quantum mechanics for systems of two correlated particles (strong correlation 

relationships for quantum systems expressed by equalities between averages for 

magnitudes were opposed to weaker correlations in the form of inequalities for 

the local separation case), and provided the sensitive relationships able to 

discriminate the local separability hypothesis and quantum theory17. From then 

on, experiments have decided in favor of quantum mechanics, in a hardly 

disputable manner, especially that of Freedman and Clauser, realized in 1972, and 

that of higher precision performed in 1981 by Alain Aspect18. Local non 

separability was henceforth established as a physical fact, a general property of 

quantum systems having been put in correlation, well identified from the 

phenomenal  point of view19. 

  This property corresponds to a characteristic feature of state function 

in quantum mechanics : the state functions of subsystems that have been once 

correlated are not factorizable (i.e. independent of each other, i.e. separable). 

Having been linked together to form, even momentarily, one single system, two 

(sub-)quantum systems can not be dissociated : this «entanglement»20 is a 

                                            
15 In particular in Einstein [1948] and [1949]. See Paty [1995 and in press, a]. 
16 Ensembles of systems can admit a non-biunivocity of their state function, if the latter is only 
about mean values. 
17 They are called «Bell's inequalities» : see Bell [1964, 1966, 1987]. They are relevant for the 
property of locality generally speaking, independently of they being or not related to determinist 
hidden variables, to which they had been linked in a first period. More general relationships have 
been obtained since then : Bell's theorem for locality without hidden-variables (Bell [1971], 
Eberhard [1977], Peres [1978], Stapp [1980]), and for more than two quantum correlated particles 
(Greenberger, Horne & Zeilinger [1989, 1990], Mermin [1990]).  
18 Freedman & Clauser [1972], Aspect, Grangier & Roger [1981, 1982], Aspect, Dalibar & Roger 
[1982, Aspect [1983]. See the following reviews and analyses of the experimental results : Bell 
[1976a], Paty [1977, 1986], Clauser & Shimony [1978]. 
19 See Bohm & Hiley [1975], in Lopes & Paty [1977], p. 222 ; Paty [1988a], chap. 6, and Paty 
[1986].  
20 The use of this word, coined by Schrödinger in 1935 (Schrödinger [1935, 1984]), has been 
reactivated recently (Shimony [1993], d'Espagnat [1994], Cohen, Horne & Stachel [1997a & b], 
etc.). 
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fundamental property of quantum formalism, and possesses therefore a direct 

counterpart in phenomena, local non separability. This last can equally be 

considered as an aspect of non locality of quantum systems. The general and 

fundamental character of this property, and its inscription in the formulations that 

define in the theory the state of a system, incline us to see in it at the same time a  

fact of experience and a principle for quantum physics.  

 An important conceptual aspect of local non-separability is its place in 

the economy of quantum theory. One can analyze it, from the point of view of the 

conceptual and theoretical consistency adopted here (which may also be called of 

«critical realism»), in the following manner. As it is directly linked to the 

definition of quantum systems and of the magnitudes by which we represent their 

states, local non separability relies only on these, and does not have to refer to 

other magnitudes that would be defined outside of this theory. It bears on systems 

that, spatially speaking, are «extended systems», and for which the space variables 

have not, as an effect, a direct part in their definition ; in this sense, it is not 

concerned by special relativity, that it does not contradict, and has nothing to do 

with (instantaneous) actions at a distance21.  

 It is fair to say, however, that many physicists and philosophers of 

science would still disagree with this conclusion, that seems compelling from the 

point of view adopted here. It is, indeed, difficult to think physically without the 

help of spatial intuition, and this is probably the main reason of their 

dissatisfaction with «pure quantum reasoning». But who can say what kind of 

intuition is adequate for the quantum domain ? It seems to me that quantum 

physicists have developed over the years an adequate intuition in this respect, that 

is basically founded on quantum formalism as a practized intellectual tool to 

explore and understand quantum phenomena (the epistemological implications of 

which we are exploring here, taking a point of view of general consistency). John 

Bell, who was reluctant to accept the above argument, which he viewed as too 

formal and even as a «verbal» solution22, admitted nevertheless non separability 

as a fundamental fact and eventually as a physical principle23. But he would have 

preferred to have a dynamical interpretation of it. It seems to me, on the contrary, 

that as a principle it definitely does not need an explanation, but stands as a 

primary conceptual reference toward which the other quantum concepts must be 

consistently obliged (in a way similar to the principle of special relativity ruling 

the transformation laws of the concepts related with the motion of bodies). 

 As a fundamental quantum fact, one should perhaps consider that local 

non separability is to quantum physics as, for example, the principle of 

equivalence (of inertial and gravitational masses) is to the general relativity theory 

of gravitation. One can see it as a true principle, both a synthetic proposition 

based on experimental facts and a theoretical statement of a central, and perhaps 

                                            
21 This aspect has been emphasized in the article quoted (Paty [1986], and already in 1980 (Paty 
[1981, 1982]). Bernard d'Espagnat seems to come also to the same conclusion in one of his recent 
books (d'Espagnat [1994], p. 430). 
22 I remember my discussions with him : we disagreed on this point. This question represented to 
him an intellectual challenge whose difficulty remained untouched. 
23 Bell [1987]. I have quoted elsewhere (Paty [1988a], p. 245), a letter in this sense of John Bell to 
Alain Aspect. 
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foundational, importance ; it could serve to formulate quantum theory in a less 

formal manner than the usual presentation, which would make it come closer to 

the other physical theories, from which it parted until now in this respect.  

 Local non separability can be seen as an even wider theme of 

reflection, rejoining a cosmological perspective. One can, indeed, make 

rapprochments with other features of «disindividualization»24 or of 

«desingularization» or, better, of indifferentiation such as indistinguishability (that 

partakes as well of the superposition principle), and perhaps as symmetries of 

matter, that are important features of primordial cosmology25. One can also see in 

it, with David Bohm, the mark of a more general indivisible wholeness of material 

reality26. On this one must nevertheless observe that to grasp an underlying order 

thought separations in such a wholeness are needed as a necessary approximation, 

without which the concept of wholeness would lose all utilizable physical content. 

Extended in an absolute manner to the whole Universe, the principle of non-

separability would present the same kind of disadvantage as the one pointed out 

by Poincaré27 regarding the principle of relativity of space if we were to formulate 

it with respect to all bodies of the Universe : being tautological it would not give 

us a hold on phenomena. But, at any rate, it might give us some hint on 

cosmological conditions, of the kind Einstein got for a closed and unlimited 

Universe28 (for example, in quantum cosmology, some coherence condition for 

having finite time inside Planck’s limit in the primordial Universe).  

 

 

3 
 

INDIVIDUAL SYSTEMS  AND  
TRANSFORMATION OF PHYSICAL PROBABILITY 

 

 The phenomenon that is the simplest in its principle to characterize 

quantum properties is that of interference, which confirmed the wave-particle 

duality of matter and inspired Max Born's idea of the probabilist interpretation of 

the state function. This archetype phenomenon illustrates some fundamental 

aspects of the description of quantum systems and helps making explicit from the 

physical point of view the interpretation problems that had been raised.  

 The «orthodox» interpretation of complementarity and 

observationalism sees in it the necessity of wave-particle duality and the 

impossibility to go beyond it. The interference pattern (concentric rings, 

alternately obscure and bright), similar to those of classical waves, is due to the 

wave property of quantum sytems ; whilst, on the other hand, the materialization 

                                            
24 This word is inadequate if by individuality one means a unity. Undifferenciated quantum 
systems can be counted : they keep cardinality. 
25 Paty [1999b]. 
26 Bohm [1980]. 
27 Poincaré [1912]. See Paty [1996].  
28 See Paty [1993], chap. 5 and 7. 
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of these varied intensity rings on the screen covered with a sensitized film comes 

from the corpuscular property of these systems (through their interaction with the 

grains of photographic emulsion, producing an image). The dual properties, 

contradictory if they are considered for individual «particles» or systems, can be 

reconciled as soon as one gives up a concern for causality of individual events, 

and minds the statistical aspect of the experiment. If one wanted to examine, in 

this experiment, the behavior of an individual quantum system, any meaning of it 

would be denied, according to the complementarity interpretation, in the name of 

the very definition of the systems. As a matter of fact, if one wanted to 

characterize a quantum system as individual, it would be necessary to submit it to 

a counting experiment, that would inform about which of the slits the quantum 

system has gone through ; by being localized in that way, the system would suffer 

a perturbation, and therefore lose its quantum aspect and its capacity to produce 

interferences. 

 Yet, in 1930 already, Paul Dirac, in his book The principles of 

quantum mechanics29, indicated that, according to this theory, one photon 

interferes with itself and that this is the reason of the interference phenomenon. 

This is also the case for any quantum systems (particle, atom, etc.). The meaning 

of it would be that interference is a property of any individual quantum system, 

and that quantum physics is the theoretical description of such individual systems. 

The probabilistic turn of this description would not a priori be a hindrance for this 

purpose (after all, statistical mechanics does the same). However, the 

«complementarity explanation», to which we just referred, blunts and dissolves 

the force of this statement, by making of it a mere feature of the formalism, from 

its claiming of the impossibility by principle to observe it in experiments. 

 As for the ensemble interpretation of quantum mechanics, according 

to which the theory is only a statistical one (incomplete for Einstein, complete for 

others), it only knows averages, that have no physical meaning except for an 

ensemble of systems, and can not pronounce on the significance of individual 

quantum events.  

 However, since approximately two decades, experiments have been 

realized, and continuously improved thanks to technical advances, with individual 

quantum systems (photons, electrons, neutrons, atoms) that are known to be such 

without needing to be counted by detection on their path, and therefore without 

destruction of their quantum state. It has actually been possible to produce beams 

of such «particles» or quantum systems, extremely rarefied and with a high time 

definition (better than 0.1 ns), in such a manner that particles get to the 

interferometer one by one, spread in time, each having got across the experimental 

arrangement within an interval of time sufficiently small to ensure that the 

following one has not yet entered30. One is then pretty confident that only one 

particle at a time has crossed the interference apparatus (and interfered with 

itself). The detection of impacts on the screen seems in the beginning to be at 

                                            
29 Dirac [1930]. 
30 See, in particular, Pflegor & Mandel [1967], Grangier [1986]. The concepts of quantum theory 
of field, that permit the definition of states with a given number of particles, underly these 
experiments. It is necessary, for exemple, to prepare one-photon states of the electromagnetic field 
(Grangier [1986]).  
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random, but as time goes and many single «particles» having gone through the 

interferometer accumulate, the distribution of impacts is seen to obey a law : one 

obtains, in the end, the same interference pattern as in the traditional experiment 

with a beam of N identical particles crossing simultaneously the interferometer. 

 These results require that a physical meaning be attributed to an 

individual event in an interference experiment. Clearly, the final interference 

pattern with individual particles can only be obtained statistically, by the 

realization of a great number of successive one-particle or individual quantum 

system experiments. The result of N such experiments with single quantum 

systems gives the same result as a single experiment performed, in the same 

interferometer, with a beam of N identical systems. But the theoretical inference 

that one is allowed to make in the two cases is very different. The second case, of 

the traditional experiment with a great number of simultaneous systems, satisfies a 

frequentist and purely statistical interpretation of the probability given by the state 

function31.  

 But the effective occurrence of the first case, N experiments with an 

individual system identical each time, and represented by the same state function, 

assures us that each individual phenomenon, independently from the others, 

contributes to the final interference pattern. One is therefore led to conclude that it 

is the individual quantum systems that make the phenomenon and therefore that, 

in a way that remains to be specified, each individual phenomenon occurring with 

each (independent) system constitutes potentially the overall interference 

phenomenon revealed by the final pattern, obtained statistically. In other words, 

each phenomenon relative to an individual system is a quantum phenomenon, 

collected on the screen through a classical measurement process (the «photon» or 

quantum particle impact on a grain of silver bromide of the photographic 

emulsion). One is then inclined to consider that, just before interception on the 

screen, each of the individual systems having interfered with themselves is in a 

quantum superposition state. And that, as nothing distinguishes them from each 

other, all these individual systems in interference are strictly identical. From then 

on, the only remaining problem would be that of the measurement process : 

identical quantum systems provide, after detection, different results, but endowed 

with probabilities corresponding to the amplitude of probability of their state of 

superposition32. 

 As a result of what precedes, the   state function must be considered 

as the theoretical representation of an individual particle, which entails the 

                                            

31 P  
2

.  

32 Consider an initial individual system crossing a diaphragm with two slit a and b, and whose 

state is represented by  ( x ) 
1

2


a
(x )  

b
( x ) . Let z be the variable corresponding to 

various localisations on the screen, placed at a distance x from the diaphragm. The state  ( x)  of 

the individual interfering system can be considered as a linear superposition of states prepared 

along the values z
i
 of the variable (or magnitude) z :  ( x )  

i
 ( z

i
)

z
i

 . The probability of an 

impact on the screen in z
i
 is 

i

2

. 
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following important consequence of its physical meaning : the physical 

probability, given by the  state function33 (lhe latter being often named 

«probability amplitude», in a sense that can only be physical, since nothing of the 

kind exists in mathematical probabilities), is not liable to be reduced to statistics 

for ensembles of systems. It has a theoretical function from the physical point of 

view, as it is deduced from a magnitude having a direct physical meaning, the 

probability amplitude (i.e. the state function itself). One can therefore consider 

this probability as a physical magnitude, which makes it differ from probability in 

a merely mathematical sense, as well as from probability conceived physically as 

expressing a frequency34. 

 

 

                                            
33 By the square of its modulus. 
34 Cf. Paty [1990]. 
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4 
 

INDISTINGUISHABILITY AND STATE FUNCTION 
 

 In quantum physics, the state function that represents a quantum 

system allows the complete description of all the properties attributed to this 

system, in such a way that systems represented by the same state function are 

effectively in the same state and are absolutely indistinguishable. That means that 

there does not exist any other possibility, external to the theory, to distinguish 

them. In others words, a quantum «particle» has no other characteristics than 

ithose of its state, differently from physical systems as described by other theories 

such as classical mechanics, thermodynamics or relativity theory. These theories 

describe what happens to physical objects that are in other respects defined 

outside of them. For example, the three body problem of classical astronomy is 

about the mechanical processes occuring to celestial objects that are supposed 

given. The theory bears not on these objects, but on their interaction properties. 

The Moon, the Sun and the Earth, for example, possess an identity - and an 

opacity - defined previously to the laws and equations under study of mechanics 

and astronomy. 

 The only theory, except quantum physics, for which the eventuality 

has been considered that it could be able by itself to describe its object, instead of 

getting it from outside, is the general theory of relativity, at all events in a further 

more elaborated formulation foreseen as a distant purpose (by A. Einstein and J. 

A. Wheeler notably), where it would be possible to describe in the same system of 

equations both a field and its source. Such was the «strong» meaning Einstein 

attached to the notion of theoretical completeness35 and, to him, quantum 

mechanics was not a «complete theory», in this sense obviously, as its status of a 

framework theory rather than a dynamics suffices to show. But there was another, 

weaker meaning of the same notion, which he considered as crucial for the 

fundamental nature of quantum physics, as we have seen earlier. A theory would 

be «complete» in a minimal sense if it were able to describe fully its object, that is 

all the properties than can be physically considered about it. It was not the case, 

for Einstein, with  quantum mechanics, because of EPR type correlations that, 

invalidating the principle of separability, excluded the description of individual 

systems36.  

 We do not any more consider this argument in this form, such 

correlations having proved to be factual and to concern individual correlated 

systems. On the contrary, actually, completeness at least in the weaker sense 

would characterize, in principle, the description of quantum systems with the 

physical interpretation envisaged here. The main obstacle to this requirement 

seems today to remain the «quantum measurement problem». If one sets aside the 

latter for a moment, one can rightfully be struck by the purpose of quantum 

mechanics to get an exact covering of the described system by its state function, 

going even therefore, in a way, beyond the restricted completeness requirement. 

                                            
35 See Paty [1988b], [1993], chap 10, and [in press]. 
36 Cf. Paty [1995a ; in press]. See above. 
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 The most remarkable expression of this covering appears, finally, to 

be the property of indistinguishability  of identical quantum systems. But is it a 

mere feature of the formalism, or a property of physical systems ? Both aspects, as 

always with quantum mechanics interpretation problems, seemed closely 

embedded and not easily disentangled. This property was identified on the eve of 

the constitution of wave and quantum mechanics, by Satyendra N. Bose and 

Albert Einstein for quantum systems of null or integer spin (photons and atoms 

named afterwards «bosons», obeying «Bose-Einstein statistics»), and by Enrico 

Fermi and Paul Dirac for quantum systems of half-integer spin (electrons, protons, 

and other « fermions », obeying «Fermi-Dirac statistics»). Indistinguishability of 

identical bosons (in the case, photons) appeared to be the real underlying reason of 

the quantification procedure for radiation energy exchanges in black body as 

performed by Planck in 190037 ; and indistinguishability of fermions (here, 

electrons) gave the explanation of the Pauli exclusion principle, that accounted for 

the constitution of atom levels in terms of state occupations by electrons. 

 This property, corresponding to two types of statistical (or probabilist) 

processing of quantum systems (the admission of several particles in a same state 

in the first case or, on the contrary, their mutual exclusion in the second one), 

opposed to the classical statistical processing à la Boltzmann of particles always 

distinguishable even when occupying a same state (for they possess a proper 

identity). Indistinguishability therefore limits drastically the possible state 

occupations. It indicates, actually, that quantum systems do not occupy states, but 

that they are themselves states, and are identified with their states38. 

Indistinguishable quantum systems have no other element of identity than those 

participating the theoretical description of their state. The notion of state is 

identified with that of «particle» : a quantum «particle» (or system) is its state : it 

is not «in its state», as a classical system. This situation corresponds to a closer 

determination of the physical system by the theory, contrary to the idea that 

prevailed for quantum physics of a looser determination and a limitation of 

knowledge because of «indeterminacy» relations.  

 This formal property, indirectly dictated by factual reasons, and that 

finds also its expression with the principle of superposition39, has proven to 

                                            
37 Already in 1911-1912, Ladislas Natanson and Paul Ehrenfest had diagnosticated the non-
classical character of the statistics corresponding to Planck's radiation law. See, for instance, 
Kastler [1981], Darrigol [1988, 1991], Pesic [1991]. 
38 This includes the invariant characteristics shared by the various possible states of a system, that 
contribute to define the system and its particular states corrresponding to given magnitudes.  
39 Consider, in effect, a system of two identical quantum particles 1 and 2, each in its state, 

represented by the state functions 
1
 and 

2
. The state function of their coupled system is 

symmetrical for the permutation of the particles in the case of Bose-Einstein statistics, hence : = 


12


1

2
(

1
 

2
 

2
 

1
) =

21
. Nothing forbids identical (indistinguishable) particles 1 

and 2 from being in the same state inside the system (identical bosons can accumulate in the same 
state inside a system). For the case of Fermi-Dirac statistics, the coupled state function is 

antisymmetric : 
12


1

2
(

1
 

2
 

2
 

1
) = - 

21
  If the identical fermions 1 and 2 were 

totally indistinguishable, occupying the same state in the system, then one would have : 
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correspond to fundamental physical properties of quantum systems that could be 

directly tested and that have implications to the macroscopic level itself.  

 Supraconductivity and superfluidity are such properties directly 

connected to indistinguishability. Bose-Einstein condensation, predicted since 

1925 by Einstein from the indistinguishability of the identical for some kinds of 

atoms (it was, actually, the first theoretical description of a phase transition), was 

for a long time considered as being very far from possibilities of verification. Yet 

it has recently been put experimentally in evidence, thanks to the high technical 

realization of extreme colds and atoms trapping by laser rays40. Tens of thousands 

of atoms are thus condensed in the lowest energy state (called «of the zero point»), 

nothing distinguishing them from each other : the superatom they then form 

corresponds to a fluid in absolute superfluidity state, without any viscosity, that 

can show itself at the macroscopic level (by an effect of visible non locality, the 

fluid occupying quasi-instantaneously all the space offered to it, rising on the 

container' walls). At this stage, restrictions claimed by the orthodox 

complementarity interpretation about the directly physical character of the state 

function appear rather ridiculous, and as an exercise of twisted rhetoric serving 

only to hide evidence. 

 One may invoke, for the exclusion principle equally - and therefore, 

for indistinguishability  of identical fermions - direct consequences at a highly 

macroscopic level, concerning cosmic objects corresponding to definite phases of 

the evolution of stars. «White dwarfs» are compact stars in a state of equilibrium 

between the gravitational tendency to collapse and the pressure of degeneracy of 

electrons that cannot fall in the same fundamental state because of Pauli exclusion 

principle41. «Neutron stars» resist in the same way the collapse on themselves due 

to gravitation by the degeneracy pressure of the neutrons into which all atomic 

nuclear constituents have been transformed. 

 By its directly physical consequences, indistinguishability  of identical 

quantum systems is indeed a physical property of these systems, and not only a 

feature of the theoretical formalism. It is described with exactness by quantum 

theory in terms of state function (submitted to the principle of superposition), and 

there is therefore, as we earlier suggested, a liaison of the property pointed at by 

indistinguishability (equivalence of particles of similar characteristics, occupying 

the same state within a system, that one can count but that nothing 

distinguishes)42 and the theoretical description by the state function of quantum 

mechanics (or, at a further stage, of quantum field theory). All that confirms us in 

the inclination to see indistinguishability not as a «lack», as would suggest the 

common intuition of the notion of «particle», taken from the immediate 

                                                                                                                       


12
 

12
= 0 : two identical fermions cannot occupy the same state inside a quantum system 

(exclusion principe). 
40 Cornell & Wiemann [1998]. Cf. Griffin et al. [1995]. 
41 The mechanism was proposed by R. H. Fowler as soon as he knew the statistics studied by Paul 
Dirac, who was his student (cf. Doncel, Hermann, Michel & Pais [1987], p. 274).  
42 From the point of view of arithmetics, concerning how to count or to identify by a number, such 
objects are characterized by cardinality, but not by ordinality. It has been proposed from a logic 
point of view to describe them with a set theory whose elements would possess this property, 
different from that of Zermelo-Frenkel (cf., for instance., French & Krause [1996]).  
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experience of bodies in our environment as well as from the habit of classical 

physics, but rather as a characteristic and determining physical property. For 

nothing authorizes us to think, about such objects, of properties that are not 

pointed out by the theory. 

 

 

5 
 

REAL PHYSICAL STATE AND SUPERPOSITION, 
MEASURED STATE AND PROJECTION. 

 

 The state of a quantum system, as we have tried to characterize it 

physically, is not identified with that obtained directly by one measurement alone. 

This last, indeed, is a reduction or at least a projection of the state physically 

defined on one of its components, according to the choice of the preparation of the 

system (by a complete set of compatible magnitudes)43. A measurement device in 

the usual sense can only measure a classical magnitude ; with respect to the state 

of superposition that represents a system before the operation of measurement, it 

can only provide one of the components (one of the «eigenstates» of the measured 

set of magnitude). One should not be surprised by this as such is its function and 

its only ability.  

 The measurement apparatus is, as a matter of fact, by definition, a 

projection device (in the geometrical sense) on the various components of the 

state of the system. One has claimed that quantum measurement is a non causal 

interaction, but this is to pronounce a priori on the nature of the interaction 

between the quantum system and the macroscopic device. If one speaks rightly of 

a rule of projection, or eventually of reduction, this rule does not, up to now, 

mean any directly physical process and nothing allows it to be raised to the status 

of a physical principle. In the absence of a theory, in the proper sense, of quantum 

measurement, that would be a general theory of the interaction between quantum 

system and macroscopic measurement apparatus, one must hold it merely as a 

practical rule. 

 Each measurement provides a numerical value for the measured 

magnitude, one of its possible (classical) values (among the eigenvalues) with 

some frequency, given by the corresponding probability amplitude 

(eigenfunction). An experiment with a great number of identical systems, or a 

great number of independent experiments on such systems taken individually, 

provide all the spectrum of values of the magnitude with probabilities for each 

one (corresponding to the amplitudes in the superposition). From these results in 

terms of classical magnitudes, one infers the quantum superposition state that has 

been submitted to measurement, and of which one can reasonably think that it 

represents the quantum system before measurement, in one of the possible bases, 

the one chosen by preparation. The state function reconstituted in that way is not a 

simple catalogue of data, since the system that it represents has the capacity, 

capacity, a clearly physical one, to propagate, to evolve in the course of time, to 

                                            
43 Or, according to the usual terminology, «a complete set of observables that commute». 
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make interferences or to possibly get oscillating between different physical states 

(on which we shall give more details below). Measurement to determine the state 

will intervene only after these transformations, that owe nothing to man's hand or 

thought but everything to nature. 

 In summary, we propose to consider that the physical quantum states 

are the states expressed as superpositions themselves, that one can determine from 

the determination of their components, which reduces to magnitudes endowed 

with numerical values by classical measurement devices. Actually, this is nothing 

more than to take von Neumann and Dirac geometrical vector representations as 

meaning it : state vectors in Hilbert space are the physical one, represented on 

their various possible bases (determined from the preparations according to their 

possible sets of commuting magnitudes). As a vector, the system state is a basis-

free geometrical representation of a physical state, and is more fundamental, 

because of its invariance, than its «contextual» components.  

 As an effect, physicists, familiarized by their practice with the thought 

of quantum systems, consider them in this manner : what is important to them is 

the representation of these systems' quantum states, i.e. the overall final 

reconstitution, and not the contingent and particular (classical) values obtained by 

measurement. These values are intermediate entities given by experiment, whose 

deep physical meaning is attained at only from their immediate translation in 

quantum terms, needed to come back to the description of the physical quantum 

system under study. 

 

 

6 
 

PHYSICAL PHENOMENA LINKED TO 
PROPAGATION OF SUPERPOSITION STATES 

 

 A physical state, as physicists consider it in their representation of 

quantum phenomena, and as they think it in their theoretical work, is given in an 

invariant form with respect to its «vector projections», while being generally 

presented at the same time as a state of superposition on one basis or the other. 

This is more general than keeping restricted to the consideration of measurement 

alone, which after all is nothing else that one of the moments of verification or of 

experimental test, and it is not a purely formal property : this form rules the 

physical properties of quantum systems. We have seen it for the phenomena 

evoked above, but one can also evoke a number of other ones, of a different 

nature, that show to what extent this is indeed the universal form of the 

description of all quantum systems. Two examples, both borrowed from 

elementary particle physics, will show it in a clear and striking manner, all the 

more as they have no classical analogous : these are the «mixtures» of particles 

states and the «oscillations» from one state to another, these mixings and 

oscillations being expressed directly in terms of state superpositions that 
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propagate44.  

 The neutral «strange pseudoscalar» meson K
0
 and its antiparticle, K

0
, 

are eigenstates of their «mass matrix» (M) and of the strong interaction  

hamiltonian ( H
s
), process through which they are produced (they are physical 

states in associated production conserving the «strangeness» magnitude, S  1  

for K
0
, S  1  for K

0 45 or for any other associated strange particle in the 

production interaction, for instance the «strange baryon» 
0

). They have a 

different behaviour in their decay through weak interaction, with the strangeness 

non conserving hamiltonian H
F

46. The eigenstates for such processes are the 

mesons as observed from their decays, characterized by proper lifetimes () and 

decay modes, the short-lived K
S

0
 (10

10
 s) and the long-lived K

L

0
 (10

8
 s). 

The initial states K
0
 (resp. K

0
) are expressed as linear superpositions of K

S

0
 and 

K
L

0
 states, which progressively transform according to the law of exponential 

decrease in time. If one considers a K
0
 meson initially produced (actually, a beam 

of such mesons, appropriately selected), and worries about its state at a time t, the 

superposition containing initially the states K
S

0
 and K

L

0
 in equal parts 

impoverishes in K
S

0
, whose time decay is faster, and enriches in K

L

0
, that will in 

the end completely dominate. The then nearly pure beam of K
L

0
 states can be 

written as a superposition of the states K
0
 and K

0
 in equal proportions. One gets 

therefore, in the beam of K
0
 mesons, a «regeneration» of K

0
 mesons that were 

absent in the initial beam. These can be detected through a strong interaction 

process with respect to which they are well defined, i.e. of which they are 

eigenstates.  

 Let us note, incidentally, that the qualification of eigenstate concerns 

definite states of a hamiltonian and other physical magnitudes that are not, here, of 

a classical nature. At this level, the identification of quantum systems in given 

states does not call for measurement in the classical sense. The latter is needed 

only at the end of the chain of experimental processes of the detection of 

«particles» typical of the considered interactions. In a general fashion, an 

eigenstate given for a set of compatible magnitudes can be projected (in the vector 

sense) on another (preparation) basis relative to another set of magnitudes 

incompatible (non commuting operators) with the first. This eigenstate of the first 

set of magnnitudes will therefore be written as a superposition of eigenstates of 

the second set. In others words, the «preparation» of a quantum system concerns 

proper quantum magnitudes as well as magnitudes submitted to a classical 

determination by measurement. «Preparation» for measurement is only a 

particular case of «preparation» in general, that means the choice of a set of 

                                            
44 Strictly speaking, the representation of these «particles» makes use of the quantum theory of 
fields. However, the features of their properties that we discuss here are only those of the basic 
formalism of quantum mechanics (the definition of a state from physical magnitudes and the 
principle of superposition for the state functions). 
45 The magnitudes (the «observables», in the quantum jargon) H s , M and S commute between 

themselves ( [ H
s
, S ]  0 , etc.) and have the same eigenstates. 

46  H
F  and S do not commute ( [ H

s
, S ]  0 ). 
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physical magnitudes corresponding to a set of eigenstates taken as referential (or 

as vector basis in the Hilbert space of their eigenfunctions). 

 One can also consider the behavior of these neutral K  particles under 

the transformation by the CP  operator47, product of charge conjugation (C, that 

changes a particle into its antiparticle) and parity (P, or space symmetry) or, 

equivalently, by time reversal (T) operator, the equivalence (CP =T) being due to 

the conservation of the product CPT, following a theorem of the quantum theory 

of fields48. If one represents the eigenstates of the CP magnitude by K
1

0
 (with a 

corresponding eigenvalue CP=+1), and K
2

0
 (CP=-1), and if the operator CP does 

not commute with the weak interaction hamiltonian ( H
F

)49, the K
L

0
 and K

S

0
 states 

are different from the K
1

0
 and K

2

0
 states and they can be considered as linear 

superpositions of these states. The coefficients in the superpositions are functions 

of the parameters of CP  violation in these weak interaction processes.  

 Such physical systems propagate with time between the moment of 

their production and that of their detection, and the state that is attributed to them 

during this course is that given by the state vector (invariant with respect to the 

basis), that is, for the chosen basis, the linear superposition, whose coefficients 

vary with time (let the function  K ( t ) be the representation of this state). That is to 

say that the superposition here is the physical state, without any circumlocution 

that would bring physical existence only to the state detected after observation or 

measurement. The quantum system under study (represented by the 
K

( t )  state 

function) is analyzed by a detector placed on its line of flight, that projects it (in 

the geometrical sense of vector projection) at time t  onto one of its components 

chosen by fixing the detection conditions («preparation»). From the frequencies 

for each detected state, that are a measure of their probabilities, one obtains the 

coefficients of the superposition or probability amplitudes (probabilities are the 

absolute squares of the coefficients), as in the usual case. One observes 

statistically, for K
L

0

, a given number of states in the CP =+1 mode (for example, 

K
L

0
 2 ) and another one in the CP =-1 mode ( K

L

0
 3 ). 

 What is interesting for physicists, from a physical point of view, is not 

so much the final state observed at the detection, which choice is, as a matter of 

fact, purely contingent, as the indication it provides about the physical state of the 

K
0
 meson at a time t before its detection, given by the basis-free or invariant state 

vector. This state vector is given, for each group of (compatible) magnitudes 

corresponding to a physical content (either M and H
S
, or H

F , or CP), as a 

superposition of their eigenstates. Conversely, the knowledge of this state permits 

the characterization of the properties of these magnitudes (for instance, the degree 

of CP  violation in the weak interaction process with a hamiltonian H
F )50.  

                                            
47 Let us recall that in quantum theory the mathematical form of physical magnitude is a linear 
operator acting on the state function.  
48 Due to Gehrart Lüders, Wolfgang Pauli and Julian Schwinger, who established it around 1952-
1955 (see Lüders [1952] and especially [1954], Pauli [1955], Schwinger [1951-1953]). See 
comments in Enz [1973], Doncel, Hermann, Michel & Pais [1987], Yang [1982]. 
49 In fact, weak interaction does not conserve CP in these processes. 
50 The whole thought of «elementary particles» physics is, as quantum physics in general, ruled by 
the superposition principle. We could have taken other examples of state mixtures as 
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 The so-called «oscillation» phenomena between quantum particles 

states are described and thought in a similar way51. Consider neutrinos, 

electrically neutral (fermion) «leptonic» particles existing under the form of three 

different species, 
e
, 


, 


, each one endowed with a distinct conservative 

magnitude, the leptonic, electronic, muonic, tauic, charges or quantum numbers, 

shared with the electrically charged corresponding particles, electron, muon, 

tauon52 (respectively e

, 


, 


), together with which they constitute the three 

families of leptons (the most elementary «particles» of matter with the quarks). 

Their mass is very small, possibly null.  

 If the mass of neutrinos is not exactly zero, one can distinguish three 

states of mass, 
1
, 

2
 and 

3
, distinct from the states that represent the 

(«leptonic») neutrinos observed through their «weak interactions» ( 
e
, 


 and 


 

and the corresponding antineutrinos). The latter can be described as linear 

superpositions of the mass states53. Neutrinos emitted in nuclear reactions (in  

decays of nuclei) are of the type 
e
 (or 

e
). The evolution with time, during their 

course, of their state function, 


, is given by that of the amplitudes (or 

coefficients) associated with the states of the superposition. As a consequence, the 

proportion of the three mass states varies during the propagation ; as these mass 

states can themselves be put in the form of superpositions of the leptonic states, it 

entails that the initial neutrino ( 
e
) transforms partly in neutrinos of the other 

species ( 


 and 

), with a given «oscillation length» (as one says wave 

                                                                                                                       
superpositions : the neutral states of «vector mesons» (

0

, 
0

, with spin-parity J
P

 1


) under the 

conservation of a given magnitude (for example under SU
2

 «isospin» symmetry or SU
3

 «unitary 

spin» symmetry), or the state superpositions of the neutral «intermediate bosons» (   and B) of the 

gauge symmetry electroweak theory of A. Salam, S. Weinberg and S. Glashow (cf., p. ex. Paty 

[1970, 1985]). These bosons, and also the charged «intermediate bosons» (W


), are initially 
supposed to have a vanishing mass as the photon, and their mixture, or superposition, is 

characterized by a coefficient (
W  S

) called «Salam-Weinberg mixing angle», that is the 

parameter of the theory. The symmetry breaking generates the finite masses of the «physical» 

«intermediate bosons» (W


, W
0
), related to the mixing parameter (see, f. ex., H. Pietschmann & 

D. Haidt, in Gaillard & Nikolic [1977] ; Paty [1985]). All this however is happening inside the 
limits of the range of weak interaction, that is extremely small. The examples that we have 
presented in the text are more striking for our purpose, insofar as they correspond to phenomena 
that are manifested on large spatial distances, covered during the propagation, and for which one 
hardly could refrain to speak of physical states, beyond the mere mathematical formalism of the 
theory.  
51 One example, hypothetical but theoretically founded, would be eventual oscillations of neutrons 

into antineutrons ( n  n ), through an interaction field violating baryonic number (such as 
required by the «Grand Unification» theories).  
52 Or «heavy lepton» (with mass 1777 MeV, the muon mass being 106 MeV, and the electron 
mass 0,5 MeV ; the mass unit is MeV, million of electron-volts, in the appropriated unit system 
commonly used in subatomic physics). 
53 See, f. ex., Paty [1995b], Alexei Smirnov in Nguyen Khac, Ung & Lutz, Anne-Maris (eds.) 
[1994]. Leptonic numbers are no more completely conserved, and the heavier neutrinos can decay 
into a lighter neutrino together with other particles (a different process than «oscillations» 
considered here).  
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length)54. Such effects (such phenomena) are actively searched for by physicists 

for the three types of neutrinos55.  

 It is generally considered that physical neutrinos are those 

characterized by their properties in the (weak) interaction56, through which their 

are produced or destroyed (interactions with other particles or eventual decays), 

that is to say that they are the «leptonic» neutrinos 
e
, 


 and 


. Nevertheless, 

in the propagation of one or the other of these neutrinos, the effective physical  

state would be, at any instant of time, in the considered hypothesis (of non zero 

masses, and of some degree of leptonic numbers violation), due to the mentioned 

transformations, a linear superposition of these states, evolving in time in a 

determined way. The detection by (weak) interaction of one of the states allows, 

by comparison with the initial state (given by the choice of one of the three types 

of neutrinos), one to know the physical state at a chosen place on the covered 

distance (i.e. at a given time of flight). This detection is based on reactions of 

interaction where a neutrino transforms into the corresponding charged lepton 

( 
e
 n  e


 p  and, similarly, 


 


 , 


 


 ). These reactions 

require for production enough energy to create the mass of the charged leptons.  

 In the case of neutrinos originated from nuclear reactions, the energies 

are insufficient to create masses larger than that of the electron. The neutrinos 
e
 

transformed during their travel into 


 or in 

 will not give therefore reactions 

that would detect them and remain sterile. If one finds less 
e
 than there were at 

the beginning, it might well be that the pure initial state has been transformed into 

a superposition of different neutrinos, of which only the projection on the 
e

 state 

is detected. This is, for example, what is supposed to happen with solar neutrinos, 

whose proportion received on Earth is far less than what is expected if neutrinos 

continued on their way remaining identical to themselves57. We would have there 

again (actually, the oscillation phenomenon has recently been definitely proven 

experimentally), an indubitable direct effect of the physical character of a linear 

superposition state. 

 The example (be it a real phenomenon or a simple possibility) gives 

indeed also evidence that the thought of such states of superposition is hereafter 

familiar to physicists. A superposition of states has to be understood as a simple 

change of basis relative to another set of mutually compatible physical 

magnitudes, corresponding to one of the possible «preparations». The physical 

state that physicists consider is not restrained to that after the measurement 

(otherwise it would only be the incident deficient neutrino) ; it is the state that is 

                                            
54 «Oscillations» are a function of neutrino mass differences, energies and covered distances. 
55 These experiments concern, besides nuclear reactor or solar neutrinos (essentially 

e
), 

atmospheric neutrinos (and antineutrinos) (mainly 


) and those produced at particle accelerators 

( 


 and 


). 

56 Neutrinos interact only through «weak interactions».  
57 

e
 neutrinos are detected by their capture by a nucleus with emission of an electron (or of a 

positon in the case of 
e

 antineutrinos). Neutrinos of other kinds resulting from oscillation are 

sterile for this type of reaction, and escape detection. But they are indeed part of the incident flux. 
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revealed to them by this measurement, and that contained besides another 

component that they do not detect but that can immediately be reconstituted. 

Recent observations (in 2002) on neutral currents induced by solar neutrinos, 

which are not dependent on mass threshold effects (as the neutrino is simply 

scattered by the nucleon target), have yielded the expected rate, confirming that 

the neutrino beam arriving on Earth is in a supersposition state of all the neutrino 

leptonic states. Of course, all these phenomena are studied with great numbers of 

«particles», but their description and their explanation must be understood in 

terms of properties of individual «particles», for the same reasons as those 

considered previously. 

 

 

7 
 

BEFORE DECOHERENCE,  
SUPERPOSITION 

 

 It remains us to evoke another type of phenomenon of recent 

production and observation, «decoherence». We will not undertake here a 

thorough discussion of its implications and its interpretation. In particular, we will 

not pronounce (reserving it to another opportunity), whether this phenomenon 

gives or not a solution to the problem of measurement of quantum systems, and 

even neither whether it brings new views on the relationships between the 

«classical» and the «quantum». At least does it illustrate, to my eyes, by 

«visualizing» it, an important aspect : it makes us see a state of superposition 

propagating and, by this, it allows us to better conceive the possibility and the 

physical reality of such states58. 

 The metastable state of superposition that has been observed recently 

for «mesoscopic systems»59 is an «entangled» state made by coupling a Rydberg 

atom in a two-energy states superposition with an electromagnetic field (of few 

photons) in a two components superposition state. The field is a physical system 

that plays the role of the Schrödinger's cat of the famous thought experiment60. 

The overall system is entangled (not factorizable in its various components), and 

this entanglement (that constitutes the «coherent state») is further multiplied 

through successive interactions with the various (quantum) elements of the 

environment (such as those that constitute the observation apparatus), so that in 

the end the initial coherence does not show anymore, the effect being absorbed 

rapidly (« decoherence »).61. In such a production experiment of a coherent 

entangled state, one can vary the parameters which determine the degree of 

coherence of the entangled system : these parameters are the number of photons 

                                            
58 On the theoretical interpretations of the phenomena and of the experiments, see notably Zurek 
[1982, 1991], D'Espagnat [1994], Omnès [1994a & b].  
59 In the experiment performed at the Laboratoire de physique de l'Ecole Normale Supérieure, 
Paris : Haroche, Brune & Raimond [1997].  
60 Schrödinger [1935]. 
61 For a reflexion on this state of things, see Paty [2000a]. 
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that make the electric field, and the time of propagation of the entangled system 

(which is the time elapsed between its production and its analysis to determine 

whether it is still in a coherent state). The coherent state itself manifests as such 

by some interference which can be observed through a correlation between pairs 

of the atom-analyzers at detection. Coherence can then be controlled, and the 

condition and time when coherence ceases marks the shift from quantum to 

« classical-type » behavior of the system. This shift is attributed to the many 

interactions occurring between the system and the quantum components of the 

environment. The simple original entangled system combines itself with the states 

of the latter (each one being itself in a linear superposition), giving rise to a 

further entanglement : as the process is going further, it leads in an irreversible 

way to a many component entangled system. Quantum non separability forbids to 

go back to the original components simply entangled, and that original 

entanglement is lost in the end, as it gets diluted in the multiple entangled overall 

system, and has become definitely unappreciable. In the end, the quantum  

character of the state under study has been lost, although the whole process has 

been considered from a purely quantum point of view. So to speak, a « classical » 

behavior (a non quantum one) has been generated from quantum states merged 

inside entangled multiplicities. 

 One sees that the process of decoherence is not to be identified with 

that of measurement, for it happens softly through the quantum interactions 

themselves, whereas measurement is a process which chooses at once one of the 

final states by suppressing the others : the continuous soft (natural) process is 

(artificially) interrupted by the apparatus arrangement itself, which favours at 

random one only of the components of the final state and destroys the 

superposition. So to speak, measurement is decoherence plus projection 

(reduction) on one only of the components of the initial state of the considered 

physical system. Nevertheless, decoherence helps understanding the initial stage 

of such a transition, which seems, in the final stage, be purely of a statistical 

mechanics and thermodynamics nature. But I don’t want to comment further on 

this, letting it for another opportunity, and I content myself in observing that 

evidence for the process of coherence to decoherence is per se an evidence for the 

physical character of the coherent, entangled, i. e. quantum linear superposition, 

state, shown as propagating in space and time. 

 

8 
  

CONCLUSION.  

 
 All the physical phenomena examined so far persuade us that the state 

function  represents (or describes) completely the state of the physical system. 

We mean by «complete representation» adequacy and covering : there is nothing 

more in the physical system than what is comprised in its theoretical 

representation by the state function.  

 If we restrict the question of the theoretical representation of quantum 

systems to the mere quantum level where these systems exhibit properties and 
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interact with others systems of a similar nature, the concepts of state function, 

quantum system, quanton, quantized field, with the magnitudes that qualify them, 

are self-sufficient : they do not ask, for conception and handling in theoretical 

work, any physical or conceptual underlying classical basis such as that of a 

undulatory or corpuscular substance, distinguishable and localized. For the 

quantum physics of atomic and subatomic phenomena and quantized fields the 

«quantum level» where these concepts operate is the fundamental level, and, in 

particular, physical systems are effectively represented by their «state functions», 

and physical magnitudes by their «operators». At this level of representation, it is 

not necessary to go back, for each magnitude and each state, to the practical 

circumstances of their determination that refer ultimately to observations with the 

help of classical apparatuses. 

 For theoretical thought at the quantum level, the classical systems 

constituting these apparatuses are only intermediary in the process of constitution 

of data, that are in the end translated in quantum terms. The data being acquired, 

the quantum domain let itself be conceived and explored in full conceptual and 

theoretical independence with respect to the classical domain. 

 This consideration does not diminish the problem of the quantum-to-

classical relationship : it simply puts it aside, provisionally, as a fundamental 

problem. It is an epistemological and philosophical decision, taken in order to 

give the quantum domain and its theoretical representation the largest autonomy 

with respect to particular philosophical perspectives on knowledge. It has often 

been considered that (physical) knowledge is to be referred to observation, in the 

name of a primacy of perception in characterizing phenomena. However, 

contemporary reflection on science, and particularly on the various areas of 

physics, has led to conceive the relations of concepts and theories to perception as 

most indirect. The demand for intelligibility requires, as we suggested in the 

beginning, a direct and close connection with the understanding, that undertakes 

its theoretical elaborations by following a process of rational construction that is 

linked only in a mediate manner with the forms of perception. As it were, the 

phenomena under consideration, regarding the conceptualization and the 

theoretical insight obtained of them, are first brought to the understanding and 

secondly to the perception. If we refer these phenomena to (quantum) objects, that 

means that the latter are rationally constructed before being secondarily and 

indirectly perceived. 

 The question of the physical meaning of magnitudes, among which the 

representative state function of a system stands in the forefront, is henceforth 

more directly illuminated than by the current («orthodox») interpretation, 

conceiving this meaning through reference to measurement. The reference, 

according to the view here proposed, is to quantum phenomena, whose access is 

an indirect one but that is knowable by a rational construction, consistent and 

supported by data coming in the last instance from the perceptual (observation and 

experiment). Consequently, nothing opposes considering the state function in the 

form of a superposition (but basis-invariant) describing effectively the state of a 

physical system, evolving in the course of time.  

 The notion of quantum physical state differs from the current idea of a 

physical state, referred generally to magnitudes that are directly observable 
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through instruments ruled by the laws of classical physics. The difference between 

a physical phenomenon (or system) at the quantum level and a phenomenon (or a 

system) at the classical level is that the second is closer (if not homogeneous) to 

its conditions of observation referred to perception, whilst the first remains 

radically distant from them and is definitely heterogeneous to them62. This 

formulation of the difference between the classical and the quantum domains is 

free of philosophical bias about knowledge : it has the advantage of not limiting 

arbitrarily the capacity of the quantum to be intelligible. If they are dissimilar in 

their relationship with perception, their links to understanding are not of a 

different nature : all concepts of physics, classical as well as quantum ones, are 

expressed by magnitudes that are constructed (by man's mind) and abstract63.  

 That a quantum state be accessible to experiment only indirectly does 

not affect the possibility to get knowledge of it. Magnitudes that characterize it are 

not either directly accessible, since they are not endowed with numerical values. 

To take into account all the elements considered in what precedes, we must 

therefore conceive an extension of meaning, to the quantum domain, of the 

notions of physical magnitude and of physical state, beyond the meaning usually 

accepted for them with classical physics (including the theory of relativity). This 

extension, legitimated by the phenomena (with a sense of this term that does not 

reduce them to mere objects of perception but that conceives them according to 

their capacity to be brought to knowledge), is actually already realized in practice 

by the main properties of the very formalism of quantum theory64.  

 Such extensions of meaning have been a common procedure in 

mathematics as well as in physics, if we look back into their history : an example 

among many others in mathematics is the extension of the concept of number 

from integer to fractional, to irrational and then to imaginary and complex 

numbers ; as for physics, consider only motion, force, energy and also the 

extension of finite magnitudes to differential ones…. In all cases, such extensions 

were not the least obvious, and led to hard scientific and philosophical debates 

and controversies. 

 By proposing this extension of meaning for the concept of physical 

magnitude to forms that are not endowed with numerical values, to states that are 

linear superpositions of eigenstates, in order to insure epistemological aseity (self-

contentness) for the quantum domain and its theoretical representation, we give 

primacy to understanding over perception, which is driven to an ancillary status. 

This is a pragmatic decision, that avoids deciding on the fundamental problem 

that still remains open of the relationship between the classical and the quantum, 

but that allows us at the same time to think with full legitimacy a wide range of 

phenomena, that might well be the base of all others. But, about this, we can not 

                                            
62 There still remains, anyhow, between a physical system qualified as such, be it a classical or a 
quantum one, and its conditions of observation, a difference of nature. I want only to underline 
here that the working modes of measurement devices are referred to classical phenomena. 
63 Cf. Paty [1988a, and 2000a].  
64 Intuitively perceiced by such theoreticians as Dirac, who extended the notion of commutative 
magnitudes expressed by ordinary numbers (c-numbers), to non-commutative ones (q-numbers) 
(Dirac [1926a & b, 1928]. Cf. Mehra & Rechenberg [1982], vol. 4, p. 162 sq, Darrigol [1992]), it 
has not, however, been explicitely legitimated as such, which ensured the permanence of the 
dominant philosophical interpretation (cf. Paty [2000a]).   
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swear, considering the present state of our knowledge. We can only relate it to the 

more fundamental and general question, still standing and in evolution, of the 

unity of physical phenomena and of a unified approach to them. But such an 

approach might precisely still be doomed to remain out of reach of present 

theories, until a deeper penetration of the unity of physical phenomena is obtained, 

through a sound unification of the fundamental interaction fields of matter.  

 To solve outside of this perspective, if it would prove possible, the 

«quantum problem of measurement», that is to say the nature of the relationship of 

the quantum and the classical, would be finally only of a limited interest. With the 

practical rule connecting, through probabilities, quantum magnitudes and their 

state functions with the corresponding classical entities determined from 

measurement devices, we have the minimal algorithm needed to place on a 

pragmatical basis the quasi autonomous existence of two coherent, intelligible, 

domains of physical reality, referred to their proper and specific phenomena and 

objects : the classical and the quantum. 
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