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Nash equilibrium existence for some
discontinuous games

by Philippe Bich1

Centre d’Economie de la Sorbonne - C.N.R.S., Université Paris I Panthéon
Sorbonne

Abstract

Answering to an open question of Herings et al. (see [3]), one ex-
tends their fixed point theorem to mappings defined on convex com-
pact subset of Rn, and not only polytopes. Such extension is impor-
tant in non-cooperative game theory, where typical strategy sets are
convex and compact. An application in game theory is given.

1 Introduction

In [2], Herings et al. prove the following new fixed point theorem for possibly
discontinuous mappings:

Theorem 1.1 Let P a non empty polytope, i.e. the convex hull of a finite
subset of Rn; let f : P → P which is ”locally gross direction preserving”
in the following sense: for every x ∈ P such that f(x) 6= x, there exists
Vx, an open neighborhood of x in P such that for every u and v in Vx,
〈f(u)− u, f(v)− v〉 ≥ 0.

Then f admits a fixed-point, i.e. there exists x̄ ∈ P such that f(x̄) = x̄.

Here, and throughout this paper, for every x ∈ Rn and y ∈ Rn, 〈x, y〉
denotes the eulidean scalar product of x and y.

This theorem is a generalization of Brouwer fixed point theorem (see [1])
which says that every continuous mapping from the unit closed ball of Rn to
itself admits a fixed point.

1Centre d’Economie de la Sorbonne, 106/112 Boulevard de l’Hôpital, 75013 Paris.
Email: bich@univ-paris1.fr.

1



The authors provide an application to the existence of equilibria for games
with possibly discontinuous payoffs. There is a huge literature on discontinu-
ous games (see, for example, [4]); a usual issue in such games is that classical
fixed point theorems as Brouwer’s one cannot be directly applied to yield
Nash equilibria existence. Thus, Theorem 1.1 could be a answer to this
problem for some classes of discontinuous games.

Yet, there is a restriction in Theorem 1.1: the set P must be a polytope.
But typical strategy sets in game theory are rather compact and convex sets.
Thus, an important question in practice is to know if Theorem 1.1 holds
true for such subset of Rn. In [3], one can read: ”whether locally gross
direction preserving is sufficient to guarantee the existence of a fixed point
on an arbitrary non empy convex and compact set is still an open question”.

The aim ot this paper is to answer to this question. A first natural idea to
extend Theorem 1.1 to the case where P is any compact and convex subset of
Rn is the following: first, approximate P by a sequence of polyhedra Pn ⊂ P ;
then, Theorem 1.1 applied to the mappings projPn ◦ f|Pn provides a sequence
of fixed points xn of these mappings; finally, one could hope that the sequence
(xn) converges (up to an extraction) to a fixed point of f . But, as the authors
say: ”... the discontinuities of f on the boundary of P prevent us from taking
the limit of the sequence of polyhedra. So to resolve this problem, a different
approach is needed”. In this paper, we provide such a different approach.

As a matter of fact, our approach drives us to generalize strictly the
”locally gross direction preserving” property. Thus, we extend Herings et
al. in two ways: we replace polytopes by any non empty and convex subet
of Rn, and extend their continuity assumption. Finally, we prove that our
fixed point theorem can be applied to yield the existence of Nash equilibria
in possibly discontinuous games.

2 The main theorem

The following theorem extend Herings et al. result to compact and convex
subsets of Rn.

Theorem 2.1 Let C be a non empty convex and compact subset of Rn,
and let f : C → C. Assume that f is ”locally gross direction preserving”
in the following sense: for every x ∈ C such that f(x) 6= x, there exists
Vx, an open neighborhood of x in C such that for every u and v in Vx,
〈f(u)− u, f(v)− v〉 ≥ 0. Then, there exists x ∈ C such that f(x) = x.
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Proof. Throughout this paper, for every x ∈ Rn and r ∈ R+, B(x, r) de-
notes the open ball centered at x of radius r, for the euclidean norm of Rn.

• Step 1: one proves that any locally gross direction preserving
mapping satisfy the following property that we call half-continuity:

Definition 2.2 A mapping f : C → C is said to be half-continuous if:
∀x ∈ C, x 6= f(x) ⇒ ∃p ∈ Rn,∃ε > 0 such that: ∀x′ ∈ B(x, ε) ∩ C, x′ 6=

f(x′) ⇒ 〈p, f(x′)− x′〉 > 0.

To prove Step 1, suppose that f : C → C is locally gross direction pre-
serving, and prove that it is half-continuous. Let x ∈ C such that f(x) 6= x,
and let Vx be an open neighborhood of x such that for every u and v in Vx,
〈f(u)− u, f(v)− v〉 ≥ 0.

Let {f(x1)−x1, ..., f(xk)−xk} be a basis of the vector space F :=span{f(y)−
y, y ∈ Vx}, where k ∈ N∗, and x1, ...,xk are in Vx. Then define

p =
k∑

i=1

(f(xi)− xi).

Let x′ ∈ Vx such that f(x′) 6= x′. One clearly have

〈p, f(x′)− x′〉 ≥ 0 (1)

from ”locally gross direction preserving” property and from the definition
of p.

Besides, since one has 〈f(xi) − xi, f(x′) − x′〉 ≥ 0 for every i = 1, .., k,
Inequation 1 is an equality if and only if one has

∀i = 1, ..., k, 〈f(x′)− x′, f(xi)− xi〉 = 0.

This last property would imply f(x′) − x′ ∈ F⊥ ∩ F = {0}, a contradiction
with the assumption that f(x′) 6= x′. Thus, Inequality 1 is strict, and Step
1 if proved.

• Step 2: supposing that f : C → C has no fixed point and is half-
continuous, one builds a continuous mapping p : C → Rn such that
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for every x ∈ C, 〈p(x), f(x)− x〉 > 0.

Suppose that f admits no fixed point and is half-continuous. For every
x ∈ C, and from half-continuity, there exists px ∈ Rn and εx > 0 such that

for all x′ ∈ B(x, εx) ∩ C, 〈px, f(x′)− x′〉 > 0.

One has C ⊂ ∪x∈CB(x, ε). Since C is compact, there exists x1, ..., xn in
C such that

C ⊂ ∪n
i=1B(xi, εxi

).

Consider λ1, ..., λn a partition of unity subordinate to this open covering.
That means that each λi is a continuous mapping from C to [0, 1] such that

∀x ∈ C,
n∑

i=1

λi(x) = 1

and such that

∀i = 1, ..., n,∀x′ ∈ C, x′ /∈ B(xi, εxi
) ⇒ λi(x

′) = 0.

Define the mapping p : C → Rn by

∀x ∈ C, p(x) =
n∑

i=1

λi(x)pxi
.

Clearly, from the the properties of the λi, one has

∀x ∈ C, 〈p(x), f(x)− x〉 > 0

and Step 2 is proved.

• Step 3: Proof of Theorem 2.1

Suppose that f : C → C, a locally gross direction preserving mapping,
has no fixed point. From Step one, f is half-continuous. From Step two,
there exists a continuous mapping p : C → Rn such that for every x ∈ C,
〈p(x), f(x)− x〉 > 0.

Now, define g : C → C by

∀x ∈ C, g(x) = proj C(x + p(x)),
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where for every y ∈ Rn, proj C(y) denotes the orthogonal projection of y on
the convex set C. Clearly, g is a continuous mapping. Thus, from Brouwer
fixed point theorem, there exists x̄ ∈ C such that g(x̄) = x̄, or equivalently
proj C(x̄ + p(x̄)) = x̄.

Besides, from a standard characterization of projection of y ∈ Rn on a
convex set C, one has

∀c ∈ C, 〈y − proj C(y), c− proj C(y)〉 ≤ 0

Applying this inequality to y = x̄ + p(x̄) and c = f(x̄), one obtains

〈x̄ + p(x̄)− proj C(x̄ + p(x̄)), f(x̄)− proj C(x̄ + p(x̄))〉 ≤ 0,

or equivalently, since proj C(x̄ + p(x̄)) = x̄,

〈p(x̄), f(x̄)− x̄〉 ≤ 0.

a contradiction with the definition of p. This ends the proof of the The-
orem 2.1.

3 Extension of Theorem 2.1

In the proof given above, one can notice that one only needs that the map-
ping f is half-continuous. Thus, from Step two and three of the previous
proof, one obtains the following result:

Theorem 3.1 Let C a non empty convex compact subset of Rn, let f :
C → C half-continuous, which means: ∀x ∈ C, x 6= f(x) ⇒ ∃p ∈ Rn,∃ε >
0 such that: ∀x′ ∈ B(x, ε) ∩ C, x′ 6= f(x′) ⇒ 〈p, f(x′)− x′〉 > 0.

Then f admits a fixed point.

In fact, half-continuity is strictly weaker than locally gross direction pre-
serving assumption. Indeed, geometrically, Herings et al. assumption re-
quires that for every x ∈ C which is not a fixed point, then f(y) − y and
f(z) − z make a sharp angle or are orthogonal for y and z on some neigh-
borhood of x. Our half-continuity assumption requires that for every x ∈ C
which is not a fixed point, then all the vectors f(y)− y are in a same strict
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half-space for y on some neighborhood of x. This is clearly a weaker assump-
tion. In the following example, one exhibits a large class of half-continuous
mappings that may be not locally gross direction preserving:

Example Let C a closed subset of Rn and F a multivalued mapping from
C to Rn. Suppose that F has a closed graph, non empty convex values and
that F (C) is bounded. Suppose that for every x ∈ C one has x /∈ F (x),
i.e. F has no fixed point. Then we assert that any selection f of F (i.e.
for every x ∈ C, f(x) ∈ F (x)) is half-continuous. To prove this result, let
x̄ ∈ C. Since F (x̄) is convex and compact (because F has a closed graph and
F (C) is bounded) and since, by assumption, x̄ /∈ F (x̄), a separation theorem
implies that there exists p ∈ Rn such that

∀y ∈ F (x̄), 〈p, y − x̄〉 > 0. (2)

and in particular, since f is a selection of F ,

〈p, f(x̄)− x̄〉 > 0. (3)

Now, if f is not half-continuous at x̄, then from Equation 3, there exists
a sequence (xn)n∈N of C converging to x̄ ∈ C, and such that

∀n ∈ N, 〈p, f(xn)− xn〉 ≤ 0. (4)

Let us define, for every integer n ∈ N, yn = f(xn). Since f is a selection of
F , one has yn ∈ F (xn) for every integer n. Since F (C) is bounded, and since
F has a closed graph, the sequence (yn)n∈N converges (up to an extraction)
to ȳ ∈ F (x̄).

Passing to the limit in Equation 4, one obtains

〈p, ȳ − x̄〉 ≤ 0 (5)

which contradicts Equation 2, because ȳ ∈ F (x̄).
Now, one constructs a multivalued mapping satisfying the assumptions

of Example above, and a particular selection f of F which is not locally
gross direction preserving. Let C be the closed unit ball of R2, and define
f : C → R2 by f(x, y) = (x, y)+ (1, 0) if x ≤ 0 and f(x, y) = (x, y)+ (−1, 1)
if x > 0. Define a multivalued mapping F from C to R2 by

∀(x, y) ∈ C, x 6= 0 ⇒ F (x) = {f(x)}
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and
∀(0, y) ∈ C, F (0, y) = {(0, y) + (−1 + 2t, 1− t), t ∈ [0, 1]}.

Clearly, f is a selection of F , F has non empty, convex values, and F (C)
is compact. We let the reader prove that F has a closed graph, and clearly
F has no fixed points. So, f , which is a selection of F , is half-continuous
(which can be checked directly).

Now, f is not locally gross direction preserving at every (0, ȳ) for ȳ ∈
[−1, 1]. Indeed, one has 〈f(x, y) − (x, y), f(x′, y′) − (x′, y′)〉 = −1 for x ≤ 0
and x′ > 0. Thus one can not have 〈f(x, y) − (x, y), f(x′, y′) − (x′, y′)〉 ≥ 0
for (x, y) and (x′, y′) in a neighborhood of (0, ȳ), and so f is not locally gross
direction preserving at (0, ȳ).

4 An extension of Nash equilibrium existence

theorem

In this subsection, we apply our main fixed point theorem to Game theory.
Consider n players, and for every i = 1, ..., n, let Xi be the strategy space
of player i. Suppose each Xi is included in RN where N ∈ N∗ is fixed. For
every i = 1, ..., n, let bi : Πn

j=1Xj → Xi be a best reply function of player
i and b = (b1, ..., bn). For every x = (x1, ..., xn) ∈ Πn

j=1Xj, bi(x) is a best
strategy of player i, given the strategy xj of all the others players (j 6= i). A
game G is defined by the couple G = ((Xi)

n
i=1, (bi)

n
i=1).

A Nash equilibrium of G is x = (x1, ..., xn) ∈ Πn
j=1Xj such that for every

i = 1, ..., n, bi(x) = xi.
We now define half-continuous games:

Definition 4.1 A game G = ((Xi)
n
i=1, (bi)

n
i=1) is said to be half-continuous if

for every x ∈ Πn
i=1Xi which is not a Nash equilibrium, there exists p ∈ (RN)n

and a neighborhood Vx of x in (RN)n such that for every x′ ∈ Vx which is
not a Nash equilibrium, one has 〈p, b(x′)− x′〉 > 0.

A possible interpretation of this definition is the following: suppose there
are N goods, and suppose a strategy xi of each player i = 1, ..., n is to specify
the quantity xi(j) he wants to buy for every good j = 1, ..., N . Suppose that
the players do not know the real prices of the N goods, but each player
i = 1, ..., N is ready to pay pi for having one unit of each good. Consider
a strategy profil x = (x1, ..., xn). For every i = 1, ..., n, pi(bi(x) − xi) would
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be the best profit that player i can do if he replaces his strategy xi by bi(x),
given the strategy of the others. Call this the best profit of player i reachable
from x.

Then, a game G is half-continuous if each time x is not a Nash equilibrium,
then there exists a profil of prices p = (p1, ..., pn) such that the sum of best
profits of all payers reachable from x′ ∈ Πn

i=1Xi is strictly positive, for every
non Nash equilibrium x′ in a neighborhood of x.

In the following, a game G = ((Xi)
n
i=1, (bi)

n
i=1) is compact (resp. convex)

if all the Xi are compact (resp. convex):

Theorem 4.2 Every compact, convex and half-continuous game
G = ((Xi)

n
i=1, (bi)

n
i=1) admits a Nash-equilibrium.

Proof. Let X = Πn
i=1Xi. Clearly, since G is half-continuous, the mapping

b : X → X is half-continuous. From Theorem 3.1, b admits a fixed point
which is a Nash equilibrium.
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