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Abstract

In this paper, in order to de-noise a chaotic signal, we compare the time-frequency
deconvolution method with the wavelets method. We apply our results on different
dynamical systems and show the capability of wavelets’ method to reconstruct the
attractor of a chaotic time series. Then, we de-noise different data sets in order
to re-built their attractor using the wavelets method. The applications concern
temperatures and wind fluctuations, electricity spot prices and financial data sets.

Keywords: Attractor, Chaotic time series, Denoising, Wavelets method, real data.

1. INTRODUCTION

In this paper we discuss a new approach in order
to reconstruct the attractor of a chaotic time
series. The base of this problematic is related to
the deconvolution of a noisy signal. This problem
is not new and has been strongly documented in
the literature. Here, we use an approach based
on wavelets method. At the end of the 80’s
years, there was an increased interest for nonlinear
systems having complex dynamics. At this time
the techniques employed, to analyze the chaotic
time series consisted mainly in calculating geo-
metric and dynamical invariants of the underly-
ing strange attractor. These quantities permit to
quantify in some sense the chaotic behavior. At
the same time a very interesting problem has been
investigated by a lot of researchers. It concerns the
deconvolution’s problem. Indeed, the influence of
any noise on data explained by chaotic systems is
problematic, in one hand, for the reconstruction
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of these systems, in another hand for estimation
theory useful to rebuilt all the invariants which
characterize these systems and, finally in order
to make predictions. A lot of approaches have
been developed to try to bypass this problem.
Most of them are based on noise-reduction meth-
ods. Other methods use global fit, for instance,
the radial basis functions or the neural networks.
To have a complete review on the chaos theory
and the non-parametric methods adapted for the
study of these systems, we suggest to read La-
sota and Mackey (1994) and Guégan (2003), and
references therein. In terms of deconvolution, the
classical method in signal theory lies on the use of
the Fourier transform. In praxis, we assume the
frequency context of the signal to be stationary
along the time axis. To overcome this restric-
tion, researchers invented the windowed Fourier
transform. This approach has shown its limits in
terms to reconstruct chaotic time series. Here, we
propose a time-scale analysis based on the wavelet
method. Unlike the Fourier transform, the wavelet
functions are localized both in time and in scale.



They provide a convenient and efficient way of
representing complex signals. To extract the signal
which pollutes a system the wavelets method uses
two different but complementary projections: one
on an approximation space and the other one on
the detail space. Since the wavelet transformation
is an orthogonal operation, it preserves the prob-
abilistic property of the underlying system and
then, using this technique, we can expect to keep,
apart from noise, all the useful information which
characterizes a chaotic system when this one is
highly polluted. The wavelets method is now well
known, and we refer to Daubechies (1992) for a
deep understanding on these techniques. In order
to show the impact of the wavelets method on the
reconstruction of the attractor of a noisy chaotic
time series, we consider a dynamical system whose
attractor presents specific properties. It is the
Lorenz system represented by three equations:

X, = 842(Yi1 — Xy1)
Y= X1 (45.92— Ziy) — Yie (1)
Zy = X4 1Y 1 — 472 .

The paper is organized as follows. In Section
two, we introduce some properties of the previous
systems without noise and in presence of noise. In
Section three, after a brief recall on the wavelets
method, we show the efficiency of the Daubechies
wavelets in the reconstruction of the de-noised
Lorenz attractor. Applications on different real
data sets are proposed in Section four.

2. STATISTICAL PROPERTIES OF VARIOUS
DYNAMICAL SYSTEMS:

In this Section, we briefly presented the Lorenz
system (1). We give its attractor in dimensions
2 and 3, its trajectory, ACF, periodogram, his-
togram and we some statistics on the Figure ?7.
The trajectory of the Lorenz system appears quasi
seasonal but it is not a true seasonality. We ob-
serve a slow decay of the autocorrelation function
and almost one explosion on the periodogram.
The histogram is bimodal. The kurtosis is not very
high. For this system, we denote three different
kinds of behaviors: existence of an attractor, a
long memory behavior and existence of two states.
This process is well known to be a dynamical
chaotic system, and as a stochastic process, its
behavior appears close to the behavior of long
memory processes, (see Guégan, 2001). Now, we
add a measurement noise on this system. Thus, if
(X¢): represents the original chaotic system, (g;)¢
any noise, this means that we observe a time series
(Y;)+ which follows the recursive scheme, Vt:

Y = X; + &
{ X, = f(X; 1) @)

With f representing the Lorenz system. In a first
step, we are interested by the changes observed

Figure 1. Graphics for the Lorenz system (1)
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on the statistical properties of the noisy chaotic
system and we compare them with the properties
of the true chaotic system. In a second step, which
is the main purpose of this work, we focus on the
reconstruction of the de-noised attractor. Here, we
add a Gaussian measurement white noise whose
mean is equal to 15 and variance equal to 10.
On figure 2 we provide the attractor in dimension
three. We observe that the Lorenz’ attractor is not
as visible as on the Figure ?7. Nevertheless we can
conjecture existence of such an attractor because
the pollution is not too high. For this system, the
autocorrelation function and the spectral density
exhibit a behavior similar to the one observed on
the Figure ??. The empirical distribution does not
exhibit two modes and the kurtosis of the system
is not very high. Now, we are interested by the
reconstruction of the de-noised attractor and we
use the wavelets method.

Figure 2. Polluted attractor in D3, with Gaussian
noise, mean 15 and variance 10.

3. WAVELET METHOD

The fundamental uncertainty principle, which is
the basis of a lot of filters like the high pass filter,
the low pass filter, the medium pass filter, etc...,
excludes absolute precision of information in the
time and frequency domains simultaneously. This
trade-off between information in the time and fre-
quency domain inspires multi-resolution analysis.
It is clear that a multi-resolution must be a form of
smoothing. Daubechies (1992) provides an inspir-
ing method based on the use of explicit orthonor-



mal bases on multi-resolution analysis. Wavelets
bases offer a degree of localization in space as well
as in frequency that enables the decomposition
of a signal into compactly supported oscillating
components. The coefficients associated with each
of the components are called wavelet coefficients.
A remarkable property of wavelet coefficients is to
reflect the local regularity of the original function,
being large when the function is irregular and
small when the function is smooth. The property
is very useful to detect discontinuities or sharp
changes in a noisy signal.

Wavelet coeflicients are discrete transformations
of a so-called mother wavelet 1. First a doubly
indexed family of wavelets is generated, by dilat-
ing and translating 1,

bik(t) = 20/%(27t — k), (3)

j,k € Z. The wavelet coefficient of a process
(Y;): is a function of the scale parameter j and
translation parameter k and is defined by:

wj ), = 29/2 /}/ﬂ/)(th — k)dt. (4)

In the following, we will choose wavelet functions
which are well located around zero (Daubechies
functions), decreasing rapidly to zero as t — oo
and oscillating such that [¢(t)dt = 0. We will
strengthen these conditions imposing more van-
ishing moments P and specific conditions we spec-
ify latter. The wavelet coefficients w; , represent
how much information is lost (gained) if the series
(Y;): is sampled less (more) often. The index j is
called the resolution level and corresponds to a
frequency 277, the index k is called the time (or
space) parameter and corresponds to the dyadic
position 2% For each level j, the detail signal is
given by Vt: D; = >, ., wj b k(t), and then
the global reconstruction of the signal is equal
to Yy = 30,3 ez Wi ktjk(t). Now, when we fix
a level J, we can get the approximation signal:
Ay =35, Dj, and the reconstruction of the true

(X,); signal denoted (X,), is obtained as the sum
of approximation signal at level J and its finer de-
tails. When we separate the noise from the signal
using the wavelets’ theory, the noise appears in
the detail coefficients. Thus, to remove this noise,
we proceed in two steps: we need to determine a
certain threshold which permits to keep the de-
tails which are interesting for the reconstruction:
we denote this threshold A in the following. The
choice of this threshold is very difficult and it
does not exist, until now, an universal method to
choose it. In the following, we use:

max(w; ) + max(|w;x)|)
2

When the choice of the threshold is done, we have
to determine the thresholding function to thresh-
old the wavelet coefficients. Two functions are

A=

mainly used in the literature : the soft threshold-
ing one and the hard thresholding one, introduced
by Donoho and Johnstone (1994). In the following
we have used these two thresholding functions.
To show the effect of the wavelets method in de-
noising a system, we show how we are able to
reconstruct the lorenz system when this one has
been polluted as on Figure 2. We use Daubechies
wavelets with soft and hard thresholding func-
tions, the threshold A\, J=4 and P—=16. The re-
constructions are given on the Figure 3. These re-
constructions are particularly interesting because
we are able to obtain the two states which char-
acterizes this system and we can follow the signal
passing from one state to another one. The values
obtained for the MSE are quite small. To get this
reconstruction the level of scale is not high, but
in counter part we need to use a high number of
vanishing moments.

Figure 3. De-noised attractor using Daubechies
functions with J=4 , P=16.
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4. APPLICATIONS TO REAL DATA

In this Section, we illustrate our previous ap-
proach using real data sets. For the different data
sets we consider below, we only know their trajec-
tory and we try to see if it is possible to associate
to these data sets a pseudo-attractor. Here our
approach has to be viewed like an explanatory
exercise in order to reconstruct such attractor
following the intuition given by Takens’ theo-
rem (1981) and using wavelets method. The data
are respectively temperature fluctuations, wind
speed, CACyo index and electricity spot prices.
For each data set, we specify the period on which
we observe them, their frequency, their statistics.
Then we specify how we embed them. We will see
that different values of the delay 7 are used with
respect to each data set. We give the characteris-
tics of the reconstruction of the pseudo- attractor
via wavelets method.

4.1 Climatology
4.1.1. Daily temperature:  The temperature fluc-

tuations have an impact on business activities
like power producers, energy consumers, tourism



activity or agricultural industries, then it is im-
portant to get a good modelisation of this kind
of fluctuations. Here, we study daily tempera-
tures provided by the French Meteo Service to
the laboratory IDHE (ENS Cachan). This chronic
has been recorded in Paris (Montsouris Park)
from the 1st of January 1873 to the 31st de-
cember 2002, thus the sample size is equal to
N = 47481. The temperatures are in Celsius de-
grees and each data correspond to the maximum
daily observations. We provide the trajectory, the
autocorrelation function, the histogram and the
periodogram for the full period under study on
Figure 4. We observe that the trajectory is second
order stationary, its autocorrelation function does
not decrease towards zero very quickly, its peri-
odogram explodes in a frequency which is far from
zero and its histogram presents two modes. If we
modeled the series using a stochastic process, we
probably try to adjust some long memory process
but existence of long memory is not contradictory
with existence of an attractor, see Guégan (2001)
and (2003). To reconstruct the possible attractor

Figure 4. Graphics and statistical properties for
fluctuations temperatures recorded in Paris
(Montsouris Park) from the 1st of January
1873 to the 31st december 2002.
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characterizing this data set, we embed the data
(Y;): represented on the Figure 4, in the spaces
(Y;,Y:—1) and (Y%, Yi_76) and we provide the two
scatter plots on the Figure 5. The two scatter plots
appear completely different. On the Figure 5 (1),
we cannot suspect existence of an attractor. The
representation appears close to the representation
of a non stationary process. Thus, it seems more
interesting to consider the representation given
on the Figure 5 (2), to try to re-built a pseudo
- attractor. In that latter case this means that
we are going to reconstruct the attractor using
data recorded every 2 months and half. Using
Daubechies wavelets, we provide the reconstruc-
tion using Daubechies wavelets with J = 7 and
P =15, on the Figure 6. To get more information
concerning this reconstruction, we need now to
compute the Lyapunov exponents and to make
forecasting. This will done in another paper.

Figure 5. Embedding of the maximum fluctuations
temperatures recorded in Paris from the 1st
of January 1873 to the 31st december 2002

BT

Figure 6. Building of the pseudo attractor for
maximum fluctuations temperatures using
Daubechies wavelets with J—7 and P—15.
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4.1.2. Wind speed  There is not many works on
the modelling of wind speed. Knowing such mod-
elisation is important, in particular for insurance
companies. Here, we investigate the wind speed
data collected every 3 hours UTC in m/s, at
Montsouris Park in Paris. They have been pro-
vided by the French Meteo Service to the labora-
tory IDHE (ENS Cachan). The data are observed
from the 17th of December 1996 at 9:00 a.m to
the 30th November 2004 at 9:00 p.m. The sample
size of the data set is N = 23245. The data appear
second order stationary. The autocorrelation func-
tion does not decrease towards zero very quickly
and the periodogram explodes in one frequency
far from zero. Thus, these data seem to exhibit a
long memory behavior in the covariance sense, see
Guégan (2004). Now, the histogram is asymmetric
and looks like a Log-normal distribution. When
we embed the data in the spaces (Yz,Y:—1) and
(Y, Y:_s), we obtain the figure (7).

Figure 7. Embedding of the wind speed data
recorded from the 17th of December 1996 to
the 30th November 2004.

(A) (Y%, Yi—1): lag 3 hours (B) (Y3,Y:—g): lag one day

We can distinguish some organization inside these
two clouds. It seems that the orbits belong to



different ellipses whose diameters change all the
time. This appears more and more clearly when
T grows up, in particular in the space (Y, Yi_g),
which corresponds to a daily data set. In order to
find an attractor which can explain the structure
which governs these data, we de-noise the two
data sets using Daubechies wavelets with J =
4 and P = 13. The speudo-attractors can be
observed on the figure 7. Their structure is quite
different.

Figure 8. De-noising wind speed data, using
daubechies wavelets with J=4 and P=13._

Pseudo attractor of (A):
(Xt, X¢—1)

Pseudo attractor of (B):
(Xt, X¢—3)

4.2 Financial data

In this Subsection, we analyse a financial data
set: The CAC4 which is an intra-day data set
from database of Euronext. The detection of pos-
sible attractors inside financial data sets is not
new. A lot of researchers have already try to
detect attractors inside financial data sets. We
investigate here the intra-day index CACyg of the
French stock exchange during the month January
2004. The quotations, denoted (Y;); , are recorded
every 30 seconds during working days in a week
between 9:00 a.m. to 5:30 p.m., then we have
21322 observations. We observe that the data are
not second order stationary. There exists a trend:
this explains the form of the autocorrelation func-
tion and of the periodogram. The form of the
histogram also confirms the existence of two states
inside the data, which corresponds to two distinct
levels.

We make the data stationary using the returns
(r¢): defined Vt, by r» = Y; — Y;—1. We choice
to work with returns taken every 3 minutes and
30 seconds and we plot them on the left of the
Figure 9. This corresponds to the cloud (ry,r:—7).
In order to find the pseudo-attractor which char-
acterizes these data, we de-noise this cloud using
Daubechies wavelets with J = 6 and P = 20 and
we get the attractor given on the Figure 9 on the
right. The result is not surprising and confirms
the results already mentioned in a lot of papers.

4.3 Energy: Electricity spot prices

We study in this Subsection, electricity spot
prices. The modelization of electricity spot prices

Figure 9. Intra-day CACy4g recorded on the month
january 2004, every 3 minutes and 30 second.

Pseudo attractor, P=20 J=6

Embedding on (r¢, r¢—7)

becomes recently a crucial issue for a lot of institu-
tions. They enter in different kinds of commodi-
ties and the knowledge of their behavior is very
important. The data under study correspond to
the spot prices of the German market. The data
have been obtained from the European Energy
Exchange. They correspond to hourly prices from
16th of June, 2000, to the 16th of December,
2004. The sample size is N = 39480. These data
present strong heteroscedasticity and also very
important explosions. This kind of data set is
well know for existence of explosions as we can
observe on the trajectory. These points increase
the kurtosis. For this data set, we represent the
scatter plot (Yz, Yi_12) on the Figure 10 (a). This
cloud suggests existence of some organization in-
side the data: it is not convex, and two states are
visible. Thus, using 12-hours data set, we de-noise
the data using Daubechies wavelets with J = 5
and P = 8. On the Figure 10, we provide the
reconstruction of the speudo-attractor.

Figure 10. Reconstruction of the pseudo-attractor
for electricity spot prices using Daubechies
wavelets with P=8 and J=5.

E]

Scatter-plot

E]

Pseudo-attractor:
(Xt, Xt—12)

(Y2,Yi—12)

In summary, all these data sets present features
which correspond to the characteristics of a lot
of stochastic processes like the GARCH process,
the Markov switching process, the SETAR process
and the long memory process. Thus it seems im-
portant to study these data sets from a stochastic
point of view. In another hand, we have shown
in this paper that it is also possible to extract
from these data some pseudo-attractor: we need
now to investigate the properties of these pseudo
- attractors. This will be done in another paper
and the "chaotic" approach will be compared with
the stochastic processes, via forecasting methods.



Details concerning all these data can be found in
Guégan and Kebira (2005).

5. CONCLUSION

In this paper we have showed that when a chaotic
dynamical system is polluted by a noise, the at-
tractor disappears. We show that the wavelets’
method permits to de-noise such polluted models
and permits to reconstruct the original attractor
with very nice precision. The methodology de-
veloped here appears new in order to de-noise a
chaotic system and gives very interesting results.
We apply this approach on different data sets like
fluctuations temperature, wind’ speed, spot elec-
tricity prices, Cacyy and Dow Jones. For each data
set, using their specific properties, we determine in
what space it is judicious to embed the data, then
using Daubechies wavelets, we extract the pseudo-
attractor associated to these data. It leaves to
study the properties associated to these different
attractors, to make forecasts and to compare them
with stochastic parametric methods. This is the
purpose of another paper and it is not discussed
here.
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