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Abstract

This paper presents a 2-regime SETAR model with a long-memory
process in the first regime and a short-memory process in the second
regime. We briefly introduce the properties of this model and meth-
ods for locating the threshold parameter are proposed. Such a process
is applied to stock indices and individual asset prices. A comparison
with simple FARIMA models is made using some forecastibility crite-
ria.
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1 Introduction

In economics and finance, multiple regimes modeling becomes more and more
important in order to take into account phenomena characterized for instance
by recession or expansion periods, or high or low volatility periods. Conse-
quently, a variety of models has been proposed in the literature to account for
this behavior, among which stochastic volatility models, nonlinear GARCH
models, threshold autoregressive models (TAR), Markov switching models,
multifactor GARCH models, etc.. Here, we focus our attention on the TAR
models that represent one of the most prominent classes of regime-switching
models. They have been initially introduced by Tong and Lim (1980) and
discussed in Tong (1990)). They assume that the regimes are determined
by a structural indicator relied on the observed process; when this threshold
variable is the time series itself, as we consider in this paper, the model is
called a Self-Exciting TAR (SETAR) model.
Moreover, each regime in the well-known TAR model is represented by
a short memory relation (generally an autoregressive equation). But it is
worthwhile noting here that economic or financial data can present sometimes
a long memory behavior in one or both regimes and it could be interesting to
consider models with the possibility of long memory behavior, at least in one
regime. Accordingly, in this paper, we propose to describe the regimes using
a SETAR model with one regime characterized by a long-memory dynamics
and the other by weak dependence; we thus consider a process (X;); that
satisfies the following scheme: Vi,
(1-B)X, =", if X,.; <c: regime 1 )
X = 652), if X;_1 >c: regime 2,

or
X, = 551), if X; 1 <c: regimel (2)
(1-B)X, =, ifX,_, >c: regime 2,

where d € [0,1/2] is a fractional difference parameter, ¢ is the threshold
parameter, 5,@,2’ = 1,2 are strong white noises with finite variances and B
is the backward shift operator. So, we introduce a persistent dynamics in at
least one regime.

Therefore, this paper belongs to a literature exploring simultaneously
two key properties of the financial time series, namely the long-memory and
nonlinear properties. Empirical works have been done along two lines of

research.



e A first line of papers enhances a skeptic view. The long-memory prop-
erty uncovered in the financial data would reflect strong biases in pres-
ence of neglected nonlinearities. Authors sharing this view argue that
neglected switching dynamics or regime shifts imply spurious long-
memory structures. Papers that highlight such a confusion include Hi-
dalgo and Robinson (1996), Lobato and Savin (1997), Bos, Franses and
Ooms (1999), Granger and Hyung (1999), Diebold and Inoue (2001)
and Breidt and Hsu (2002). Diebold and Inoue (2001) provide some
Monte Carlo results suggesting that spurious long-memory character-
ize many nonlinear models currently applied to economic data, among
which the Markov switching models. A consequence of this pessimistic
view is that nonlinearity and long-memory should be held jointly if one
wants to be able to evaluate their relative importance. These papers
are based on Allan (1966)’s long memory definition. Here, we adopt the
long memory approach defined by Granger (1980).

e Accordingly, a second strand of the literature has recently proposed
"nonlinear long-memory” models. For instance, some authors provide
a joint evidence of mean reversion over long horizons and nonlinear
dynamics on exchange rate markets, by generalizing to the nonlinear
framework the Beveridge Nelson decomposition (see, Clarida and Tay-
lor (2001), Sarno and Taylor (2001)). Others propose new classes of
long-memory models. For instance, Franses and Paap (2002), Franses,
Van der Leij and Paap (2002) introduce CLEAR and Switching CLEAR
processes, which show autocorrelation at high lags with an ACF that
decays at a faster rate in the beginning in comparison to the ACF of
an FARIMA model. Guégan (2000, 2003) introduces the GIGARCH
model which allies at the same time long-memory, seasonality and het-
eroscedasticity effects, with application to inflation rates. Fractionally
integrated threshold models have also been proposed, that offers an-
other potential application to financial data (see van Dick, Franses and
Paap (2002)).

This paper is mainly oriented on applications of models (1) and (2); we
show that these models provide more accurate forecasts than standard long
memory models.

The plan of the paper is as follows. Section 2 briefly presents the memory
properties of the model including a long-memory regime and proposes some
methods for the location of the unknown parameter ¢. Section 3 contains
some empirical applications to financial data. Section 4 concludes the paper.



2 Properties of the model and estimation

We refer to the "long-memory” definition in Granger (1980)’s sense: a long
memory behavior can be represented by an autocorrelation function decreas-
ing slowly towards 0. More precisely, we say that a stationary process (X;);,
whose autocovariance function is 7y, is long memory if, V¢ and V7,

vx (1) ~ C(d)T* as T — oo, (3)

where 0 < d < 1/2 and C(d) is a constant which depends only on d. Under

the assumption that s,gz),i = 1,2, are strong white noises with finite vari-

ances, model (1) is both locally (in each regime) and globally stationary and
invertible. Its autocorrelation function, yx(7), can be written as:

7x(7) = C(7, d)Ni(c) +7:(0) Na(c), (4)

where

(1 — 2d)I(r + d) ,
TAT(1—d)(r+1—d) (5)

C(r,d) =

Ni(c) and Ny(c) are the percentages of observations, respectively in regime
1 and in regime 2 and are not pre-defined, but depends upon the threshold
c. 7-(0) is the variance of the noise (6§2))t. The theoretical autocorrelation
function is thus a mixture of the autocorrelation of the long-memory model
in regime 1 and of the variance of the white noise model in regime 2. It
can be shown, via simulations, that vx(7) exhibits a variety of decay rates
(fast to very slow) according to the values of ¢ (see Dufrénot, Guégan and
Péguin-Feissolle (2003)).

Even in a simple formulation such as ours, the estimation of the model
parameters (d, ¢) is substantially more difficult than in the cases of FARIMA
models or standard SETAR models. Ideally, one would like to apply here
methods based on maximum likelihood approach (the Whittle estimator),
but this is not feasible because the model is piecewise linear. Further, it is
not possible to apply the variety of methods suggested for standard SETAR
models because of the presence of the fractional parameter in one regime.
The approach we adopt here is sequential as follows:

e One estimates the value of the threshold parameter c.

e The observations are separated in two sub-groups according to the es-
timated value of ¢ and one deduces Nj(c), Na(c).



e (Classical methods are applied to each sub-group to obtain an estimation
of the fractional parameter (GPH, non-parametric methods, Whittle).
If the model (1) (or (2)) is adequate to describe the data, then one must
find a significant parameter d for one sub-group and a non significant
parameter for the other sub-group.

The crucial point concerns the first step where the parameter ¢ has to be
estimated. We first construct the time series (X;); of arranged observations
according to the decreasing values of X;_; and then proceed as follows:

1. One considers a set of s; initial observations of (X't)t and estimate the
long-memory parameter and the corresponding t — ratio: ts,.

2. The vector ()?t)t is then incremented in such a way to contain sy, s3,
..., S, observations; new long-memory parameters and their ¢ — ratios
are computed: tg,, ts,,... , ts, (in the applications, we will add just one
observation: s; = s;_1 + 1 for all j).

3. Consider the set of estimated t-ratios {ts,, ts,, s, .-, s, }. One tests for
the presence of a structural break ¢ in the view of finding a sequence of
t-ratios such that, for instance, for ¢;, < t, the estimated long-memory
parameters are not statistically significant, while, for ¢, > t, they are
significant.

A simple way to do this is to use a standard Chow test. The series of t-
ratios is regressed on a linear time trend, using incremented dummy variables:
fork=1,2,...,n

ts,, = (@ + BDy) + (v + 6Dy)t + uy, (6)
where u; is a strong white noise and

p_{L ift<t
"7 10, otherwise.

We test the null hypothesis Hy : § = § = 0 against the alternative 5 # 0
or v # 0. The constant term is omitted if we want to test changes only in
the slope. The test is implemented by considering different values of ¢ and
finally one retains the value yielding the lowest p-value. Instead of using the
Chow test, one can also compute the sum of squares residuals corresponding
to the equation and select the t-ratio (and thus the threshold value) yielding
the lowest sum.



3 Empirical applications

We consider different asset prices and five stock indices p;, t = 1,...,T. The
data are daily and run from 1997 to 2003. The names of the companies and
indices are listed in table 1.

We consider the power returns

Xt = Rfa (7)
with
R, = log(p) — log(pi-1)

and § = 2 or 4, i.e. we are interested in modeling the processes (R?); and
(R});. When 6 = 2, the squared returns are taken as proxies of the instanta-
neous and empirical volatility, while, when 6 = 4, the power returns capture
the dynamics of the kurtosis.

3.1 Case 1: the process (R?);

Table 2 shows our estimation results. The data successfully detect the pres-
ence of two distinct regimes in the volatility of three stock indices. To save
place, we report the results for which the change point in the t-ratios is ob-
tained using the Chow-based method (the approach based on the minimum
sum of squares yields similar results). Further, we report the estimations
of the fractional parameters based on the GPH method: d corresponds to a
simple FARIMA model on the whole series, and d1 and d2 to the fractional
parameters of both regimes in model (1) o (2), ¢ is the value of the threshold
parameter, N; and N, are the number of points in the regimes and the last
row gives the corresponding model (1) or (2).
Several comments are in order.

e Firstly, comparing the t-ratios of the fractional parameter in the two
regimes, we find evidence that both the models (1) and (2) are able to
capture the state-dependent dynamics of the volatility. For instance,
in the case of ST-GOBAIN, the low volatility regime is characterized
by some predictable slow dynamic adjusting behavior, i.e. correspond
to model (1), whereas for TOTAL the volatility is highly persistent in
the regime of large past volatility (model (2)). These results suggest
that the two facets of volatility clustering - low volatility clustering and
high volatility clustering- can occur separately if one does not force the

volatility data-generating process to be only one regime (as is the case
of GARCH models).



e A second point is that, for these two indices, we approximately have
the same number of observations within each regimes. The implica-
tions for market analysts is that strategies based on technical analysis
(charts, market timing, dynamic asset allocation) and those based on
investment strategies (for instance, portfolio insurance) are not mutu-
ally exclusive. The first one can be used when a persistent volatility
generating process is detected and the second one during the periods
of unpredictable volatilities.

e A third interesting point concerns the difference between an aggregate
stock index like FTSE and disaggregated firms’ stock indices. Although
we find a two-regime model for the FTSE index, it is seen that the
number of points in the white noise regime is only approximately 10%
of the sample. We can observe that our "on/off” persistent volatility
model captures the influence of market microstructures that would not
be found when individual assets are aggregated.

Finally, it is interesting to enquire as to whether a model where the per-
sistence of the volatility is allowed in one regime only produces forecasts
that are superior to a one-regime long-memory model. Table 3 reports some
results of predictive accuracy based on Diebold and Mariano (1995)’s test
statistics. The number in bold correspond to cases where the SETAR model
yields forecasts that are statistically different from those obtained with a
simple FARIMA model. The number n in the table indicates the percent-
ages of points for which the residuals of our model are inferior to those of the
one-regime FARIMA model. As is seen, the numbers are higher than 50%,
which suggests that our model offers an alternative competing framework to
describe the persistence of the volatility.

3.2 Case 2: the process (R});

It seems worthwhile to look at some possible extensions of the preceding
results: we investigated thus the case corresponding to § = 4 in (2). Con-
sidering the power 4 of a process (R;); is a way to measure the kurtosis of
its underlying distribution. The behavior of the kurtosis is important in the
Value at Risk analysis (VaR). The latter can be viewed as a measure of the
maximum loss of a portfolio over a predetermined horizon:

VaR = —C.Vj, (8)

where C' is the current market value of a portfolio and A the holding period.
V}, is the cut-off value which is exceeded by h-period return with probability
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Vi =Fp, (p), (9)

where F}(.) is the probability distribution of the h-period return R;j,. Gen-
erally F} ,(.) is analytically intractable, especially when h is large (see Brum-
melhuis and Guégan (2004)). In this context, the knowledge of the time
varying behavior of moments like the fourth-order moments is very useful to
get a better accuracy for the parameters of the distribution function Fj(.);
this permits to compute the V}, and in turn the VaR. Models based on the
Kurtosis improved the predictions of the VaR, especially for aggregate re-
turns (see Wong and So (2003)).

Table 4 contains the estimation results. We successfully detect the pres-
ence of two distinct regimes for eight stock indices; a peculiar case is ST
GOBAIN where no long memory is found in a simple FARIMA model on the
whole period but where we find evidence that a 2-regime model is able to
capture the state-dependent dynamics of the series.

Further, the data successfully detect the presence of two distinct regimes
in the series R} of five asset indices and three aggregate stock indices. More
precisely, we have

e for three series (CARREFOUR, FTSE and SBF), the adequate model
is the model (1), i.e. the low past R} regime is characterized by some
long memory dynamics;

e for the other five series (FRANCETEL, BNP, LOREAL, ST GOBAIN
and CAC40), the model (2) is detected, meaning that the process R}
is highly persistent for large past R}.

Now, we use the estimated models to make predictions. Table 5 shows
that these predictions are higher with the model (1) or (2) than with a simple
FARIMA model: the number n in the table, i.e. the percentages of points
for which the residuals of our model are inferior to those of the one-regime
FARIMA model, is very high, between 54% and 75% (except in the case of
ST GOBAIN), suggesting that our model offers an interesting competitive
modeling approach to describe the persistence of the process R;.

Moreover, we observe that these predictions increase with the lag h (not
shown here but available upon request to authors). The behavior of the
kurtosis will influence the computation of the VaR introduced in (8), partic-
ularly when h increases. Indeed, excess kurtosis measures the tail thickness
of the distribution and a positive excess of kurtosis indicates a leptokurtic
distribution.



Thus, in the context of the risk management theory it seems important
to consider the use of model (1) or (2) which permits to separate the data
governed by a short memory process and those governed by a long memory
process. The knowledge of the time varying behavior of moments like the
fourth order moments could be very useful to get a better accuracy for the
parameters of the distribution function F} j,(.) which permits to compute the
Vi, and thus the VaR. This approach seems particularly appropriate for
a portfolio which corresponds to an aggregation of returns. Wong and So
(2003) showed that they improve the predictions of the VaR using models
on the skewness and kurtosis based on an heteroscedastic modeling.

4 Conclusion

This paper proposes a new model to investigate the long-memory dynamics of
time series that contains a mixture of long-memory and white noise structures
in a 2-regime SETAR. To pick up the part of the long-memory in the data, we
give some methods in order to locate the threshold parameter. Our empirical
results suggest that our model offers an interesting alternative competing
framework to describe the persistent dynamics in modeling the processes
(R}): and (Ry);.

Some further research topics are the following. Firstly, one can conjecture
that the model suggested here can be extended to the case where regime 1 is
described by an FARIMA model and regime 2 by a stationary ARMA model
or by a mixing process. Such a question is interesting since an FARIMA
process is not mixing (see Guégan and Ladoucette (2001)). Secondly, the
model can be applied to other time series than the transformation of returns.
Variables based on technical trading rules can be suggested (for instance, a
variable constructed from a short-run moving average and a long-run moving
average) in order to capture asymmetric dynamics in the memory structure.
Thirdly, the SETAR model with long-memory behavior can be studied under
the assumption of heteroskedastic errors in order to incorporate the influence
of volatility of the long-memory structure.
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Table 1. Names of companies and indices

Companies or indices period

France Télécom 20/10/97-23/04/03
Bnp 02/01/98-23/04/03
Carrefour 02/01/98-23/04/03
Loreal 02/01/98-23/04/03
St Gobain 02/01/98-23/04/03
Total FinaElf 02/01/98-23/04/03
Ftse 02/01/98-23/04/03
Cac40 01/05/98-23/04/03
Sbf 02/01/98-23/04/03
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Table 2. Estimation of parameters for R?

ST GOBAIN TOTAL FTSE

d 0.0919 0.1066  0.3165
t-ratio (3.09) (2.51)  (8.90)
¢ 0.0001 0.0002  0.0006
N, 606 740 1236
d, 0.0904 0.0560  0.2907
t-ratio (3.29) (1.37)  (6.90)
N, 734 600 102
dy 0.1064 0.1615 0.1835
t-ratio (1.93) (3.06)  (1.49)
model (1) 2) (1)

Note: The change point in the t-ratios was obtained using thg methogi\ based on the
Chow test. All the estimations are made with GPH method. dy and dy refer to the
estimated fractional parameter and V7 and N5 the number of observations, respectively
in regime 1 and regime 2. d is the estimated fractional parameter on the whole series.
The t-ratio must be compared 1.96 (corresponding to the critical value at the 5% level of
significance). A non-significant parameter indicates that the volatility is driven by a white
noise process (and is thus unpredictable). Conversely, a significant parameter means that
the volatility exhibit a long-memory dynamics therefore yielding to a high predictability.
The last row shows the corresponding adequate model (1) or (2).
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Table 3. Predictive accuracy testing for R? (p-values)

AS SI WI NB MGN MR n

ST GOBAIN 0.067 0.000 0.403 0.155 0.310 0.113 55.19%
TOTAL 0.000 0.396 0.232 0.041 0.082 0.113 51.16%
FTSE 0.488 0.000 0.009 0.199 0.391 0.250 55.57%

Note: The different columns are: AS: Asymptotic test, SI: Sign test, WI: Wilcoxon’s
test, NB: Naive benchmark test, MGN: Morgan-Granger-Newbold’s test, MR: Meese-
Rogoff’s test, n: number of times in percent where the residuals coming from the TAR
model with a long memory regime are smaller than the residuals coming from a standard
long memory model (when n;50%, it means that the TAR model seems the best). The
null hypothesis is the hypothesis of equal accuracy of different predictive methods. The
loss function is quadratic. The test statistics follows asymptotically different distributions:
N (0, 1) for the asymptotic test, the sign test, the Wilcoxon’s test, the Meese-Rogoft’s test,
F (T}, Tp) for the Naive benchmark test and a t7; 1 for the Morgan-Granger-Newbold’s
test (where 1§ is the number of predicted observations, i.e. Ty = 20). The Meese-Rogoff
test statistic is computed with the Diebold-Rudebusch covariance matrix estimator. The
truncation lag is 10 for the asymptotic test and is given by the integer part of T(;l /5 for
the Meese-Rogoft’s test.
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Table 4. Estimation of parameters for R}

FRANCETEL BNP CARREFOUR LOREAL

d 0.1807 0.1895 0.1205 0.2262
t-ratio (4.85) (5.53) (3.34) (6.39)
¢ 4%x10°%  4x107°  5x 1078 2 x 1077
Ny 1132 257 723 940
d, 0.0148 0.0176 0.1229 0.0615
t-ratio (0.61) (0.22) (2.29) (1.42)
Ny 258 1082 616 400
d 0.0912 0.1720 0.0731 0.3249
t-ratio (3.22) (4.36) (1.31) (5.21)
model 2) 2) (1) 2)

ST GOBAIN  FTSE CAC40 SBF

d 0.0037 02820  0.1594  0.1427
t-ratio (0.77) (8.09)  (4.35)  (3.89)
¢ 2x 107  2x1077 2x107° 3x107°
N, 615 1200 489 550
d, 0.0077 0.2514  0.1079  0.2093
t-ratio (1.87) (7.10)  (1.61)  (4.55)
Ny 725 138 850 790
ds 0.2691 0.1622  0.1453  -0.0024
t-ratio (6.90) (1.95)  (2.92)  (-0.05)
model 2) (1) 2) (1)

Note: The change point in the t-ratios was obtained using thg\ methogl\ based on the
Chow test. All the estimations are made with GPH method. dy and dy refer to the
estimated fractional parameter and Ny and N9 the number of observations, respectively
in regime 1 and regime 2. d is the estimated fractional parameter on the whole series.
The t-ratio must be compared 1.96 (corresponding to the critical value at the 5% level of
significance). A non-significant parameter indicates that the volatility is driven by a white
noise process (and is thus unpredictable). Conversely, a significant parameter means that
the volatility exhibit a long-memory dynamics therefore yielding to a high predictability.
The last row shows the corresponding adequate model (1) or (2).
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Table 5. Predictive accuracy testing for R} (p-values)

AS SI WI NB MGN MR n
FRANCETEL 0.918 0.000 0.000 0.518 0.962 0.851 74.59%
BNP 0.983 0.001 0.000 0.522 0.954 0.308 54.48%
CARREFOUR 0.196 0.000 0.000 0.232 0.463 0.032 74.14%
LOREAL 0.331 0.000 0.000 0.102 0.201 0.000 71.02%
ST GOBAIN 0.801 0.000 0.000 0.496 0.992 0.817 41.90%
FTSE 0.929 0.000 0.000 0.456 0.911 0.833 59.99%
CAC40 0.470 0.000 0.000 0.349 0.699 0.175 61.81%
SBF 0.000 0.000 0.000 0.290 0.579 0.238 66.09%
Note: The different columns are: AS: Asymptotic test, SI: Sign test, WI: Wilcoxon’s

test, NB: Naive benchmark test, MGN: Morgan-Granger-Newbold’s test, MR: Meese-
Rogoff’s test, n: number of times in percent where the residuals coming from the TAR

model with a long memory regime are smaller than the residuals coming from a standard

long memory model (when n;50%, it means that the TAR model seems the best). The

null hypothesis is the hypothesis of equal accuracy of different predictive methods. The

loss function is quadratic. The test statistics follows asymptotically different distributions:
N (0, 1) for the asymptotic test, the sign test, the Wilcoxon’s test, the Meese-Rogoft’s test,
F (T}, Tp) for the Naive benchmark test and a t7; 1 for the Morgan-Granger-Newbold’s
test (where 1§ is the number of predicted observations, i.e. Ty = 20). The Meese-Rogoff

test statistic is computed with the Diebold-Rudebusch covariance matrix estimator. The
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truncation lag is 10 for the asymptotic test and is given by the integer part of To/ for

the Meese-Rogoft’s test.
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