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Sharing Beliefs: Between Agreeing and Disagreeing

By Antoine Billot, Alain Chateauneuf, Itzhak Gilboa, and Jean-Marc Tallon1

1. introduction

When is it Pareto optimal for risk averse agents to take bets? Under what

conditions do they choose to introduce uncertainty into an otherwise certain

economic environment? One obvious case is where they do not share beliefs.

As in the classical (theoretical) example of horse lotteries, people who do

not agree on probability assessments do ¯nd it mutually bene¯cial to engage

in uncertainty-generating trade.

If the agents involved are Bayesian expected utility maximizers and

strictly risk averse, it is not hard to see that disagreement on probabili-

ties is the only way that betting, understood as trade of an uncertain asset,

may be Pareto improving when starting from a full insurance allocation.

On the other hand, any such disagreement induces betting. Put di®erently,

Pareto optimality dictates either that there be no betting (in case beliefs are

common to all agents) or that there be betting (in case of disagreement).

This is somewhat puzzling, because there is no lack of allocation-neutral,

\sunspot" sources of uncertainty in the world around us. If every disagree-

ment on probabilities of states of the world suggests a Pareto improving

trade, one might have expected to see much more betting taking place.
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Rather than believing that people who do not bet necessarily share prob-

abilistic beliefs about anything they do not bet on (or, to be precise, share

these beliefs up to some slack allowed by transaction costs), we tend to

take the relative rarity of bets as a piece of empirical evidence against the

Bayesian model. It seems that often people do not bet because they are

uncertainty averse, and they therefore tend to avoid uncertainty that they

know little about. It follows that a person's willingness to bet will increase

with her subjective con¯dence in her information and in her likelihood as-

sessments. It is worth emphasizing that Bewley's (1986) motivation for

his work on Knightian decision theory was partly this absence of observed

widespread betting.

While we do not attempt to argue that the full complexity of betting

behavior can be explained by the type of models we study here,2 we are

led to ask, how much can be explained by these models if we relax some

of the more demanding assumptions of the Bayesian model. Speci¯cally,

we consider maxmin expected utility with a non-unique prior (Gilboa and

Schmeidler (1989)) that captures Knightian uncertainty (Knight (1921)).

Assume that such uncertainty averse agents who are also risk averse, give

rise to an economy in which there is no aggregate risk. When does there

exist full insurance, i.e., no-bet allocations that are also Pareto optimal?

When is it the case that all Pareto optimal allocations are full insurance?

Is any betting due to di®erent beliefs, and, conversely, does a di®erence in

beliefs always trigger some betting?

In the multiple prior model an individual is characterized by a utility
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function and a non-empty, closed and convex set of probability measures.

The individual evaluates every act by its expected utility according to each

possible probability measure, and chooses an act whose minimal expected

utility is the highest. The family of preference relations described by this

model strictly contains the relations described by Choquet expected utility

with a convex capacity (see Schmeidler (1989)).

Consider now a pair of agents conforming to the multiple prior model.

It is an easy extension of the expected utility analysis to show that these

agents will not bet against one another if they share at least one prior.

Moreover, in a general framework with more than two agents and complex

bets possibly involving several of them, it is easy to show, following Dow and

Werlang (1992) early intuition, that Pareto optimal allocations are indeed

full insurance allocations whenever agents' sets of priors have a non-empty

intersection (see, e.g., Tallon (1998), Dana (1998)).

The question of whether the converse to this result holds arises natu-

rally: is commonality of beliefs, in the sense of agents sharing a prior in

common, exactly what is needed to explain, within the framework of the

multiple prior model, the absence of betting on the many possible sources

of \extrinsic" uncertainty? Di®erently put, is the observation of a Pareto

optimal allocation that is immune to sunspots enough to tell us something

about the intersection of agents' sets of priors?

It turns out that we can answer this question a±rmatively and that the

result in the Bayesian model has a conceptually identical counterpart in

the multiple prior model. Under the same non-triviality conditions, there
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exists a Pareto optimal full insurance allocation if and only if all Pareto

optimal allocations provide full insurance, and this holds if and only if all

agents share a prior probability on the states of the world. In other words,

commonality of beliefs is the necessary and su±cient condition to explain

the absence of betting. Whereas in the Bayesian model \sharing a prior"

could only mean \having an identical prior," in the multiple prior model

this phrase may be read as \having at least one prior in common." With

this grammatical convention in place, the result holds verbatim.

Bayesian agents either agree on probability assessments, or disagree

enough to bet against each other. By contrast, uncertainty averse agents

can be in a \grey area" between agreeing and disagreeing: they may not

agree in the sense of having the same set of possible priors, yet not disagree

in the sense of being willing to bet against each other.

Finally, we emphasize another contribution of this note. In showing that

commonality of beliefs is the minimal assumption explaining the absence

of bets, we prove a separation theorem for n convex sets that might be of

interest on its own.

The rest of this paper is organized as follows. Section 2 provides the set

up of the model. In section 3 we state the main result and the separation

theorem. Proofs are relegated to an appendix.

2. set-up

The economy we consider is a standard two-period pure-exchange econ-

omy with uncertainty in the second period, but for agents' preferences. The

state space is S, and § a ¾-algebra of subsets of S, so that (S;§) is a measur-
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able state space. There are n agents indexed by subscript i. We assume (i)

that there is only one good, which can be interpreted as income or money;

and (ii) that there is no aggregate uncertainty. Trading an uncertain asset is

thus interpreted as betting rather than as hedging. Let B(S;§) be the Ba-

nach space of real-valued, bounded and measurable functions on S, endowed

with the sup-norm. Let ba(S; §) be the space of bounded ¯nitely additive

measures on (S;§) endowed with the weak?-topology. Agent i's consump-

tion Ci, is a positive element of B(S; §), that is, Ci(s) is the consumption of

agent i in state s. Denote by w 2 B(S;§) the constant-across-states aggre-

gate endowment, and assume that w > 0. An allocation C = (C1; : : : ; Cn)

is feasible if
Pn
i=1Ci = w. An allocation is interior if Ci(s) > 0 for all i, for

all s.

In the multiple-prior approach, each agent i is endowed with a utility

index Ui : IR+ ! IR and a set Pi of probability distributions over S. Ui is

de¯ned up to a positive a±ne transformation, and is taken to be di®eren-

tiable, strictly increasing and strictly concave. Pi is a convex and closed set

of ba(S;§). We assume that all priors in Pi are ¾-additive.3 Note that Pi is

compact in the weak?-topology since it is a weak?-closed subset of the set of

¯nitely-additive probability measures on §, which is compact in the weak?-

topology (see, e.g., Dunford and Schwarz (1958)). The norm-dual of B(S; §)

which is isometrically isomorphic to ba(S;§) will be denoted B?(S;§).

The overall utility function Vi de¯ned over B(S;§) then takes the fol-

lowing form:

Vi(Ci) = min
¼2Pi

E¼Ui(Ci)
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We assume throughout that all priors are mutually absolutely continuous :

8A 2 §; 8i; j; 8¼i 2 Pi; 8¼j 2 Pj; ¼i(A) = 0 () ¼j(A) = 0

This assumption essentially says that all agents agree on \null events". It

is naturally satis¯ed if, say, the state space is ¯nite and all measures are

strictly positive, or if all measures are absolutely continuous with respect to

an underlying measure.

The last de¯nition we need is that of a full insurance allocation. An

allocation C is said to be full insurance if it is constant apart from a set

A 2 § that has ¼i(A) = 0 for some (and therefore, by the assumption of

mutual absolute continuity, for all) ¼i 2 Pi and i.4

3. the main result

The following theorem states that the set of Pareto optimal allocations

and the set of full insurance allocations are either identical or disjoint. More-

over, they are identical if and only if the agents share at least one prior.

Theorem 1 Under the maintained assumptions, the following assertions

are equivalent:

(i) There exists an interior full insurance Pareto optimal allocation.

(ii) Any Pareto optimal allocation is a full insurance allocation.

(iii) Every full insurance allocation is Pareto optimal.

(iv)
Tn
i=1 Pi 6= ;

The intuition for the proof (and the role of some assumptions) is as

6



follows. We prove that (iv) ) (ii) ) (iii) ) (i) ) (iv). If there is a

common prior (iv), one can use strict concavity to show that a risk bearing

allocation is Pareto dominated by the full insurance allocation that equals

its expectation at every state, proving (ii).5 This step uses the mutual ab-

solute continuity assumption, as well as the assumption that the probability

measures we deal with are ¾-additive (rather than only ¯nitely additive).

Observe that with ¯nitely additive measures the implication (iv) ) (ii)

does not hold, even in a Bayesian set-up. This is so because the integral

of a function with respect to a ¯nitely additive measure may be strictly

smaller than each of the values the function assumes. Therefore individuals

who hold assets that they view as uncertain may not bene¯t from smooth-

ing them across states. If every Pareto improving allocation provides full

insurance (ii), the converse (iii) also holds, since no two full insurance allo-

cations can be Pareto ranked,6 and it follows trivially that there is at least

one such allocation (i). Finally, the crucial step and the main contribution

of the theorem is that the existence of a full insurance Pareto optimal al-

location (i) implies that there is a common prior (iv). This step does not

require concavity of the utility index:7 In proving this last part we make

use of the following theorem, which generalizes the standard separating hy-

perplane theorem, and may be of interest on its own. In the appendix we

also comment on the geometric interpretation of this result which may be

viewed as a separation theorem among n convex sets.
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Theorem 2 Let X be a locally convex linear topological space and let

Pi µ X, 1 � i � n, be convex, non-empty, and compact. Then, the following

are equivalent:

(i)
Tn
i=1Pi = ;

(ii) There exist I µ f1; : : : ; ng, I 6= ; and p 2 co ([i2IPi) and for each

i 2 I, there exists a continuous linear functional hi : X ! IR such that:

(a) 8 i 2 I, hi(q ¡ p) > 0 for all q 2 Pi

(b)
P
i2I hi = 0

An immediate corollary of Theorem 2 is that, under the same assump-

tion, if
Tn
i=1Pi = ;, there exist continuous linear functionals hi, i = 1; : : : ; n

and a point p such that (a') hi(q ¡ p) ¸ 0 for all q 2 Pi, for all i, (b')

Pn
i=1 hi = 0, and (c') there exist i, i0 such that the inequality in (a') is

strict.

It is worthy of note that a similar result, developed independently and

with a rather di®erent motivation, is to be found in Samet (1998), for subsets

of a ¯nite dimensional simplex. Samet's result is weaker in the sense that

it guarantees the existence of linear functionals as in our case, but does not

guarantee that the separating hyperplanes will intersect at one point p in the

convex hull of the sets, and therefore does not yield itself to a straightforward

geometric interpretation. Further, Samet's result can be easily derived from

the corollary above specialized to subsets of the simplex. It does not appear

that Samet's argument could easily be amended to get ours.

Theorem 1 has two immediate corollaries. First, in the Choquet expected
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utility model with convex capacities, non-empty core intersection is equiva-

lent to some, or all, Pareto optimal allocations being full insurance. Second,

in the expected utility case, where the sets of priors are reduced to one point,

some, or all, Pareto optimal allocations are full insurance allocations if and

only if agents have the same beliefs (i.e., the same prior).

Note that even though we cast the argument in the multiple prior model,

it should be clear from the proof that a similar result holds for Bewley

(1986) approach. In Bewley's approach, agents are also endowed with a set

of priors and move away from a (exogenously de¯ned) status quo situation

only if the new situation is better than the status quo for all the probability

distributions in their set of priors. While Bewley characterizes a partial

order over acts, a proposed bet will be preferred to a certain status quo if

and only if this preference holds in the multiple prior model of Gilboa and

Schmeidler.8

Our analysis is conducted for an economy with one good. However, the

only use we make of this assumption is in arguing that all full insurance

allocations are Pareto optimal. Indeed, one can generalize our results to

an economy with m goods, with the slight modi¯cation that full insurance

allocations that are considered for optimality be assumed Pareto optimal in

each state.
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appendix

Proof of Theorem 1:

We ¯rst prove (iv) ) (ii) Assume to the contrary that there exists

an agent, say, agent 1, such that for every ¼1 2 P1 and every c 2 IR+,

¼1 (fs jC1(s) < cg) + ¼1 (fs jC1(s)g > cg) > 0.

Let ¼ 2 \iPi and de¯ne ¹Ci = E¼Ci for all i. Abusing notation, let ¹Ci also

denote the constant allocation giving ¹Ci to agent i in all states. ¹C = ( ¹Ci)i

is a feasible allocation since
P
i

¹Ci =
P
iE¼Ci = E¼ (

P
iCi) = E¼w1S = w.

Now,

Vi(Ci) = min
'2Pi

E'Ui(Ci) � E¼Ui(Ci)

Furthermore,

E¼Ui(Ci) � Ui(E¼(Ci)) = Ui( ¹Ci) = Vi( ¹Ci)

for all i since Ui is concave.

Since ¼ belongs to Pi, one gets that

¼
¡fs jC1(s) < ¹C1g

¢
+ ¼

¡fs jC1(s) > ¹C1g
¢

> 0

Furthermore, ¼
¡fs jC1(s) < ¹C1g

¢
= 0 is impossible, for then, ¼

¡fs jC1(s) > ¹C1g
¢

>

0, implying by ¾-additivity of ¼ that E¼(C1) > ¹C1, a contradiction. Hence,

¼
¡fs jC1(s) < ¹C1g

¢
> 0 and, similarly, ¼

¡fs jC1(s) > ¹C1g
¢

> 0.

It follows that V1(C1) < V1( ¹C1) since U1 is strictly concave. Therefore,

the allocation ¹C Pareto dominates C, a contradiction.

To see that (ii) implies (iii), let C be a full insurance allocation. Assume,

contrary to (iii), that it is not Pareto optimal, and is dominated by another
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allocation C0. By the same argument as above, ¹C0 is at least as desirable

as C0 for every agent. By transitivity of Pareto domination, ¹C0 Pareto

dominates C. But this is a contradiction since both provide full insurance

and there is only one good in the economy.

That (iii) implies (i) is obvious, and it remains to prove that (i) implies

(iv). Suppose to the contrary that \iPi = ;, and let C be an interior Pareto

optimal allocation that is a full-insurance allocation (Ci is constant for all i

apart on a set of measure zero, the latter notion being de¯ned unambiguously

given our absolute mutual continuity assumption). By Theorem 2 (where X

is B?(S; §) endowed with the weak?-topology), since \iPi = ;, there exists

a non-empty set I, a point p and functionals hi 2 B?(S;§), i 2 I such that:

(a) 8i 2 I, hi(q ¡ p) > 0 for all q 2 Pi

(b)
P
i2I hi = 0

Recall that (see e.g. Kelley and Namioka (1963), p.155) every weak?-

continuous linear functional on the conjugate space of a linear topological

space E is the evaluation at some point of E. Hence, for all i 2 I, there

exists Di 2 B(S; §) such that hi(p) = p(Di), for all p 2 B?(S; §).

Construct the allocation
³

bCi
´
i=1;:::;n

as follows:

bCi = Ci i =2 I

bCi = Ci + " [Di ¡ p(Di)1S ] i 2 I

with " > 0 small enough so that bC is an allocation.

We ¯rst check that this allocation is feasible :

"

"X

i2I
Di ¡

X

i2I
p(Di)1S

#
= "

"X

i2I
Di ¡

X

i2I
hi(p)

#
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= "
X

i2I
Di since

X

i2I
hi = 0

Now, Di is such that hi(q) = q(Di) for all q 2 B?(S;§) and hence

q(
P
i2I Di) = 0 for all q 2 B?(S; §).

To conclude that
P
i2I Di = 0, suppose there exists s such that

P
i2I Di(s) =

a, a 6= 0. The event fs jPi2I Di(s) = ag is measurable because the Di are

measurable. Now, let q be the continuous linear functional in B?(S; §)

corresponding to the additive probability in ba(S;§) with the mass 1 on

that event. Then q(
P
i2I Di) = 0 implies a = 0, a contradiction. Hence,

P
i2I Di = 0.

Now, for i 2 I, one has:

Vi( bCi) = Eq̂"Ui(Ci + "[Di ¡ p(Di)1S]) for some q̂" 2 Pi

= Vi(Ci) + "U 0
i(Ci)[q̂

"(Di) ¡ p(Di)] + o(")

= Vi(Ci) + "U 0
i(Ci)[hi(q̂

" ¡ p)] + o(")

¸ Vi(Ci) + "U 0
i(Ci)[ inf

q2Pi
hi(q ¡ p) + ®(")]

where ®(") = o(")
" ! 0 as " ! 0.

Since infq2Pi hi(q ¡ p) > 0 by continuity of hi and compactness of Pi, and

®(") ! 0, there exists " small enough so that the term in bracket is strictly

positive.

Hence, Vi
³

bCi
´

> Vi (Ci) for i 2 I, and we found a Pareto dominating

allocation
³

bCi
´
i=1;:::;n

, a contradiction. Q:E:D:

Proof of Theorem 2: We start with the following lemma:

Lemma: Let X be a locally convex linear topological space and let Pi µ X,

1 � i � n be convex, non-empty, and compact. Assume that \i�nPi = ;
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but that for all ` � n, \i6=`Pi 6= ;. Then, there exist p 2 co ([ni=1Pi) and a

continuous linear functional hi : X ! IR for each i � n such that:

(a) 8 i � n, hi(q ¡ p) > 0 8q 2 Pi

(b)
P
i�n hi = 0

The geometric interpretation of this lemma is as follows. Assume that n

convex and compact sets have an empty intersection, but that every subset

of them has a non-empty intersection. Then, we can ¯nd a point p which is

not included in any set, but which is \in the middle" in the following sense:

one can ¯nd, for each set Pi, a hyperplane hi that passes through p which

is in the convex hull of the union of the Pi and leaves the entire Pi on one

side, such that the normals of these hyperplanes, multiplied by appropriate

positive constants, add up to zero. In the case n = 2, our lemma reduces

to a standard separation theorem between two disjoint sets. For n > 2, the

lemma may be considered as an n-way separation among n convex sets. See

¯gure 1 for an illustration of the case n = 3.

Please insert Figure 1 here

Proof of the lemma: The proof is by induction on n. For n = 2, we

have P1 \ P2 = ; and we use a standard separation theorem (cf Kelley

and Namioka (1963), p.119, theorem on strong separation) to conclude that

there is a continuous linear functional h : X ! IR and a number ¯ 2 IR

such that h(q) > ¯ for q 2 P1 and h(q) < ¯ for q 2 P2. Choose p such that

h(p) = ¯, and set h1 = h and h2 = ¡h. By linearity of h it is possible to

choose p 2 co (P1 [ P2).
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Assume that the lemma holds for every n0 < n. Let there be given

(Pi)ni=1. Set A = \i<nPi and B = Pn. Observe that A and B are convex,

non-empty, and compact. Furthermore, they are disjoint since \iPi = ;.

Apply the same separation theorem to conclude that there exist a continuous

linear ehn : X ! IR and ¯ 2 IR such that

ehn(q) > ¯ 8 q 2 B and ehn(q) < ¯ 8 q 2 A

Choose q0 2 X such that ehn(q0) = ¯. We shift the origin to q0. Speci¯cally,

de¯ne for each i � n, bPi = fp ¡ q0 j p 2 Pig = Pi ¡ q0. Naturally,
³

bPi
´n
i=1

and their intersections inherit all relevant properties of (Pi)i. Denote bB =

B ¡ q0 = bPn and bA = A ¡ q0 = \i<n bPi and observe that ehn(q) > 0 8q 2 bB

and ehn(q) < 0 8q 2 bA. Consider X 0 = fq 2 X j ehn(q) = 0g. X 0 is a locally

convex linear topological subspace of X. Focusing on this subspace, de¯ne

bP 0
i = bPi \ X 0 for i < n. Obviously, bP 0i is convex and compact for every

i < n. We argue that it is also non-empty. Indeed, bPi contains bA. On the

other hand, bPi has a non-empty intersection with bB = bPn. By convexity of

bPi and linearity of ehn, bP 0
i 6= ;. Similarly, for ` < n, \i6=`;n bPi contains bA and

intersects bB and we therefore get

\i6=`;n bP 0
i 6= ; 8 ` < n

However, X 0 is an hyperplane separating bB from bA. Hence \i<n bP 0
i = ;.

It follows that
³

bP 0
i

´
i<n

on X 0 satisfy the conditions of the lemma for n0 =

n ¡ 1. Therefore, there exist a point bp 2 co
³
[n¡1i=1

bP 0i
´

and continuous linear

functionals h0i : X 0 ! IR, i < n, such that h0i(q ¡ bp) > 0 8q 2 bP 0i; i < n,

and
P
i<n h0i = 0 on X 0. Using standard arguments (see Fact 1 below), we
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conclude that, for every i < n, h0i on X 0 can be extended to hi on all of X

such that:

hi(q ¡ bp) > 0 8q 2 bPi

De¯ne h =
P
i<n hi on X. Observe that for every q 2 X 0,

h(q) =
X

i<n

hi(q) =
X

i<n

h0i(q) = 0

Hence ehn and h are continuous linear functionals on X satisfying:

ehn(q) = 0 ) h(q) = 0 8q 2 X

By standard arguments (see Fact 2 below), there exists ® 2 IR such that

h(q) = ®ehn(q) 8 q 2 X.

We wish to show that ® < 0. Consider q 2 bA = \i<n bPi. Since hi(q¡bp) >

0 8 i < n and h(bp) = 0, we obtain

h(q) = h(q ¡ bp) =
X

i<n

hi(q ¡ bp) > 0

On the other hand, ehn(q) < 0 since q 2 bA. It follows that ® < 0.

De¯ne hn = (¡®)ehn. Since (¡®) > 0, hn(q ¡ bp) = hn(q) > 0 8 q 2 bPn.

To conclude, set p = bp + q0. Observe that p 2 co
³
[n¡1i=1 Pi

´
and hence

p 2 co ([ni=1Pi). We claim that p and (hi)i�n satisfy (a) and (b). Indeed,

for every i � n, and every q 2 Pi:

hi(q ¡ p) = hi
³
(q ¡ q0) ¡ (p ¡ q0)

´
= hi

³
(q ¡ q0) ¡ bp

´
> 0

since q ¡ q0 2 bPi. Finally,
P
i�n hi = 0 by construction of hn. Q:E:D:

The following two facts, which are used in the proof above, are straight-

forward and/or well-known.
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Fact 1: Let X be a locally convex linear topological space. Let bh be a

continuous linear functional and X 0 = fp 2 X j bh(p) = 0g. Assume that

C µ X is convex and compact, and that C \ X 0 6= ;. Further assume

that h0 : X 0 ! IR is a continuous linear functional such that h0(p) > 0

8 p 2 C \ X 0. Then, h0 can be extended to a continuous linear functional

h : X ! IR such that h(p) > 0 8 p 2 C.

Proof of Fact 1: Set D = fp 2 X 0 j h0(p) = 0g. Observe that D 6= ; since

the origin is in D. Thus C and D are disjoint non-empty closed and convex

sets in X, and C is compact. Let a continuous linear functional eh : X ! IR

and d 2 IR be such that:

eh(p) < d 8 p 2 D and eh(p) > d 8p 2 C

We claim that eh has to be constant on D. Indeed, assume that for some

p; q 2 D, eh(p) 6= eh(q). Since p; q 2 D implies bh(p) = bh(q) = 0 and h0(p) =

h0(q) = 0, we conclude that p + ®(q ¡ p) 2 D for all ® 2 IR. Hence

feh(p + ®(q ¡ p)) j ® 2 IRg = IR, a contradiction to the fact that eh(p) < d

8 p 2 D. Thus there is a c 2 IR such that eh(p) = c 8 p 2 D. Since the origin

is in D, we obtain c = 0. It follows that d > 0 and therefore

eh(p) > d > 0 8 p 2 C

We now wish to show that, up to multiplication by a positive constant, eh

extends h0 on X. Restrict attention to X 0. If p 2 X 0 satis¯es h0(p) = 0, then

p 2 D and we know that eh(p) = 0. By Fact 2 below, there exists ® 2 IR

such that eh(p) = ®h0(p) 8 p 2 X 0. However, on C \ X 0, both eh and h0 are

positive. Therefore ® > 0. Hence h ´ 1
®

eh extends h0 on X and is positive

17



on all of C. Q:E:D:

Fact 2: Let X be a linear space and let eh; h : X ! IR be linear. Assume

that

eh(q) = 0 ) h(q) = 0 8 q 2 X

Then there exists ® 2 IR such that h(q) = ®eh(q) 8 q 2 X

We skip the proof of this Fact and now turn to the proof of Theorem 2:

(i) ) (ii). Assume that \i�nPi = ;. Let I be a minimal (with respect to

set inclusion) subset of f1; : : : ; ng with the property that \i2IPi = ;. Since

\ni=1Pi = ;, but Pi 6= ; for every i, such a set I exists and for every such

set jI j¸ 2. Apply the Lemma to I.

(ii) ) (i). Assume that a point p 2 X, a set I½f1; : : : ; ng and functionals

(hi)i2I exist as required, and suppose, contrary to (i), that there exists

q 2 \i�nPi. Then, by (a),
P
i2I hi(q ¡ p) > 0, contrary to (b). Q:E:D:
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Footnotes

1. We thank participants of the Erasmus conference at Tilburg Univer-

sity and two referees for useful comments.

2. In particular, we ignore the social aspects of betting as well as the

strategic ones (see, e.g., Milgrom and Stokey (1982)).

3. Note that the axiomatization of Gilboa and Schmeidler (1989) delivers

only ¯nitely additive probability distributions.

4. It is straightforward to check that C is of full-insurance if and only if

8i; Ci is constant apart from a set Ai 2 § that has ¼i(Ai) = 0 for some (and

therefore, by assumption of mutual absolute continuity, for all) ¼i 2 Pi.

5. This implication follows the logic of similar results for Choquet ex-

pected utility in Chateauneuf, Dana, and Tallon (1998).

6. The fact that (iv) implies (ii) and (iii) also appears in Dana (1998)

but in a ¯nite set-up.

7. Dana (1998) shows that if there is a full insurance competitive equi-

librium in this economy with ¯nitely many states, then agents share a prior

in common. Her proof, however, uses the concavity of the utility index and

relies on the existence of a competitive equilibrium.
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8. Bewley (1989) contains a similar no-trade result for agents whose

preferences are given by partial orders as in Bewley (1986). His proof is

very similar to Samet's, and his result is weaker than Theorem 2 in the

same sense that Samet's is.
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Figure 1-Separation among three convex sets.
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