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Abstract

The objective of this paper is to propose a market risk measure de�ned in price
event time and a suitable backtesting procedure for irregularly spaced data. Firstly,
we combine Autoregressive Conditional Duration models for price movements and a
non parametric quantile estimation to derive a semi-parametric Irregularly Spaced
Intraday Value at Risk (ISIVaR) model. This ISIVaR measure gives two information:
the expected duration for the next price event and the related VaR. Secondly, we use
a GMM approach to develop a backtest and investigate its �nite sample properties
through numerical Monte Carlo simulations. Finally, we propose an application to
two NYSE stocks.
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1 Introduction

The availability of high-frequency (or tick by tick) data, induced by the evo-

lution of the trading environment on the major �nancial places, has led to the

emergence of a new category of active market participants, such as high fre-

quency traders. The latter are characterized by very short investment horizons

and then require new market risk methodology: since risk must be evaluated

on shorter than daily time intervals, traditional risk measures, such as Value

at Risk (VaR), must be extended to intraday data context. This new body of

research receives less attention in the relevant literature compared to de�nition

and validation of day-to-day risk measures.

To the best of our knowledge, two attempts to derive intradaily market risk

models using tick by tick data are those of Giot (2005) and Dionne et al. (2006).

Giot (2005) quanti�es market risk at an intraday time horizon, using Normal

GARCH, Student GARCH, RiskMetrics for deseasonalized tick by tick data

sampled at equidistant time. He also applied the Log-ACD model on price

duration to compute irregularly spaced VaR and then scale them to derive

�xed-time intervals VaR. The Intraday-VaR (IVaR) of Dionne et al. (2006)

is based on a rich model of price dynamics conditional on durations- known

as the Ultra-High-Frequency GARCH (UHF-GARCH) model of Engle (2000)-

such that unequally spaced VaR can be easily generated in a convenient way.

But, the authors instead make use of a simulation-based method to infer VaR

at any �xed-time horizon 2 . So, in both approaches, the unequally spaced

nature of high-frequency market risk models is forfeited, mainly because of

backtesting procedure.

This restriction obviously implies a loss of information, since durations be-

2 It seems in the case of Dionne et al. (2006) paper, as in Giot (2005), that VaRs
are rescaled in �xed-time intervals for validation purpose.
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tween market events 3 are an essential dimension of risk when dealing with

tick by tick data. A very short duration forecast thus indicates in the line

of microstructure theory (Easley and O�Hara, 1992) that there are many in-

formed traders, and this information with the level of the forecast value of

VaR, will determine the market monitoring of traders. Besides, these dura-

tions allow assessing liquidity risk, with for instance the de�nition of Time at

Risk (TaR) measures (Ghysels et al., 2004).

In this context, our objective is to propose a market risk or VaR methodology

de�ned in price events time (and not in calendar time) and a correspond-

ing backtesting procedure. For that, we de�ne an ISIVaR (Irregularly Spaced

Intraday Value at Risk) model which consists in a couple of two measures:

the forecast of the timing for the next price event (or the expected dura-

tion between two consecutive price changes) and the corresponding level of

risk summarized by VaR forecast. This VaR corresponds to the maximum ex-

pected loss that will not be exceeded (at a given con�dence level) at the next

price event, if this event occurs. More precisely, the ISIVaR is derived from an

Autoregressive Conditional Duration (ACD) model applied to deseasonalized

price event durations as in Giot (2005). However, contrary to Giot, we do not

impose a particular distribution on the standardized returns to derive VaR

measure from price changes volatility. We use a semi parametric approach

similar to that considered by Engle and Manganelli (2001) in the day-to-day

VaR perspective.

We also propose a backtesting procedure that allows testing the accuracy of

our irregularly spaced VaR forecasts. The main advantage of this procedure is

that it does not require rescaling ISIVaR forecasts to �xed-time intervals. As

usual in the backtesting literature (see Campbell, 2007 for a survey) our model

3 Market events can be either trades or de�ned using a particular time transfor-
mation (see for e.g. LeFol and Mercier, 1998). In this paper, we will focus on price
events, i.e. the minimum amount of time needed for the price to have a signi�cant
change.
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free backtest admits a conditional coverage null hypothesis (Christo¤ersen,

1998) and is based on a hit-no-hit variable 4 . But, in an irregularly spaced tick

by tick data context, the hit-no-hit variable In indicates for the market event

number n, if there is a hit or not. This hit-no-hit variable is irregularly spaced

and then, most of usual backtesting procedures (such as the dynamic quantile

test of Engle and Manganelli, 2004) can no longer be used. Consequently, we

build a new test by using the fact that for a correctly speci�ed irregularly

spaced VaR models, the variable that counts the number of market events

recorded before having a hit (which we call here events-hit-count variable),

must have an exponential distribution. This idea is related to the duration-

based test for predictive abilities of �xed-time interval VaR (Christo¤ersen

and Pelletier, 2004). Nevertheless, there is a major di¤erence, because the

variable we focus on in the testing strategy is the events-hit-count variable,

whereas in Christo¤ersen and Pelletier (2004), the exponential assumption is

about the number of calendar time units (or days) before having a hit, or the

time duration between hits.

Another contribution of this paper lies on the framework used to test ex-

ponential assumption for the observed sample of events-hit-count variable.

Contrary to the Likelihood Ratio approach developed in Christo¤ersen and

Pelletier (2004) to test the hypothesis of exponential distribution, we do not

specify the form of the distribution under the alternative of misspeci�ed ISI-

VaR model. We instead use the GMM approach of distributional assumptions

testing of Bontemps and Meddahi (2006). Our test is then robust to any

possible speci�cation under the alternative of inaccurate irregularly spaced

intraday-VaR models.

The rest of the paper is organized as follow: in the �rst section, we derive a

semi-parametric Irregularly Spaced Intraday-VaR (ISIVaR) model from ACD

4 The hit-no-hit variable is generally de�ned as an indicator variable associated
with the ex-post observation of a VaR violation at time t:
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models applied to price movements, while in the second, we develop a test for

the predictive abilities of such VaR models, and deal with its �nite sample

properties through monte carlo study. In a last empirical section, we illus-

trate the usefulness of our methodology by assessing the accuracy of ISIVaR

model applied to two stocks traded on the NYSE. A last section concludes

and submits further extensions.

2 Irregularly Spaced Intraday-VaR (ISIVaR)

Let us consider that tick by tick data for a given stock is generated by the

marked point process (ti; ati ; bti ; zti), i = 1; :::; n, where ti is the time occur-

rence of the trade number i, ati and bti are respectively the ask and bid prices

prevailing when the ith trade occurs, and zti a (k; 1) vector of other marks

(volumes, bid-ask spreads, etc.). From this process, let us select only those

points for which prices have changed 5 . By doing so, we are performing thin-

ning of the original sample (de�ned in transaction times) by selecting a new

point process i.e. price changes (or price events) arrival times. However, as un-

derlined by Engle and Russell (1998), prices can sometimes move temporarily

and return to their previous levels, due to quoting errors, or inventory control.

To take into account those minor or insigni�cant changes, one has to de�ne

a pre-speci�ed threshold c and selects only the points for which prices have

increased or decreased by at least c. This leads to a new marked point process�
t0i; pt0i ; zt0i

�
, i = 1; :::; nc, with nc the total number of �ltered quotes. The

corresponding price changes returns are thus de�ned as rt0i = ln pt0i � ln pt0i�1.

Let us recall that, Value at Risk is a measure of how the value of an asset

or of a portfolio of assets is likely to decrease (with a given con�dence level)

over a certain time period, and this under usual market conditions. From a

5 Generally, to avoid bid-ask bounce e¤ect, prices are de�ned on the mid-point of
the bid and ask prices, i.e. pti = (ati + bti) =2.
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statistical point of view, VaR for a shortfall probability � is the ��quantile of

asset return distribution over this period. Dealing with the thinned process, it

is obvious that there is no speci�ed period, since the events considered (price

changes) occur stochastically. In this context, we can state that

De�nition 1 Irregularly Spaced Intraday Value at Risk (ISIVaR) for a short-

fall probability �, is a couple ( i; ISIV aRi(�)) that gives simultaneously two

main information, namely, the expected duration for the ith price change,  i,

and the corresponding level of risk ISIV aRi(�) such as

Pr[rt0i < �ISIV aRi(�)
���Ft0i�1 ] = � (1)

with Ft0i�1 =
n�
t0j; pt0j ; zt0j

�
j = 1; :::; i� 1

o
; the set of information available

up the price change number i� 1.

The ISIVaR is then a couple ( i; ISIV aRi(�)) that measures two dimensions

of risk: a forecast of the market risk that will be occurred at the next price

change and a forecast of the expected duration before the occurrence of this

next price change, which can be interpreted as a liquidity risk. This duration

forecast  i can also be expressed as a Time at Risk (TaR) measure as suggested

by Ghysels et al. (2004). Let xi = t0i � t0i�1 denotes the i
th duration between

two price changes that occur at times t0i�1 and t
0
i. For a given level �, TaR (�)

denotes the minimal duration without a price change that may occur with

probability � :

Pr [xi+1 > TaRi (�)] = � (2)

We now propose a simple approach to derive the ISIVaR.
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2.1 Modelling expected duration and price changes volatility

Without loss of generality, suppose the distribution of variable rt0i is a scale

one, with zero conditional mean

rt0i = �
�
t0i
���Ft0i�1 � "t0i (3)

where �
�
t0i
���Ft0i�1 � is the price change volatility at time t0i and "t0i an i.i.d.

innovation with zero mean and unit variance. The level of risk for the ith price

variation can now be expressed as

ISIV aRi(�) = �F�1 (�)�
�
t0i
���Ft0i�1 � (4)

with F (:), the cumulated distribution function of variable "t0i. As Giot (2005),

we use an Autoregressive Conditional Duration (ACD) model applied to price

durations variable xi in order to generate 1-ahead out-of-sample forecast values

of both components of ISIVaR, i.e.,  i, and ISIV aRi(�).

The ACD model, introduced by Engle and Russell (1998), allows reproducing

many empirical features such as clustering in market events, i.e, durations

processes are positively autocorrelated with a strong persistence (in the spirit

of ARCH class models for equally spaced time series returns). Formally, ACD

models treat the time between events as random, and in their formulation,

scale the series of observed durations such that the new series is i.i.d

xi =  i
�
Ft0i�1

�
vi (5)

where vi is an i.i.d positive-valued sequence with distribution f (:) andE (vi) =

1 8i. A recursive speci�cation can be used to resume the dynamics of the scale

function  i which induces the ACD(m,q) model

 i = wd +
mX
j=1

�d;jxi�j +
qX
j=1

�d;j i�j (6)

with wd > 0, �d;j � 0 and �d;j � 0 to ensure like ARCH-type models, the
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positivity of  i and thus xi. Another speci�cation referred as Log-ACD model

and due to Bauwens and Giot (2000), avoids the need of the above constraints

on the parameters, by assuming a recursive equation for the logarithm of  i,

similarly to the extension of time series GARCH speci�cation to EGARCH

model of Nelson (1991). Let us precise that the conditional mean (or expected

duration) and variance for the durations process xi are respectively

E
�
xi
���Ft0i�1 � =  iE

�
vi
���Ft0i�1 � =  i (7)

and

V
�
xi
���Ft0i�1 � =  2iV

�
vi
���Ft0i�1 � =  2i�

2 (8)

with �2, the variance of i.i.d innovations vi. It follows that conditional disper-

sion (de�ned as the ratio of the conditional variance and square conditional

mean) is equal to
V
�
xi
���Ft0i�1 �

E
�
xi
���Ft0i�1 �2 =

 2i�
2

 2i
= �2 (9)

such that ACD models are in this sense enough �exible to take into account

both overdispersion (resp. underdispersion) for � > 1 (resp. � < 1). The choice

of vi among parametric family of lifetime distributions yields many variants

of ACD models (see Pacurar 2006 for a survey): EACD (with an Exponen-

tial disturbance) and WACD (Weibull) in Engle and Russell (1998), GACD

(Generalized Gamma) in Lunde (1999) and Burr-ACD (Burr distribution) in

Grammig and Maurer (2000).

Let N (t0) =
P
i�1 1ft0i<t0g be a counting variable equal to the total number of

events that have occurred by time t0. Then, one can generally characterizes

duration models in continuous time framework, by the use of intensity function

de�ned as

�
�
t0
���Ft0 ; N (t0)� = lim

�!0

p
�
N (t0 +�) > N (t0)

���Ft0 ; N (t0)�
�

8t0 (10)

where Ft0 =
n�
t0i; pt0i ; zt0i

�
t0i < t0

o
is the continuous counterpart of Ft0i (see

de�nition 1). For ACD models, the last expression takes the following simple
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form

�
�
t0
���Ft0 ; N (t0)� = �v

 
x (t0)

 N(t0)+1

!
1

 N(t0)+1
(11)

where �v (:) denotes the hazard function of error term v, and x (t0) = t0�t0N(t0).

Concretely, the intensity is the probability that an event occurs in the short

time interval t0+�, given that it has not occurred before t0, or say di¤erently,

the arrival rate of price events as forecast at time t0. For theWeibull innovation,

the functional form of the intensity is

�
�
t0
���Ft0 ; N (t0)� =

0@�
�
1 + 1



�
 N(t0)+1

1Ax (t0)�1  (12)

where � (:) is the gamma function and  the Weibull parameter. The price in-

tensity function increases (resp. decreases) for  > 1 (resp.  < 1) introducing

enough �exibility in the modeling. The case  = 1 reduces to the Exponential

ACD model (EACD), with a constant price intensity function 1= N(t0)+1. The

interest of expressing ACD models for price durations in terms of price inten-

sity appears clearer, when one refers to results obtained by Engle and Russell

(1998). They propose a link between price intensity and instantaneous price

change volatility given by:

e�2 �t0 ���Ft0 � = lim
�!0

1

�
E

24 pt0+� � pt0

pt0

!2 ���Ft0
35 8t0. (13)

By using the counting process N (t0), we can formulate (13) in terms of the

price intensity function

e�2 �t0 ���Ft0 �= lim
�!0

1

�
Pr
h���pt0+� � pt0

��� � c
���Ft0 i

"
c

pt0

#2

= lim
�!0

1

�
Pr
h
(N (t0 +�)�N (t0)) > 0

���Ft0 i
"
c

pt0

#2
(14)

=�
�
t0
���Ft0 ; N (t0)�

"
c

pt0

#2
8t0 (15)

where the last equality holds, by the de�nition of intensity function. To con-

clude, the instantaneous volatility can be inferred by running an ACD model
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applied to price durations variable.

It is worthy to say that what matters here is the prediction of volatility at

the dates where prices have moved, i.e. �2
�
t0i
���Ft0i�1 � and not the continuous

picture of volatility e�2 �t0 ���Ft0 �. The task is easy and is achieved by noting as
in Giot (2005) that

�2
�
t0i
���Ft0i�1 � = e�2 �t0i�1 ���Ft0i�1 � . (16)

In fact, e�2 �t0i�1 ���Ft0i�1 � as de�ned by equation (13) corresponds to volatility
for each time t0 between

i
t0i�1; t

0
i

i
, i.e. any time starting and ending a price

duration. It turns out that

�2
�
t0i
���Ft0i�1 � = �

�
t0i�1

���Ft0i�1 ; N �
t0i�1

�� 24 c

pt0i�1

352 (17)

is the conditional volatility for price event number i, and consequently the

level of risk for the ith price variation is equal to

ISIV aRi(�) = �F�1 (�)
24 c

pt0i�1

35� �t0i�1 ���Ft0i�1 ; N �
t0i�1

�� 1
2 (18)

The parameters of ACD models are �d =
�
wd; �d;j; �d;j; �

�
�with � a vector

of parameters related to the innovation distribution f (:). The model can be

estimated with standard maximum likelihood method, if we assume a given

parametric density for vi. As noted by Engle and Russell (1998), if conditional

mean duration equation (6) is not misspeci�ed, maximizing the likelihood

function with an exponential disturbance leads to consistent Quasi Maximum

Likelihood (QML) estimates.

Remark 2 Let us precise that, in real-world applications, price durations ex-

hibit signi�cant diurnal patterns, i.e. a seasonal component $ (t0) that must be

�rst removed from the observed duration xi, such as xi = $ (t0i) exi. ACD mod-
els must then be �tted to the seasonally adjusted durations exi. The volatility
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for the price change number i is thus given by

�2
�
t0i
���Ft0i�1 � = �

�
t0i�1

���Ft0i�1 ; N �
t0i�1

�� 24 c

pt0i�1

352 1

$ (t0i�1)
(19)

and modi�cation of equation (18) follows.

2.2 An algorithm for ISIVaR forecasting

At this stage, all information necessary to compute irregularly spaced intraday

VaR have been computed. In this section, we combine ACD models applied

to price durations, and a non parametric quantile method to generate 1-ahead

out-of-sample ISIVaR forecast for the price change number nc + 1, using the

information contained in Ft0nc . The principle is rather simple:

(1) First of all, we use the available sample of seasonally adjusted durations

fexignci=1 to estimate ACD model (equations 5-6) with for example an ex-
ponential disturbance vi 6 . We thus obtain estimates for the parameters

vector b�d, and compute the 1-ahead out-of-sample expected durationb nc+1 for the price change number nc + 1
b nc+1 = bwd + mX

j=1

b�d;jxnc+1�j + qX
j=1

b�d;j b nc+1�j (20)

We also predict the 1-ahead price intensity equal (for the exponential

disturbance) to

b� �t0nc ���Ft0nc ; N �
t0nc

��
=

1b nc+1 (21)

and the forecast value of volatility is given by

b�2 �t0nc+1 ���Ft0nc � = b� �t0nc ���Ft0nc ; N �
t0nc

�� " c

pt0nc

#2
1c$ �
t0nc

� (22)

6 We choose the exponential disturbance for the ease of presentation, but one can
instead rely on other distributions for the duration model.
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(2) With the results of the above ACDmodel, compute the series of in-sample

volatilities as follow

b�2 �t0i ���Ft0i�1 � = b� �t0i�1 ���Ft0i�1 ; N �
t0i�1

�� 24 c

pt0i�1

352 1c$ (t0i�1) i = 1; :::; nc

(23)

and approximate non-parametrically F�1 (�) by q, the empirical ��quantile

of in-sample standardized series of returns b"t0i
q = percentile

�
fb"t0ignci=1; 100�� (24)

where b"t0i = rt0i=b� �t0i ���Ft0i�1 � i = 1; :::; nc.
(3) Finally, the value of ISIVaR for the next price change (with a short-

fall probability �) is given by
�b nc+1; ISIV aRnc+1(�)� where the second

component is equal to

ISIV aRnc+1(�)
���Ft0nc = �qb� �t0nc+1 ���Ft0nc � (25)

It is worth noting that our method to estimate ISIVaR is semi-parametric

in the sense that we do not need to specify the distribution of price event

returns
�
"t0i

�
, but only the one related to the durations series i.e. vi. A mis-

speci�cation of the latter will however leads to inconsistent estimates of the

intensity function and then volatilities. In order to be free of any source of

misspeci�cation, one can consider the estimation of duration model under the

exponential disturbance as Quasi Maximum Likelihood. But in that case, the

intensity function should be estimated non parametrically, by using for e.g.

a k-nearest neighbour method as in Engle (2000). Note also that the ISIVaR

model as described above is very simple, and can be widened, by consider-

ing a richer speci�cation for the duration mean equation (6) as in Engle and

Russell (1998). Indeed, the recursive equation can be extended by additional

exogenous variables to capture some market microstructure e¤ects. One can

for e.g. introduces as explanatory variables, the number of transactions per

12



second, volume per transaction or bid and ask spread. This can help to capture

Easley and O�Hara hypotheses, which advance that information-based trading

predict lower durations, and thus higher volatilities.

3 Testing the Accuracy of ISIVaR models

In this section, we present a general setup for the predictive abilities of Irregu-

larly Spaced Intraday VaR (ISIVaR) models, like the one exposed in previous

sections. We begin by de�ning the testable hypothesis and after we build a

test statistic and deal with its asymptotic distribution.

3.1 The null hypothesis

Let
n
rt0i

o
be an univariate stochastic process r �

n
rt0i : 
! R

o
de�ned on the

probability space (
;F ; P ), with F �
n
Ft0i ; t

0
i 2 N�

o
and

n
Ft0i
o
an increasing

family of sub-�-algebras, such that Ft0i = �
n
t0s; rt0s ; zt0s s � i

o
. In this setup,

rt0i is the high-frequency return of price change number i for a given asset and

zt0i a vector of marked data. Let us suppose that we observe a sample path

of variables rt0i and zt0i, and produce via a given model, say M, a sequence

of N 1-ahead out-of-sample ISIVaRs (ISIV aRn(�); n = 2; :::; N + 1), each of

them conditional on the information available up the price change number

n� 1, using for e.g. the above algorithm. We then have, as already mentioned

Pr[rt0n < �ISIV aRn(�)
���Ft0n�1 ] = � 8n (26)

with � 2 (0; 1) the nominal shortfall probability level. Following Christo¤ersen

(1998), we de�ne the hit-no-hit variable as

In =

8><>: 1 if rt0n < �ISIV aRn(�)

0 if rt0n � �ISIV aRn(�)
(27)
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which informs when a price change occurs, if the observed return is lower or

higher than the ex-ante level of ISIVaR. Any testable hypothesis concerning

the accuracy of model M can be formulated using the so-called conditional

coverage hypothesis, due to Christo¤ersen (1998)

E
h
In � �

���Ft0n�1 i = 0 8n (28)

or say di¤erently

In � i:i:d Bernoulli (�) 8n. (29)

To explain more, let us recall that ISIV aRn(�) is statistically the ��quantile

of the conditional distribution of the nth price change. Thus, the probability

of having a hit (or an ex-post loss higher than the ex-ante reported level of

risk) must be equal to �. Each price event can then be viewed as a trial, with

probability of success (In = 1) equal to �. It follows that, independently to

the time occurrence of any price change, having a hit or not is nothing but a

Bernoulli trial, and the conditional coverage hypothesis applied for the indi-

cator variable In. However, a practical question remains: can we use available

tests (for conditional coverage hypothesis with equally spaced VaR)?

To answer, let us indicate that those existing tests are mainly the LRcc test

of Christo¤ersen (1998), the DQ test of Engle and Manganelli (2004), the

duration-based test of Christo¤ersen and Pelletier (2004) and the tests of

Berkowitz et al (2005) based on martingale di¤erence property. For a brief

review, the principle of the test of Christo¤ersen (1998) consists in postulating

that the hit-no-hit process follows a two states markov chain. From then on,

he deduces very easily a conditional coverage test by testing the estimated

parameters of the transition matrix in a likelihood ratio framework. Engle

and Manganelli (2004) propose a test based on the projection of the centered

process of hit-no-hit on its K last values, a constant and exogenous variables.

The derived test of conditional coverage then brings back to a joined nullity

test of the parameters of this linear model. As for Christo¤ersen and Pelletier
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(2004), they use the insight that if a VaR model is correctly speci�ed, then

the time between two consecutive hits or hit-duration should have no memory

and a mean duration of 1=� days.

The great disappointment when dealing with the new de�ned variable In lies

in the fact that the most powerful test among those mentioned, namely the

DQ test is no longer adapted. In fact, this test is a regression-based one (us-

ing standard projections methods) and its relevance should be questioned with

unequally spaced data. Nevertheless, the duration-based approach of Christof-

fersen and Pelletier (2004) continues to apply, but with a new sense given to

the testing variable. Formally, we let C a variable we call events-hit-count,

de�ned as the number of price changes recorded before having a hit, or say

di¤erently, the number of price events between two consecutive hits

Ci = ni � ni�1 (30)

where, ni denotes the number of the price change at which the ith hit occurs.

Under the null hypothesis that the sequence of variable In is i.i.d Bernoulli(�),

the discrete probability function of variable Ci is given by

f (c; �) = Pr [Ci = c] = Pr
h
Ini�1+1 = 0; Ini�1+2 = 0; :::; Ini�1+c = 1

i
. (31)

Using the fact that variables In are independently distributed and Pr [Ij = 1] =

� 8j we have

f (c; �) = (1� �)c�1 � (32)

which is the lifetime distribution of a geometric variable. It follows that under

the null of a well calibrated ISIVaR model, we should have

H0 : Ci � geometric (�) 8i (33)

Following Christo¤ersen and Pelletier (2004), we use the continuous analogue

of the geometric distribution, i.e. the exponential variable, to test the null

hypothesis. Since variable C is de�ned in event times, this approximation will
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introduce a discreteness bias, and its impact will be evaluated when dealing

with monte carlo simulations. The exponential distribution which reaches the

conditional coverage hypothesis (E
h
In � �

���Ft0n�1 i = 0 8n) has two major

implications, namely the unconditional coverage and independence hypothesis:

� The unconditional coverage prediction implies that the probability of an

ex-post loss exceeding ISIVaR forecast (for any recorded price event) must

be equal to the shortfall probability �

Pr [In = 1] = E [In] = � (34)

i.e. the occurrence of losses exceeding ISIVaR forecasts must then corre-

spond to the total number of price changes for which ISIVaRs are forecast.

For a 5% ISIVaR, used as a reference measure over 1000 price events, the

expected number of hits should be equal to 50. If this number is signi�-

cantly higher or lower than 50, then the ISIVaR model fails the test. In

term of variable C, this is equivalent to say that its mean should be equal

to 1=� = 20 i.e. the mean of an exponential distribution with parameter �.

However, the unconditional coverage property does not give any informa-

tion about the temporal dependence of hits or equivalently a memoryless

variable C.

� The independence prediction of hits is nevertheless an essential property,

because it is related to the ability of a ISIVaR model to accurately model

the higher order dynamics of high-frequency returns. In fact, a model which

does not satisfy the independence property can lead to clusterings of hits

(for a given group of price events), even if it has the correct average number

of hits (see, Berkowitz and O�Brien (2002) for an illustration for daily VaR).

So, there must not be any dependence in the hit-no-hit sequence, prediction

that is summarized under the null by a distribution C with a lack of memory

property.
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Another contribution of this paper rises from the framework used to test ex-

ponential assumption about variable C. Contrary to the LR methodology of

Christo¤ersen and Pelletier (2004), we do not specify the distribution of vari-

able C under the alternative hypothesis. One robust approach which leads to

a new test statistic for the accuracy of ISIVaR models is the distributional

assumptions testing of Bontemps and Meddahi (2006). They derive a set of

moment conditions that must hold for a given distribution and then proposed

testing the null that a sample of observations is driven by the postulated

distribution. For example, one can test normality by using a set of moment

conditions (known as Stein Equation, see Bontemps and Meddahi (2005)) and

this without de�ning the form of the distribution under the alternative hy-

pothesis, like for example a Gaussian autoregressive model as in Berkowitz

(2001). Here, we use this framework by testing directly the hypothesis of ex-

ponential distribution for variable C, robust to any speci�cation under the

alternative. In the next section, we present the methodology and derive our

test statistics and its asymptotic distribution.

3.2 Test statistics and asymptotic distribution

Let Y be a stationary random variable with density function q (:) and �nite

squared moments. Then, it exists a sequence of orthonormal polynomials Lk

that can be expressed by the following equations known as Rodrigues formula

Lk (y) =
�k
q (y)

h
Bk (y) q (y)

i(k)
(35)

with f (k) (:) the k-th derivate function of f (:) and �k de�ned as

�k =
(�1)kq

(�1)k k!dk
R
Bk (y) q (y) dy

; dk =
k�1Y
j=0

(�1 + (k + j + 1) c2) . (36)
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It can be shown that Lk (y) is a polynomial of degree k and satis�es the

recurrence relation

Lk+1 (y) = �
1

ak
[(bk � y)Lk (y) + ak�1Lk�1 (y)] , L0 (y) = L�1 (y) = 1

(37)

where

ak =
�kdk

�k+1dk+1
; bk = k�k � (k + 1)�k+1; �k =

�a+ kc1
�1 + 2kc2

. (38)

The interest of such a decomposition lies in the fact that the sequences Lk (y)

are orthonormal, i.e

E [Lk (y)Lk��(y)] =

8><>: 0 if k 6= k�

1 if k = k�
(39)

and since L0 (y) = 1, we have

E [Lk (y)] = 0 k = 1; 2; 3; ::: (40)

Thus, for any given variable with marginal density q (:), the above orthogonal

moment conditions must hold. Generally, for distributions among the Pear-

son�s family (Normal, Student, Gamma, exponential, beta, etc.) the polyno-

mials Lk (y) takes simple forms and one can easily derive the above moment

conditions. For the exponential distribution with parameter rate �, the recur-

rence equations (35) are known as Laguerre polynomials and we have in that

case

L0 (y) = 1 L1 (y) = 1� �y (41)

Lk+1 (y) =
1

k + 1
((2k + 1� �y)Lk (y)� kLk�1 (y)) 8k � 1. (42)

These polynomials are orthonormal and the moment conditions E [Lk (y)] = 0

8k � 1 are valid (if the distribution of variable Y is an exponential one, with

parameter rate �) and can be tested, individually or jointly.

Proposition 3 Let us consider that for model M, we generate N out-of-

sample ISIVaRs (ISIV aRn(�); n = 2; :::; N + 1) and compute the events-hit-
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count variable C. Under the null of well-speci�ed ISIVaR model, we have

E [Lk(c)] = 0 k = 1; :::; p (43)

with Lk(c) the kth Laguerre polynomials, p the total number of polynomials

considered. It follows that

E [L (c)] = 0 (44)

where L (c) is a vector of dimension (p� 1). Under some regularity conditions,

we know since Hansen (1982) that

1p
S

SX
i=1

L (ci)
L�!

S!1
N (0; Ip) (45)

and the conditional coverage (cc) statistic for the accuracy of ISIVaR model is

Jcc=

 
1p
S

SX
i=1

L (ci)

!
�

 
1p
S

SX
i=1

L (ci)

!
L�!

S!1
�2 (p) (46)

with S the length of variable C.

This test statistic is easy to compute with standard asymptotic distribution,

and traditional rule of decision applies. The unconditional coverage version of

our test statistic (Juc) is obtained when one considers only the �rst Laguerre

polynomial (p = 1). Indeed, in that case, we focus only on the mean of variable

C, i.e.

E [L1(c)] = 0, E [c] =
1

�
(47)

3.3 Monte Carlo Study

In this section, Monte Carlo experiments are conducted to evaluate the �nite-

sample performance of the proposed testing procedure. More precisely, we

examine the empirical size and power of the asymptotic test using sample

sizes available when dealing with high-frequency returns.

To evaluate the empirical size, we directly simulate N hit-no-hit variables In

n = 1; :::; N , using a Bernoulli distribution with rate parameter �. This sample
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is typically the one that must arise from a well-calibrated ISIVaR model, for

a shortfall probability �. We compute the events-hit-count variable C and our

test statistic. The empirical size then corresponds to the rejection frequencies

observed in 10 000 simulations. If the asymptotic distribution of our test is

adequate, then these rejection frequencies should be close to the nominal size

used to reject (or accept) the null hypothesis. Table 1 presents the empirical

size of our test for various sample sizes N , number of Laguerre polynomials p,

nominal shortfall probability �, and a nominal size set at 5%. The conclusion

from the reported results is that, the unconditional version of our test statistic

is oversized. The optimal value of p when dealing with the statistic Jcc is 2,

for which rejection rates of the test are always quite close to the nominal size.

For this value, the asymptotic distribution of our test statistic is then valid

with realistic sample sizes, and one can rely on the asymptotic critical values

of the chi-square distribution.

In order to evaluate empirical power, we simulate a sample of size N of

Bernoulli trials with rate parameter � + �, where � is drawn randomly in an

uniform distribution on the interval [0; 0:1]. This re�ects a situation where one

uses an ISIVaR model, which underestimates the latent level of risk for price

events, leading to an excessive number of hits 7 . With this sample of Bernoulli

trials (i.e. hit-no-hit variable), we compute the events-hit-count variable C

and apply our test statistic. The power is equal to the rejections rate for 10

000 simulations, with a given nominal size. Table 2 presents the results (for

nominal size set at 5%). For the Jcc statistic, we notice that, with given values

of � and size N , the powers decrease when the number of Laguerre polyno-

mials increases. The optimal number of Laguerre polynomials for this version

of our test statistic is then two, a compromise between accurate size and high

level of power and one can see that the obtained values are very clear-cut. In-

7 We also consider the converse and obtain similar results. In this case, the para-
meter rate of the bernoulli distribution is �� � > 0.
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deed, with the smaller sample size used (N = 1000 events) the power is about

0:8978 for a shortfall probability � equal to 1% and 0:8042 when � = 5%, and

converges quickly towards one, when the sample size increases.

4 Empirical Applications

In this last section, we empirically assess the relevance of our methodology to

compute irregularly spaced intraday market risk, using tick by tick data for

two stocks traded at the NYSE, i.e. IBM and EXXON. The data was extracted

from the Trade and Quotes (TAQ) database and include for each stock, infor-

mation on every single trade and quote over the period February-April 97. The

database consists of two parts: the trade database that summarizes the trading

process, contains the date and time stamp (ti) for the ith trade, with additional

marks, such as transaction prices (tpti), volume (vti). The quote database is

about the quoting process and reports the date and time (tj) occurrence of

the jth quote, along with the bid (bj) and ask (aj) prices, etc.

Because, all trades and quotes are not valid, we work only with regular ones, by

deleting trades and quotes recorded outside the range of market opening (9:30

am -16:00 pm). We also screen trades by removing negative trades prices or

volumes. Finally, quotes are also screened by deleting zero bid and ask prices.

After merging both databases, we retain the following marked point process

(ti; ai; bi; vi), where bi and ai are the bid and ask prices prevailing when the

ith trade occurs, and de�ne the prices process at the mid-point of the bid and

ask prices.

Let us recall that our objective in this paper is to rely on ACD model for

price durations in order to forecast price events conditional volatility and

then ISIVaR. Thus, we compute price durations (as explained above) by using

thresholds c = 1=8$ for IBM data (see Engle and Russell (1998)) and c =
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1=16$ for EXXON. Table 3 reports price durations statistics. The average

time needed for the price to have a signi�cant change is about four minutes,

with a minimum of two or three seconds for both stocks. As usually reported

in empirical applications, price durations exhibit overdispersion i.e. standard

deviation higher than mean.

4.1 Seasonal Adjustment and EACD model

In this subsection, we calibrate an EACDmodel for price durations to compute

the conditional volatility for price events returns. We thus divide the original

sample into two parts, one for estimation and the last for out-of-sample ISI-

VaR forecast. The estimation sample covers the period 02/03/07-03/06/07,

which leads to a total of 1992 (resp. 1942) price durations for IBM (resp.

EXXON). However, it is generally reported that durations exhibit signi�cant

diurnal patterns that must be �rst removed from raw durations before esti-

mating ACD models. Indeed, in empirical applications, it is usually shown

that trading activity is not constant over the course of the day and present a

typical pattern, i.e. shorter durations at the beginning and close of the day,

and longer durations in the middle of the day. This time-of-day component

of durations is by nature almost perfectly predictable and constitutes the de-

terministic part of durations data. Many procedures have been proposed in

the literature to estimate the seasonal component (see Pacurar (2006) for a

review).

In this paper, we follow Bauwens and Giot (2000) by taking the deterministic

component as the expected price duration conditioned on time-of-day, but

also the day-of-week, where the expectation is computed by averaging the

durations over seven non-overlapping intervals. These intervals are delimited

by eight nodes set on each hour with an additional node in the last half hour

of the trading day. Cubic splines are �nally used to smooth the time-of-day
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e¤ect and then to extrapolate the latter for any time along the day. The Figure

1 displays the estimated seasonal components. The overall conclusion is that,

it exists a day-of-week e¤ect, since the time-of-day component of Monday is

di¤erent from the time-of-day of Tuesday and so on. One can also notice the

well-documented inverted-U shape (see for example, Engle and Russell (1998),

Bauwens and Giot (2000), etc.). To remove the seasonal component, we divide

the raw data of observed price durations by the time-of-day e¤ect, and run an

EACD(2,2) model to the stochastic component. The results are given in table

4, where all estimated coe¢ cients are signi�cant.

The performance of ACD models in capturing the latent structure of price

durations can be assessed by looking at the residuals bvi = xi=b i where b i
denoted the expected duration for the price event number i and given by

equation (6). ACD models �t well data, if the series of residuals is a white

noise, and this can be tested using Ljung-Box statistics. Here, we notice that

the EACD(2,2) model successfully removes the autocorrelation structure in the

original adjusted durations: for both stock, the residuals are not signi�cantly

autocorrelated at order 15 (see table 4).

Recall that the interest of using an ACD model applied to price durations

is to infer price changes volatility from the estimated function of conditional

intensity (see equations 15-16). The relation between intensity and volatility

implies an inverse relationship between price durations and volatility. Since

ACD models are well known to model with accuracy the clustering of dura-

tions, it can therefore also seize volatility clustering, and can be considered as

an alternative to GARCH model when dealing with irregularly spacing data 8 .

Figures 2 and 3 give the estimated conditional volatility respectively for IBM

8 Note that another approach to model conditional volatility for irregularly spaced
series of intraday returns is that of Ghysels and Jasiak (1997). They proposed a class
of ARCH models for series sampled at unequal time intervals, by combining ACD
models and results from the temporal aggregation for GARCH models discussed by
Drost and Nijman (1993).
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and EXXON stocks where volatility clustering is apparent.

4.2 Backtesting ISIVaR Models

In this section, we generate out-of-sample ISIVaR using our algorithm and

a �xed forecasting scheme. A �xed forecasting scheme consists in estimating

the parameters only once with the estimation sample of size Nc and then

using these estimates to produce all the forecasts for the out-of-sample period

ranging from Nc + 1 to N: We rely on the above estimation sample, i.e. the

period from 02/03/97 to 03/06/97. We consider two out-of-sample sizes of

di¤erent lengths, the �rst period from 03/07/97 to 03/31/97, and the second

from 03/07/97 to 04/30/97. This leads to two di¤erent backtesting exercices.

Figure 4 and 5 compare for the �rst period, the 1% out-of-sample ISIVaR

and the corresponding returns of price events for both stocks. We can observe

that the clustering of ISIVaR forecasts track quite well the evolution of price

events returns. Besides, our ISIVaR also allows measuring liquidity risk trough

the expected conditional duration b i or equivalently trough a Time at Risk
(TaR) measure (equation 2). Figures 6 and 7 display the 1% TaR measures for

IBM and EXXON stocks. Special care need to be exercised when interpreting

these results since the reported values corresponds to the TaR based on the

deseasonalized price event durations.

We now examine the statistical performance of our methodology to compute

ISIVaR. We �rst compare observed events returns and out-of-sample ISIVaR

forecasts to generate the hit-no-hit variable In and then apply our test statis-

tics for validation purpose. Table 5 presents the results for both stocks, and for

various shortfall probability where the values in brackets are p-values. Focus-

ing on the unconditional version of our test statistics (Juc), the results show

that our ISIVaR model performs well, meaning that the proportion of hits is

not statistically di¤erent from �, the shortfall probability. Indeed, the only

24



one exeption is the 5% ISIVaR for EXXON stock over the second backtest-

ing period. Concerning the conditional coverage test (Jcc) the ISIVaR model

performs well for both stocks at shortfall probability � = 1% or � = 2:5%.

However, at 5%, the conditional coverage property is not reached, due to the

violation of the independence assumption.

These shortcomings are close to the results of Dionne et al. (2006), even if

their methodology relates rather to the estimation of Intraday-VaR (IVaR) at

�xed-time horizon. Indeed, from their results, it comes out primarily that for

high level of shortfall probability, IVaR model tends to be rejected when the

�xed forecast horizon is very short (15 minutes in their applications). Since

the average values of price events durations are around 4 minutes for both

stocks in the present paper, the forecast horizon is then short and our results

converge towards this observation that remains however empirical.

To conclude, the semi-parametric forecasting method proposed to compute

ISIVaR gives quite satisfactory results. The few cases where our model fails

to �t with accuracy the latent level of market events risk could be attributed

to the estimation of parameter q, the quantile of the standardized series of

returns b"t0i. Indeed, the roughly Historical Simulation (HS) used to compute
the quantile su¤ers from its logical drawbacks largely studied by Boudoukh et

al. (1998) and Pritsker (2001). Firstly, the assumption that the standardized

residuals are i.i.d. is still required, and the task is actually more complicated by

the irregularly spacing nature of residuals and the discreteness of tick data.

Needless to say that an appropriate method for the estimation of quantiles

for irregularly spacing data will constitute an improvement over our ISIVaR

forecasting.
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5 Conclusion

Risk modelling and evaluation has emerged over the last several years as a key

component in the management of �nancial institutions. The o¢ cial horizon for

assessing market risk models and to determine regulatory capital requirements

is 10 days, as laid out by the Basel Committee on Banking Supervision (BCBS)

in 1996. For internal purpose however, banks routinely compute 1-day VaR

using daily prices. However, with the recent evolutions in the organization of

trading process in �nancial markets, high frequency or tick by tick data are

available and forecasting risk at very high frequency is nowadays possible.

In this paper, we have introduced a general setup for computing Intraday-VaR

by explicitly making use of the irregularly spacing nature of high frequency

data. Instead of predicting VaR at �xed-time horizon (10 minutes, 15 minutes,

etc.), our methodology is attractive in the sense that the forecast horizon is

stochastic and is related to the trading intensity. Risk is forecast in events

time, such that the traditional dimension of risk, usually summarized by only

the level of VaR is coupled with the expected market events durations, giving

a framework for a real-world monitoring of risk exposure. Indeed, with our

methodology, we provide two simultaneous information, meaning the expected

duration for the price to have a signi�cant change and the corresponding level

of risk.

Technically, our model we named Irregularly Spaced Intraday VaR (ISIVaR)

makes use of the relation between instantaneous volatility and price change

durations intensity to compute volatility for price events. Empirical quantile of

the standardized residuals as then multiply by the square root of the forecast

volatility to derive semi-parametric VaR for the next price change. In this line,

our methodology can be viewed as an improvement over Giot (2005) Log-ACD

intraday-VaR, where normality is assumed, throwing out fat taildness of high

frequency data. Needless to say that active market participants such as traders
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and �nancial institutions like banks involving with frequent margins setting

are natural recipients of the proposed method.

We also proposed a test for the predictive abilities of such unequally spaced

VaR models, by �rst noting that the traditional conditional coverage criterion

remains valid even with irregularly spaced VaR model, but with a hit-no-hit

variable de�ned in event time. This last assumption is tested using the GMM

distributional assumption testing of Bontemps and Meddahi (2006). Through

monte carlo replications, we show that the proposed test has reasonable prop-

erties at �nite distance. Applications to IBM and EXXON stocks traded at

the NYSE reveal that the ISIVaR model are volatile and track well the evo-

lution of price change returns. Out-of-sample evaluations are also conducted

and give satisfactory results.

Let us �nish by indicating that the suggested method to compute ISIVaR is

not the only one, and one can for example rely on the ACD-GARCH model of

Ghysels and Jasiak (1997) to compute volatility. Relative performance of both

models can be assessed in VaR framework, by using for example the model-free

quantiles comparison test of Giacomini and Komunjer (2005). Beyond both

methods, it is clear that the challenge when one wants to forecast intraday VaR

(in price events time) is to develop a method for the estimation of quantiles

for data sampled at unequal time intervals. We are exploring this general issue

as a direction for further research.
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Table 1. Empirical Size forJ Statistics

Backtesting � = 1% ISIVaR

Juc Jcc

Sample Size p = 1 p = 2 p = 3 p = 4 p = 5

N = 1000 0.0834 0.0358 0.0310 0.0276 0.0289

N = 1500 0.0945 0.0440 0.0344 0.0316 0.0345

N = 2000 0.0990 0.0427 0.0346 0.0394 0.0340

N = 2500 0.1006 0.0476 0.0373 0.0379 0.0342

N = 3000 0.1083 0.0495 0.0412 0.0383 0.0349

N = 4000 0.1182 0.0506 0.0395 0.0383 0.0350

N = 5000 0.1167 0.0507 0.0428 0.0404 0.0397

Backtesting � = 5% ISIVaR

Juc Jcc

Sample Size p = 1 p = 2 p = 3 p = 4 p = 5

N = 1000 0.1004 0.0421 0.0357 0.0327 0.0290

N = 1500 0.0998 0.0399 0.0362 0.0324 0.0280

N = 2000 0.1098 0.0395 0.0376 0.0359 0.0329

N = 2500 0.1206 0.0354 0.0394 0.0343 0.0328

N = 3000 0.1210 0.0410 0.0404 0.0372 0.0351

N = 4000 0.1370 0.0390 0.0446 0.0415 0.0307

N = 5000 0.1430 0.0406 0.0469 0.0456 0.0370

Notes: p denotes the number of Laguerre polynomials used. Juc (for p = 1)
denotes the J test of the unconditionnal coverage null hypothesis and Jcc denotes
J test of the conditionnal coverage null hypothesis. For each experiment, the
N hit-no-hit variables are simulated under the null according to N bernouilli
trials with a rate parameter equal to the coverage rate of VaR (1% or 5%).
The frequencies of rejections of J tests are reported for 10 000 replications and
correspond to empirical sizes. The nominal size of test is set at 5%.
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Table 2: Empirical Power for J Statistics

Backtesting � = 1% ISIVaR

Juc Jcc

Sample Size p = 1 p = 2 p = 3 p = 4 p = 5

N = 1000 0.9286 0.8978 0.8886 0.8781 0.8643

N = 1500 0.9448 0.9254 0.9112 0.9069 0.8941

N = 2000 0.9537 0.9352 0.9240 0.9189 0.9128

N = 2500 0.9578 0.9408 0.9342 0.9278 0.9235

N = 3000 0.9596 0.9506 0.9416 0.9366 0.9277

N = 4000 0.9681 0.9589 0.9509 0.9407 0.9412

N = 5000 0.9723 0.9617 0.9574 0.9513 0.9444

Backtesting � = 5% ISIVaR

Juc Jcc

Sample Size p = 1 p = 2 p = 3 p = 4 p = 5

N = 1000 0.8553 0.8042 0.7786 0.7518 0.7410

N = 1500 0.8883 0.8419 0.8263 0.8055 0.7962

N = 2000 0.9031 0.8683 0.8440 0.8352 0.8265

N = 2500 0.9083 0.8843 0.8733 0.8580 0.8475

N = 3000 0.9245 0.8936 0.8831 0.8657 0.8600

N = 4000 0.9339 0.9145 0.8987 0.8970 0.8856

N = 5000 0.9453 0.9239 0.9134 0.9066 0.8967

Notes: p denotes the number of Laguerre polynomials used. Juc (for p = 1)
denotes the J test of the unconditionnal coverage null hypothesis and Jcc
denotes J test of the conditionnal coverage null hypothesis. For each repli-
cation, we simulate N bernoulli trials with rate parameter � + �, where
� 2 [0; 0:1]. We then are in a situation, where an ISIVaR model leads to
an excessive number of hits, violating the unconditional coverage property.
For each couple (�;N), we obtain variable C and apply our test for a nom-
inal size set at 5%. The frequencies of rejections are reported for 10 000
replications and correspond to powers.
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Table 3: Price Durations Statistics 9

IBM stock EXXON stock

Number of bid-ask quotes 5638 5125

Mean 251.25 275.81

Minimum 3 2

Maximum 4471 5778

Standard deviation 328.34 366.13

Notes: Price durations for IBM and EXXON stocks ob-
tained by �ltering original bid and ask quotes (correspond-
ing to a trade) using thresholds c = 1

8$ for IBM and 1
16$ for

EXXON. The period is February-April 1997.

Table 4: Results of EACD(2,2) Model 10

IBM EXXON

Estimates t-Statistics Estimates t-Statistics

w 0.0375 1.4646 0.1820 3.4251

�1 0.2495 5.9476 0.1065 4.9797

�2 �0:1832 �3:6270 0.1164 5.6246

�1 1.1544 6.1368 �0:1457 �3:1663

�2 �0:2569 �1:8517 0.7431 15.893

Q (20) 340.59 176.09

Qv (20) 12.103 7.4272

Notes: The estimation sample covers the period 02/03/07-
03/06/07, with a total of 1992 price durations for IBM and 1942
for EXXON. Q (15) is the Ljung-Box Q-statistics associated to the
seasonally adjusted price durations. Qv (15) is the same statistics
for the �tted series of residuals from the EACD(2,2) model.
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Table 5: Backtesting Results

IBM

Period 1 Period 2

%Hits Juc Jcc %Hits Juc Jcc

� = 1% 0.97 0.011 0.199 1.21 1.624 2.784

(0.916) (0.905) (0.202) (0.248)

� = 2:5% 1.93 2.150 4.363 2.08 2.591 14.731

(0.142) (0.112) (0.107) (<0.001)

� = 5% 4.34 1.329 12.631 4.53 1.590 33.683

(0.249) (0.002) (0.207) (<0.001)

EXXON

Period 1 Period 2

%Hits Juc Jcc %Hits Juc Jcc

� = 1% 0.72 0.885 3.921 0.69 3.382 3.462

(0.346) (0.140) (0.065) (0.177)

� = 2:5% 2.10 0.803 2.281 2.42 0.030 3.625

(0.370) (0.319) (0.860) (0.163)

� = 5% 4.98 0.006 0.800 6.22 8.000 14.628

(0.936) (0.670) (0.004) (<0.001)

Notes: For each period, we backtest ISIVaR model using various shortfall
probability � and the two versions of our test statistics. Juc (for p = 1)
denotes the J test of the unconditionnal coverage null hypothesis and Jcc denotes
J test of the conditionnal coverage null hypothesis.%Hits is the proportion of
hits. The length of the �rst period is respectively 1658 and 1527 for IBM
and EXXON (respectively 3646 and 3183 for the second period).
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Figure 1: Estimated Seasonal Time-of-Day Deterministic Components.
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Figure 2. Conditional Volatility for Price Events (IBM)
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Figure 3. Conditional Volatility for Price Events (EXXON)
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Figure 4. Out-of-sample forecasts of 1% ISIVaR and observed returns (IBM)
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Figure 5. Out-of-sample forecasts of 1% ISIVaR and observed returns (EXXON)
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Figure 6. Out-of-sample forecasts 1% Time at Risk(IBM)
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Figure 7. Out-of-sample forecasts 1% Time at Risk (EXXON)
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