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1 Introduction

The objective of this paper is to study the regularity of pure exchange economies
with general consumption sets depending on individual endowments.

Debreu (1970) was at the start of the global approach to equilibrium analysis
from a differentiable viewpoint. This approach is based on the central concept
of regular economy. 3 A regular economy has a finite number of equilibria and,
around each equilibrium, there exists a differentiable or continuous selection of
the equilibrium set with respect to the parameters describing the economy. 4

Our work is based on the Arrow–Debreu foundation of general equilibrium
theory. As in general equilibrium models à la Arrow–Debreu, each household
h has to choose a consumption in his consumption set Xh, i.e., in the set of
all consumption alternatives which are a priori possible for him. In Debreu
(1959) for instance, one can find several motivations which lead to consider
individual consumption sets. Among them, Debreu provides as example also
a survival possibility to work, “...the decision for an individual to have during
next year as sole input one pound of rice and as output one thousand hours
of some type of labor could not be carried out.”

In this paper we focus on general consumption sets depending on individual
endowments. We provide below some evidences of this dependency.

• Since the individual endowment is an “indicator” of social status, then it
affects the individual a priori possibility to choose. Indeed, the social status
of an individual often imposes a minimal level of consumption for some
commodities which is necessary to preserve his social status. This implies
a lower bound on the consumption for some commodities which depends
on the individual endowment. Moreover, the social status of an individual
clearly affects his skills and his abilities that may impose a maximal level of
consumption for some commodities. This indirectly implies an upper bound
on the consumption for some commodities which depends on the individual
endowment.

• In a consumption-leisure model, the consumption in leisure is bounded be-
low by a bound which depends on the maximal possible workload of the
household. This workload is precisely the individual endowment in the com-
modity ”labor” which is the opposite of leisure.

• If some trading rules impose some limitations on the possible net trade of an
household on the market, this leads to a consumption set which depends on

3 For major and exhaustive expositions see Debreu (1983) and Mas-Colell (1985).
4 Observe that if the parameters are elements of an arbitrary topological space,
then differentiability is a meaningless idea, but one still gets continuity.
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the individual endowment, since the possible consumptions are constrained
as the individual endowment plus the possible net trade.

Moreover, importantly observe that the “survival condition” represents an
umbilical cord between the endowment and the consumption set of an in-
dividual. 5 Whereas this link is quite innocuous when one just analyzes the
existence of equilibria for a given economy, it plays an important role in terms
of global analysis. Indeed, since altering the endowment of an individual might
be also inadvertently alter his possibility to survive, above all, one may allow
consumption sets which depend on individual endowments.

In this paper, we consider a pure exchange economy with a finite number of
commodities and of households. Each household is characterized by an indi-
vidual endowment of commodities, a possibility function and a utility func-
tion. We call possibility function a function describing a consumption set. 6

The main innovation comes from the dependency of the possibility function
of each household with respect to his endowment. Taking prices and individ-
ual endowment as given, each household maximizes his utility function in his
consumption set under his budget constraint. The definition of competitive
equilibrium follows.

The main results of this paper deal with the well known regularity results given
in Debreu (1970, 1976), Smale (1974a, 1974b), Allen (1981), Dierker (1982),
Mas-Colell (1985) and Balasko (1988). We prove that almost all perturbed
economies are regular and we provide the result of generic regularity in the
space of endowments and possibility functions. 7

Regularity has been studied in different contexts. Regarding analysis encom-
passing various sorts of constraints on individual behavior, we can quote Smale
(1974a, 1974b), Villanacci (1993), Cass, Siconolfi and Villanacci (2001), Bon-
nisseau and Rivera Cayupi (2003, 2006), Villanacci and Zenginobuz (2005),
among others.

Most related to our paper is Smale (1974b), where households have consump-
tion sets described in terms of functions. Smale provides the result of generic
regularity in the space of endowments and utility functions. Substantially, his
result had to rely on perturbations of utility functions since his goal was to
remove the standard hypothesis on utility functions which give rise to C1 de-
mand functions. Nevertheless, if utility functions satisfy assumptions which

5 A rough version of the survival assumption states that the endowment of an
individual is an interior point of his consumption set.
6 Note that this idea is usual for smooth economies with production where each
production set is described by a function called transformation function.
7 Following Smale (1974a, 1974b) and Mas-Colell (1985), here almost all means in
an open and full measure subset and generic means in an open and dense subset.
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are standard in smooth economies, then the regularity result holds for almost
all endowments. 8

Differently from Smale (1974b), we mainly focus on consumption sets which
depend on individual endowments, and we consider utility functions which
satisfy standard assumptions in smooth economies (see Assumption 1).

Furthermore, in our model, the individual endowments can be outside of the
consumption sets. Whereas in Smale (1974b), the individual endowments be-
long to the consumption sets. Indeed, in Smale (1974b), the space of endow-
ments is the Cartesian product of the consumption sets and the consumption
sets are fixed. As Mas-Colell and Smale have pointed out, “...it would make
more sense to allow greater latitude for the initial allocation in the defini-
tion of economy.” 9 Considering consumption sets which depend on individual
endowments is also one way to answer that suggestion.

To prove non-emptiness and compactness of the equilibrium set, in Assump-
tion 2, the assumptions on the possibility functions are adapted from del
Mercato (2006a) in a natural way. 10

The analysis in Debreu (1970, 1976), Smale (1974a, 1974b), Dierker (1982),
Mas-Colell (1985) and Balasko (1988), makes appear that classical differen-
tiability and regularity results hold whenever, at equilibrium, all agents are
in the interior of their consumption sets. Since nothing prevents the equilib-
rium allocations to be on the boundary of the consumption sets, then to prove
generic differentiability and regularity results, we follow the strategy laid out
in Cass, Siconolfi and Villanacci (2001), where it is given a general method
for encompassing individual portfolio constraints while still permitting dif-
ferential techniques. 11 But the dependency of each possibility function with
respect to the individual endowment leads to technical difficulties. For that
reason, we consider simple perturbations of the possibility functions. Actually,
the space of perturbations is a finite dimensional space. This is the key idea
for our treatment.

Besides, we need an additional assumption on the possibility functions, namely
Assumption 3, which covers three economically meaningful cases. That is,
Assumption 3 holds true when the possibility function of at least one household

8 See also Smale (1974a), Theorem 2, p. 3, and del Mercato (2006b).
9 Smale (1974b), p. 123.
10 In del Mercato (2006a), utility and possibility functions also depend on the con-
sumptions of all households.
11 Many different authors have considered restrictions on the markets, Balasko,
Cass and Siconolfi (1990), Cass (1990), Polemarchakis and Siconolfi (1997), Cass,
Siconolfi and Villanacci (2001). The difference with our approach is that in these
papers the restriction is on financial markets.
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satisfies one among the following conditions: 1. it does not depend on the
endowment, 2. it depends on the net trade, 3. it is additively separable in
consumption and endowment.

The paper is organized as follows. Section 2 is devoted to our basic model and
assumptions. In Section 3, we present the definitions of competitive equilib-
rium and of equilibrium function. Then, Theorem 7 provides non-emptiness
and compactness results for the equilibrium set. In Section 4, we state the
definitions of regular economy and of perturbed economy, and we present the
main results of this paper, namely Theorem 13, Corollary 14 and Proposi-
tion 15. Theorem 13 states the result of regularity for almost all perturbed
economies. Corollary 14 provides the result of generic regularity in the space
of endowments and possibility functions. From Proposition 15, one deduces
that a regular economy has a finite number of equilibria which locally depend
on endowments and possibility functions in a continuous manner. In Section 5,
we prove Theorem 13 and Corollary 14. In particular, in Subsections 5.1 and
5.2, the strategy of the proof for Theorem 13 is detailed, and in Subsection
5.3, we show Corollary 14. All the proofs are gathered in Appendix A, except
for Theorem 13 and Corollary 14. In Appendix B, the reader can find results
from differential topology used in our analysis.

2 The model and the assumptions

There are C < ∞ physical commodities labeled by superscript c ∈ {1, ..., C}.
The commodity space is R

C
++. There are H < ∞ households labeled by sub-

script h ∈ H := {1, ..., H}. Each household h ∈ H is characterized by an indi-
vidual endowment of commodities, a possibility function and a utility function.
The possibility function of household h depends on his endowment.

The notations are summarized below.

• xc
h is the consumption of commodity c by household h;
xh := (x1

h, .., x
c
h, .., x

C
h ) ∈ R

C
++; x := (xh)h∈H ∈ R

CH
++ .

• ec
h is the endowment of commodity c owned by household h;
eh := (e1

h, .., e
c
h, .., e

C
h ) ∈ R

C
++ ; e := (eh)h∈H ∈ R

CH
++ .

• As in general equilibrium model à la Arrow–Debreu, each household h has
to choose a consumption in his consumption set Xh, i.e., in the set of all
consumption alternatives which are a priori possible for him. In our paper,
in the spirit of Smale’s work (1974b), the consumption set of household h
is described in terms of a function χh. Observe that this idea is usual for
smooth economies with production where each production set is described
by a function called transformation function. We call χh possibility func-
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tion. 12

The main innovation of this paper comes from the dependency of the
possibility function of each household with respect to his individual endow-
ment. That is, given eh ∈ R

C
++, the consumption set of household h is the

following set,

Xh(eh) =
{
xh ∈ R

C
++ : χh(xh, eh) ≥ 0

}

where χh : R
C
++ × R

C
++ → R; χ := (χh)h∈H.

• Each household h ∈ H has preferences described by a utility function uh

from R
C
++ to R, and uh(xh) ∈ R is the utility of household h associated with

the consumption xh; u := (uh)h∈H.
• E := (e, χ, u) is an economy.
• pc is the price of one unit of commodity c; p := (p1, .., pc, .., pC) ∈ R

C
++.

• Given a vector w = (w1, .., wc, .., wC) ∈ R
C , we denote

w\ := (w1, .., wc, .., wC−1) ∈ R
C−1

• Let w and v be two vectors in R
C , A be a real matrix with R rows and C

columns, and B be a real matrix with C rows and L columns. wv denotes
the scalar product of w and v; A ·B denotes the matrix product of A and B;
treating w as a matrix with 1 row and C columns, w ·B denotes the matrix
product of w and B. Moreover, without loss of generality A denotes both
the matrix and the following linear application,

A : v ∈ R
C −→ A(v) := A · vT ∈ R

R

where, treating v as a matrix with 1 row and C columns, vT is the transpose
of v. When R = 1, A(v) coincides with the scalar product Av of A and v
treating A and v as vectors in R

C .

From now on, we make the following assumptions on (χ, u). The assumptions
on uh are standard in smooth general equilibrium models. The assumptions
on χh are adapted from del Mercato (2006a) in a natural way.

Assumption 1 For all h ∈ H,

(1) uh is a C2 function.
(2) uh is differentiably strictly increasing, i.e., for every xh ∈ R

C
++, Dxh

uh(xh) ∈
R

C
++.

(3) uh is differentiably strictly quasi-concave, i.e., for every xh ∈ R
C
++, D2

xh
uh(xh)

is negative definite on Ker Dxh
uh(xh).

(4) For every u ∈ Im uh, clRC{xh ∈ R
C
++ : uh(xh) ≥ u} ⊆ R

C
++.

12 Note that in Smale (1974b), each consumption set is described by more than
one function. Our results can be extended to this case, but this is not our main
objective.
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Assumption 2 Let e ∈ R
CH
++ . For all h ∈ H,

(1) χh is a C2 function.
(2) (Convexity of the consumption set) The function χh(·, eh) is quasi-concave. 13

(3) (Survival assumption) There exists x̃h ∈ R
C
++ such that χh(x̃h, eh) > 0

and x̃h ≪ eh.
(4) (Non-satiation) For every xh ∈ R

C
++, (a) Dxh

χh(xh, eh) 6= 0, and (b)
Dxh

χh(xh, eh) /∈ −R
C
++.

(5) (Global desirability) For each x ∈ R
CH
++ and for each c ∈ {1, ..., C} there

exists h(c) ∈ H such that Dxc

h(c)
χh(c)(xh(c), eh(c)) ∈ R+.

From points 1 and 2 of Assumption 2, the usual assumptions on closedness
and convexity of the consumption set hold true.

Point 3 of Assumption 2 corresponds to the survival assumption. A rough
version of the survival assumption states that the endowment of a household
is an interior point of his consumption set. Point 3 of Assumption 2 is a
“survival condition” even if eh is not assumed to belong to the consumption
set Xh(eh). Since commodity prices are strictly positive, as a consequence of
point 3 of Assumption 2 we have that, given the endowment eh ∈ R

C
++, the

consumption set Xh(eh) has non-empty intersection with the budget set.

Condition 4a in Assumption 2 means that, given eh ∈ R
C
++, the possibility

surfaces [χh(·, eh)]
−1(r) are smooth as r varies on Im χh(·, eh). Moreover, the

possibility for each household to be locally “non-satiated” remaining in his
consumption set is crucial in order to expect existence of equilibria. According
to point 2 of Assumption 1, it holds true if each household is “free” for at
least one good, i.e., given eh ∈ R

C
++, there is at least one good c such that

Dxc

h
χh(xh, eh) = 0 for every xh ∈ R

C
++. Note that point 4b of Assumption 2 is

weaker than the previous condition.

Finally, commodities must be desirable. The idea is the following: a good is
“globally desirable” if for each consumption configuration of the economy there
is one household that can locally strictly increase his utility by consuming a
larger quantity of this good remaining in his consumption set. According to
point 2 of Assumption 1, it is trivially true that each good is desirable if there
is at least one super-household, i.e., a household who is not constrained in
consumption possibilities, that is his consumption set is R

C
++. The concept of

global desirability, mentioned above, is stronger than what we actually require
in point 5 of Assumption 2.

The above assumptions are enough to get the existence of competitive equi-
libria for a given economy. But, for our purpose, that is the generic regularity

13 Since χh is C2, we have that for every xh ∈ R
C
++, D2

xh
χh(xh, eh) is negative

semidefinite on Ker Dxh
χh(xh, eh).
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of economies, we need an additional assumption on the possibility functions.

Assumption 3 Let e ∈ R
CH
++ .

For each (x, y) ∈ R
CH
++ ×R

CH such that yh ∈ KerDxh
χh(xh, eh) for all h ∈ H,

there is k ∈ H such that
[
yk ·

(
D2

xk
χk(xk, ek) + D2

ekxk
χk(xk, ek)

)]
yk ≤ 0.

Observe that if we skip the term D2
ekxk

χk(xk, ek), then we go back to point 2
of Assumption 2. Next, we provide three relevant cases in which Assumption
3 is satisfied.

(1) If one consumption set does not depend on the individual endowment,
i.e., one possibility function χk does not depend on ek, then point 2 of
Assumption 2 implies that Assumption 3 is satisfied.

Then, our analysis encompasses the case analyzed by Debreu in which
all the consumption sets coincide with R

C
++. 14

(2) If one possibility function χk depends on the net trade, i.e., it takes the
following form χk(xk, ek) := χ̃k(xk − ek), then Assumption 3 holds true.

(3) If one possibility function χk is additively separable in consumption and
endowment, i.e., it takes the following form χk(xk, ek) := χ̃k(xk)+φk(ek),
then point 2 of Assumption 2 implies that Assumption 3 is satisfied.

3 Competitive equilibrium

First, we adapt to the previous model the standard competitive equilibrium
concept usually defined for a pure exchange economy à la Arrow–Debreu.
Second, we characterize in (3) the solution of household h’s maximization
problem in terms of Kuhn–Tucker conditions. Then, in Remark 6 we restate
equilibria in terms of solutions of equations, from which we deduce in (4) the
equilibrium function FE for a given economy E . Finally, Theorem 7 states the
non-emptiness and the compactness of the equilibrium set. All the proofs of
the results stated in this section are gathered in Appendix A.

Without loss of generality, commodity C is the numeraire good. Then, given
p\ ∈ R

C−1
++ with innocuous abuse of notation we denote p := (p\, 1) ∈ R

C
++.

Definition 4 (x∗, p∗\) ∈ R
CH
++ × R

C−1
++ is a competitive equilibrium for E if

14 Observe that in Smale (1974b), all the consumption sets do not depend on in-
dividual endowments. But, also note that in Smale (1974b), the vector of individ-
ual endowments has to belong to the Cartesian product of the consumption sets.
Whereas in our assumptions, e ∈ R

CH
++ .
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• for all h ∈ H, x∗
h solves the following problem

max
xh∈RC

++

uh(xh)

subject to χh(xh, eh) ≥ 0

p∗xh ≤ p∗eh

(1)

• x∗ satisfies market clearing conditions

∑

h∈H

x∗
h =

∑

h∈H

eh (2)

Proposition 5 Let E be an economy satisfying Assumptions 1 and 2, and
p∗\ ∈ R

C−1
++ . Problem (1) has a unique solution. x∗

h ∈ R
C
++ is the solution to

problem (1) if and only if there exists (λ∗
h, µ

∗
h) ∈ R++×R such that (x∗

h, λ
∗
h, µ

∗
h)

is the unique solution of the following system.





(h.1) Dxh
uh(xh) − λhp

∗ + µhDxh
χh(xh, eh) = 0

(h.2) −p∗(xh − eh) = 0

(h.3) min {µh, χh(xh, eh)} = 0

(3)

Define the set of endogenous variables as Ξ := (RC
++ × R++ × R)H × R

C−1
++ ,

with generic element ξ := (x, λ, µ, p\) := ((xh, λh, µh)h∈H, p\). We can now
describe extended equilibria using system (3) and market clearing conditions
(2). Observe that, from Definition 4 and Proposition 5, the market clearing
condition for good C is “redundant” (see equations (h.2)h∈H in (3)). Therefore,
in the following remark we omit in (2) the condition for good C.

Remark 6 Let E be an economy satisfying Assumptions 1 and 2, ξ∗ ∈ Ξ is an
extended competitive equilibrium for E if and only if (x∗

h, λ
∗
h, µ

∗
h) solves system

(3) at p∗\ for all h ∈ H, and
∑

h∈H

(x
∗\
h − e

∗\
h ) = 0. With innocuous abuse of

terminology, we call ξ∗ simply an equilibrium.

For a given economy E , define the equilibrium function FE : Ξ −→ R
dimΞ

FE(ξ) := ((F h.1
E (ξ), F h.2

E (ξ), F h.3
E (ξ))h∈H, F M

E (ξ)) (4)

where

F h.1
E (ξ) := Dxh

uh(xh) − λhp + µhDxh
χh(xh, eh), F h.2

E (ξ) := −p(xh − eh),

F h.3
E (ξ) := min {µh, χh(xh, eh)}, and F M

E (ξ) :=
∑

h∈H

(x
\
h − e

\
h).
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From Remark 6, ξ∗ ∈ Ξ is an equilibrium for E if and only if FE(ξ
∗) = 0.

The following theorem provides non-emptiness and compactness results for
the equilibrium set F−1

E (0).

Theorem 7 For each economy E satisfying Assumptions 1 and 2, the set of
equilibria for E is non-empty and compact.

4 Regular economies and possibility perturbations

Let us begin with the definition of regular economy.

Definition 8 E is a regular economy if

(1) for each ξ∗ ∈ F−1
E (0), FE is differentiable at ξ∗, and

(2) 0 is a regular value for FE , which means that for each ξ∗ ∈ F−1
E (0), the

differential mapping DξFE(ξ
∗) is onto.

Our analysis is based on results from differential topology, in the spirit of
Debreu (1970, 1976), Smale (1974a, 1974b), Dierker (1982), Mas-Colell (1985),
and Balasko (1988). Their analysis shows that the differentiability of FE holds
whenever, at equilibrium, all agents are in the interior of their consumption
sets. Since nothing prevents the equilibrium allocations to be on the boundary
of the consumption sets, for each h ∈ H the function

F h.3
E (ξ) = min {µh, χh(xh, eh)}

is not everywhere differentiable. Then, first of all, it shall be show that, gener-
ically, the equilibrium function is differentiable at each equilibrium.

For that purpose, observe that in Cass, Siconolfi and Villanacci (2001), it is
given a general method for encompassing individual portfolio constraints while
still permitting differential techniques. Then, to prove generic differentiability
and regularity results we follow the strategy laid out by Cass, Siconolfi and
Villanacci (2001). 15 But the dependency of each χh with respect to the indi-
vidual endowment leads to technical difficulties. For that reason, we consider
simple perturbations of the possibility functions. Actually, the space of pertur-
bations is a finite dimensional space. This is the key idea for our treatment.

The main results of this section are Theorem 13, Corollary 14 and Proposition
15. Theorem 13 and Corollary 14 embody the regularity results. Theorem 13
states the result of regularity for almost all perturbed economies. Corollary
14 provides the result of generic regularity in the space of endowments and

15 The reader can find a survey of this approach in Villanacci et al. (2002).
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possibility functions. Proposition 15 is a consequence of Corollary 14 and of the
Implicit Function Theorem. From Proposition 15, one deduces that a regular
economy has a finite number of equilibria which locally depend on endowments
and possibility functions in a continuous manner.

The sets of utility and possibility functions that we consider are defined below.

Definition 9 The set of utility functions u = (uh)h∈H which satisfy Assump-
tion 1 is denoted by U . The set of possibility functions χ = (χh)h∈H which
satisfy Assumptions 2 and 3 for every e ∈ R

C
++ is denoted by X .

To state Theorem 13 we need introduce the definition of perturbed economy.
In the following definitions and in Theorem 13, we take for fixed an arbitrary
(χ, u) ∈ X × U .

Definition 10 A perturbed economy associated with endowments e ∈ R
CH
++

and possibility levels a = (ah)h∈H ∈ R
H is defined by Ea := (e, χa, u), where

χa := (χa
h)h∈H and for every h ∈ H,

χa
h := χh + ah

is the perturbed possibility function.

In the following definition, we consider perturbed economies for which the
survival assumption holds true. 16

Definition 11 A perturbed economy Ea = (e, χa, u) is parameterized by en-
dowments and possibility levels taken in the following set.

Λ :=





(e, a) ∈ R

CH
++ × R

H
∀h ∈ H, ∃ x̃h ∈ R

C
++ such that

χh(x̃h, eh) + ah > 0 and x̃h ≪ eh






Remark 12 Importantly, observe that

• by point 3 of Assumption 2, R
CH
++ × R

H
+ ⊆ Λ. Then, (e, 0) ∈ Λ for every

e ∈ R
CH
++ . This means that the set Λ embodies every economy E = (e, χ, u) ∈

R
CH
++ × X × U .

• By points 1 and 3 of Assumption 2, Λ is an open subset of R
CH
++ × R

H .
• The perturbed possibility functions χa satisfy Assumptions 2 and 3 for each

(e, a) ∈ Λ.

We can now state the result of regularity for almost all perturbed economies.

Theorem 13 The set Λr of (e, a) ∈ Λ such that Ea = (e, χa, u) is regular is
an open and full measure subset of Λ.

16 See point 3 of Assumption 2.
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Now, endow the set X with the topology induced by the product topology
of the topology of the C2 uniform convergence on compacta (see Appendix
B). As a consequence of Theorem 13 we obtain the following corollary which
provides the result of generic regularity.

Corollary 14 For each u ∈ U , the set Ru of (e, χ) ∈ R
CH
++ × X such that

E = (e, χ, u) is a regular economy is an open and dense subset of R
CH
++ × X .

Finally, take for fixed an arbitrary u ∈ U and define the following global
equilibrium function using the equilibrium function defined in (4).

F : (ξ, e, χ) ∈ Ξ × R
CH
++ × X −→ F (ξ, e, χ) := FE(ξ) ∈ R

dim Ξ (5)

As a direct consequence of Corollary 14 and of the Implicit Function Theorem
(see Theorem 35 in Appendix B), we obtain the following proposition which
provides the main properties of regular economies.

Proposition 15 Let u ∈ U . For each regular economy E = (e, χ, u),

(1) there exits r ∈ N such that F−1
E (0) = {ξ1, ..., ξr}.

(2) There exist an open neighborhood I of (e, χ) in R
CH
++ × X , and for each

i = 1, ..., r an open neighborhood Ni of ξi in Ξ and a continuous function
gi : I → Ni such that

(a) Nj ∩ Nk = ∅ if j 6= k,
(b) gi(e, χ) = ξi,
(c) F (ξ′, e′, χ′) = 0 holds for ξ′ ∈ Ni and for (e′, χ′) ∈ I if and only if

ξ′ = gi(e
′, χ′),

(d) also the economies E ′ = (e′, χ′, u) with (e′, χ′) ∈ I are regular economies.

5 Proofs

In this section, we prove Theorem 13 and Corollary 14. In Subsection 5.1,
substantially, we prove that the equilibrium function is differentiable at each
equilibrium allocation for almost all perturbed economies. In Subsection 5.2,
using the results obtained in Subsection 5.1, the strategy of the proof for
Theorem 13 is detailed. Finally, in Subsection 5.3 we prove Corollary 14 using
several lemmas. All the proofs of the results stated in this section are gathered
in Appendix A.
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5.1 Border line cases

In this subsection, first, we define in (6) the equilibrium function for perturbed
economies and we present Proposition 16 which provides non-emptiness and
compactness results for each perturbed economy. Second, we state the defini-
tion of border line case for perturbed economies, i.e., a situation in which, at
equilibrium, a consumption is on the boundary of the consumption set and
the associated Lagrange multiplier vanishes. Finally, we present Proposition
19 which is the main result of this subsection. Especially, we deduce from
Proposition 19 that the equilibrium function is differentiable at each equilib-
rium allocation for almost all perturbed economies. The proof of Proposition
19 is built upon Lemmas 17 and 18.

Take for fixed (χ, u) ∈ X × U and consider the set Λ given in Definition 11.
Define the equilibrium function for perturbed economies F̃ : Ξ×Λ −→ R

dim Ξ

F̃ (ξ, e, a) := ((F̃ h.1(ξ, e, a), F̃ h.2(ξ, e, a), F̃ h.3(ξ, e, a))h∈H, F̃ M(ξ, e, a)) (6)

where

F̃ h.1(ξ, e, a) := Dxh
uh(xh)−λhp+µhDxh

χh(xh, eh), F̃ h.2(ξ, e, a) := −p(xh−eh),

F̃ h.3(ξ, e, a) := min {µh, χh(xh, eh) + ah}, and F̃ M(ξ, e, a) :=
∑

h∈H

(x
\
h − e

\
h),

and observe that for each (e, a) ∈ Λ, the following function

F̃e,a : ξ ∈ Ξ −→ F̃e,a(ξ) := F̃ (ξ, e, a) ∈ R
dimΞ

is nothing else than the function defined in (4) for the economy Ea = (e, χa, u).

Proposition 16 For each (e, a) ∈ Λ, F̃−1
e,a (0) is non-empty and compact.

Given (ξ, e, a) ∈ F̃−1(0), we say that household h is at a border line case if
µh = χh(xh, eh) + ah = 0. The main result of this subsection is Proposition 19
stating that border line cases occur outside an open and full measure subset
Θ of the space Λ. To construct the set Θ and to prove that Θ is open and
full measure subset of Λ we need introduce some preliminary definitions and
lemmas. Define

Bh :=
{
(ξ, e, a) ∈ F̃−1(0) : µh = χh(xh, eh) + ah = 0

}
and B :=

⋃

h∈H

Bh

Bh is closed in F̃−1(0) for each h ∈ H, then B is closed in F̃−1(0). Define also
the restriction to F̃−1(0) of the projection of Ξ × Λ onto Λ,

Φ : (ξ, e, a) ∈ F̃−1(0) → Φ(ξ, e, a) := (e, a) ∈ Λ

13



and
Θ := Λ \ Φ(B) (7)

By definition, for each (ξ, e, a) ∈ F̃−1(0)∩ (Ξ×Θ) and for each h ∈ H, either

µh > 0 or χh(xh, eh) + ah > 0

We have to prove that Φ(B) is closed and of measure zero in Λ.

The closedness of Φ(B) follows from the closedness of B in F̃−1(0) and from
the properness of Φ obtained by the following lemma. 17

Lemma 17 The function Φ is proper.

To show that Φ(B) is of measure zero, define

P :=





J = {H1,H2,H3}

Hi ⊆ H, ∀i = 1, 2, 3;H1 ∪H2 ∪H3 = H;

Hi ∩Hj = ∅, ∀i, j = 1, 2, 3, i 6= j; and H3 6= ∅






Let J = {H1,H2,H3} ∈ P, for each i = 1, 2, 3 denote by Hi(J ) the set Hi in
J , and by |Hi(J )| the number of element of Hi(J ). Define

ΞJ := R
(C+1)H
++ × (R|H1(J )|+|H3(J )| × R

|H2(J )|
++ ) × R

(C−1)
++

Observe that dim ΞJ = dim Ξ. Define the function F̃J : ΞJ × Λ → R
dim ΞJ

F̃J (ξ, e, a) := ((F̃ h.1(ξ, e, a), F̃ h.2(ξ, e, a), F̃ h.3
J (ξ, e, a))h∈H, F̃ M(ξ, e, a))

where F̃J differs from F̃ defined in (6), for the domain and for the component
F̃ h.3
J defined below

F̃ h.3
J (ξ, e, a) :=





µh if h ∈ H1(J ) ∪H3(J ),

χh(xh, eh) + ah if h ∈ H2(J )

Moreover, given J ∈ P define the set

ΘJ := {(ξ, e, a) ∈ F̃−1
J (0) : χh(xh, eh) + ah = 0, ∀h ∈ H3(J )}

Given an arbitrary (ξ, e, a) ∈ B, we can define endogenously

J (ξ, e, a) := {H1(ξ, e, a),H2(ξ, e, a),H3(ξ, e, a)} ∈ P with

H1(ξ, e, a) := {h ∈ H : µh = 0 and χh(xh, eh) + ah > 0},
H2(ξ, e, a) := {h ∈ H : µh > 0 and χh(xh, eh) + ah = 0},
H3(ξ, e, a) := {h ∈ H : µh = χh(xh, eh) + ah = 0}.

17 Also see the definition of proper function, i.e., Definition 33 in Appendix B.
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Then (ξ, e, a) ∈ ΘJ (ξ,e,a), and we get

Φ(B) ⊆
⋃

J∈P

Φ(ΘJ ) (8)

Since the number of sets involved in the above union in finite, to show that
Φ(B) is of measure zero it is enough to show that Φ(ΘJ ) is of measure zero,
for each J ∈ P. To show that Φ(ΘJ ) is of measure zero for each J ∈ P, we
need the following definitions and the following key lemma. Given J ∈ P, for
each h̄ ∈ H3(J ) define the function F̃J ,h̄ : ΞJ × Λ → R

dim ΞJ +1

F̃J ,h̄(ξ, e, a) := (F̃J (ξ, e, a), F̃ h̄.4
J (ξ, e, a)) (9)

where F̃ h̄.4
J (ξ, e, a) := χh̄(xh̄, eh̄)+ ah̄. Moreover, for each (e, a) ∈ Λ, define the

function F̃J ,h̄,e,a : ξ ∈ ΞJ → F̃J ,h̄,e,a(ξ) := F̃J ,h̄(ξ, e, a) ∈ R
dimΞJ +1. Observe

that for each J ∈ P, for each h̄ ∈ H3(J ) and for each (e, a) ∈ Λ, F̃J ,h̄ and

F̃J ,h̄,e,a are differentiable on all their domain.

Lemma 18 For each J ∈ P and for each h̄ ∈ H3(J ), 0 is a regular value
for F̃J ,h̄.

Then, from results of differential topology and Sard’s Theorem (see Theorems
30 and 32 in Appendix B), given J ∈ P, for each h̄ ∈ H3(J ) there exists a
full measure subset ΩJ ,h̄ of Λ such that for each (e, a) ∈ ΩJ ,h̄, F̃−1

J ,h̄,e,a
(0) = ∅.

Given J ∈ P, let

ΩJ :=
⋃

h̄∈H3(J )

ΩJ ,h̄

ΩJ is a full measure subset of Λ. Let (e, a) ∈ ΩJ , by definition we have
that there exists h̄ ∈ H3(J ) such that F̃−1

J ,h̄,e,a
(0) = ∅. If (e, a) ∈ Φ(ΘJ ),

by Proposition 16, there exists ξ ∈ ΞJ such that ξ ∈ F̃−1
J ,h,e,a(0) for each

h ∈ H3(J ), and we get a contradiction. Then,

Φ(ΘJ ) ⊆ Λ \ ΩJ

Since Λ \ΩJ is of measure zero, Φ(ΘJ ) is of measure zero as well. By (8), we
have that Φ(B) is of measure zero. Then, from (7), Lemmas 17 and 18, we get
the following proposition.

Proposition 19 There exists an open and full measure subset Θ of Λ such
that for each (ξ, e, a) ∈ F̃−1(0) ∩ (Ξ × Θ) and for each h ∈ H, either

µh > 0 or χh(xh, eh) + ah > 0

Finally, observe that the above proposition implies that F̃ is differentiable in
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F̃−1(0) ∩ (Ξ × Θ). Indeed, given (ξ∗, e∗, a∗) ∈ F̃−1(0) ∩ (Ξ × Θ), define

H1(ξ
∗, e∗, a∗) := H∗

1 := {h ∈ H : µ∗
h = 0 and χh(x

∗
h, e

∗
h) + a∗

h > 0}

H2(ξ
∗, e∗, a∗) := H∗

2 := {h ∈ H : µ∗
h > 0 and χh(x

∗
h, e

∗
h) + a∗

h = 0}
(10)

By Proposition 19, we get H∗
1 ∪ H∗

2 = H and H∗
1 ∩ H∗

2 = ∅. Since linear
and possibility functions are continuous, there is an open neighborhood I∗ of
(ξ∗, e∗, a∗) in Ξ × Θ such that for each (ξ, e, a) ∈ I∗,

F̃ h.3(ξ, e, a) =





µh if h ∈ H∗
1

χh(xh, eh) + ah if h ∈ H∗
2

5.2 Regularity in an open and full measure subset

In this subsection, we prove Theorem 13. The proof of Theorem 13 is built
upon Proposition 21 which is the main result of this subsection. From now on,
the set Θ is the open and full measure subset of Λ obtained in Proposition 19,
and the domain of F̃ given in (6) will be Ξ × Θ instead of Ξ × Λ. To prove
Proposition 21, we need the following definitions and the following key lemma,
namely Lemma 20.

Observe that there is a slight difference between the below definitions and the
ones given in Subsection 5.1. In Subsection 5.1, we considered the set P of
appropriate {H1,H2,H3} with H3 6= ∅. In this subsection, we are interested
to describe the case in which H3 = ∅. Then, we define

A := {I := {H1,H2} : Hi ⊆ H, ∀i = 1, 2;H1 ∪H2 = H and H1 ∩H2 = ∅}

Let I = {H1,H2} ∈ A, for each i = 1, 2 denote by Hi(I) the set Hi in I, and
by |Hi(I)| the number of element of Hi(I). Define

ΞI := R
(C+1)H
++ × (R|H1(I)| × R

|H2(I)|
++ ) × R

(C−1)
++

Observe that dim ΞI = dim Ξ. Define the function F̃I : ΞI × Θ → R
dim ΞI

F̃I(ξ, e, a) := ((F̃ h.1(ξ, e, a), F̃ h.2(ξ, e, a), F̃ h.3(ξ, e, a))h∈H, F̃ M(ξ, e, a)) (11)

where F̃I differs from F̃ defined in (6), for the domain and for the component
F̃ h.3
I defined below

F̃ h.3
I (ξ, e, a) :=





µh if h ∈ H1(I),

χh(xh, eh) + ah if h ∈ H2(I)
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All the above definitions allows us to conclude that for each I ∈ A, F̃I is
differentiable on all its domain.

Lemma 20 For each I ∈ A and for each (ξ∗, e∗, a∗) ∈ F̃−1
I (0), the Jacobian

matrix D(ξ,e,a)F̃I(ξ
∗, e∗, a∗) has full row rank.

Observe that by (10), for each (ξ∗, e∗, a∗) ∈ F̃−1(0) we get

(1) I∗ := {H∗
1,H

∗
2} ∈ A,

(2) (ξ∗, e∗, a∗) ∈ F̃−1
I∗ (0), and

(3) D(ξ,e,a)F̃ (ξ∗, e∗, a∗) = D(ξ,e,a)F̃I∗(ξ∗, e∗, a∗).

Then, from Lemma 20 we can state the following result.

Proposition 21 0 is a regular value for F̃ .

From the above proposition and Sard’s Theorem (see Theorem 32 in Appendix
B), there is a full measure subset Θ∗ of Θ such that for each (e, a) ∈ Θ∗, 0
is a regular value for F̃e,a. Since Θ is a full measure subset of Λ, Θ∗ is a full
measure subset of Λ. Since the following set

Λr := {(e, a) ∈ Λ : Ea = (e, χa, u) is regular}

contains Θ∗, Λr is a full measure subset of Λ. Moreover, from Lemma 17
and Corollary 34 in Appendix B, it follows that Λr is an open subset of Λ.
Therefore, Theorem 13 holds true.

5.3 Generic regularity

In this subsection, we take for fixed an arbitrary u ∈ U and we prove Corollary
14 using several lemmas, namely Lemmas 22, 23, 24, 25 and 26. 18

Observe that the global equilibrium function F defined in (5) is a continu-
ous function. Indeed, the convergence of a sequence (χv

h)v∈N means uniform
convergence on compacta of (χv

h)v∈N and of (Dχv
h)v∈N (see Appendix B).

By the following lemma, we deduce that the set R of (e, χ) such that E =
(e, χ, u) is a regular economy is a dense subset of R

CH
++ ×X .

Lemma 22 There exists a dense subset D of R
CH
++ × X such that for each

(e, χ) ∈ D the economy E = (e, χ, u) is regular.

18 To show Corollary 14, we follow a similar strategy to the one presented by Ci-
tanna, Kajii and Villanacci (1998).
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To prove that R is open we need introduce some preliminary definitions and
lemmas. Define the restriction to F−1(0) of the projection of Ξ × R

CH
++ × X

onto R
CH
++ ×X ,

Π : (ξ, e, χ) ∈ F−1(0) → Π(ξ, e, χ) := (e, χ) ∈ R
CH
++ × X

Theorem 7 and Definition 8 imply that R ⊆ (RCH
++ ×X ) \ Π(C1) where

C1 := {(ξ∗, e, χ) ∈ F−1(0) : FE is not differentiable at ξ∗}

The closedness of Π(C1) in R
CH
++ × X follows from the closedness of C1 in

F−1(0) and the properness of Π obtained by the following two lemmas. 19

Lemma 23 The set C1 is closed in F−1(0).

Lemma 24 The function Π is proper.

Then, the set A := (RCH
++ ×X ) \Π(C1) is open in R

CH
++ ×X . From now on, the

domain of F will be Ξ×A instead of Ξ×R
CH
++ ×X . Define also the restriction

to F−1(0) of the projection of Ξ × A onto A,

Ψ : (ξ, e, χ) ∈ F−1(0) → Ψ(ξ, e, χ) := (e, χ) ∈ A

Theorem 7 and Definition 8 imply that R = A \ Ψ(C2) where

C2 := {(ξ∗, e, χ) ∈ F−1(0) : rankDξFE(ξ
∗) < dim Ξ}

The closedness of Ψ(C2) in A follows from the closedness of C2 in F−1(0) and
the properness of Ψ obtained by the following two lemmas. Then, R is open
in A. Finally, R is open in R

CH
++ × X since A is open in R

CH
++ ×X .

Lemma 25 The set C2 is closed in F−1(0).

Lemma 26 The function Ψ is proper.

Appendix A

In this appendix we show all the results stated in Sections 4 and 5. Moreover, to
prove some of these results we present the following two propositions, namely
Propositions 27 and 29.

As a consequence of points 1-4 of Assumption 2 we get Proposition 27. It
plays a fundamental role in the characterization of household h’s maximization
problem in terms of Kuhn–Tucker conditions (see Proposition 5 and its proof)

19 Also see the definition of proper function, i.e., Definition 33 in Appendix B.
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and in the result of generic regularity (in particular see the proof of Lemmas
18 and 20).

Proposition 27 Let E be an economy satisfying Assumption 2. If (xh, p) ∈
R

C
++ × R

C
++ is such that χh(xh, eh) = 0 and p(xh − eh) = 0, then p and

Dxh
χh(xh, eh) are linearly independent.

Proof. Otherwise, suppose that Dxh
χh(xh, eh) = βp with β 6= 0. Since p ≫ 0

and χh(xh, eh) = 0, by point 4 of Assumption 2, we get β > 0. Then,
Dxh

χh(xh, eh) ≫ 0. By point 3 of Assumption 2, x̃h ∈ R
C
++ satisfies χh(x̃h, eh) >

0 and x̃h ≪ eh. From points 1 and 2 of Assumption 2, χh is C1 and quasi-
concave, then χh(x̃h, eh) − χh(xh, eh) > 0 implies Dxh

χh(xh, eh)(x̃h − xh) ≥ 0.
Therefore, Dxh

χh(xh, eh)(eh − xh) > 0 since Dxh
χh(xh, eh) ≫ 0 and x̃h ≪ eh.

That is, βp(eh − xh) > 0 which contradicts p(xh − eh) = 0.

In the following remark we just observe that at the solution of household h’s
maximization problem an analogous condition to Smale’s Assumption holds
true (see NCP Hypothesis in Smale, 1974b).

Remark 28 Let E be an economy satisfying Assumptions 1 and 2, and x∗
h

be the solution to problem (1) at E and p∗\ ∈ R
C−1
++ . From Propositions 5

and 27, point 1 of Assumption 1 and point 4 of Assumption 2, we have that
χh(x

∗
h, eh) = 0 implies that Dxh

uh(x
∗
h) and Dxh

χh(x
∗
h, eh) are linearly indepen-

dent.

As a direct consequence of Remark 12, points 1 and 2 of Assumption 2, we
obtain the following proposition. The continuous selection functions given in
Proposition 29 play a fundamental role in the properness result used to show
differentiability and regularity results (see Lemma 17 and its proof).

Proposition 29 Let h ∈ H, Λh denotes the projection of Λ onto R
C
++ × R.

For each h ∈ H, there exists a continuous function x̃h : Λh → R
C
++ such that

for each (eh, ah) ∈ Λh, χh(x̃h(eh, ah), eh) + ah > 0 and x̃h(eh, ah) ≪ eh.

Proof. Let h ∈ H. By Remark 12, for each (eh, ah) ∈ Λh the following set{
xh ∈ R

C
++ : χh(xh, eh) + ah > 0 and xh ≪ eh

}
is not empty, and by point 2

of Assumption 2 it is a convex set. Define the correspondence φh : Λh ⇉ R
C

φh : (eh, ah) ⇉ φh(eh, ah) :=
{
xh ∈ R

C
++ : χh(xh, eh) + ah > 0 and xh ≪ eh

}

From point 1 of Assumption 2, for each xh ∈ R
C the following set

φ−1
h (xh) := {(eh, ah) ∈ Λh : χh(xh, eh) + ah > 0 and xh ≪ eh}

is open in Λh. Moreover, Λh equipped with the metric induced by the Euclidean
distance is metrizable, thus paracompact. Then, we have the desired result
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since the correspondence φh satisfies the assumptions of Michael’s Selection
theorem (see Proposition 1.5.1 in Florenzano, 2003).

Proof of Proposition 5. The existence of a solution to problem (1) follows
from points 1 and 4 of Assumption 1, and points 1 and 3 of Assumption 2. The
uniqueness follows from point 3 of Assumptions 1 and point 2 of Assumption
2. By the well known Kuhn–Tucker theorem for non-linear programming, the
sufficiency of the Kuhn–Tucker conditions follows from point 3 of Assumption
1 and point 2 of Assumption 2. The necessity of the Kuhn–Tucker conditions
follows from Propositions 27. Finally, from point 2 of Assumption 1 and point
4 of Assumption 2, we get λ∗

h ∈ R++.

Proof of Theorem 7. Theorem 7 is a particular case of existence and com-
pactness results obtained in del Mercato (2006a) using homotopy arguments.
Then, we just provide the homotopy H adapted to our model and we return
the reader to del Mercato (2006a) for the detailed proof. 20 Take for fixed E
and define the following homotopy H : Ξ × [0, 1] → R

dimΞ,

H(ξ, t) :=






Ψ(ξ, 1 − 2t) if 0 ≤ t ≤ 1
2

Γ(ξ, 2 − 2t) if 1
2

< t ≤ 1

where Ψ, Γ : Ξ × [0, 1] → R
dimΞ are defined by

Ψ(ξ, τ) := ((Ψh.1(ξ, τ), Ψh.2(ξ, τ), Ψh.3(ξ, τ))h∈H, ΨM(ξ, τ))

Ψh.1(ξ, τ) = Dxh
uh(xh) − λhp, Ψh.2(ξ, τ) = −p(xh − eτ

h),

Ψh.3(ξ, τ) = min {µh, χh(x̃h, eh)} and ΨM(ξ, τ) =
∑

h∈H

x
\
h −

∑

h∈H

e
τ\
h ,

and

Γ(ξ, τ) := ((Γh.1(ξ, τ), Γh.2(ξ, τ), Γh.3(ξ, τ))h∈H, ΓM(ξ, τ))

Γh.1(ξ, τ) = Dxh
uh(xh) − λhp + µh(1 − τ)Dxh

χh((1 − τ)xh + τ x̃h, eh),

Γh.2(ξ, τ) = −p(xh − eh), Γh.3(ξ, τ) = min {µh, χh((1 − τ)xh + τ x̃h, eh)}

and ΓM(ξ, τ) =
∑

h∈H

x
\
h −

∑

h∈H

e
\
h.

For each h ∈ H, x̃h is given by point 3 of Assumption 2, and for each τ ∈ [0, 1],
eτ

h := (1 − τ)eh + τx∗∗
h , where (x∗∗

h )h∈H is a Pareto optimal allocation in the
exchange economy à la Debreu ED := (Xh, uh, eh)h∈H where Xh := R

C
++ for

every h ∈ H.

20 Observe that in del Mercato (2006a), utility and possibility functions also depend
on the consumptions of all households.
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Proof of Proposition 16. It is enough to adapt the proof of Theorem 7. Take
for fixed (e, a) ∈ Λ, the homotopy H : Ξ×[0, 1] → R

dimΞ does not change. The
homotopies Ψ, Γ : Ξ× [0, 1] → R

dimΞ adapted to this case differ from the ones
used in the proof of Theorem 7 since Ψh.3(ξ, τ) = min {µh, χh(x̃h, eh) + ah} and
Γh.3(ξ, τ) = min {µh, χh((1 − τ)xh + τ x̃h, eh) + ah}, where for each h ∈ H, x̃h

is given by the definition of Λ (see Definition 11).

Proof of Lemma 17. We have to show that any sequence (ξv, ev, av)v∈N ⊆
F̃−1(0), up to a subsequence, converges to an element of F̃−1(0), knowing that
(ev, av)v∈N ∈ Λ, up to a subsequence, converges to (e∗, a∗) ∈ Λ.

• (xv)v∈N, up to a subsequence, converges to x∗ ∈ R
CH
++ .

(xv)v∈N ⊆ R
CH
++ , and from F̃ M(ξv, ev, av) = 0 and F̃ k.2(ξv, ev, av) = 0 in (6),

xv
k =

∑

h∈H

ev
h −

∑

h 6=k

xv
h ≤

∑

h∈H

ev
h for each k ∈ H. Since (ev

h)v∈N converges to

e∗h ∈ R
C
++ for each h ∈ H, (xv)v∈N is bounded from above by an element of

R
C
++. Then, (xv)v∈N, up to a subsequence, converges to x∗ ≥ 0.

Now, we prove that x∗
h ≫ 0 for each h ∈ H. By F̃ h.1(ξv, ev, av) = 0 and

F̃ h.2(ξv, ev, av) = 0 in (6), uh(x
v
h) ≥ uh(x̃h(e

v
h, a

v
h)) for every v ∈ N, where

x̃h is the continuous selection function given by Proposition 29. Define 1 :=
(1, ..., 1) ∈ R

C
++, from point 2 of Assumption 1 we have that for each ε > 0,

uh(x
v
h + ε1) ≥ uh(x̃h(e

v
h, a

v
h)) for every v ∈ N. So taking the limit on v, since

(ev
h, a

v
h)v∈N converges to (e∗h, a

∗
h) ∈ Λh, and uh and x̃h are continuous, then we

get uh(x
∗
h+ε1) ≥ uh(x̃h(e

∗
h, a

∗
h)) := uh for each ε > 0. By point 4 of Assumption

1, x∗
h ∈ R

C
++ since x∗

h belongs to the set clRC{xh ∈ R
C
++ : uh(xh) ≥ uh}.

• (λv, µv)v∈N, up to a subsequence, converges to (λ∗, µ∗) ∈ R
H
+ × R

H
+ .

It is enough to show that (λv
hp

v, µv
h)v∈N is bounded for each h ∈ H. Then,

(λv
hp

v, µv
h)v∈N ⊆ R

C
++ × R+, up to a subsequence, converges to (π∗

h, µ
∗
h) ∈

R
C
+ × R+, and λ∗

h = π∗C
h since pvC = 1 for each v ∈ N.

Suppose otherwise that there is a subsequence of (λv
hp

v, µv
h)v∈N (that with-

out loss of generality we continue to denote with (λv
hp

v, µv
h)v∈N) such that

‖(λv
hp

v, µv
h)‖ −→ +∞. Consider the sequence

(
λv

h
pv,µv

h

‖(λv

h
pv,µv

h
)‖

)

v∈N

in the sphere,

a compact set. Then, up to a subsequence
(

λv

h
pv,µv

h

‖(λv

h
pv,µv

h
)‖

)
−→ (πh, µh) 6= 0.

Since µv
h ≥ 0 and λv

hp
v ≫ 0 for each v ∈ N, we get πh ≥ 0 and µh ≥ 0. By

F̃ h.1(ξv, ev, av) = 0 in (6), λv
hp

v = Dxh
uh(x

v
h)+µv

hDxh
χh(x

v
h, e

v
h) for each v ∈ N.

Now, divide both sides by ‖(λv
hp

v, µv
h)‖ and take the limits. From point 1 of

Assumption 1 and point 1 of Assumption 2, we get

πh = µhDxh
χh(x

∗
h, e

∗
h)
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µh > 0, otherwise we get (πh, µh) = 0. By point 4 of Assumption 2, we have
Dxh

χh(x
∗
h, e

∗
h) 6= 0. Then, πh 6= 0. From Kuhn-Tucker necessary and sufficient

conditions, we get

πhx
∗
h = min

xh∈RC
++

πhxh

subject to χh(xh, e
∗
h) ≥ 0

(12)

By F̃ h.2(ξv, ev, av) = 0 in (6), we get λv
hp

vxv
h = λv

hp
vev

h for each v ∈ N. Now,
divide both sides by ‖(λv

hp
v, µv

h)‖ and take the limits. We get πhx
∗
h = πhe

∗
h. By

point 3 of Assumption 2, χh(x̃h, e
∗
h) > 0 and πhx̃h < πhe

∗
h = πhx

∗
h contradict

(12).

• (pv\)v∈N, up to a subsequence, converges to p∗\ ∈ R
C−1
++ .

By point 2 of Assumption 1 and point 5 of Assumption 2, λ∗
k = Dxk

uk(x
∗
k) +

µ∗
kDxk

χk(x
∗
k, e

∗
k) > 0, for some k = h(C) ∈ H. From the previous step,

(λv
kp

v\)v∈N admits a subsequence converging to π
∗\
k ≥ 0. Then, (pv\)v∈N, up to

a subsequence, converges to p∗\ ≥ 0, since λ∗
k > 0. Now, suppose that there is

c 6= C, such that p∗c = 0. By point 2 of Assumption 1 and point 5 of Assump-
tion 2, for some k′ = h(c) ∈ H we get 0 < Dxc

k′
uk′(x∗

k′) + µ∗
k′Dxc

k′
χk′(x∗

k′e∗k′) =
λ∗

k′p∗c = 0 that is a contradiction.

• λ∗ ∈ R
H
++.

Otherwise, suppose that λ∗
h = 0 for some h ∈ H. By F̃ h.1(ξv, ev, av) = 0

in (6), λv
hp

v = Dxh
uh(x

v
h) + µv

hDxh
χh(x

v
h, e

v
h) for each v ∈ N. Taking the

limit, from point 1 of Assumptions 1 and 2 we get 0 = λ∗
hp

∗ = Dxh
uh(x

∗
h) +

µ∗
hDxh

χh(x
∗
h, e

∗
h). By point 2 of Assumption 1 and point 4 of Assumption 2, for

some good c = 1, .., C we get 0 < Dxc

h
uh(x

∗
h) + µ∗

hDxc

h
χh(x

∗
h, e

∗
h) = λ∗

hp
∗c = 0

that is a contradiction.

Proof of Lemma 18. We have to show that for each (ξ∗, e∗, a∗) ∈ F̃−1
J ,h̄

(0),

the Jacobian matrix D(ξ,e,a)F̃J ,h̄(ξ
∗, e∗, a∗) has full row rank.

Let ∆ := ((∆xh, ∆λh, ∆µh)h∈H, ∆p\, ∆v) ∈ R
(C+2)H ×R

C−1 ×R. It is enough
to show that ∆ · D(ξ,e,a)F̃J ,h̄(ξ

∗, e∗, a∗) = 0 implies ∆ = 0. To prove it, we
consider the computation of the partial Jacobian matrix with respect to the
following variables

((xh, λh, µh)h∈H, eh̄, ah̄)

The partial system ∆ · D(ξ,e,a)F̃J ,h̄(ξ
∗, e∗, a∗) = 0 is written in detail below.
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Without loss of generality, we denote Hi := Hi(J ) for each i = 1, 2, 3.






∆xh · D
2
xh

uh(x
∗
h) − ∆λhp

∗ + ∆p\ · [IC−1|0] = 0 if h ∈ H1 ∪ (H3 \ {h̄})

∆xh̄ · D
2
x

h̄
uh̄(x

∗
h̄
) − ∆λh̄p

∗ + ∆p\ · [IC−1|0] + ∆vDx
h̄
χh̄(x

∗
h̄
, e∗

h̄
) = 0

∆xh′ ·
(
D2

x
h′

uh′(x∗
h′) + µ∗

h′D2
x

h′
χh′(x∗

h′, e∗h′)
)
− ∆λh′p∗+

∆µh′Dx
h′
χh′(x∗

h′, e∗h′) + ∆p\ · [IC−1|0] = 0 if h′ ∈ H2

−∆xhp
∗ = 0 for each h ∈ H

∆xhDxh
χh(x

∗
h, e

∗
h) + ∆µh = 0 if h ∈ H1 ∪H3

∆xh′Dx
h′

χh′(x∗
h′ , e∗h′) = 0 if h′ ∈ H2

∆λh̄p
∗ − ∆p\ · [IC−1|0] + ∆vDe

h̄
χh̄(x

∗
h̄
, e∗

h̄
) = 0

∆v = 0

(13)
Since ∆v = 0 and p∗C = 1, then ∆λh̄ = 0 and ∆p\ = 0. From the above
system , we get

(
∆xh · D2

xh
uh(x

∗
h)

)
∆xh = 0 if h ∈ H1 ∪H3 (14)

and

(
∆xh′ · D2

x
h′

uh′(x∗
h′)

)
∆xh′ = −µ∗

h′

(
∆xh′ · D2

x
h′
χh′(x∗

h′, e∗h′)
)

∆xh′ if h′ ∈ H2

Point 2 of Assumption 2 and µ∗
h′ > 0 for each h′ ∈ H2 imply that

(
∆xh′ · D2

x
h′

uh′(x∗
h′)

)
∆xh′ ≥ 0 if h′ ∈ H2 (15)

Observe that from F̃ h̄.1
J ,h̄

(ξ∗, e∗, a∗) = 0 in (9) and system (13), we get

Dxh
uh(x

∗
h)∆xh = λ∗

hp
∗∆xh = 0 if h ∈ H1 ∪H3, and

Dx
h′

uh′(x∗
h′)∆xh′ = λ∗

h′p∗∆xh′ − µ∗
h′Dx

h′
χh′(x∗

h′ , e∗h′)∆xh′ = 0 if h′ ∈ H2

Then, (14), (15) and point 3 of Assumption 1 imply that ∆xh = 0 for each
h ∈ H. Therefore, the relevant equations of system (13) become






∆λhp
∗ = 0 if h ∈ H1 ∪ (H3 \ {h̄})

∆λh′p∗ − ∆µh′Dx
h′
χh′(x∗

h′ , e∗h′) = 0 if h′ ∈ H2

∆µh = 0 if h ∈ H1 ∪H3

∆λh = 0 for each h ∈ H1 ∪ (H3 \ {h̄}), since p∗ ≫ 0. From F̃J ,h̄(ξ
∗, e∗, a∗) = 0

in (9) and Proposition 27, we have that p∗ and Dx
h′

χh′(x∗
h′ , e∗h′) are linearly
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independent for each h′ ∈ H2. Then, ∆λh′ = ∆µh′ = 0 for each h′ ∈ H2.
Therefore, ∆ = 0.

Proof of Lemma 20. Let ∆ := ((∆xh, ∆λh, ∆µh)h∈H, ∆p\) ∈ R
(C+2)H ×

R
C−1. It is enough to show that ∆ · D(ξ,e,a)F̃I(ξ

∗, e∗, a∗) = 0 implies ∆ = 0.
We consider two cases: 1. H1(I) 6= ∅, and 2. H1(I) = ∅. Without loss of
generality, we denote Hi := Hi(I) for each i = 1, 2.

Case 1. H1 6= ∅. Without loss of generality we suppose 1 ∈ H1. In this case,
we consider the computation of the partial Jacobian matrix with respect to
the following variables

((xh, λh, µh)h∈H, e1)

The partial system ∆ · D(ξ,e,a)F̃I(ξ
∗, e∗, a∗) = 0 is written in detail below.






∆xh · D
2
xh

uh(x
∗
h) − ∆λhp

∗ + ∆p\ · [IC−1|0] = 0 if h ∈ H1

∆xh′ ·
(
D2

x
h′

uh′(x∗
h′) + µ∗

h′D2
x

h′
χh′(x∗

h′, e∗h′)
)
− ∆λh′p∗+

∆µh′Dx
h′
χh′(x∗

h′, e∗h′) + ∆p\ · [IC−1|0] = 0 if h′ ∈ H2

−∆xhp
∗ = 0 for each h ∈ H

∆xhDxh
χh(x

∗
h, e

∗
h) + ∆µh = 0 if h ∈ H1

∆xh′Dx
h′

χh′(x∗
h′ , e∗h′) = 0 if h′ ∈ H2

∆λ1p
∗ − ∆p\ · [IC−1|0] = 0

Since p∗C = 1, we get ∆λ1 = 0 and ∆p\ = 0. From the above system, using
similar arguments as in the proof of Lemma 18, we get ∆xh = 0 for each
h ∈ H. Then, ∆µh = 0 for each h ∈ H1, and ∆λh = 0 for each h ∈ H1 \ {1}
since p∗ ≫ 0. From F̃I(ξ

∗, e∗, a∗) = 0 in (11) and Proposition 27, we have
that p∗ and Dx

h′
χh′(x∗

h′, e∗h′) are linearly independent for each h′ ∈ H2. Then,
∆λh′ = ∆µh′ = 0 for each h′ ∈ H2. Therefore, ∆ = 0.

Case 2. H1 = ∅. Then, H2 = H. The computation of the partial Jacobian
matrix with respect to the following variables

(xh, λh, µh, eh, ah)h∈H

is described below.
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xh λh µh eh ah

F̃ (h.1) D2
xh

uh(x∗
h
)+µ∗

h
D2

xh
χh(x∗

h
,e∗

h
) −p∗T Dxh

χh(x∗
h
,e∗

h
)T µ∗

h
D2

ehxh
χh(x∗

h
,e∗

h
)

F̃ (h.2) −p∗ p∗

F̃
(h.3)
I

Dxh
χh(x∗

h
,e∗

h
) Deh

χh(x∗
h
,e∗

h
) 1

F̃ M [IC−1|0] −[IC−1|0]

The correspondent partial system ∆ · D(ξ,e,a)F̃I(ξ
∗, e∗, a∗) = 0 is






∆xh ·
(
D2

xh
uh(x

∗
h) + µ∗

hD
2
xh

χh(x
∗
h, e

∗
h)

)
− ∆λhp

∗+

∆µhDxh
χh(x

∗
h, e

∗
h) + ∆p\ · [IC−1|0] = 0 for each h ∈ H

−∆xhp
∗ = 0 for each h ∈ H

∆xhDxh
χh(x

∗
h, e

∗
h) = 0 for each h ∈ H

∆xh ·
(
µ∗

hD
2
ehxh

χh(x
∗
h, e

∗
h)

)
+ ∆λhp

∗+

∆µhDeh
χh(x

∗
h, e

∗
h) − ∆p\ · [IC−1|0] = 0 for each h ∈ H

∆µh = 0 for each h ∈ H

(16)

From F̃I(ξ
∗, e∗, a∗) = 0 in (11) and the above system, for each h ∈ H we get

Dxh
uh(x

∗
h)∆xh = λ∗

hp
∗∆xh − µ∗

hDxh
χh(x

∗
h, e

∗
h)∆xh = 0 (17)

From system (16) and Assumption 3, we get

[
∆xk ·

(
D2

xk
χk(x

∗
k, e

∗
k) + D2

ekxk
χk(x

∗
k, e

∗
k)

)]
∆xk ≤ 0 (18)

for some k ∈ H. From system (16), we get also

(
∆xk · D

2
xk

uk(x
∗
k)

)
∆xk = −µ∗

k

[
∆xk ·

(
D2

xk
χk(x

∗
k, e

∗
k) + D2

ekxk
χk(x

∗
k, e

∗
k)

)]
∆xk

Then, (17), (18) and point 3 of Assumption 1 imply that ∆xk = 0, since
µ∗

k > 0. Since p∗C = 1, then we get ∆λk = 0 and ∆p\ = 0. Therefore, the
relevant equations of system (16) become





∆xh ·
(
D2

xh
uh(x

∗
h) + µ∗

hD
2
xh

χh(x
∗
h, e

∗
h)

)
− ∆λhp

∗ = 0 for each h 6= k

−∆xhp
∗ = 0 for each h 6= k

∆xhDxh
χh(x

∗
h, e

∗
h) = 0 for each h 6= k

From the above system, we get
(
∆xh · D

2
xh

uh(x
∗
h)

)
∆xh = −µ∗

h

(
∆xh · D2

xh
χh(x

∗
h, e

∗
h)

)
∆xh for each h 6= k
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From (17), using similar arguments as in the proof of Lemma 18, we get
∆xh = 0 for each h 6= k. Finally, we get ∆λh = 0 for each h 6= k since p∗ ≫ 0,
and then ∆ = 0.

Proof of Lemma 22. Let u ∈ U . First, observe that for each χ ∈ X there is
a dense subset Λ∗

χ of R
CH
++ × R

H
+ such that Ea = (e, χa, u) is regular for each

(e, a) ∈ Λ∗
χ. Indeed, as a consequence of Theorem 13 we have that for each

χ ∈ X , the set Λr
χ of (e, a) ∈ Λχ such that Ea = (e, χa, u) is regular is an open

and dense subset of Λχ. 21 By Remark 12, R
CH
++ × R

H
+ ⊆ Λχ for each χ ∈ X .

Then, Λ∗
χ := Λr

χ ∩ (RCH
++ × R

H
+ ) is a dense subset of R

CH
++ × R

H
+ .

Now, suppose otherwise that there are (ē, χ̄) ∈ R
CH
++ × X , an open neigh-

borhood I of ē in R
CH
++ and an open neighborhood N of χ̄ in X such that

E = (e, χ, u) is not regular for every (e, χ) ∈ I ×N . Without loss of generality
we suppose that N = {χ ∈ X : ∀ h ∈ H, d(χh, χ̄h) < εh} where 0 < εh < 1
for each h ∈ H. It is easy to check that χ̄ + a ∈ N , for each a = (ah)h∈H

with 0 ≤ ah < εh. Then, we can conclude that there is an open subset A of
R

CH
++ ×R

H
+ such that Ea = (e, χa, u) is not regular for every (e, a) ∈ A. This is

a contradiction since Λ∗
χ̄ is a dense subset of R

CH
++ × R

H
+ .

Proof of Lemma 23. Let u ∈ U . We want to prove that C1 is sequen-
tially closed in F−1(0). Let (ξv, ev, χv)v∈N ⊆ C1 be a sequence converging to
(ξ̄, ē, χ̄) ∈ F−1(0). We have to show that (ξ̄, ē, χ̄) ∈ C1. Otherwise, suppose
that FĒ is differentiable in ξ̄ where Ē := (ē, χ̄, u). Then, for each h ∈ H, either

µ̄h > 0 or χ̄h(x̄h, ēh) > 0

Define H1 := {h ∈ H : µ̄h > 0} and H2 := {h ∈ H : χ̄h(x̄h, ēh) > 0}. For
each h ∈ H1 there is vh such that µv

h > 0 for each v ≥ vh, and for each
h ∈ H2, for given 0 < εh < χ̄h(x̄h, ēh), there is nh such that χ̄h(x

v
h, e

v
h) > εh

for each v ≥ nh. Since (χv)v∈N converges uniformly on compacta and the set
{(xv

h, e
v
h)v∈N} ∪ {(x̄h, ēh)} is compact, we have that for each h ∈ H2 there is

mh such that for each m ≥ mh, χm
h (xv

h, e
v
h) > χ̄h(x

v
h, e

v
h) − εh for each v ∈ N.

Now, take v̄ = max
h∈H

{vh, nh, mh}, we have that for each v ≥ v̄

µv
h > 0, ∀ h ∈ H1 and χv

h(x
v
h, e

v
h) > 0, ∀ h ∈ H2

That is, given Ev := (ev, χv, u), FEv is differentiable in ξv for each v ≥ v̄, which
is a contradiction.

Proof of Lemma 24. Let u ∈ U . We have to show that any sequence
(ξv, ev, χv)v∈N ⊆ F−1(0), up to a subsequence, converges to an element of

21 Observe that for each χ ∈ X , Λχ is defined as the set Λ given in Definition 11.
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F−1(0), knowing that (ev, χv)v∈N, up to a subsequence, converges to (ē, χ̄) ∈
R

CH
++ × X .

As in the proof of Lemma 17, the sequence (xv)v∈N, up to a subsequence,
converges to x̄ ≥ 0. The main difficulty is to prove that for each h ∈ H,
x̄h ≫ 0. Using similar arguments as in the proof of Proposition 29, it easy
to show that there exists a continuous selection function x̃h : R

C
++ → R

C
++

such that for each eh ∈ R
C
++, χ̄h(x̃h(eh), eh) > 0 and x̃h(eh) ≪ eh. Then, in

particular

χ̄h(x̃h(ēh), ēh) > 0 and x̃h(ēh) ≪ ēh

and

χ̄h(x̃h(e
v
h), e

v
h) > 0 and x̃h(e

v
h) ≪ ev

h

for each v ∈ N. Now, we are going to show that there is v̄ such that for each
v ≥ v̄

χv
h(x̃h(e

v
h), e

v
h) > 0 (19)

Since x̃h is continuous, for given 0 < εh < χ̄h(x̃h(ēh), ēh), there is nh such that
χ̄h(x̃h(e

v
h), e

v
h) > εh for each v ≥ nh. Since (χv)v∈N converges uniformly on

compacta and the set {(x̃h(e
v
h), e

v
h))v∈N} ∪ {(x̃h(ēh), ēh)} is compact, we have

that there is mh such that for each m ≥ mh, χm
h (x̃h(e

v
h), e

v
h) > χ̄h(x̃h(ēh), ēh)−

εh for each v ∈ N. Now, take v̄ = max{nh, mh}, we have that for each v ≥ v̄,
(19) holds true.

Then, by F h.1(ξv, ev, χv) = 0 and F h.2(ξv, ev, χv) = 0 in (5), uh(x
v
h) ≥ uh(x̃h(e

v
h))

for every v ≥ v̄. Define 1 := (1, ..., 1) ∈ R
C
++, from point 2 of Assumption 1

we have that for each ε > 0, uh(x
v
h + ε1) ≥ uh(x̃h(e

v
h)) for every v ≥ v̄. So

taking the limit on v, since uh and x̃h are continuous, for each ε > 0 we get
uh(x̄h + ε1) ≥ uh(x̃h(ēh)) := uh. By point 4 of Assumption 1, x̄h ∈ R

C
++ since

x̄h belongs to the set clRC{xh ∈ R
C
++ : uh(xh) ≥ uh}.

The remaining part of the proof follows the same steps as in the proof of
Lemma 17.

Proof of Lemma 25. Let u ∈ U . For each (ξ∗, e, χ) ∈ C2, the determinant
of all the square submatrices of DξFE(ξ

∗) of dimension dim Ξ is equal to zero.
Since the determinant is a continuous function, C2 is closed in F−1(0).

Proof of Lemma 26. The proof follows the same steps as in the proof of
Lemma 24.

Appendix B

The theory of general economic equilibrium from a differentiable prospective
is based on results from differential topology. Following are the ones used in
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our analysis. These results, as well as generalizations on these issues, can be
found for instance in Mas-Colell (1985) and Villanacci et al. (2002).

Topology of the C2 uniform convergence on compacta. Denote X := R
2C
++.

Let C2(X, R) be the set of C2 functions from X to R. Endow C2(X, R)
with the topology of the C2 uniform convergence on compacta. That is, a
sequence of functions (fn)n∈N converges to f if and only if (fn)n∈N, (Dfn)n∈N

and (D2fn)n∈N converge uniformly to f , Df and D2f respectively, on any
compact K ⊆ X. Since X is contained in the closure of its interior, C2(X, R)
is metrizable (see Mas-Colell, 1985, p. 50). Note that C2(X, R) can be made
metric space in the following way: let (Kn)n∈N be a sequence of compact subset
of X such that

⋃

n∈N

Kn = X, define the metric d by

d(f, g) :=
∑

n∈N

1

2n
min{‖f − g‖2,Kn

, 1}

for f and g in C2(X, R), where ‖·‖1,Kn
is the C2 uniform norm on C2(Kn, R)

defined by

‖v‖2,Kn
:= sup

x∈Kn

|v(x)| + sup
x∈Kn

‖Dv(x)‖ + sup
x∈Kn

∥∥∥D2v(x)
∥∥∥

for v ∈ C2(Kn, R). The topology generated by d on C2(X, R) coincides with
the topology of the C2 uniform convergence on compacta. 22

Theorem 30 (Regular value theorem) Let M , N be Cr manifolds of dimen-
sions m and n, respectively. Let f : M → N be a Cr function. Assume
r > max{m − n, 0}. If y ∈ N is a regular value for f , then

(1) if m < n, f−1(y) = ∅,
(2) if m ≥ n, either f−1(y) = ∅, or f−1(y) is an (m − n)-dimensional sub-

manifold of M .

Corollary 31 Let M , N be Cr manifolds of the same dimension. Let f :
M → N be a Cr function. Assume r ≥ 1. Let y ∈ N a regular value for f
such that f−1(y) is non-empty and compact. Then, f−1(y) is a finite subset of
M .

The following results is a consequence of Sard’s Theorem for manifolds.

Theorem 32 Let M , Ω and N be Cr manifolds of dimensions m, p and n,
respectively. Let f : M×Ω → N be a Cr function. Assume r > max{m−n, 0}.
If y ∈ N is a regular value for f , then there exists a full measure subset Ω∗ of

22 See Allen (1981) and Mas-Colell (1985).
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Ω such that for any ω ∈ Ω∗, y ∈ N is a regular value for fω, where

fω : ξ ∈ M → fω(ξ) := f(ξ, ω) ∈ N

Definition 33 Let (X, d) and (Y, d′) be two metric spaces. A function π :
X → Y is proper if it is continuous and one among the following conditions
holds true.

(1) π is closed and π−1(y) is compact for each y ∈ Y ,
(2) if K is a compact subset of Y , then π−1(K) is a compact subset of X,
(3) if (xn)n∈N is a sequence in X such that (π(xn))n∈N converges, then (xn)n∈N

has a converging subsequence in X.

Observe that the above conditions are equivalent.

Corollary 34 Let M , Ω and N be Cr manifolds of dimensions m, p and n,
respectively. Let f : M×Ω → N be a Cr function. Assume r > max{m−n, 0}.
Let Γ be a full measure subset of Ω such that for any ω ∈ Γ, y ∈ N is a regular
value for fω. If the projection π

Ω
: (ξ, ω) ∈ f−1(y) → π

Ω
(ξ, ω) := ω ∈ Ω is

proper, then Γ is open in Ω.

Theorem 35 (Implicit Function Theorem) Let M , N be Cr manifolds of the
same dimension. Assume r ≥ 1. Let (X, τ) be a topological space, and f :
M × X → N be a continuous function such that Dξf(ξ, x) exists and it is
continuous on M × X. If f(ξ, x) = 0 and Dξf(ξ, x) is onto, then there exist
an open neighborhood I of x in X, an open neighborhood U of ξ in M and a
continuous function g : I → U such that g(x) = ξ and f(ξ′, x′) = 0 holds for
(ξ′, x′) ∈ U × I if and only if ξ′ = g(x′).
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