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ABSTRACT

This paper concerns the difficulty of taking long-term effects on health into
account in an economic valuation. Indeed, public decision-makers should
incorporate the cessation lag between implementation of an abatement policy and
achievement of all of the expected mortality-related benefits for any projects
involving health impacts. We show how this time-lag problem can be handled by
proposing two approaches - either in terms of deaths avoided or of life years saved
- within a dynamic perspective. The main findings are that long-term health
benefits calculated by standard methods and widely applied to adverse health
effects should be corrected downwards when incorporated into an economic
analysis. The magnitude of correction depends on the discount rate, on technical
choices dealing with epidemiology and on the method chosen to assess mortality

benefits.

INTRODUCTION

Improvements in data collection, accumulation of epidemiological studies and an
increased concern for public health have resulted in better knowledge of long-term
human health outcomes resulting from past exposure to adverse factors. Studies on
the effects on health of environmental and occupational exposure to adverse
substances have generally shown that long-term effects on health (i.e. chronic
health outcomes resulting from long-term exposure) are much more severe than
short-term ones (i.e. acute health outcomes immediately following exposure).
They account for almost all the health benefits of giving up smoking and more
than 70% of the health benefits of air pollution abatement (Ostro & Chestnut,
1998; Holland & King, 1999; Sommer et al,, 1999). The assessment of future
health benefits should therefore incorporate long-term effects on health as a

prerequisite for evaluating the desirability of a public policy.

Long-term effects are characterized by the substantial time that elapses
between the implementation of a regulation and the achievement of full health

benefits. In the recent U.S. literature (see US EPA 2001, 2004), this issue is



referred to as “cessation lag”. We adopt this terminology to characterize the time-
lag between the reduction in exposure and the decrease in the health risk
considered. Since chronic effects result from cumulative exposure, health
expenditures observed over a given year do not depend solely on exposure to
adverse substances in that year alone. This clearly implies that a decrease or an
abatement in exposure will not fully and immediately reduce the associated health
expenditures, but rather that there will be a time-lag before this is achieved.
Failure to adequately take into account the lag factor may lead to incorrect
assessment of future benefits. Ignoring the specific nature of long-term effects is
equivalent to considering that all the benefits will accrue immediately after
implementation of a policy, and, as a result, will lead to their overestimation. This
has major consequences for economic valuation and therefore for public decision-
making, particularly when discount rates are high, and it could be an important

issue in certain health policies.

Several studies have recently assessed long-term effects on health by
multiplying the number of attributable cases by the appropriate monetary values
(see for instance Ostro & Chestnut, 1998; Sommer et al., 1999 for air pollution
exposure, or US EPA, 2000 for arsenic in drinking water)." Most studies do not
mention that the results represent benefits that can be obtained in the long run.
Problems arise when the long-term nature of the underlying health outcomes is
neglected and the overestimated benefits are compared with the correctly
estimated costs of a policy, thereby biasing the analysis. The degree of

overestimation of these benefits is of particular interest.

This paper proposes a methodology that takes into account the cessation lag
associated with long-term effects on mortality. The methodology applies to
various public health policies with lagged health effects, such as reductions in
exposure to air pollution, chemicals or harmful radiation, campaigns for exercise,
diet, healthier food or vaccination, or against alcoholism or smoking. It assesses
both the number of deaths avoided and the years of life saved during the
implementation of a health policy in a discrete time dynamic perspective. We

depart from Leksell & Rabl (2001) who propose a continuous time method based



on years of life saved. We perform a sensitivity analysis with respect to various
parameters, especially the magnitude of the cessation lag and the value of the

discount rate — both of which are subject to severe uncertainty.

The paper proceeds as follows. Section 2 shows how the reduction in
exposure to an adverse factor affects mortality. Section 3 presents a general
framework for health benefits assessment when there are long-term effects.

Section 4 provides conclusions.

HOW REDUCTION IN EXPOSURE TO AN ADVERSE FACTOR
AFFECTS MORTALITY

Consider a decision-maker who wants to implement a regulation or an abatement
policy that would generate short-term and long-term health benefits by improving
the health of the population. In order to estimate the health benefits arising from
the policy, one has first to estimate the health outcomes by combining
epidemiological data with initial exposure level and exposure reduction. In this
section, we show how to carry out this evaluation and introduce the issue of

effects on mortality.

The concepts of relative risk and death rates

The concept of Relative Risk (RR) is crucial in epidemiology, and is the starting
point of the analysis. It can be defined as the risk, for a population exposed to a
specific factor, of being affected by an event (Rz), divided by the same risk for a
population not exposed to this factor (Ryg). This concept applies for both short-
term effects on health (within hours or days after exposure) and long-term effects
on health (over years or even a lifetime). It should be noted that the population is
heterogeneous, hence the RR may vary within the population. We consider here

that an average RR can be defined for a given health indicator depending on the
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current average level of exposure. RR, =—2-denotes the relative risk for a level
'NE

of exposure £

As the level of exposure changes due to the implementation of a regulation
or an abatement policy, the RR varies according to two key variables: the length of
the time-lag between past (long-term) exposure and its future health consequences,
and, for some illnesses, the way the human body heals itself after a period of lower
exposure. Thus, we can assume that the RR of a health indicator follows a

declining pattern:
RR()~g(E, A (1)
where
— RR(7) denotes the relative risk 7 years after reduction,
— FEis the initial level of exposure,
— Astands for the fractional exposure reduction (411[0,1]),
— gis a functional form, with 0g/0¢<0, dg/0£>0 and 0g/04<0.

It should be noted that at the date of reduction /=0, RR(0)=RRr and that RR(¥)

= R(l_A)E

approaches RR,_, , =

as f - o,
NE

This paper deals with mortality risks only. Hence, reduction in exposure to
an adverse factor affects mortality rates by modifying the relative risk of death.
Let D(0,x) be the mortality rate observed at age x before the reduction, composed
of one part affected by the reduction and another part independent of the

reduction:
D(0;x) =D*(0;x)+ DY(0;x) )
where

—  D®(0;x) is the death rate at age x for causes directly linked to the factor in

question,

—  DY(0;x) is the death rate at age x for unrelated causes.



To make this distinction clearer, it should be remembered that accidental deaths,
for instance, are not affected by a reduction in exposure to chemicals, nor are
deaths due to occupationally-induced cancers affected by safety improvements in

. 2
road infrastructures.

The relevant death rate 7 years after implementation of the policy varies

according to RR(?):

DF(1,x) = %(((’)))DR (0;x) 3)

RR
It will vary from D®(0;x) when =0 to — 2% D?(0;x) when ¢ — .
RR(0)
By definition, deaths due to unrelated causes are considered not to be affected
by the health factor: DY(#,x) =D"(0;x) for all . Hence, the total death rate at age x

and 7 years after the reduction is:

D(t;x)= D*t:;x)+D"(0;x) 4)

Instantaneous and complete removal of risk

To characterize accurately the way RR(f) varies, i.e. the shape of function g,
requires extensive information and a lengthy observation period, which explains
the scarcity of available epidemiological data. A noteworthy exception is the case
of smoking cessation, for which many studies indicate that mortality among
former smokers approaches the level of lifelong non-smokers after a smoking
cessation time of 10 to 20 years (see for instance Kawachi et al, 1993; Doll et al.,
1994 or Leffondré et al., 2002). When studying emissions from non-road diesel
engines, the US EPA (2004) suggests that 20% of the mortality reductions may
occur in the first year, 50% may be spread equally over the next four years, and

the remaining 30% may be spread equally over the next 15 years.

We present a simple general approach to characterize g before considering
possible extensions. Lightwood & Glantz (1997) estimate a mortality risk function

based on the meta analysis of seven studies of giving up smoking, an impact



characterized by instantaneous and complete risk removal. Eq. (5) is derived from

their risk function, and presents a general equation for such an impact:
t
RR(1) = (RR, — RR,;;) % exp(—?) 5

where
— t1is the time in years since the exposure was stopped,

— RRyg denotes the relative risk of an impact-related illness for those not

exposed to the impact (by definition RRyg=I),

—  RRp=RR(0) denotes the relative risk of an impact-related illness before the

impact ceases (7=0),

— T1is the time constant (in years) of the exponential function, assumed to be

illness-dependent.

The estimates of 7 differ in the literature depending on the illness considered.
Lightwood & Glantz (1997) obtain 1.4 for stroke and 1.6 for acute myocardial
infarction, Leksell (2000) suggests between 4.3 and 6.5 for lung cancer, and Doll
et al. (1994) between 10 and 15 for total excess risk. The negative exponential
function in Eq. (5) is also found to fit adequately decay phenomena in other
disciplines (e.g. physics, biology...), and is hereunder considered as benchmark.’
However, the direct transposition of the smoking cessation results to other
contexts raises difficulties due to differences in agents (gas vs. particulate matter),
biokinetics, bioaccumulation, exposure pathways, target organs, magnitude of the
reduction in exposure.... (see for instance the debate on applying smoking/lung
cancer functions to arsenic/bladder cancer, US EPA, 2001). Epidemiological data
specific to the impact-related illness at stake should thus be favoured and, at the

least, a sensitivity analysis on the value of 7 should be carried out.

Figure 1 indicates how the relative risk RR(7) decreases with time according
to Eq. (5), moving from RRy toward the RR of non-exposed subjects (RR=1). The
results depend strongly on the value of 7, as it takes 7 years to reach RR=1 when

=1, but up to 45 years when =10.



[Figure 1 about here].

It should be noted that epidemiological studies compute the RRr on subjects
exposed to the adverse factor under consideration before the impact ceases. Hence,
Eq. (5) should only apply to this population, exposed for at least as long as
required for the RR to reach the equilibrium (30 years is a reasonable value
according to Figure 1).* The present framework is consequently not appropriate to

study child mortality, for instance.

Although adverse effects on health related to tobacco smoke are only long-
term effects, adverse effects on health are in general a mix of short-term and long-
term effects. Short-term effects will disappear as soon as the exposure to the risk

factor ceases while long-term effects will evolve gradually. Therefore, let us split

RRg-RRyg into two parts, with RY denoting the short-term effects (i.e. less than

one year) share and R, the long-term effects (i.e. more than one year) share. In
order to keep the formulation as general as possible, we choose an exponential
decrease for both effects and Eq. (5) becomes:
RR(1) = RRy, + 3 Ry, Xexp(=—) (6)
i=8T,LT r

Note that all short-term effects virtually disappear within one year once

rl<0.1.

Extension to a non-instantaneous and incomplete removal of risk

For many risk factors, abatement policy constraints or technical constraints
preclude instantaneous and complete exposure reduction. Examples of such
policies are the introduction of filters that reduce industrial and car emissions,
thorough vaccination campaigns, alcohol or tobacco prevention policies,
regulations concerning exposure to toxic substances... Thus, we consider a gradual
policy of duration p, i.e. that takes p years to achieve a fractional percentage
reduction 4L][0,1]. Below, we consider the simplest case of a linearly decreasing

reduction: each year, an additional reduction of A/p occurs. We consequently have



to generalize Eq. (6) in two ways.

First, if we consider an incomplete reduction A<I, the relative risk will
approach RRi_a)k 1n the long run following the negative exponential path:

RR()= RRy 35 % 3 Rl s Xexp(=) ™

i=8T,LT

Second, removal of the exposure is no longer considered instantaneous. It is
supposed that a reduction of A will be achieved over p years following a linearly
decreasing path (A/p every year /< p). The impact on the RR will be proportional
to the decline during the p first years, and will fully apply after p years:

when =0, RR(0) = RR,,_,,, + ZRO_A)E Xexp(—F)

i=8T,LT

when 1=1, RR()=RR s + %[(p -+ exp(—%)}

i=8ST LT

when tsp, RR(1)=RR,_p s+ %{(p -+ iexp(—%)}

i=8T,LT

when t=2p, RR(f) = RR,_,\, + M ; exp(—ﬁ.)

i=ST LT h=t-p+1

where /4 is a time indicator.

The general formulation becomes:

RR()= R, s+ Y. {—R“‘“E > exp[——M“"fh’O)ﬂ ®

i=ST.LT P oh=t—pn r

This expression can be generalized further by choosing as many terms i as
required to account for effects on health of different time constants 7'. Figure 2
represents the evolution of RR(f) for 7°7=0.1 and r*"=5, RS’ standing for 25% of

total excess risk, and different values for p. For instance, the excess relative risk is

divided by two after 2 years for p=1, whereas it takes 13 years to obtain the same



reduction if p=20.
[Figure 2 about here].

This affects the rates of incidence of the relevant health indicators and
therefore the number of years necessary to reap full health benefits from a
reduction policy. We need to transform changes in death rates into a health
indicator, and then into a monetary value. This is done in the next section, which

presents a framework specific to the problem at hand.

INCLUSION OF LONG-TERM EFFECTS WITHIN AN ECONOMIC
ASSESSMENT

In order to assess whether it is economically efficient to implement a given public
policy, its benefits must be compared to its costs. A cost-benefit analysis generally
compares the future discounted costs and the benefits of a policy (see Gramlich,
1990 or Layard & Glaister, 1994 for a general overview). Although reduction in
the level of exposure generates health improvements both in terms of mortality
and morbidity, in this paper we are only interested in the challenge of properly

assessing the benefits with respect to mortality.

Defining the problem of measuring decrease in mortality

Insofar as our aim is to take into account the “cessation lag”, a dynamic setting is

required. Two approaches are possible.

The first approach consists in focusing on the number of deaths avoided, a
common concept in environmental economics. It raises certain issues which need

to be dealt with.

First, to assess the benefits in terms of number of deaths avoided is - in some
cases- not appropriate, since this number cannot always be determined correctly
from epidemiological studies (see for instance Rabl, 2003, for cardio-pulmonary

mortality due to air pollution exposure).
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This is further complicated by the fact that deaths attributable to an adverse
effect on health are often assessed by considering the difference between the
number of deaths observed in a population exposed to a given level of adverse
environmental factors and the number of deaths that would occur in a non-exposed
population.” This is incorrect when long-term effects are involved for two reasons.
First, the cessation lag factor is ignored although the decrease in RRx will not
immediately follow risk removal, but will occur progressively (see the general
formulation of RR(f) in Eq. (8)). Second, deaths avoided in a given year will

inevitably occur in the future!

The problem of the cessation lag cannot be solved easily just by extending
calculations of the difference in number of deaths in a dynamic setting. Indeed,
consider a hypothetical population - initially in a steady state according to initial
death rates observed in current mortality tables - which evolves according to the
relative risk in Eq. (8). The annual number of deaths will first decrease as a
consequence of the reduction of RR(?). Since these avoided deaths are simply
postponed for the future, the population will reach a new steady state in the long
run, where the annual number of deaths is the same as initially! Figure 3 shows
how the number of deaths avoided evolves, for both instantaneous and complete
risk removal and for immediate decrease in RR (this case is referred to as T in the
sequel) in a population. When 7°7=3, it takes 7 years to reach 50% of the annual
maximum number of deaths avoided when 7°7=0 (the maximum is reached in the
first year in this case). In both cases, the number of deaths avoided slowly
decreases towards O, which is reached about 60 years after the beginning of the
policy.

[Figure 3 about here].

The number of deaths avoided the first year in the case 7°"=0 (see Figure 3)
is the measure actually used in the literature, but it ignores cessation lags. The
benefits of a permanent policy are then (wrongly) computed by considering the

flow of deaths avoided on this basis. The question of how to correctly count the

number of deaths avoided in a dynamic setting and how to incorporate the

11



cessation lag clearly deserves particular attention.

The second approach is based on the number of years of life saved, a
widely-used concept in health economics (see Johansson, 1995 or Mehrez and
Gafni, 1989). Thus, every year, the total number of years lived by the population
(i.e. the total number of persons alive) is computed, as well as the gains in life
expectancy. The total discounted number of life years saved by a given policy is

easier to derive as shown in the next sections.

Correctly accounting for a decrease in mortality

When assessing the effect of a population’s decrease in mortality, the variation

process is as follows.

— The population is initially in steady state, with M(#,0)=N the number of
births in year 7, assumed to be constant. The number of persons of age x

alive at date 0, M(0;x), is computed from the product of all the survival rates

x-1
before age x: N(0;x)= |_| [l—D(O; y)]N . The number of years lived in
t=0

year 0 is £(0;.) =D N(0;x).

— The number of persons of age x alive at date 7 is computed from the number
of people of age x-/ alive at date 7-/, which is affected by the survival rate
of people of age x-/ at date -1: [k =1, [k =1, N(t;x)=[1-D(t;x-1) | N(t-1,x-
1), with D(t;.) evolving as defined in the second section.

— The number of deaths avoided at age x in year 7 is N(t,x)[D(0;x)-D(t;x)] and

the total number of years lived in year 7is L(;.) = Y N(;x).

The number of life years saved (NLYS) in year 7 by the policy is L(7,.)-L(0;.),
while the gain in terms of life expectancy at birth is obtained by dividing this

number by N. The number of policy-related deaths avoided (NPDA) in year 7 is
ZN (t; x)[D(O; x) = D(t, x)]. The NPDA is a relevant concept since the deaths

12



avoided by the policy in a given year remain in the population and must be
assumed to be exposed to other competing mortality risk factors: one way or
another, they will be counted as deaths (remember Figure 3). Both indicators
increase until the population reaches another steady state corresponding to
RR(t)=RR;.4k In a given year ¢, they depend on the initial level of exposure £,
and the interaction of three parameters: the level of reduction (A), the length of
time until the policy is fully implemented (p) and the parameters of the risk

function (7).

Sensitivity of the decrease in mortality to the parameters

Let us arbitrarily set the share of the short-term effects R’ at 25% of the total
excess risk in the remainder of the paper, as in Figure 2. Consider first the
influence of 7** and p on the number of deaths avoided. Figure 4 represents the
time necessary to obtain the full effects for 7"=5 and different values of p (the

time lapse also depends on RRj, but so slightly that it does not show up in the

Figure). French mortality data were used to characterize the initial steady state.’
[Figure 4 about here]

If the reduction is complete and instantaneous (p=1), it takes one year
(r""=1) to seven years (7""=10) to obtain 50% of the maximum effect. If p=20
years, the number of years is respectively 11 and 18. Thus it appears that when
r*"=10 instead of 7""=1, it takes 7 more years to reach half the overall benefits,
and 30 more years to reach 99% of the overall benefits. When the term of the
policy is p=20 (years) instead of p=1, it takes about 11 more years to reach fifty

percent of the overall benefits.

Similar results are obtained with the approach in terms of number of life years
saved but the time necessary to obtain the full benefits is longer. This is quite
normal since a death avoided at date 7 counts as a health benefit at date 7 in the
NPDA approach whereas in the NLYS approach, the years of life saved

corresponding to the postponed death spread over the expected remaining life

13



expectancy at date 7, i.e. at date 7, ++1, 1+2,...

Thus, economic consequences will be substantial, especially when discount
rates are high, since the computations must then take into account time lapses of
up to 30 years before including the entire benefits. Ignoring these time-lags leads

to an overestimation of the total discounted number of deaths avoided.

Assessing the consequences of ignoring the cessation lag

Let us consider how cessation lags affect the total discounted NPDA and NLYS,

and the consequences of ignoring them.
The total discounted number of policy-related deaths avoided is:

1
1+9)

INPDA(S,RR,, ", p,0) =" NPDA(RR,, T, p,A 1) ©)
t=0

where & denotes the annual discount rate. Discounting reflects the interaction of
temporal preference relative to deaths avoided at different dates and the
opportunity cost of economic resources devoted to the public health policy. The
market interest rate is generally considered as a valid approximation and 9 is the

subject of a sensitivity analysis hereunder.”

When the cessation lag is ignored (i.e. 7°7=0), the total discounted number
of policy-related deaths avoided is noted 7NPDA(J, RRg0,p,4). Clearly,
TNPDA(J, RR5,0p,4) exceeds TNPDA(S, RRs, ' p,4) for 1*">0. The

importance of the cessation lag can be obtained by considering the ratio

LT
INPDA(O,RR;, T, p.0) that needs to be applied to TNPDA(J, RRg,0,p,4) to
TNPDA(S,RR,,,0, p, )

27

C=

get the correct value.

Formally, C depends on five parameters: O, RRp, it p and A and
simulations have been made taking different values for these parameters. Since no
specific risk factor has been selected, we can consider that the policy-maker aims
to reduce the relative risk from RRrto RR=1. We have considered a large range of

values for the parameters:

14



— O varies from 0.01 to 0.08 with a step size of 0.01,

— RRy; covers the range from 1 to 1.5 with a step size of 0.05,
— " varies between 1 and 10,

-p=1,5, 10, 20 years,

— A varies from 0.05 to 1 with a step size of 0.05.

For a given policy, 7*" and & have the strongest impact on C whereas the impact
of RRy is weak. C is plotted in Figure 5 for different values of & and 77 in the

case of a ten-year policy achieving a full risk reduction (p=10 and A=1).
[Figure 5 about here].

C is found to lie between 0.45 and 0.93, with a value around 0.71 when 7°7=3
and &=0.04. The impact of each of the parameters on C is negative. Indeed, the
lower 77, the higher C, which could be explained by the fact that small values of
r*" imply a rapid decrease in RR following the implementation of the reduction
policy. The smaller the discount rate, the higher C due to classical discounting
effect. Lastly, the lower RRg, p or A, the higher C. Indeed, the impact of ignoring
the cessation lag lessens as the risk-reduction policy becomes quicker, more

partial and more related to a low RR.

The total discounted number of life years saved is computed like the
TNPDA (see Eq. (9)) and the ratio C computed as well. Similar impacts of the
parameters on C are obtained. Note however that the longer time required to
obtain the full benefits (see above) implies a lower C due to higher discounting
effect. Indeed, C is found to lie between 0.27 and 0.85, with a value around 0.53
when 7'=5 and &=0.04.

[Figure 6 about here].

Whatever the approach, the conclusion is similar: the cessation lag has a
potentially significant impact on the estimation of health benefits when not

properly accounted for.

15



Economic valuation of health benefits

The multitude of empirical assessments of a value for a prevented fatality (VPF)
conducted so far have provided a large range of values (with a few exceptions
between 0.7 and 6.1 million EUR). Such a large range should not be surprising,
since there are major differences in methodology, in the attributes of the risk in
question (whether or not it is controllable, familiar, dreadful, uncertain, voluntary,
catastrophic, unfair, immediate, see Slovic, 1987) and in potential victim

characteristics as well.

The cessation lag is rarely taken into account when monetizing benefits.
When it is taken into account, this is done either by discounting the current VPF to
reflect the time-lag or by deriving the VPF from willingness to pay estimates for
future mortality risk reductions (Alberini et al., 2004). Neither of these methods is
satisfactory, since they do not account for the cessation lag by relying on the
epidemiological dynamic setting.

The methodology we propose can be adapted to any VPF, especially age-
dependent JPF, when the NPDA approach is used. Indeed, if the VPF at age x is

denoted by VPF(x), the total discounted benefits B DAc) associated to the

reduction policy will be:

BTG RR T p 8= Y {ﬁN(z;m[D(o;x) = D(t:0) VPF(x)} (10)

x=0

When the NLYS approach is used, a direct way to obtain a VOLY consists in
assessing the willingness to pay to increase life expectancy by one year.
Unfortunately, very few studies are available (see however Johannesson and
Johansson, 1997 or Krupnick et al., 1999) and values strongly depend on the
individual’s age and the closeness of this extra year. An indirect way consists in
deducing a VOLY from a VPF by considering the latter as a discounted sum of
equally valued VOLYs (see for instance Viscusi et al., 1997 or Leksell et Rabl,
2001).

Whatever the way the VOLY is computed, the total discounted benefits
BYMY3() will be:

16



BYS(J,RR,,, T p,A) = i 0 :5)1 {i[N(r; x) = N(0;x)] VOLY(x)} (11)

x=0

Once the approach and the corresponding relevant monetary value have been
chosen, the proposed methodologies allow for a correct assessment of the benefits

of a given policy, and its comparison to the corresponding costs.

CONCLUSION

More and more evaluations of effects on health lead to the conclusion that
externalities are important, especially long-term ones which account for most of
the overall effects. Thus, public decision-makers should incorporate them in cost-
benefit analyses for any project involving health impacts. The cessation lag issue
we explore is found to be crucial from a decision-making standpoint. The purpose
of the paper is methodological: we show how this problem can be handled and
provide a framework which enables to estimate future benefit trends both in terms
of number of policy-related deaths avoided and number of life years saved. To
take into account the time-lag factor, we need to consider a dynamic perspective.
In a cost-benefit analysis setting, benefits corresponding to long-term effects on
health should then be corrected by a factor that is highly sensitive to the value
chosen for the discount rate. Otherwise, consequences on public health may be
dramatic, since a policy may generate a social loss rather than an expected social

benefit.

Although only benefits linked to mortality have been explored here, long-
term morbidity should also be studied. Unfortunately, very few epidemiological
data exist for these effects on health, and their evaluation requires further research.
The influence of long-term morbidity on the correction factor may well be
surprising, since it largely postpones health costs for the future, which may appear

desirable due to discounting.
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Notes

' The European Union followed this route exclusively until 1995, in particular
within the ExternE framework. Since 1997, approaches using deaths avoided

and years of life saved have been employed simultaneously.

? This is not absolutely true, since the medical resources freed by a decrease in one

health problem might at least theoretically be used to treat another.

? Note for instance that the distribution of the mortality in the above-mentioned

US EPA (2004) study more or less correspond to T =3 in Eq. (5).

* When past exposure to the adverse factor cannot be considered as constant,
things are more complicated (see Leksell and Rabl, 2001, for an example

dealing with air pollution exposure).

> See for instance Holland & King (1999) and Olsthoorn et al. (1999) for the
European Union, Ostro & Chestnut (1998) and US EPA (2000) for the United
States or Gynther & Otterstrom (1998) for Finland.

% Death rates below 30 (see the remark above on past exposure) as well as
accidental death rates at all ages have been considered as unrelated causes D(.)
in Eq. (2). Computations have been performed separately for males and females
but have been pooled when discussing the results. Finally, data observed in
OECD countries are very similar to French data and allow generalization of the

following results to developed countries.

7 See Gravelle & Smith (2001) for a discussion on the way to discount health

effects in cost-benefit and cost-effectiveness analyses.
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