N

N

No-arbitrage condition and existence of equilibrium with
dividends
Cuong Le Van, Nguyen Ba Minh

» To cite this version:

Cuong Le Van, Nguyen Ba Minh. No-arbitrage condition and existence of equilibrium with divi-
dends. Journal of Mathematical Economics, 2007, 43 (2), pp.135-152. 10.1016/j.jmateco.2006.05.010 .
halshs-00101177

HAL 1Id: halshs-00101177
https://shs.hal.science/halshs-00101177
Submitted on 26 Sep 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://shs.hal.science/halshs-00101177
https://hal.archives-ouvertes.fr

No-Arbitrage Condition and Existence of
Equilibrium with Dividends*

Cuong Le Van! Nguyen Ba Minh?
June 9, 2006

Abstract

In this paper we first give an elementary proof of existence of
equilibrium with dividends in an economy with possibly satiated con-
sumers. We then introduce a no-arbitrage condition and show that it
is equivalent to the existence of equilibrium with dividends.

Journal of economic literature classification numbers: C62, D50.

1 Introduction

In the Arrow-Debreu model (1954), the authors impose a nonsatiation as-
sumption which states that for every consumer,whatever the commodity bun-
dle may be, there exists another consumption bundle she/he strictly prefers.
It is well-known, that in presence of satiation, a Walras equilibrium may not
exist since for every price, there could be a consumer who maximizes her /his
preference in the interior of her /his budget set. In presence of financial assets,
satiation is rather a rule than an exception. Both the mean-variance CAPM
and the expected-utility model with negative returns exhibit satiation (see
e.g. Nielsen (1989), Dana, Le Van and Magnien (1997), Section 5).

*The authors are grateful to an anonymous referee for her/his observations, criticisms
and suggestions
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The absence of the nonsatiation condition with fixed prices was studied by
Dreze and Muller (1980) by introducing the notion of coupons equilibrium,
Aumann and Dreze (1986) with the concept of dividends, Mas-Colell (1992)
who used the term of slack equilibrium. In Debreu (1959, Theory of Value),
the notion of an equilibrium relative to the price system can be viewed as
an equilibrium with possibly negative dividends. We can cite other authors
who worked on nonsatiation: e.g. Makarov (1981), Kajii (1996), Florig and
Yildiz (2002),Konovalov (2005), and for a continuum of consumers, Cornet,
Topuzu and Yildiz (2003).

In this paper we first give an easy proof of existence of equilibria with
dividends. For Aumann and Dreze, a dividend is a ”cash allowance added
to the budget by each trader. Its function is to distribute among the non-
satiated agents the surplus created by the failure of the satiated agents to
use their entire budget”. Here, we introduce an additional good (e.g. fi-
nancial asset, or paper money) that the satiated agents will want to have
in order to fill up their budget sets. For that, they will buy this additional
good from the nonsatiated agents. More precisely, we will introduce an in-
termediary economy by adding another good that any agent would like to
have if she/he meets satiation. In this economy, the nonsatiation condition
is satisfied. There thus exists a Walras equilibrium. We show that this equi-
librium actually corresponds to an equilibrium with dividends for the initial
economy. It is interesting to notice that we show that, at this equilibrium,
the satiated agents will buy the additional good from the nonsatiated agents
and if an agent is not satiated then the value of the additional good will be
zero for that agent. It is important to note that the idea to introduce an
additional good is not new when one considers the equilibrium with paper
money of Kajii (1996). What is new in this paper is the mechanism of ex-
change: it is defined clearly with well-defined partial extended preferences
that the satiated consumers who meet satiation points will buy additional
good from the consumers who do not meet satiation.

Second, we allow our model to have financial assets. If we assume that the
production sets satisfy in particular the inaction and irreversibility conditions
(see Debreu, 1959) and the utility functions satisfy the No-Half Line Condi-
tion (see e.g. Werner, 1986, Page and Wooders 1996, Dana, Le Van and Mag-
nien, 1999, Allouch, Le Van, Page, 2002), then there exists an equilibrium
with dividends iff there exists a no-arbitrage price. Usually, no-arbitrage con-
ditions are introduced in an exchange economy with financial markets. Here,
we introduce a no-arbitrage condition in an economy with production. We



think of two-period models where firms produce consumption goods using
capital goods and the consumers buy, in the first period, consumption goods
and assets. An opportunity of arbitrage is a system of prices of commodi-
ties (consumption goods or assets) for which, either at least one consumer,
without cost, can increase without bound her/his consumption, or one firm
produces more and more because her/his profit increases without bound.
The paper is organized as follows. The model is presented in Section
2. The main result is given in Section 3. In Section 4, we introduce the no-
arbitrage price condition and prove that existence of equilibrium is equivalent
to existence of no-arbitrage prices. In Section 5, Appendix 1 gives a proof
of Theorem 2 of Section 3. In Section 6, Appendix 2 presents an example of
economies with production where the no-arbitrage condition is satisfied.

2 The Model

We consider an economy having [ goods, J producers, and I consumers. We
suppose that the numbers of the producers and the consumers are finite. For
eachi € I, let X; C R! denote the set of consumption goods, let u; : X; — R
denote the utility and let e; € R! be the initial endowment. Furthermore for
each j € J, let Y; C R! denote the producing set of the producer j.

Let 6;; be the ratio of the profit that consumer i can get from the producer
j. We suppose that 0 < 60;; <1,>°.,0; =1. Let p € R! denote the price of
the goods.

In the sequel we will denote this economy by

E ={(Xi,wi,ei)ier, Yj)jes, (0ij)icrjes } -

2.1 Preliminaries

We recall that a function w; is said to be quasiconcave if its level-set
L ={x; € X; : uy(z;) > a}

is convex for each o € R.



The function w; is strictly quasiconcave if and only if z;, x} € X, w;(x}) >
u;(z;) and A € [0, 1), then
wi(Az; + (1= N)a)) > wi(a).
It means that
wi(Az; + (1 — N)x}) > min(u;(z;), ui(2})).

The function u; is upper semicontinuous if and only if L* is closed for
each a.

Let S; denote the set of satiation points of u;. Then

Si = {a) € X, wi(a)) > wi(a;), for any z; € X;}.

By this definition, the function u; has no satiation point if for all z; € X;
there exists 2 € X; such that w;(z}) > w;(x;). It is easy to check that S is
convex and closed.

2.2 Definition 1
A Walras equilibrium of £ is a list ((z});er, (y;)jejap*) c (RZ)III x (]Rl)m %
(RIN_{0}) which satisfies
(a) Zie[ Ty = Zig e; + Zje] Y3 ( Market clearing);
(b) for each ¢ one has

pal =pte + Z 0;;.supp™.Y;

jet

(butget constraint), and for each x; € X;,with w;(z;) > w;(z}), it holds

pra; > pte; + Z 0;;.supp”.Y;.

jed

(c) Foreach j € J, y; € Yjand p".y; = sup p*.Y;, where sup p.Y; = SUpy, ey, P-Yj-
A Walras quasi-equilibrium is a list ((2})ier, (y})jes. p*) € (RHTN 5 (RY] x
(R™\_{0}) which satisfies (a), (c), and (b) with the following change:

wi(x;) > wi(x)) = p ., > phe + Z@ij. sup p*.Y;.
jeJ



2.3 Definition 2

An equilibrium with dividends (d});e; € RL{'OfE is alist ((7)ier, (¥})jes, P*) €
(RYHM x (R x R which satisfies:

(a) Zz’el Ty = Zz‘el e + Zje] Z/j* ( Market clearing);
(b) for each ¢ one has

pral <pte+ Zeij' supp”.Y; + d;
jed

(butget constraint), and for each z; € X;,with u;(x;) > u;(x}), it holds

prax; >phe + ZHU-. supp™.Y; +d;
jed

(c) Foreach j € J,y; € Y; and p*.y; = sup p*.Y;, where sup p.Y; = SUp,, ey, P-Yj-

2.4 Definition 3

A feasible allocation is the list ((x:)ier, (yj)jes) € [lic; Xi X [, Y; which
satisfies > .,z = D e+ D2, y;. We denote by A the set of feasible

allocations and by A; the projection of A on the i** component.

The main purpose of this paper is to give an easy proof of existence
of equilibrium with dividends of economy £ when satiation points occur in
the preferences of the consumers. Our idea is to introduce an intermediary
economy with an additional good (think of financial asset or money paper)
that the consumers want to possess when they meet satiation. In this new
economy, there is no satiation point. Hence, an equilibrium exists under
appropriate assumptions. We show that this equilibrium is an equilibrium
with dividends for the initial economy. It is worth to point out that at this
equilibrium point, the consumers who meet satiation points will buy the
additional good from the consumers who do not meet satiation.

2.5 The Assumptions

We now list our assumptions.
(Hy) For each i € I, the set X; is nonempty closed convex;



H,) For each i € I, the function w; is strictly quasiconcave and upper
( Y q pp
semicontinuous;

(H3) For each j € J, the set Y is nonempty closed convex and Y = 3. ;Y]
is closed.

(H,) The feasible set A is compact.

(Hs) For every i, e; € int(Xi—ZjEJ 8:;Y;). Moreover, for every i € I,z; € A,
the set {z] : u;(z}) > u;(x;)} is relatively open in X;.

Remark 1 (1) Assumptions (Hy), (Hy) are standard.

(2) Assumption (Hs) can be relazed as follows: for each j € J, the set Y; is
nonempty and the total production set Y = Zj Y; is closed and convez (see
Remark 5 (1) below).

(3) Assumption (Hy) is satisfied when the consumption sets are the positive
orthant ]Rﬁr, the production sets satisfy 0 € Y;,Vj, the total production set
satisfies Y N (=Y) = {0} (irreversibility) and Y N R, = {0} (one cannot
produce without using input). It is also satisfied in a financial exchange
economy with strictly concave utility functions and a no-arbitrage condition
(see e.g. Page (1987) or Page and Wooders (1996)). We give in Appendiz 2
two examples of economies with production and assets where the no-arbitrage
condition 1s satisfied.

(4) Assumption (Hs) ensures that any quasi-equilibrium is actually an equi-
librium.

3 The Results

We first give an existence of Walras equilibrium theorem when there exists
no satiation.

Theorem 2 Assume (Hy) — (Hy) and
(1)
Vi, e; € (Xl — 29”}/])

jeJ

Vi, Va; € X;, 3z, € X; such that u;(z}) > u;(x;).



then there exists a quasi-equilibrium.
(i) If we add Hy and

Vi, Va; € X;, 3zt € X such that ui(z}) > ui(x;),
then there exists an equilitbrium.

Proof. We adapt the proof given in Dana, Le Van and Magnien (1999) for
an exchange exconomy. A detailed proof is given in Appendix 1. =

We now come to our main result which is a corollary of the previous
theorem.

Theorem 3 Assume (Hy)— (Hs). Then there exists an equilibrium with div-
idends.

Proof. Let us introduce the intermediary economy
g — {(Xm aia é\i)iGIJ (}/j)jGJ7 (Qij)iél,jEJ}

where: X; = X; xRy, & = (e;,0;) with &; > 0 for any i € I and Y; = (Y;,0)
for any j € J, and the utilities u; are defined as follows (recall that S; is the
set of satiation points for agent ¢): let u > 0, M; = max {u;(z) : v € X;}.

- If z; ¢ S;, then u;(z;,d;) = ui(x;) for any d; > 0.

- If x; € Sy, then u;(x;, d;) = wi(x;) + pd; = M; + pd; for any d; > 0.

We will check that Assumption (Hs) is satisfied for every u;.

To prove that u; is quasi-concave and upper semi-continuous, it suffices to
prove that the set L® = {(z;,d;) € X; x Ry : y(x;,d;) > o} is closed and
convex for every a. We have two cases:

Case 1: o < M;. We claim that L® = LY x R,. Indeed, let (z;,d;) € LY. Tt
follows ;(z;,d;) > « and there are two possibilities for z;:

+ If z; ¢ S;, then 4;(x;, d;) = u;(x;). It implies u;(x;) > « or x; € LY and
hence (z;,d;) € LY x Ry.

+ If x; € S;, then w;(z;) = M; > «. This follows x; € LY and (z;,d;) €
LY x Ry.

So L"‘ C L¢ x Ry. It is obvious LY x Ry C L‘"

Case 2: a > M;. We claim that La = 5; X {d d; > 2= } Indeed, if

w;(;, d) > «, then z; € S;. In this case, u;(z;, d;) = M;+ pd; and hence
d; > == m . The converse is obvious.




It is also obvious that S; is closed and convex. We have proved that u; is
upper semicontinuous and quasi-concave for every i.

We now prove that u; is strictly quasi-concave.
Indeed, take M; = u;(z) with x € S; and (z;, d;), (2}, d}) € X; x R such that

Ui (), d}) > a;(x,d;). For any A € ]0,1[, we verify that

Since u;(x}, d}) > @;(x;,d;) , we can consider the following cases:

1)

Case 1: 7z} € S;,z; € S;. We have
Ui(i, di) = M; + pd;, @i(}, di) = M; + pd;.
It follows that d; > d,. Hence
M+ (1= N)d, > Nd; + (1 — \)d; = d;.
Since A\z; + (1 — Az € S;, we deduce
@i (Az; + (1 = Nag, Ad; + (1 = N)d}) =

Case 2: 7z} € S;,x; ¢ S;. It implies u;(x}) > w;(x;). Since u; is a strictly
quasi-concave function, we obtain

wi( Az + (1= N)at) > ().
2a: If Az; + (1 — Nz} € S;, then
Gi(Azi(1=N)2), Myt (1=N)d) = Mi+p(di+(1-Nd)) > wi(a:) = @iz, d;).
2b:If Ax; + (1 — \)zl ¢ S;, then
Ui Az + (1= N, M + (1= N)d) = wi( Ay + (1= Nzl > wi(x;) = (w4, d;).
Case 3 2 ¢ S;,z; ¢ S;. We have
(i, di) = wi(w), (g, di) = wq(x)).

This follows w;(x}) > u;(z;). Similarly as above we consider



3a: If A\zv; + (1 — M)z} € S;, then

> ui(2;) = Ui(zi, dy).
3b:If Az; + (1 — )} ¢ S;, then

We have proved that the function u; is strictly quasi-concave.

It remains to prove that the u; has no satiation point.

Indeed, let (x;,d;) € X; X R+. We consider the following cases

Case 1: z; ¢ S;. Take z; € X; such that u;(x}) > w;(z;) and d; = d;.We
have 4;(z}, d;) > w;(z}) > uz(xz) = u;(x;, d;).

Case 2: z; € §;. Take 2} = x; and d} > d;. We have

(.732, di) U (x ) + Md/ > ul(xZ) + pd; = Ui, dl)

We have proved that the @; has no satiation point.
Let us consider the feasible set A of €. We have:

A\: {((xiadi)ieh (yj70>jeJ) Vi, € X, d; € R+7vj7yj € Y} and

dow=Y ety yp ) di=) 6}

el icl JjeJ icl el

It is obvious that A is compact.

It is also obvious that Assumptions (H;), (Hs), (Hs) are fulfilled in economy
£

Apply Theorem 2, part (i).

There exists a quasi-equilibrium ((a:Z s d7)ier, (Y5, 0)je, (P, q*)) with (p*, ¢*) #
(0,0). It satisfies:

(@)Y (@i di) = (e d:) + Y (y;.0)

el el jeJ

(i1) for any i € I, p*.a} + ¢*d; = p*.e; + Y Oisup(p” - Y + ¢" x 0) + ¢"0;,
jeJ



and
(#ii) for any j € J, p* - y; = sup(p” - Y}).
Observe that since p > 0, the price ¢* must be nonnegative.
We claim that ((z})ier, (Y5 )jea p*)) is an equilibrium with dividends (¢*0;)
Indeed, first, we have

i€l -

jed

Now, let z; € X;, u;(x;) > u;(xf). That implies 7 ¢ S; and hence @;(z}, d}) =
w;(xf). We also have 4;(x;,0) = u;(x;). That means u(z;,0) > @;(xf,d}).
This implies
prr;=p i +q¢"x0>pe + ZHU supp”.Y; + (¢*5;).
jeJ
We claim that

prx; >pte; + Z 0;; supp™.Y; + (¢0;).

jeJ
Assume the contrary, i.e.
pra; =pe; + Z 6;; supp™.Y; + (¢"0;). (1)
jeJ

Then, since

e; € mt(Xz - ZGZ]Y}),

jeJ
we have
jeJ

This means that there exists x; € X;,y; € Y; such that

Pl = 0iyh) < pe

jeJ
which implies
PR <Y 0uptyi+pte <Y 0uptyl +pTei+q70s (2)
jeJ jeJ

10



Let 2} = Mzl + (1 — AN)z; with A > 0. Since {z; : w;i(%;) > w;i(x})}, by
assumption, is relatively open, we have

ui(@}) > (7). (3)
for every A sufficiently small. On the other hand, from (1) and (2) we have
p (Al + (1= Nay) = ' + (1= \)p“.ay

<A Oup" gy + 0" e+ q76) + (1= N 0up"y; + i +q°6))
Jj€J jeJ
or

Pt x0<pei+ > 0ty +q0 (4)
jeJ

Since (2, 0) = u;(x)) and 4;(z}, d}) = u;(x}), relations (3) and (4) contra-

197

dict the fact that ((a:* d;)ier, (Y5, 0)jer, (07, q*)) is a quasi-equilibrium of the

1771

intermediary economy. m

Corollary 4 Assume (Hy)—(Ha). Let ((])ic1, (Y})jers, p*) be an equilibrium
with dividends (df). If consumer i is non-satiated, then

pral =pe + Z 0;;.supp™.Y; + ¢*6;,
jet
and p* # 0.
Suppose that every consumer is non-satiated. Then an equilibrium with div-

tdends will be reduced to a Walras equilibrium. That is the dividend is zero
and the equilibrium price is non-zero.

Proof. First, we prove that, if z7 is not a satiation point, then ¢*d; = 0.
Indeed, let w;(z;) = G;(z;,0) > u;(x]) = w;(xf, df). We then have
pr.x; > pte; + Z 0;;supp™.Y; + ¢*0; = p*.xl + ¢"d;.
jet

For any A € |0, 1[, from the strict quasi-concavity of w;, we have w;(Az; +
(1 = XN)z}) > u;(x}) and hence p*.(Az; + (1 — N)zf) > p*.af + ¢*d}. Letting

A converge to zero, we obtain ¢*d; < 0. Thus ¢*d; = 0. That means that
a consumer who does not meet satiation point will sell her/his endowment

11



of the additional good if ¢* > 0. Observe also that p* # 0 (if not we have
0 = ¢*d;; this implies ¢* = 0 : a contradiction with (p*, ¢*) # 0).

One deduces from that, if =} is not a satiation point for every i € I, then ¢* =
0, since » ., di = Y ;c;0; > 0. In this case, p* # 0, and ((7})ier, (Y} )jes, P*)
is a Walras equilibrium. =

Remark 5 (1) We can replace (H3) by (Hs bis): "The total production set
ZJ.GJY} is closed, non-empty and convex” as in Florig and Yildiz (2002),
i.e., we do not require every Y; be convex. Indeed, we replace the sets Y
by their closed convex hulls coY;. Let ((x7), (y;),p*) be an equilibrium with
dividends (d;) of this new economy. This implies that every y is in coY;. It
s obvious that for any j

p*ry; = max p*-y=supp’-y.

yEcoY; yey;

By assumption, ;Y is closed and conver. We then have }_;Y; =} ;oY
'. Hence there exist ((j) € TL;Y; such that 3. C; = Y5 y;. Since Y, xf =
doiei+ Zj y;, and since p* - (5 < p* - yi, V), we must have p* - (; = p* - y; =
max p*-Yj for every j. That means that ((x7), ((}),p") is an equilibrium with
dividends for the initial economy.
(2) Let Iy = {i €1:xf is not a satiation point}, and I = I\Iy. From
Corollary 4, q*d; = 0, for any i € L. Thus Y ,c; ¢"0i = Y e, ¢"-df —
Zieb q*0;. This shows that the group of agents who meet satiation buy the
additional good from the group of agents who do not meet satiation.

4 No-arbitrage condition and existence of equi-
librium with dividends

If we assume that 0 € Yj for every j, and if ((2])ier, (y})jes, P*) is an equi-
librium with dividends, we will have

J Jj€J

1Tt comes from three facts. (i)We always have > ;oY =co}_ ;Y (see e.g. Florenzano,
Le Van and Gourdel, 2001, p. 16), (ii) >_,@0Y; C >, coY; and 3, Y is closed and convex.

12



Hence, for every i, we have w;(z}) > wu;(e;). We therefore define the set of

individually rational feasible allocations A. More precisely:

iel jeJ iel iel j€J
We will replace (Hy) by
(Hybis) The set A is compact.
We have the following result:

Theorem 6 (i) Assume (Hy),(Hsz), (Hs), (Hsbis), (Hs) , for every j, 0 € Y;
and
Vi, Va; € X;, 3z, € X; such that u;(z}) > u;(x;).

Then there exists a Walras equilibrium.
(11)Assume (Hy), (H2), (Hs), (Habis), (Hs) and for every j, 0 € Y;. Then there
exists an equilibrium with dividends.

Proof. The proof is similar to the one of Theorem 2. One just replaces the
feasible set A by the set of individually rational feasible allocations A. =

Let P, ={z; € X; : u;(x;) > w;(e;)}, and W; be the recession cone of P;.
Elements in W, which are different from zero will be called useful vectors for
agent i (see Werner,1987). Let Z; denote the recession cone of Y;. Take some
v; € Y. Then v; + Az; € Y, VA > 0, Vz; € Z;. We call useful production
vector for firm j any vector z; € Z; \ {0} (the producer can produce an
infinitely large quantity v; + Az;, A > 0).

Let p € R!. We say that there exists an opportunity of arbitrage associ-
ated with p if either there exists ¢ € I, w; € W; \ {0}, such that p.w; < 0,
or there exists j € J, z; € Z;, such that p.z; > 0. In other words, with
such a price p, either the consumer ¢ will increase without bounds her /his
consumption or firm ;5 will produce an infinite quantity.

A price vector p € R! is a no-arbitrage price for the economy if Vi € I,
w; € Wi\ {0} = pw; >0,and Vj € J, z; € Z; = p.z; < 0.

We introduce the following No-Arbitrage Condition:

(N A) There exists a no-arbitrage price for the economy.

Remark 7 Our No-Arbitrage Condition coincides with the one for an ez-
change economy, i.e. when Y; = {0}, Vj.

13



Let us replace (H3) by

(Hster) For each j € J, the set Y; is nonempty closed convex and Y =
>_jes Yj is closed. Moreover, for every j, 0 € Yj and Y N =Y = {0}.

We have the following result

Theorem 8 (i) Assume (H,),(H,), (Hster), (Hs) and (N A). Then there ex-
i1sts an equilibrium with dividends.
(i) Assume the following No-Halfline Condition :
(NHL) Fori € I, if w; € W; \ {0}, then for any x € P, there exists A > 0,
such that u;(z + Aw;) > u;(z).

Then:
(27 )ier, (Y} )jes, P*) is an equilibrium with dividends = p*is a no-arbitrage
price.

Proof. (i) It suffices to prove that Ais compact. Assume the contrary. Then
there is a sequence ((:vf)z,(y?)) € A such that o, = Yo llzr +
n=1,..,00

> lup|| = +oo when n — oo. Since

TP i€ 4 25 Y7
o

O-’VL n Un

We can assume, without loss of generality, that

(6 G,) = Ceoen=((ime) - (1) oo

Moreover, we have
E w; = E Zj.
( J

Let p be a no-arbitrage price. If (w;), # 0, we have a contradiction: 0 <

p-Yjwi =p-y iz <01 (w;), =0, then -, z; = 0. We havery S, .z =
—2;. From (Hster), >, ;2 € Y and z; € Y. Hence z; € Y N =Y. This
implies z; = 0. We have shown that, in this case, we have (zj)j =0 and a
contradiction with ((wz)l : (zj)j) # 0.

We have proved that Alis compact.

(ii) Let ((z])ier, (¥)jes, p*) be an equilibrium with dividends. It is obvious
that p*.z; <0, for every z; € Z; since y; + z; € Y; and p*.y; = max p*.Y}.

14



We have two cases.

Case 1. There exists some ¢ € [ such that z} is not a satiation point. From
Corollary 4, p* # 0. If w; € W;\ {0}, then Condition (N H L) implies u;(z} +
Aw;) > wi(z}), for some A > 0. Since ((@7)ier, (Y})jes,P*) is an equilibrium,
we have p*.w; > 0.

Case 2. For any ¢ € I, z} is a satiation point. Condition (NHL) implies
that W; = {0}, for every i. No-arbitrage Condition is satisfied in this case
with p*. m

Remark 9 The No Halfline Condition is satisfied with strictly concave func-
tions.

5 Appendix 1: Proof of Theorem 2

5.1 Gale-Nikaido-Debreu Lemma

We will make use of the following lemma the proof of which can be found in
Florenzano and Le Van (1986):

Lemma 10 (Gale-Nikaido-Debreu) Let P be a closed nonempty convex
cone in the linear space R'. Let P° be the polar cone of P and S be the
unit sphere in R'. Suppose that the multivalued mapping Z from S N P to
R! is upper semicontinuous and Z(p) is nonempty convex compact. Suppose
further that for every p € SN P,3z € Z(p) such thar p.z < 0. Then there
exists p € S N P satisfying

Z(p) N P° #0,

where P° = {q € R : ¢.p <0, Vp € P}.
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5.2 Proof of Theorem 2

We consider a sequence of truncated economies.
Let B(0,n) denote the ball centered at 0 with radius n. Let

XI'=X,nB0,n) , Y"=Y;nB(0,n)

where 7 € 1,5 € J. Since e; € X;, we have e; € X" for all n is large enough.
For every (p,q) € SN (R' x Ry), where S is the unit sphere of R'*!, define
the multivalued mapping

&.Q R xRy — X;
by setting
& (pq) = {:c € X ipa; <pei+ 30,0451 (p) + q},
QM (p,q) = {:1:1 €&(p,q) :if 2f e X with w;(x}) > u;(x;) then p.a>

p-ei+ > 50505115 () + q}, where [} (p) = maxp.Y}".
Under the assumptions mentioned in Theorem 2 we have the following
lemma:

Lemma 11 For each i € I the mapping Q7 1is upper semicontinuous having
nonempty compact convexr values.

Proof. From the definition it is easy to see that &' is upper semicontinuous
having nonempty convex compact values. From the definition of the mapping
Q7" we have the following properties:

Let x € ' (p,q) and u;(z) = maxu;(x;), with z; € £*(p, q) then z € Q% (p, q).
Indeed, let 2 € X and wu,;(x}) > w;(z), then x; ¢ £'(p,q). Hence by the
definition of this set we have p.z; > p.e;+) ;. ; 0511} (p)+¢, and therefore » €
Q" (p, q). This implies that Q?(p, ¢) nonempty for every (p, q) € SN(R' xR ).
For every z;,y; € Q"(p,q) and X € [0, 1], since &' (p,q) is convex we have
Az +(1=N)y; € £ (p,q). On the other hand, since u; is strictly quasiconcave,
ui(Az; + (1 — N)y;) > min(u;(z;), u;(y;)). Hence, for each 2} € X and
wi(2h) > u;(Ax; + (1 — N)y;), it follows that w; () > min(u;(x;), u;(y;)). Thus
pa; > pei+ 3, 05115 (p) + ¢ Hence Az; + (1 — Ny € Q7 (p,q) which
means that Q(p, q) is convex.

The mapping Q7 is closed. Indeed, let

(", ¢*,2%) € graphQ?
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and assume that (p¥,¢*) — (p,q),2¥ — x;. Since zF € QM(p*,¢*) C

£ (p*, q") and £ is closed, we have x; € £'(p,q). On the other hand, let
x, € X;" with w;(2}) > w;(z;) , by the upper semicontinuity of u; we see that
ui () > u;(x%;) for all k large enough. Since z¥ € QT(p*, ¢*), we have

phal = phe+ ) 05[] 0F) +d"
jeJ !
Letting k£ — 400 we obtain
pa;=pe+ Y 0] () +a
jeJ !
This implies that x; € Q% (p, q). Hence QF is closed. But, since
Qi (p,q) € &'(p,g) € X7

for all (p,q) € SN (R x R, ),n > 1 and X is compact, we see that Q" is a
compact mapping. Hence @)} is upper semicontinuous. m

a) Under assumptions (H;) — (H4) we now show that there exists quasi-
equilibrium. Let @7 (p) denote the solution-set of [[;(p), that means y; €
®7(p) if and only if p.y; = maxp.Y;". Define the mapping 2" by setting, for
each (p,q) € SN (R' x R,),

)= (3 Q) = e = Y ) x (-1}

where S stands for the unit sphere in R'*!. By virtue of Lemma 11, from the
assumptions of the theorem it is easy to see that z™ is upper semicontinuous
having nonempty convex compact values. Note that for any x in 2"(p, q) we

can write
=0y =D =Yy x (=|1])

el el J€J

where 7 € Q7' (p,q) and y} € ®;"(p). Since 2} € QF(p,q), that implies

pa} <pez+ZHUHJ p)+q=pei+ Y 0ipy; +4q

JjeJ jeJ
or
p.Zx? gp.ZemLZZ@ijp.y;‘jL |1|q :p.Zei —|—p.Zy§L~I— 1I|q.
il iel iel jeJ iel jed
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Thus

pO 2= e=> yl) —lg<o.

iel icl jed
Hence (p,q).x < 0 for every (p,q) € SNR! x R, and x € 2"(p,q). Ap-

plying the Gale-Nikaido-Debreu Lemma , we can conclude that there exists
(", q") e SN (Rl x Ry ) such that

(" ") N (R x Ry)" # 0.

Since (R x Ry)? = (Op x R_), it follows that for every i € I,j € J there
exists 7 € Q7 (p",q"),y; € P} (p") satisfying

Yoar =Y ey =0, (5)

iel iel jeJ
prap <ple+d 05 )+ 4"
jeJ !
for every ¢ € I, and
prag = ptety 0] (0" +an (6)
jeJ !
for every x} € X" which satisfies u;(x}) > u;(a?).

From (5) we have (27,y7) € A. Since A is compact, without loss of generality,
we may assume that

€ SN(R'x R,) and SN (R x R,) is compact, we can also
)

Since (p™, q™)
" — (p*,¢*). From (5) and (6) it implies

assume (p", ¢"

Yoai-da—y y =0, (7)

il il jed
Lt < pfe + 0, )+ ¢ foreveryie I, 8
pra; <p JGZJ ;Hj(p) q y (8)

where [[,(p*) = max{p".Y;}.
Let x; € X; satisfy u;(x;) > u;(2*). Define

) = A + (1= Na?,
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where A € (0,1]. Since u; is strictly quasiconcave, it implies wu;(z)) >
u;(x}). Moreover, since u; is upper semicontinous and z}' — x} , for every n
large enough, we have u;(z3) > u;(2?). Thus by (6) we obtaln

pra) > pte; + Z Qinj ®")+q"
jet

or

PO+ (L= X)) 2> pPe+ 05 [ (07) + 0"

jeJ

Let n — 400 we obtain

Ap*xi+ (1= Np*al > phe + Z ein(p*) +q".

JjeJ J

Let A — 0 we get

Pl zpte+ Y ][0 +a 9)

jeJ

Then from (8) and (9) follows

prai =pte + Z(%Hj(p*) + ¢* for every i € I,

jeJ
and hence
IS IEEDII | KRl
el el i€l jeJ
or
PO w = e =Yy =g
iel iel jed

But, from >, ;@7 — >0 e — D5 ;y; = 0 follows |I]g* = 0. Hence ¢* = 0
and p* # 0. Thus ((z} )iz, (¥})jes, p*) is a quasi-equilibrium.

b) Now we show that if, in addtion, (Hj) is satisfied, then this quasi-equilibrium
is in fact an equilibrium. Take z; € X; such that u;(x;) > w;(z}). By the
just proved preceeding part we have

pr.r; > pte; + Z 0;;supp*.Y; = p*.e; + Z 0ii0" - y; -

jed jed
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In contrary we suppose that
jeJ

Then, since
jeJ
we have
jeJ
This means that there exists z; € X;,y; € Y; such that
pr(z] — Z 0i5y;) < p*.e;
jed
which implies
pra < Z 0™y +p"e; < Z 0™ .y; + e (11)
jeJ jeJ
Let 2} = Mz} + (1 — XN)z; with A > 0. Since {z; : w;i(x;) > w;i(x})}, by
assumption, is open, we have
for every A sufficiently small. On the other hand, from (10) and (11) we have
p (A 4+ (1= N)xy) = A\p*al + (1 — Np*.;
< )\(Z 00" y; + p*ei) + (1 — /\)(Z 00"y +p*.ei)
jeJ jed
or
P < pre;+ Z 0ii0"y; - (13)
jeJ

From (12) and (13) we arrive at a contradiction to the assumption that
((x})ier, (Y} )jes, P*) is a quasi-equilibrium. The theorem is proved.

20



6 Appendix 2: An example of economies where
the no-arbitrage condition is satisfied

Consider a two-period economy with two consumers and one firm. There
exists one consumption good, one capital good, two assets. In the second
period, there are two states of nature. Firm produces in period 1. Consumer
i consumes ¢} in period 1, ¢ in period 2 if state s occurs. She/he owns a;kg
capital stock (ko is the initial capital stock, «; is the share between the two
consumers of this capital stock). She/he buys in period 1, 6%, 6 assets which
yield in period 2, v®'6} + v>26} consumption goods if state s occurs. The
preference of consumer i is represented by a concave, increasing function u’.
Consumer i solves the problem (P):

max (¢, ¢}, ch)
under the constraints
pocé +q.0° < ayrky + B;m*

and

0<c <el +v0) + 020}
where py is the price of consumption good in period 1, ¢ is the price of assets,
7* is the profit of firm, (3, is the share of profit, r is the price of the capital

good and ¢!, is the initial endowment in state s.
Firm solves the problem (Q):

Tt = mkax{ng(k) —rk}

where F' is a concave production function, increasing and £'(0) = 0.
An equilibrium is a list (p, ¢*, 7%, ci’, ¢i*, ¢4, k*) such that
(¢) (¢, i, ¢ solve problem (P) with po = pf,q = ¢*, 7 = 1*,
(17) k* solves (Q) with py = p§, r = r*,
and (i77)
G+l = FF)

¥ iy dlpgEi 02w _
' =el v 07 +u0y, Vs =1,2

2

2
S0 =030 =0
=1

i=1
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and finally
k)* - ko.

Since the functions u® are increasing, the equilibrium problem is equivalent
to the following.
(cit, 07", 05" solve:
max u'(ch, e} + VIO 4 020, el 4 vl 0l 4 vl?6l)
under the constraints
poch + 40" < ko + Bt
where 7% = maxy, pyF'(k) — r*k = p§F(k*) — r*k* and

Gl 6 = F(k),

2 2
> 67 =0 67=0
=1

i=1
kE* = k.
Let AZ = {(91,92) : 62 + Ué’191 + U§’292 Z 0, for s = 1,2}
The consumption set for consumer i is X; = Ry xRy x A; (the second factor
corresponds to the capital good). Let O1 A; denote the recession cone of A;.

Then the recession cone of X; is W; = R, x Ry x O A,.
The production set for firm is

Y = {(y,—k,01,05) € Ry x R_ x {0} x {0} : y < F(k)}.

Its recession cone is Z = R_ x R_ x {0} x {0}.

Let S; = {(q1,¢2) : w1 + qows > 0, Y(wy,we) € OTA; \ {(0,0)}}.

Assume S = S; N Sy # (. Then the No-arbitrage Condition holds. Indeed,
let p=(1,1,s) with s € S. Then we have p-w > 0 for all w € W;\_{0} and
p-z2<0,Vze Z\ {0}
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