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Abstract 
 

In this paper we argue that the debate on modularity has come to a point where a consensus is 
slowly emerging. However, we also contend that this consensus is clearly technology driven. 
In particular, no room is left for firm strategies. Typically, technology is considered as an 
exogenous variable to which firms have no choices but to adapt.  
Taking a slightly different perspective, our main objective is to offer a conceptual framework 
enabling to shed light on the role of corporate strategies in the process of modularization. 
From interviews with academic design engineers, we show that firms often consider product 
architecture as a critical variable to fit their strategic requirements. Based on design sciences, 
we build an original approach to product modularity. This approach, which leaves an 
important space for firms’ strategic choices, proves also to seize a large part of the industrial 
reality of modularity. Our framework, which is a first step towards the consideration of 
strategies within the framework of modularity, gives an account for the diversity of industrial 
logics related to product modularization.  
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Introduction 

 

In 1962, Herbert Simon introduced “Near Decomposability” as a specific configuration of a 

complex system, allowing to guide its structural dynamics towards an effective equilibrium 

regarded its environment.  In 1964, Alexander thought modularity as a design rule making it 

possible to overcome the cognitive limits of individuals. Not surprisingly, these concepts have 

been first used in design sciences (mechanics, electronics, data processing...). Spurred on by 

the work of Parnas (1972), Modularity principles were notably applied to software design and 

to the IBM OS/360 operating system (Brooks, 1975) in the Seventies. Nowadays, many 

products are, or are likely to be modularized.  

Since the pioneering contribution of Starr (1965), the economic and organizational 

implications of modularity have received great attention. These works take place within a 

debate concerning the links between technologies and organizations. The common assumption 

refers to an isomorphism between product architecture and organizational architecture. The 

more the product is integrated, the more the firm in charge of its design and manufacturing is 

integrated. Reciprocally, a modular product design leads an organization towards more 

modularity. As proposed by Sturgeon (2001), a modular organization is characterized by the 

presence of an “architect” firm and independent suppliers, tied up by market-based 

relationships, as well as codified knowledge exchange.   

At the heart of these discussions lies the notion of product design (i.e. its description or its 

architecture). The concept of product architecture was suggested by Ulrich (1995). It 

corresponds to the product’s fundamental structuring concept. His definition exhibits a double 

dimension, including both the nature of component interfaces and the mapping from 

functional elements to physical components.  

However, the discussions among economists we mentioned above are primarily based on 

interface standardization. For instance, works of Momme and al. (2000) or Hsuan (1998) 

came to be built on the mere distinction between strategic and non strategic components (or 

standard and specific systems). Further, Genthon (2004), while studying the computer 

industry, reaches the same conclusions as the proponents of modularity without using this 

concept. So, what’s new with modularity?  

This focus on interactions between components leads indeed to a “technology driven” 

analysis of product and organizational design. Indeed, the density of interactions is, by its 

very nature, subject to physical and technological constraints. Moreover, industry-wide 

interface standardization processes are almost always out of control of any single firm. Hence, 
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organizations are completely subject to technological constraints. Finally, these works do not 

manage to seize the strategic importance of product architecture, which could be the real 

novelty in modularity.   

We believe that much of what one can say about modularity and its economic consequences 

depends on the definition one chooses a priori. This point, missed by most economists, is 

very important to us. The definition used by economists is the one mentioned above. 

However, the functional nature of product decomposition, albeit useful in many cases, is a 

relatively narrow base for a definition of product modularity.  Indeed, it is only an alternative 

among others. Since the way the product is decomposed is a priori given, economists have 

paid very little attention to this process. Interestingly enough, we were told that this 

decomposition is typically a strategic decision.   

We wish to suggest a broader approach to product modularity allowing to centre the economic 

analysis on firms’ search for competitive advantage. This approach rests on the non- 

characterisation of product decomposition a priori.  In other words, we do not presuppose of a 

functional breakdown. The technological determinism of previously quoted works is thus 

considerably attenuated. In addition to the central place it gives to the firm, this definition 

proves to be consistent with industrial practice. Indeed, the comparison between Ulrich’s 

concepts and “industrial definitions” indicates a gap between theory and practice. In 

particular, the reality of modularity seems to be very heterogeneous. Our definition makes it 

possible to encompass this diversity. 

 

Part I.  Modularity and industrial organization 
 
 
For most economists, modularity is a theoretical concept enabling to read industrial 

organization dynamics with respect to product innovation.  This way of looking at modularity 

is underlying the debate concerning the links between technologies and organizations (for 

example in Langlois, 2004 or Langlois and Savage, 2001). Typically, these works begin by 

roughly describing product architecture and then speculate about organizational 

consequences. More precisely, this debate brings into conflict the proponents of a “modular 

organization” and those of an organization coordinated by a “system integrator”. A first 

definition of a modular organization underlines the presence of an “architect firm” whose role 

is to specify general design rules. The standardization of interfaces generates an informational 

structure allowing what is labeled as “embedded coordination” (Sanchez and Mahoney, 

1996). The specification of industrial standards would ensure an effective coordination 
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between loosely coupled units. This would thus cancel the need for managerial coordination 

in interfirm relationships. Therefore, each unit could work independently on a module, while 

having confidence that the product works as a coherent entity. As an ultimate consequence, it 

would lead to intensify the division of labor (Frigant, 2004). More precisely, companies 

would be able to assign modules’ detailed design and manufacturing to specialized suppliers 

in order to benefit from the well-known advantages of specialization. Langlois and Robertson 

(1992) find evidence of such decentralized networks in the computer industry and in the 

development of stereo systems. 

On the whole, as modularity is a product structuring concept, that notion is also an industry 

structuring concept. As a matter of fact, the way a firm articulates its resources deeply 

influences industrial architectures. Resources available for a company include its internal 

resources, "relational resources" controlled by other firms, and market resources (Sanchez, 

1995).  The variety of resources available, as well as their accessibility, increases with the 

capacity of firms to use modular product architecture to coordinate an extended network of 

productive resources (Sanchez, op.cit). Within a modular framework, all the resources 

involved in the production process can be mobilized in a parallel and autonomous fashion. 

When component interfaces are perfectly specified and standardized across the industry, a 

modular network allows many entry points for external suppliers (Langlois and Robertson, 

op.cit). The lowering of technical barriers to entry leads to an intensification of the 

competition on modules. This enhances incentives among suppliers and makes it possible for 

the assembler to choose among a great number of modules. In addition, the multiplication of 

differentiated modular components available allows firms to modify the final configuration of 

their products according to market needs. Wooren and al. (2002) find evidence of such 

strategic flexibility in the UK home appliance industry. Moreover, this approach challenges 

the sequential organization of complementary activities. Indeed, in this context, the work of 

each unit does not depend any more on that of others. This is due to the fact that each firm 

knows ex ante the specifications, contained in the output of others, which will be useful for its 

own role in the production process. It results that the process of resources mobilization can 

become concurrent and more flexible. 

Meanwhile, competitive pressure considerably erodes suppliers’ position. Thus, another 

feature of modular organizations is the presence of large specialized suppliers serving many 

markets. The modular supplier model corresponds to a large firm having significant 

competences in detailed design, and large enough to allow the whole supply chain to benefit 

from external economies of scale. This model is exemplified by electronic manufacturing 
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services. Many end products, such as mobile phones, computers, printers... are made up of 

electronic modules. These modules are single or assembled printed circuit boards and 

electronic chips. For printed circuit boards, Sturgeon notices the rise of contract 

manufacturing services. Firms such as Solecton, Celestica or Flextronics are large specialized 

suppliers serving many customers in different industries (Sturgeon, op.cit). 

In Chip design and manufacturing, a process of vertical disintegration also occurs. Indeed, 

design is often done independently from production in the so called fabless design firms and 

chip foundries. This has been labeled as the Silicon Valley model or modular clusters 

(Baldwin and Clark, 1997, 2000) and this is related to the development of markets for 

technology (Arora and al, 2001). Here, the main novelty lies in the decoupling of design from 

manufacturing (Sturgeon, op.cit). 

However competing business models do exist. For example, firms like Phillips or Toshiba are 

still vertically integrated. Moreover, it is still common for semiconductors to be designed and 

manufactured by integrated device manufacturers such as Motorola or Intel. In addition, more 

specific chips (ASICs) are often kept in house by lead firms like Sun or Cisco (Sturgeon, 

2003).   

In these cases, product modularization does not seem to be the discriminating element. For 

instance, authors stress the modular aspect of productive organisation but pay very little 

attention to the corresponding product modularization. According to them, these trends were 

primarily made possible by the availability of standards, process standardization, 

technological convergence and the development of IT. For example, according to Macher 

(2000), process standardization regarding CMOS technology played a major role in this 

course of disintegration 

At a higher level of modularization, the Computer industry has been the locus of another 

process of vertical disintegration (Langlois and Robertson, op.cit). Considering the computer 

as a network of complementary products, the functional specialization is clear. Many firms 

such as Logitech, Lexmark or Epson are specialized on these peripheral products. Software 

designers are also part of this functional decomposition. Since this level of modularization has 

to do with our day-to-day  final use (final functions vs technical functions), the links between 

technological and organizational trajectories may be more understandable and obvious. For 

instance, the modem makes up for 90% of the function “external communication” (Fixson and 

Sako, 2001). This stand-alone subassembly has standardized USB interfaces and functions 

seamlessly with any model of computer. Further, it can be bought from many producers. 
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In contrast, those in favour of system integration claim that modularity is limited because of 

the cognitive limits of firms. The growing number of specialized knowledge fields embodied 

in a single product challenges firms to coordinate many specialized and local bodies of 

knowledge. Consequently, market-based relationships would not be sufficient to ensure 

effective coordination. Given this, a firm would have to play the role of network coordinator. 

The proponents of this approach rest on empirical observations, and in particular on the fact 

that there is a gap between knowledge firms need and knowledge they have indeed: “Firms 

know more than they do” (Brusoni and al., 2001 and Brusoni and Prencipe, 2001). More 

precisely, firms keep knowledge about activities they have externalized in order to ensure the 

interface with their core competences.   

Brusoni and al. (op.cit) contend that the design process cannot be perfectly decomposed 

because design rules evolve over time. Moreover, products such as cars or planes are so 

complex that they include modules that are themselves composed of sub-modules... In this 

setting, the definition of design rules may require a very precise modular knowledge.  Brusoni 

and al. explain also that when a module includes technologies that have different evolution 

paces, the organization requires the presence of a “system integrator” that has the ability to 

understand these technological gaps (Frigant, op.cit). In particular, as a technology emerges, 

interactions might not be well understood by producers and therefore difficult to predict. 

Consequently, interfaces cannot be frozen ex ante and interactions between suppliers and 

system designer are deep because of the need to adjust component interfaces to the evolving 

design rules. 

The division of labour is thus limited by the non divisibility of knowledge. These works do 

not deny the process of vertical disintegration, they only explain why it is limited. Therefore, 

the discrepancy lies in the role of the lead firm and particularly its role as far as coordination 

is concerned. 

At first glance, one could say that the essence of the debate comes from the fact that these two 

theories are not interested in the same industry. Those concerned with electronics observe a 

high level of standardization, specialized design firms, modules bought off the shelf, whereas 

those interested in the automotive industry note a deep cooperation between suppliers and 

customers, co-design practices... 

We are then left with two different organizational realities. And, not surprisingly, these two 

theories come up against the same difficulty: Generalization (Ernst, 2004). The implicit 

assumption underlying these discussions is that the most efficient organizational model will 

tend to dominate. 
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The advocates of system integration mobilize a resource-based view as well as an 

evolutionary approach to explain the superiority of their theory. More precisely, they draw on 

authors like Penrose or Richardson to justify the coordination between complementary 

activities. By contrast, Baldwin and Clark rest on Transactions Cost Economics and Agency 

Theory to explain the efficiency of market-based  relationships in a modular environment and, 

more precisely, the opportunity for decoupled organizations to exhibit flexible specialization 

(Piore et Sabel, 1984), Dynamic capabilities (Teece and Pisano, 1994), or strategic flexibility 

(Sanchez, op.cit). The main difference therefore lies in the view of the firm. The modular 

approach consider the firm as a “conventional” information processor with a subsequent 

emphasis put on contracts (as in Fujimoto, 2002), whereas in the system integration 

perspective the firm is considered as a knowledge processor which brings about problems of 

cognitive distance, absorptive capacity... (Cohen and Levinthal, 1990). 

 

None of these predictions is however corroborated by empirical studies. Instead, it seems that 

there is coexistence of these organizational models. Aoki (2002) explores three types of 

modular organizations. The “hierarchical decomposition”, in which the lead firm acts as a 

system designer, looks like Sturgeon’s description of electronic manufacturing services. The 

“information assimilation”, where module suppliers are involved in system definition, 

resembles the case of automotive industry. The model of “evolutionary connection” 

corresponds to the “Silicon valley model” where multiple agents are engaged in the design of 

the same module. 

These observations would tend to mean that each of these theories is valid for the industry it 

was initially interested in. In other words, these two approaches would not be opposed but 

rather very complementary.  

Thus, Brusoni, Prencipe and Pavitt (op.cit) have bridged these theories within a single 

typology. 

 
  Systemic interdependencies 

 
 

 Predictable Unpredictable 
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The proponents of modularity would then discuss only a specific case of this table. The one 

concerning products whose characteristics are perfectly defined, well understood and 

mastered by designers 

As we mentioned in the introduction : The more the product is integrated, the more the firm in 

charge of its design and manufacturing is integrated. Reciprocally, a modular product design 

leads an organization towards more modularity. This view is confirmed by the work of Novak 

and Eppinger (2001) for the automotive industry, who finds that the more complex the system 

is, the more it is likely to be produced in house. 

 

A dynamic way of bridging these approaches has been found by Chesbrough (2003). Here, 

the stage of the technological cycle is the discriminating element. As a technology emerges, 

interactions are not well understood by engineers. Interface management then requires 

integration competences in order to ensure that the product works as a coherent entity. When 

the industry stabilizes around a dominant design, interfaces become more standardized, and 

less integrated organizations are a more viable way of doing business. When the technology 

reaches its theoretical limits, engineers look for fundamentally different design approaches. A 

new architecture will enter a stage of fermentation to end up with the selection of a new 

dominant design. His claims are supported by a study of the hard disc drive industry. Besides, 

this is in line with Afuah’s (2001) argument of the dynamic boundaries of the firm. 

Others have carried out a similar analysis in terms of knowledge maturity (Foss and al., 

2000). However, these analyses are mainly technology driven and no room is left for 

corporate strategies. 

  
Thus, the frame where these works have proved to be the more relevant is the study of 

innovation and technical change. In particular the distinction between architectural and 

modular innovation  (Henderson and Clark, 1990) has brought considerable insights in our 

understanding of organizational changes. Modular innovations can be efficiently managed by 

decoupled organizations. In particular, the rate of innovation can be speeded up to the extent 

that it involves the trying out of many alternate approaches simultaneously, leading to a rapid 

trial and error learning (Langlois and Robertson, op.cit). However a possibility of “modularity 

trap” (Chesbrough and Kusunoki, 2001 ; Chesbrough and Teece, 1996) arises in case of 

architectural innovation. For example, Galvin and Morkel (2001) claim that independence of 

component suppliers in the world bicycle industry prevent them from introducing 

architectural innovations. Similarly, in the semiconductor industry, Macher (op.cit) found that 
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integrated device manufacturers achieve performance advantage over foundries for process 

innovations requiring great coordination between design and manufacturing. These questions 

highlight the problematic distinction between architectural and modular knowledge (Arora 

and Gambardella, op.cit and Sanchez, 2000), which come to be the very heart of the 

discussion. 

Another meaningful insight of these works is that they take into account changes in product 

architecture. However these changes arise mainly due to external factors. We thus wish to set 

a framework underlying firms’ role in the modularization process. Our intuition is that 

corporate strategy may have strong implications in terms of organizational outcome 

(Chandler, 1990 ; Lawrence and Lorsh 1967 ; Thompson, 1967...). 

 

 
Part II.  Product modularity: an industry-oriented definition 

 
 
 

A lot of definitions of product modularity have been given. Roughly, we can distinguish two 

broad categories: 

- Interdisciplinary definitions from Ulrich and Eppinger (2004) and Baldwin and Clark 

(op.cit).  

- Definitions in design sciences often very specific to their application field. However, a 

synthetic work has been recently made by Gershenson et al. (2003, 2004). 

 
 
Interdisciplinary definitions 
 
 
Seminal works of Ulrich (op.cit) and Baldwin and Clark (op.cit) are essential for economists 

insofar as they allow the characterization of products according to their degree of modularity. 

Like any complex systems, products tend to be hierarchically shaped (Simon, op.cit). Indeed, 

their functional and physical structures form hierarchies. More precisely, they form nested 

hierarchies. Product structures and functions are composed of subsystems, themselves divided 

into subsystems... Thus, product architecture is defined as the way in which functional 

elements are connected to physical components (Ulrich, op.cit).   

The allocation between functions and components is said to be modular when it exhibits a one 

to one mapping between functional and structural elements. The underlying idea points out 

that a complex system can be more simply addressed when broken up into several 
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subsystems. The perfect mapping between functions and structural elements makes it possible 

for the system to present natural breakable joints, authorizing a “clean” decomposition (i.e. 

which “does not break” any interaction between components and functions). The different 

subparts of the system can then be insulated easily so that the product forms a near 

decomposable system (Simon, op.cit). 

If a single component implements several functions (function sharing), or conversely if a 

single function is fulfilled by several components, the product architecture migrates towards 

more integrity. It is difficult to break such a system into modules without loss of functionality 

because some links between physical and functional elements can “be broken” during the 

decomposition. 

Interfaces define the relational characteristics between components. They embody some rules 

which specify the way in which components interact. Interfaces are defined by the level of 

independence they generate between modules and by their level of standardization. In this 

respect, product architecture is modular when interfaces are perfectly decoupled (a change 

made to one component does not affect any other component), and perfectly standardized 

(they accept the connection of a broad range of components) (Ulrich, op.cit). To meet this 

second condition, interfaces have to adhere to a standard input-output protocol. The 

parameters of connection to the system (input), as well as the functions to be filled within the 

system (output), have to be fully specified, codified and shared.   

Defined in such a way, interfaces make it possible for a system to exhibit weak interactions 

between its subsystems and strong interactions within them, which is a feature of modular 

structures highlighted by many authors. These systems are assembled in a “loose” way. They 

can be reconfigured easily and in a flexible fashion, without loss of functionality.  Conversely, 

subsystems of integrated products exhibit complex interactions. Each component is arranged 

in a specific way, aiming at achieving a high level of performance. The combination of 

components achieves a synergy through specificity that those acquire within a particular 

configuration (Schilling, 2000).  The impossibility to move the components without loss of 

functionality is captured by the expression “tightly coupled systems”. 

According to these two characteristics (interfaces and function-component mapping), 

products are located on a continuum representing different levels of modularity. 

 
Baldwin and Clark’s focus on visible design rules underlines the importance of independence 

between modules. The product is seen as a bundle of design information. The modular 

approach rests on a partition of this information. Each module is characterized by specific 
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information and by rules which define its place, its role and its interaction modalities. The 

latter are labeled as “visible design rules”1. It follows that it is possible to break up the 

informational bundle embodied in the product, according to these two sets of information. 

“Hidden information”2 or “encapsulated information” (Cremer, 1990), corresponding to 

module-specific parameters, does not need to be transmitted to all the units taking part to the 

design and/or the production process. “Visible information” represents the decisions which 

affect the whole architecture and which need to be shared among all participants. 

The vision of Baldwin and Clark may give a more explicit account for the organizational 

stakes related to a modular product design. Indeed, the confinement of module-specific 

information imply that once the "visible design rules" are defined and frozen, each unit can 

work in a perfectly autonomous and independent way, with the only concern of specifying 

interfaces compatible with the “visible design rules”.  

By contrast to Ulrich’s definition, Baldwin and Clark do not adopt a functional perspective 

because they consider it as a difficult and subjective process. 

 
 
Limits of these definitions and insights from design sciences 
 
 
The common essence of these definitions lies in the presence of strong interactions within 

modules and relatively weak interactions between modules. Whereas the simplest definitions 

consider a modular product architecture as a one-dimensional concept regarded the nature of 

interfaces3, these definitions indicate that product architecture is a multidimensional concept.  

In particular, interfaces and standards on the one hand, and modules’ organization on the 

other hand, are two sets of characteristics in themselves. However, these definitions are only 

theoretical references and products are never perfectly modular. It appears to be more relevant 

to consider products as located on a continuum representing different levels of modularity.  

However, our contribution is not limited to the suggestion of considering several levels of 

modularity.  What we offer is a broader approach to product modularity.  For example, the 

definition of Ulrich rests primarily on a functional decomposition. Meanwhile, as put it by 

                                                 
1 More precisely, visible design rules fall into three categories (Baldwin and Clark, op.cit):- An architecture 
which specifies what modules will be part of the system and what their functions will be.- Interfaces that 
describe how the modules will interact. - Standards for testing module’s conformity to the design rules. 
2 This concept was introduced by Parnas (op.cit). He had in mind that the programmer is most effective if 
shielded from, rather than exposed to the details of construction of system parts other than his own. 
3 Interfaces are discussed along their open/proprietary nature and their standardized/specific dimension, as in 
Garud and Kumaraswamy, 1993. 
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Baldwin and Clark, the functional hierarchy is very subjective and depends on the level of 

abstraction adopted. For instance, consider a hair dryer (Fixson, 2003): 

 

“Its main function is to dry hair. If to dry hair were selected as a function, the result would be 

the allocation of this function to all components, for all components of the hair dryer would 

exist in the first place if it were not contributing to the product functionality. On the other 

hand, if the function is chosen on a very low, detailed level : “Hold part A in position X 

relative to part B with force f”, then exactly one and only one component delivers these 

functions...In contrast if one begins to define functions like “to generate air flow, heat air 

flow, control heat, control air flow, supply energy”..., then it becomes meaningful to 

investigate how functions are mapped to components”. 

 

One can argue that considering functions with respect to final use is relevant, but reality 

demonstrates that functions related to the final use are not always easily identifiable. For 

example, Muffatto and Roveda (2002) account for the difficulty in distinguishing between 

“real” functions and “subfunctions” which deliver technical functionalities intended to ensure 

the working of other functions. Moreover functions related to esthetism are often truly global 

and cannot be contained in a single module. In the definition suggested by Baldwin and Clark, 

the decomposition is also viewed from a single angle (i.e interactions between modules).  

On the whole, the main failure of these definitions is that they consider only one way of 

breaking up the product.   

 
Works in design sciences are inspired by seminal writings of Suh (1990), whose three design 

axioms are recalling modularity principles. Besides Ulrich’s definition, many other works 

exist. However, one can notice a kind of convergence towards Ulrich and Eppinger’s 

concepts. Indeed, a functional perspective is often adopted because designers generally take a 

prospect consisting in transforming customer’s requirements into functionalities (Pahl and 

Beitz, 1984).   

Meanwhile, we were told that the works of Ulrich have to be taken very carefully. According 

to Blanco, a functional decomposition is not always possible (even desirable). Other logics of 

decomposition are possible, such as the grouping of components according to their life cycle.  

This approach is confirmed by the work of Ericxon (1996) who identifies several drivers for 

product decomposition. Gershenson and al. (op.cit) show that a module exhibits both an 

element of “independence” (few interactions with other modules, as we saw) and an element 
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of “coherence”.  In the definition of Ulrich this element of coherence is the function (all the 

components within a module fulfill the same function), but many others are possible.  

These elements being grouped, they must be independent on other modules. It is then relevant 

to investigate interfaces’ characteristics whose “role” is precisely to limit or to standardize 

physical interactions between modules. Finally, designing a module is constraining insofar as 

the groupings need to be both coherent and independent. It is also interesting to note that 

whatever the logic being adopted, there might be a trade off between the coherence of product 

decomposition and the level of independence between modules. Consequently one could not 

maintain that a product is modular without having specified the nature of decomposition 

under consideration.  And it is all the more significant when the degree of modularity of two 

products is compared. A little as for fractions, one needs a common denominator which 

authorizes the comparison : This common denominator is the coherence of the module.  

Saying that a car is less modular than a computer would not be very relevant.  If a functional 

breakdown is considered, then this is true (Fixson and Sako, op.cit). However, in the car 

industry, the modules are not designed according to a functional logic but according to their 

physical localization in the end product (SESSI, 2003). Then, observing the final assembly 

lines at car manufacturer plants leads us to think that this way of decomposing the car, 

together with investments in machines, involves a relative independence of modules during 

the final assembly.  In addition, two other points are confirmed by design sciences: First, 

modularity is a relative property (i.e products are more or less modular).  Second, the level of 

modularity depends on the level of abstraction adopted to analyse the architecture. 

 

An industry oriented definition 

 

Building on these two sets of works, we suggest the following definition of product 

modularity: 

 
Coherent product decomposition into subsets, made up from the integration of lower order 
elements, whose interactions are limited. These subsystems are called modules and interact 
with each other via interfaces.   
 
This definition can be divided into two axioms. We shall specify them:     
 
The coherence axiom  
 
We were told that the logic of decomposition is a decision leaving a room for strategic 

choices. This is related to methods of DFX, where X may correspond to one of dozens of 
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criteria (the most common of these methodologies being design for manufacturing and design 

for assembly). The functional decomposition is therefore only one possibility among others. 

Besides functional decomposition, following Marshall and Leaney (1998, 2002), we can 

consider the following logics to product breakdown:  

 

 - Interactions:  To gather within a module, the elements whose interactions are numerous or 

fundamental (approach of Baldwin and Clark).  

- The physical location of components: To integrate in a module the elements which require a 

physical proximity as it is the case for the car.  

- Supplier competences: A supplier can have a specific expertise in such a way that it is 

profitable to group the elements coming under his responsibility in a module.   

- Core competences: To gather the elements related to the core competences of the company 

so as to be able to externalize the other parts.  

 - Manufacturing process: To gather the components which require the same manufacturing 

process. 

-  Platform logic: One can also gather all the elements that can be reused on other models or 

other products (see also, Ulrich and Robertson, 1998).  

- “Natural modules”:  Groups of elements which are complementary and which benefit little 

from being separated, for reasons of performance for example.   

- Localization of change: When probable evolutions are anticipated, the elements likely to 

change can be grouped in a module so as to limit the systemic effects. 

 - “Configurability”:  The elements are grouped so that the company can combine the modules 

in different manner to offer variety (home furniture sold in kit or modular buildings).   

- Element of differentiation: To group the elements which together represent an element of 

differentiation for consumers. 

- Recycling process: To gather components in order to ease recycling processes. 

 
The independence axiom  
 
This axiom has to do with interfaces and interactions between modules. Ulrich determines 

two features to characterize an interface: its level of standardization and its degree of 

coupling.  Its degree of coupling represents the level of independence between the connected 

modules and its level of standardization refers to the number of alternative components 

available. The degree of coupling depends on the nature of both interfaces and interactions (an 

interaction is a flow going from a module to another, whereas an interface is the locus, the 
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physical support of this interaction). Interactions can be related to a material transfer, energy 

transfer, electronic signals or information exchange... (Eppinger and Pimmler, 1994). 

Interfaces can be materialized by bolt-nut or snap-fit connections, points of welding, wires, 

electronic controlling devices ... (each of them being more ore less constraining). The level of 

coupling also depends on the interface localization in the end product (its ease to be reached 

by operators) (Fixson and Sako, op.cit).   

The level of standardization is given by the number of alternative modules available. It is 

what Ulrich has called “component swapping”.  If one considers the module, the relation is 

reversed: It is the number of alternative products available for a given module which 

represents the level of standardization.  It is, in Ulrich’s terms, a case of "component sharing 

modularity". Of course, these two types of modularity can correspond to the same thing 

depending on the element considered as the system and the element considered as the module.  

For example when the same mouse is used on two different computers, it is “component 

sharing”, whereas if one changes the mouse on a computer, then the term “component 

swapping” is used (Fixson, op.cit).  

Finally, it is important to understand that most end product architectures are mixed. Firstly, 

interfaces are different according to the module under consideration (some are standardized, 

other not...). For example in the automotive industry, except simple subassemblies such as the 

wheels, few parts are standardized. Further, Warburton and Sako (1999) report that the 

composition of the cockpit module varies from manufacturer to manufacturer.  

 

 

Figure 1 

 

 

Secondly, various logics of decomposition can coexist inside the same product. This variety 

can involve trade offs. For example, Kinutani (1997) notes that modularity at Mazda was 

spurred on by manufacturing engineers in order to ease final assembly, and that it brings them 

into conflict with product engineers who have different goals.  

Finally, one can say that products are composed of core modules (platforms) shared across 

products and more flexible modules that allow for differentiation. 

Besides, this approach is very close to the one used in the “object oriented design 

methodology” where modularity is defined as a property of a system which was broken up 
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into a few coherent and connected modules (Booch, 1991).  The element of coherence of the 

module lies here in what is called “the class”. 

 
Measures and methodologies 
 

Let us now turn to the implications of such a definition on measures and methodologies of 

modular product design. Concerning the independence axiom, we do not notice any change 

compared to existing methods. Modularity can be represented by a matrix where components 

are listed in rows and columns in order to spot interactions. This is what has been labeled as 

the design structure matrix (Baldwin et Clark (op.cit), Newcomb et al, (1996)). Analysing 

these interactions and interfaces that support them is necessary. For example, tools suggested 

by Fixson or Eppinger can be used. 

We have now to deal with the coherence axiom. In a functional perspective, many design 

tools have been developed. Meanwhile these tools are not very relevant in our perspective. 

Gershenson et al. (op.cit) suggest to use a second matrix to display the coherence of the 

module. For example they use both a component-component matrix and a component-

component life cycle matrix. Erixon (op.cit) first identifies the functional architecture, then 

tries to find technical solutions to these functional requirements, and finally elaborates a 

matrix where these technical solutions are confronted to various elements of coherence 

(Identification Module Matrix). These technical solutions become effective modules if the 

parts that constitute them are sufficiently homogeneous with respect to other coherence 

criteria.  

“Object oriented design methodology” and “holonic product design” (for example, Marshall 

and Leaney, op.cit) are promising avenues to develop tools and methodologies for modular 

products. 

 

Consistency with industrial practice 

 

The definition given by many industrial managers is based on the concept of module.  

However, this definition varies from one industry to another, if not from firm to firm 

(Gershenson and al. op.cit).  From our definition of product modularity, it comes that the 

definition of a module is contextual. It depends mainly on the nature of product 

decomposition and, more generally, on technological feasibilities and corporate goals.  
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In software design, modularity usually refers to “tools for the user to build large programs out 

of pieces” (Chen 1987 – quoted in Gershenson and al., op.cit). The definition of a software 

module is often given in terms of functions. One such definition is that, for a given function, 

there is no access to, informational flow to, or inter-activity between modules (George and 

Leathrum, 1985 – quoted in Gershenson and al., op.cit). The reuse of existing codes in also 

often stressed in software design, as well as the opportunity to work in parallel: 

 
« With the Linux kernel it became clear very quickly that we want to have a system [that] is as 

modular as possible. The [FS/OSS] development model really requires this, because 

otherwise you can’t easily have people working in parallel. It’s too painful when you have 

people working on the same part of the kernel and they clash ».  Linus Torvalds creator and 

principal software architect of Linux - quoted in Garzarelli and galoppini, 1998. 
 
In programming languages, the procedures, subprograms, or packages represent the modules. 

The term module here refers to a ‘manageable portion’ of the code (Spencer, 1998 – quoted in 

Gershenhon and al. op.cit).  

In computer industry, modularity represents the building of complex products or processes 

from smaller subsystems that can be designed independently and yet function together as a 

whole’ (Baldwin and Clark, op.cit). 

Construction modularity in the home building area is said to be an important part of the 

economic future of the construction industry. It can be defined as using sets of units designed 

to be arranged or joined in a variety of ways (Civil Engineering Research Foundation, 1996). 

For submarines, construction modularity has been defined as design with subsystems ‘that can 

be assembled and tested prior to integration . . . to reduce the time and cost of manufacturing’ 

(Carey 1997 – quoted in Gershenhon and al. op.cit). 

 In the home furniture industry, the modularity is defined, at SauderWoodworking, as a 

concept making it possible for the consumer to design its furniture himself (design it 

yourself). In electronics, modules are interchangeable blocks, whose assembly is done without 

welding (www.granddictionnaire.com).  

For space systems, modularity is often seen in a functional perspective. For instance, US 

space systems for military applications are on the road to modularity. In this case, modularity 

refers to the use of small, lightweight modular satellites placed into orbit by light lift, then 

mated to a permanent support infrastructure in orbit, called the motherboard. The modular 

satellite employs small modules, each having unique capabilities (such as communications, 
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imagery, energy transfer, navigation, weapons etc.) able to support combat forces. Modules 

can perform all the functions carried out by today's independent, expensive satellites. As a 

result, mission capabilities increase, while lift response times shorten and operating costs 

decrease (Space modular systems, SpaceCast 2020). 

In the car industry, engineers see modules as  “a group of components which are physically 

close to each other, that are assembled and tested outside the firm and which can be 

assembled very simply onto the car”, (Warburton and Sako, 1999). In contrast, a system is 

defined as a coherent functional grouping. At Volkswagen, first order modules are assemblies 

which are installed directly in the body, such as the cockpit. Second order modules are 

functional systems, which together make up first order modules. Third order modules are part 

of second order modules... For the Golf II, an essential element of modularization was the 

focus on ease of assembly (Wilhelm, 1997). 

Interviews conducted at HP France were also very insightful. A R&D manager reported that 

HP takes different approaches to product modularity. In the home computer department, 

modularity is really linked to standardization and subsequent externalization. For more 

innovative systems such as routers for telecommunication networks, modularity is related to a 

cognitive decomposition of R&D processes aiming at overcoming complexity. Finally, 

modularity is an approach taken to complete mass customization and postponement. In 

particular, a team is fully dedicated to search for potential common components across 

products, which clearly indicates a platform strategy. 

On the whole, the emphasis is put on module coherence (testing, "configurability", 

reusability, ease of connection, externalization, knowledge...), rather than on their relative 

independence. Whereas it is true that a module is a stand-alone subassembly, the 

independence of modules appears not to have priority in industrial concerns. Indeed, the 

degree of module independence is not directly under firms’ control. In many industries, 

product complexity together with an absence of standards limits this independence. On the 

whole, modularity seems to be a recombining (rather than a “real” decomposition) of 

individual components within modules.   

 

Linking modularity to operational strategies 

 

Designing a modular product can have various goals. It is possible to classify these short run 

aims according to product life-cycle (Murray and Sako, 1999): 
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 Corporate objectives Nature of product decomposition 

Design 

 

 
 
 
 
 
 
 

 

- Reduction of lead time 
 

- Fall of development costs 
 
 

- Incremental innovation   
 
 
 
- Black box design                               
 

Platform strategy : not to redesign from scratch and 
better development organisation through modular 
design teams  
 
 
 
Localization of change: products for which detailed 
design can be complete very quickly (“quick built 
products” such as software) 
 
Emphasis put on interfaces 
 
 
 
 

 
 
This point has been well documented. Foss (2001) gives an account for the reduction of lead 

time and the fall in development cost. This is due to the fact that platform strategy enables not 

to redesign from scratch and thereby achieving economies of substitutions (Garud and 

Kumaraswamy, 1995). Also, the reuse of design knowledge creates economies of scale by 

spreading the costs of R&D across a great number of products. Moreover the organization of 

development process may be improved by setting modular teams working on each module. In 

particular the DSM should be used to construct a TSM (Task Structure Matrix) in order to 

rationalize the design process (Eppinger and al., 1999). For quick built products (Ulrich and 

Eppinger, op.cit) such as software, a clear distinction between general design rules and 

detailed design allow independent designers to be shielded from unnecessary knowledge and 

to focus on modular improvements. In order to achieve this, the localization of areas of likely 

changes is necessary. 

Black box design is linked to the will of the system designer to externalize detailed design. 

Interfaces must then be clearly defined. 
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Here, it becomes clear that product modularization arises in a wide variety of ways. 

Moreover, in complex end products, several logics overlap. For example, in the aeronautic 

industry, modularity was adopted by Boeing in order to reduce the number of spare parts to be 

handled during the final assembly process (woosley, 1994). As most individual components 

had already been externalized, it only meant that subassembly processes were also to be 

externalized. The trend of module externalization is related, in the aeronautic industry as in 

the automotive industry, to the reduction of direct suppliers. Besides, there is also a platform 

logic at Boeing, Airbus, or Dassault. As a matter of fact, the instrument panel and the avionics 

are shared across the A/318, A/319, A/320, A/321 (Talbot and Frigant, 2002).  

In the automotive industry, the decomposition was initially implemented following a 

subfunctional logic. This decomposition made it possible for these systems to be externalized, 

mainly for financial reasons. The sourcing of whole modules was linked to the reduction of 

Production 
 
- General purpose 
 

 
 
Variety at low costs 
 
 

 
 
Platform strategy for product differentiation - 
Configurability 
 

 
 
    
 
Reduction of part variety 

 
 
Platform strategy leads to a decrease in the 
number of different parts to be purchased, 
transported or stocked 
For parts to be purchased, the sourcing of 
whole modules drastically reduces the 
number of suppliers. 
 
 
 

 
- Reduction of the number of different 
components to be produced 
- Other manufacturing requirements 

 
Platform strategy 
 
Parts requiring the same production process 
are clustered together 
 

 
- Ergonomics 
- Facilitate and speed up final 
assembly 
 
- Organizing late differentiation 
 

 
Localization of components in the end  
 
product and ease of connection 
 
Platform  strategy 

- Specific purposes :       
 
          
 
        - Purchase and logistic 
 
 
 
 
 
       
          
        - Manufacturing 
   
 
          
        
 
         - Assembly 
 
 
           
 
        
          
        - Supply chain 
 

 
- Externalization  (For various reasons 
and in various ways) 

 
- Core competences 
- Supplier competences 
- Emphasis put on interfaces 
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first tier suppliers. Sako and Warburton (op.cit) note also that modularity was driven by 

ergonomic problems during the final assembly. Kinutani (op.cit) claim that modularity on the 

final assembly line at Mazda considerably improves work conditions and speed up final 

assembly. Wilhelm (op.cit) reports the Volkswagen platform strategy. The platform strategy 

is increasingly popular among car manufacturers. An example is the Renault Modus or the 

Renault Logan launched from the same platform as the Nissan Micra. Many industries, such 

as consumer electronics, are turning to platforms (Black&Decker power tools, Sony 

walkmans, HP printers, Fujitsu cameras...in Lehnerd and Meyer, 1997) 

An example of manufacturing requirement is found in Mead and Conway’s modularization of 

chips design. Thanks to a modular redesign, they allow chips to be produced by several 

generations of cluster tools (quoted in Baldwin and Clark, op.cit). 

Finally, let us notice that modularity has become a key concept in recycling processes (Ishii, 

2000). In this case product modularization should consider the ease of demanufacturing and 

optimal overall material recovery. 

 
   

Use 

 
 
- Modularity in use : 
    - Users can configure their product 
    - Users can improve their system without changing  
the whole system (add functionalities, insert improved 
components) 
    - Ease of maintenance  
 

 

- Configurability in the user 
perspective and ease of assembly 
- Functional decomposition 
- Localization of change 
- Interfaces 

 

 

Here, the decomposition is carried out in the user’s perspective. The question of modularity in 

use is related to the economic theory of network externalities. When modularity is 

implemented in this perspective, a critical variable is the degree to which the architecture is 

open (Morris and Ferguson, 1993). Examples include networked systems and complementary 

products such as video games. 

Manufacturing machines that are modularized for questions of use in the customer’s 

production process fall also into this category. This might be important for process intensive 

products such as chemicals or semiconductors. An example is found in Langlois (1998) and 

the modularization of cluster tools in the semiconductor industry. Other examples include 

packaging machines (Forcinio, 2004) and conveyors (Manufacturers' Monthly, 2004). For 

PCB assembly machines and more precisely placement machines, modularity is also 
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important. As consumer products become increasingly specialized, manufacturers find their 

assembly lines changing from one product to another very often. This uncertainty makes it 

difficult for assemblers to maintain control over their equipment's utilisation. The lines that 

were built to serve either low-mix, high-volume or high-mix, low-volume production 

environments do not address the needs of today's more common high-mix, high-volume 

manufacturing. In this context, the movement towards modular assembly lines is gaining 

momentum. The benefits of a line made up of multiple “high speed flexible” modules have an 

immediate impact on assemblers. For instance, since each module can place the full range of 

component types, line balancing and optimisation is improved (The road to modular 

assembly, Electronics Weekly).  

 

Principles for modular production systems have been formalized by Rogers and Botacci 

(1997) : “The modular production systems concept has been proposed as a way of overcoming 

the limitations resulting from a lack of modular machine standards. Moreover modular 

production systems seek to provide a new manufacturing business framework suitable for the 

“agile manufacturing era”. The module standards are based upon a unified reduced set of 

primitive elements, which are at a level of modularity lower than hitherto. The module 

categories comprise just four classes: process machine primitives, motion units, modular 

fixturing and configurable control systems. The belief is that appropriate selection from these 

categories will enable a diverse range of efficient, automated and integrated production 

systems to be built” 
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Bridging the technological and strategical picture 
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Our point here is to show that modularization is both a matter of technology and strategy. For 

simplicity we consider only three levels (components, systems and modules), but there might 

be many more. For instance the condenser, the evaporator and the compressor are the main 

components of the air conditioning system, which itself may be part of a bigger module such 

as the cockpit module.  

 

Figure 2 

 

Every product exhibits a basic degree of modularity at a given time and a given place. This 

degree of modularity corresponds to a given state of knowledge which has to do with the 

fundamental laws of physics that rule the product’s functioning. It is also dependent on the 

current level of standardization. 

To assess this level of modularity, it is fair to have a functional approach insofar as the 

ultimate goal of any product is to perform functions. These final functions need many other 

technical subfunctions to be effectively fulfilled. Functional systems are indeed often 

“natural” because individual components need to be integrated with others to fulfill technical 

functions intended to ensure the working of other functions. For instance, several component 

are clustered together to constitute a compressor whose function is to place hot refrigerant gas 

under high pressure and to drive it to the condenser where the vapor cools and returns to a 

liquid state. When integrated with a condenser, an evaporator...the compressor is able to 

provide a function to the final user. 

The mapping between components and functions provides the basis for the opportunity to mix 

and match components to offer variety at low costs. 

Economists have been obviously mostly concerned with what I have called the basic degree 

of product modularity. Since this degree is largely dependent on radical innovation or 

industry-wide standardization processes, it is not surprising that modularization has been 

tackled as exogenous4. An example of such radical innovation is the substitution of 

mechanical systems by electronic devices in the car architecture. For instance, multiplexing 

drastically reduces the number of physical connections between subsystems, making the 

architecture migrates towards more modularity.   

 

                                                    

                                                 
4 We are fully aware that these radical innovations come as a result of many incremental improvements. 
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Figure 3 

 

This kind of modularity, driven by innovation and standardization is really suitable for the 

study of technological cycles, dominant design and organizational changes. For economists, 

the emerging feature of modularity provides indeed an interesting field since it allows to 

question, in real time, the thesis of technological determinism over organizations (frigant, 

op.cit) 

 

However, more often modularity is evolutionary, not revolutionary. It demands a change in 

philosophy as to how components are deployed and mobilized in the end product as opposed 

to a mere change in technology. This strategic product reconfiguration is a day-to-day concern 

of designers oriented towards short run and operational goals such as cost reduction. Since it 

consists in integrating components into more or less independent modules, it often comes to 

be called modularization. This process requires incremental adaptation over interfaces and 

therefore a great coordination between the different design teams. As it may have 

consequences for the subassemblies to be manufactured, it demands as well an effective 

coordination with production and supply chain logistic. In other words, modularization, 

boosted by strategic objectives, is an evolving concept (remodularization) which is rarely 

frozen. Given that, the question of coordination in modular systems remains open. For 

instance, at HP, the team in charge of identifying potential common components across 

products has also to analyse required adjustments and communicate them to concerned people 

in order to ensure coordination.  

My point is not to say that there are two distinct modularization processes, I only want to 

make clear that modularity has different meanings. Accordingly, when managers talk about 

modularity it might not be in the sense that one understands. Further, there is a relationship 

between what I have called the basic degree of modularity and these modularization 

processes. Muffatto and Roveda (op.cit) find that setting a platform requires a threshold of 

modularity but that an excessive degree of modularity would render the platform useless. 
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Conclusion 

 

This paper was motivated by the observation of a far-reaching diversity of industrial practices 

denominated as modularity. This diversity is not only imputable to sectorial specificities but 

also to strategic objectives. 

Accordingly, it is possible to consider product modularization as an operational tool applied 

by firms to support their strategies. It means that firms can, to a certain extent, change their 

product architecture by recombining components within modules.  

Obviously, Baldwin and Clark’s vision of product decomposition (creating fully independent 

units) would yield many benefits. However the process of iteration along “off-diagonal 

interactions” (in the DSM) seems to be highly conceptual. The aim of this work was to show 

that there can be other, maybe more realistic, ways to modularize products. In particular it 

accounts for the fact that modularization arises also in complex system industries such as the 

automotive industry. This is another kind of modularization but it is still modularization. 

Further, the study of organizational consequences requires a robust approach to product 

modularity. We hope our collaboration with academic design engineers drove us in the right 

direction. Finally, it has often been said that modularity has a double dimension both 

technological and organizational : There might be an additional strategical dimension. 

 

From the variety of industrial logics related to modularization, it results that the 

organizational outcome may not be so clear.  

First, it seems that much of what has been said about modularity and vertical disintegration 

could be derived from the only concept of interface standardization (which is only a part of 

modularization). As found by Schilling and Steensma (2001), standards availability is an 

important element for market modularity (Chesbrough, op.cit) to arise. Second, it seems that 

at some points of the supply chain, there are both an horizontal consolidation and vertical 

integration of upstream suppliers. 

Third, maybe the most common way of doing modularity (platform strategy) has no clear cut 

organizational consequences. According to Scania’s engineers, a pre-requisite for modularity 

is vertical integration... 

 

“A modular product range gives major benefits for customers in several respects. Firstly, it 

gives the customer almost limitless possibilities to tailor the vehicle to specific transport 

needs. Secondly, the availability of parts and service competence is ensured, since a limited 
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number of basic components is used. Ever since the 1940s, Scania's engineers have employed 

modularity in the design of components as well as complete vehicles. Modularity in Scania's 

case means ensuring that any component can be combined in as many ways as possible with 

neighbouring systems and components. A pre-requisite for this has been to adopt the principle 

of vertical integration...” 

 Modularity and vertical integration, Scania Group. 
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