
HAL Id: halshs-01025102
https://shs.hal.science/halshs-01025102v1
Submitted on 17 Jul 2014 (v1), last revised 22 Feb 2016 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stochastic dominance, risk and disappointment: a
synthesis

Thierry Chauveau

To cite this version:
Thierry Chauveau. Stochastic dominance, risk and disappointment: a synthesis. 2014. �halshs-
01025102v1�

https://shs.hal.science/halshs-01025102v1
https://hal.archives-ouvertes.fr


 

 

 Documents de Travail du 

Centre d’Economie de la Sorbonne 
 

 

 
 

 
 

 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Stochastic dominance, risk and disappointment: 

a synthesis 

 

Thierry CHAUVEAU 

 

2014.54 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 

Maison des Sciences Économiques, 106-112 boulevard de L'Hôpital, 75647  Paris Cedex 13 
http://centredeconomiesorbonne.univ-paris1.fr/ 

ISSN : 1955-611X 



Stochastic dominance, risk and disappointment:
a synthesis.

June 2014*
Thierry Chauveau**

ABSTRACT: Although it is endowed with many interesting properties, the theory of

decision-making under risk by Loomes and Sugden [1986] has never been given an ax-
iomatics. In this paper, we make up for this omission because their lottery-dependent

functional is endowed with many interesting properties to which little attention has

been paid up to now. In particular, investors whose preferences are represented by

the functional are rational in that (a) they actually behave differently if they are risk

averse or risk prone, (b) risk is defined in a consistent way with risk aversion, (c) the

functional is but the opposite to a convex measure of risk (Föllmer and Schied [2002])
when constant marginal utility is assumed and (d) violations of the second-order sto-

chastic dominance property are allowed for when "utils" are substituted for monetary

values. Moreover, the partial weak order induced by stochastic dominance over utils

is as "close" to the weak order of preferences as possible and utility functions may be

elicited.through experimental testing.

JEL classification: D81. Key-words: disappointment, risk-aversion, expected utility,

risk premium, stochastic dominance, subjective risk.

RESUME: La théorie de la décision en univers risqué de Loomes and Sugden [1986]
possède des propriétés fort intéressantes —qui n’ont guère été, jusqu’à aujourd’hui,

mises en évidence—: les investisseurs dont des préférences sont représentées par une

fonctionnelle "lottery-dependent" font preuve de rationalité parce que (a) ils se com-

portent vraiment différemment, selon qu’ils ont de l’aversion ou du goût pour le

risque (b) leur aversion pour le risque est définie de façon cohérente avec la notion

de risque, (c) si l’utilité marginale de leur richesse est constante, la fonctionnelle de

leurs préférences n’est que l’opposé d’une mesure de risque convexe à la Föllmer et

Schied [2002] et (d) ils ne sont pas astreints à respecter la propriété de dominance
stochastique de second ordre. En dépit de ses qualités, la théorie de Loomes et Sugden

est demeurée sans fondement axiomatique. C’est cette lacune que nous nous efforçons

de combler. A noter que si l’on substitue aux revenus monétaires les utilités qu’ils

procurent, la dominance stochastique de second ordre, dite subjective, sera bien re-

spectée, que le préordre partiel que cette relation binaire engendre est aussi proche que

possible du préordre des préférences et que la fonction d’utilité peut être déterminée

à partir de tests expérimentaux.

Classification JEL: D81. Mots-clés: aversion pour le risque, déception, prime de risque,

risque subjectif, utilité espérée.

* This paper will be presented at the 2014 FUR conference in Rotterdam. It was
first presented at the Paris1 Finance Seminar on the 20th of June 2012. It was entitled:

Subjective risk and disappointment. An intermediate version was published as a CES

working paper in January 2013.

** Université Paris-I-Panthéon-Sorbonne. e-mail: chauveau@univ-paris1.fr
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1 Introduction

The theory of decision-making under risk which has been developed by
Loomes and Sugden [1986] (henceforth L&S) is endowed with four important
properties: (i) it allows for an attitude towards risk which does not require any
assumption about marginal utility, (ii) it yields coherent definitions of risk and
risk aversion, (iii) it is close to Artzner’s et alii [1997] approach of a measure
of risk and (iv) it allows for many behavioural anomalies.
To understand what property (i) actually means, recall that an investor is

generally assumed to be sensitive to the utility of his wealth. For instance, when
expected utility theory (henceforth EU theory) is valid, the investor’s welfare
is a probability weighted average of the utilities of the possible outcomes. As
a consequence, he is risk-averse (prone) if his elementary utility function is
concave (convex). Anyway, in any case, the investor takes into account but an
average of the results of a gamble to the results of which he is sensitive. Hence,
whatever his attitude towards risk (risk-aversion, risk-proneness or neutrality),
he actually behaves in the same way. This is a well-known paradox. By contrast,
according to L&S’, an investor who averages utilities is risk-neutral. He is
risk-averse (prone) if and only if (henceforth iff ) his welfare includes expected
disappointment (elation)1 in addition to the expected utility of his wealth, and,
consequently, the paradox vanishes.
Contrarily to property (i), properties (ii) and (iii) have not, up to now,

been pointed out in the litterature. Property (ii) means that risk may be
defined in a consistent way with risk aversion. This occurs in L&S’s approach
since, as first pointed out by Allais [1979], any risk premium may be split into
into elementary risk premia, each of which may be identified to the product of a
quantity of risk by a specific risk-aversion. Property (iii) is met when constant
marginal utility is assumed: the certainty equivalent of a prospect is then the
opposite to a convex measure of risk à la Föllmer and Schied [2002]. Property
(iv) consists in allowing for violations of the independence and/or second-order
stochastic dominance properties since both of them are commonly observed in
experimental tests. Finally these four properties constitute a strong incentive
for favouring the approach of L&S.
An additional reason is that this approach makes possible the elicitation of

the utility function of an investor. To see this, recall that an investor is assumed
to be rational. As a consequence, since he takes into into account the utilities
of the outcomes rather than their monetary values, there is no reason why the
second order stochastic dominance (henceforth SD2) property should be met.
By contrast, this may no longer occur when second-order subjective stochastic
dominance (henceforth SSD2) is under review, i.e. when statistical tests are
undertaken with units of welfare (hencefortfh "utils") instead of monetary units.
note that it is clearly met when EU theory is valid, when investors are risk-
averse. In the theory of L&S, a similar result may be obtained.2 Actually,

1Elation/disappointment depends on the gap between the utility of the actual outcome
and the expected utility of the prospect.

2Whatever the sign of the second derivative of the elementary utility function
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among the convex or concave utility functions,3 there exists one of them which
is most likely to represent the investor’s preferences since (a) it allows for no
violation of SSD2 and (b) it makes the preorder induced by SSD2 be as "close"
as possible to that of the investor’s preferences.4 Last but not least, it happens
that this utility function may be elicited from a sequence of binary choices.
Unfortunately, the theory of L&S lacks an axiomatic basis. As a conse-

quence, it seems of interest to make up for this omission, i.e. to develop a
fully choice-based theory of decison making under risk which will encompass, as
particular cases, EU theory and that of L&S. Moreover, we may prove that the
lottery-dependent functional5 of L&S is well endowed with the four properties
mentioned above and that the corresponding model is empirically testable.
The rest of this article is organized as follows: first, stochastic dominance is

revisited and the definition of a rational investor is clarified. Next, the axiom-
atization of a general theory of disappointment is developed. Section 4 deals
with the elicitation property and Section 5 concludes.

2 Revisiting stochastic dominance

2.1 Preliminary definitions

From now on, let W be a set of random prospects whose outcomes are
monetary and belong to a bounded interval [a, b] ⊂ R. An element of W
will be labelled w̃ and its cumulative distribution function Fw̃ (.). If a ran-
dom prospect w̃ has a discrete support {w1, w2, ..., wK}, it will also be denom-
inated [w1, w2, ..., wK ; p1, p2, ..., pK ] where pk = Pr (w̃ = wk). A probability
mixture of w̃

1
and w̃

2
, will be denoted αw̃1 ⊕ (1 − α)w̃2, where α belongs to

[0, 1]. The degenerate lottery whose outcome is w with certainty is δ (w). Pref-
erences over prospects will be denoted -, with ≺ (strict preference) and ∼
(indifference). The certainty equivalent of the prospect w̃ ∈W is labelled c (w̃),
i.e. w̃∼δ (c (w̃)). A normalized elementary utility function (henceforth n. e. u.
function) is a continuously derivable and strictly increasing function mapping
[a, b] on to [0, 1]. The set of n. e. u. functions will be denoted U.
Partial weak orders may be defined independently of preferences: they in-

clude first and second-order stochastic dominance (henceforth SD1 and SD2).
SD1 (SD2) will be denoted -1,(-2) with ≺1 (≺2) for strict dominance. A
partial weak order induced by SD1 (SD2) is consistent with the total weak or-
der of preferences if we have the following implication: w̃

1
-
1
w̃
2
⇒ w̃

1
� w̃

2

(w̃
1
-
2
w̃
2
⇒ w̃

1
� w̃

2
). As already said, an investor is assumed to be sensi-

tive but to the utility of an outcome, and, consequently, the consistency of his
behaviour must be checked for with a test of stochastic dominance over utils
instead of monetary outcomes. Hence it is of interest to substitute the former
for the latter i.e. to define subjective stochastic dominances as indicated below:

3Strictly speaking we should speak of normalized elementary utility functions. See below.
4The exact definition of the closeness of the two preorders is postponed untill the next

section.
5Lottery-dependent functionals were first presented by Becker and Sarin [1967] .
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Definition 1 (First-order and second-order subjective stochastic
dominance (henceforth SSD1 and SSD2)). Let w̃1 and w̃2 be two ar-
bitrary random prospects. Let u (.) be a n. e. u. function and let ω̃i = u (w̃i)
for i = 1, 2. It is equivalent to state that w̃1 dominates w̃2 by SSD1 (SSD2) or
that ω̃1 dominates ω̃2 by SD1 (SD2), i.e.

w̃
1
-
u
1
w̃
2
⇔ ω̃

1
-
1
ω̃

2
(w̃

2
-
u
2
w̃
1
⇔ ω̃2-2ω̃1

),
where SSD1 (SSD2) is denoted -u

1
(-u

2
).

Of course, looking at levels of outcomes may be equivalent to looking at
utilities. This happens to be the case when first-order dominance is looked
at. Indeed, first-order stochastic dominance is a property which is conservative
through the change of random variable: ω̃ = u (w̃).6 By contrast, this result is no
longer valid, when second-order stochastic dominance is considered. Actually,
the following characterization of SSD2 holds:
Proposition 1 (characterization of SSD2). Let w̃1 and w̃2 be two

arbitrary random prospects, let u (.) be a n. e. u. function and let ω̃i = u (w̃i)
for i = 1, 2. It is equivalent to state:
(a) w̃1 dominates w̃2 by SSD2 (i.e. w̃2 -

u
2
w̃1) or

(b)
∫ z
a
u′ (x) (Fw̃1 (x)− Fw̃2 (x))dx ≤ 0 for any z ∈ [a, b]

Proof. It is given in Appendix 2.�.
As a consequence, it is convenient to set the following definition
Definition 2 (consistency/inconsistency).
A n. e. u. function u (.) is consistent with the weak order of preferences � if

the partial weak order induced by SSD2 is consistent with the total weak order
induced by preferences, i.e. w̃

2
-
u
2
w̃
1
=⇒ w̃2 - w̃1 for any pair of prospects

(w̃1, w̃2).
A n. e. u. function u (.) is inconsistent, if the partial weak order induced

by SSD2 contradicts the total weak order induced by preferences, i.e. if there
exists at least one pair of prospects (w̃1, w̃2) such that simultaneously w̃2 -

u
2
w̃1

and w̃2 � w̃1, or such that w̃2 ≺
u
2
w̃1 and, simultaneously, w̃2 % w̃1.

The above definition implies that a n. e. u. function is either consistent
or inconsistent and the weak order induced by SSD2 is partial. Hence the next
definition will make sense:
Definition 3 (comparable prospects). Two prospects are comparable

with respect to the n.e.u. utility function u (.) —or, in short, comparable— iff
either w̃1 dominates w̃2 by SSD2 or if w̃2 dominates w̃1 by SSD2. The subset
of prospects which are comparable with respect to u (.) will be denominated
W

u
2
.
If u (.) is the affine function u (x) = x, it is equivalent to state that two

prospects are comparable or that one of them is riskier —according to Roth-
schild and Stiglitz [1970]

′
s definition of risk— than the other. Hence a gener-

alization of their point of view may be the following: if w̃2 -
u
2
w̃1 and that∫ b

a
u′ (x) (Fw̃1 (x)− Fw̃2 (x))dx = 0 we shall say that w̃1 are RS-comparable w̃2,

and we shall write w̃1 RS w̃2.

6The proof of this statement is trivial.
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A first example of consistent n. e. u. function is that of a risk-averse investor

obeying EU theory since we have E [u (w̃)] = 1−
∫ b
a
u′ (x)Fw̃ (x) dx . A second

example is that of an investor whose preferences are represented by the following
functional

U (w̃)
def
=
∫ b
a
(u (x) + E (u (x)−E [u (w̃)])) dFw̃ (x) (Eq. 1).

where function E (.) meets the following additional conditions: (a) E (0) = 0,
(b) 0 < E ′ (x) < 1, (c) E ′′ (x) < 0 and (d) sup E ′(z) ≤ 1,7 :The functional U (.)
will be called, from now on, a LS-functional (after Loomes and Sugden [1986])
It is endowed with the following property:
Proposition 2. The n. e. u. utility function of a LS functional is consistent.
Proof. It is given in Appendix 2.�.
Now let Wu+

2
(Wu−

2
) consist in the subset of pairs of prospects (w̃

1
, w̃

2
)

over which the two weak orders, -u
2
and �, coincide (disagree). A n. e. u.

function u (.) is all the more a good candidate for representing the preferences
of an investor thatWu+

2
is larger andWu−

2
more tiny. Now, since we want to

describe the behaviour of a rational investor — i.e. since we want to rule out
violations of SSD2—, we focus on consistent n. e. u. functions. If two n. e. u.
functions, u (.) and v (.), are consistent, then Wu−

2
=Wv−

2
= ∅ and u (.) will

be "better" than v (.) iff W
v+
2
⊆ W

u+
2
. However, note that there may exist

two consistent n. e. u. functions u (.) and v (.) such that neitherWu+
2
⊂Wv+

2

norWv+
2
⊂Wu+

2
.

Finally, one may define a binary relation over the weak orders induced by
SSD2 as follows: the weak order -u

2
is closer to the weak order � than the weak

order -v
2
iff either Wu−

2
⊂ W

v−
2

or W
u−
2

= W
v−
2

and Wv+
2

⊆ W and we
are looking for a consistent n. e. u. function u (.), such that, among the weak
orders induced by SSD2, -u

2
will be the closest to � . In other words, for any

other consistent function v (.), we shall have Wv+
2
⊆Wu+

2
. Unfortunately, no

function will exhibit such a property unless some additional restrictions are put
to the n. e. u. functions, as illustrated by the following proposition:
Proposition 3. Let u (.) and v (.) be two n. e. u. functions such that u (.)

is more concave (i.e. less convex) than v (.). Then, the following implication
will hold:

w̃
1
-v
2
w̃
2
⇒ w̃

1
-u
2
w̃
2

and so will the following inclusions:
W

v+
2
⊆Wu+

2
;Wv−

2
⊆Wu−

2

Proof. It is given in Appendix 2.�
Clearly the above proposition means that concavifying utility functions in-

creases the size of the subset of comparable pairs of prospects i.e. both the size
of the subset of the pairs of prospects which do not violate SSD2 and that of the
subset of the pairs of prospects which do violate SSD2. The more concave will
be the utility function u (.), (a) the more numerous will be the pairs of compara-
ble random prospects and (b) the more numerous will be the violations of SSD2.

7The meaning of the four conditions are as follows: (a) no elation/disappointment
is experimented if the actual outcome coincides with its expected value; (b and c) ela-
tion/disappointment is an increasing and concave function of the difference between the utility
of the actual outcome and that of its expected value; (d) is a technical condition.
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Hence, the following question rises: does there exist a concave or convex n. e. u.
function which dominates the others in that it makes the two preorders -u

2
and

�, never disagree and coincide on a maximum number of pairs of prospects?
The answer to the question is given by the following proposition.
Proposition 4. (canonical utiliy function). There exists a unique n. e.

u. function u (.) such that any concave or convex n. e. u. function u (.) which is
more concave than u (.) is inconsistent. Function u (.) is concave or convex and
it will be called, from now on, a canonical utility function.
Proof. See Appendix 2.�
As a consequence,an investor’s welfare is valued through his (canonical) util-

ity function and he is well rational in that no SSD2.violations may occur. How-
ever appealing is this result, it is not sufficient to provide a representation of the
investor’s preferences. Hence we now develop a simple theory of decision making
under risk from which a functional à la L&S will be derived. The investor will
compare, on the one hand, the (canonical) utility of his actual outcome and, on
the other, a reference utility which will be an average of the (canonical) utilities
of the outcomes of the prospect, namely the expected canonical utility of the
prospect E [u (w̃)]..This level of reference will be called zero-disappoinment utl-
ity and the zero-disappointment equivalent of w̃ will be defined by the following
equality: z (w̃) = u−1 (E [u (w̃)]).

3 A simple theory of decision making under risk

A fully choice-based theory of decision making under risk is now presented.

3.1 The axiomatics

The first step consists in assuming that preferences obey the two first axioms
of EU theory.
Axiom 1 (total ordering of �). The binary relation � is a complete

weak order.
Axiom 2 (continuity of �). For any prospect w̃ ∈ W the sets {ṽ ∈ W p

ṽ�w̃} and {ṽ ∈W p w̃�ṽ} are closed in the topology of weak convergence.
Axioms 1 and 2 imply that, if w̃,, � w̃ � w̃,, then there exists α ∈ [0, 1]

such that αw̃,⊕ (1− α) w̃,, ∼ w̃. They also imply that there exists a continuous
utility functional, U(.), mapping W on to an interval of R which represents the
investor’s preferences. It is defined up to a strictly continuous and increasing
transformation. From now on, the set which includes the functionals such as
U(.) will be denominated V. To get stronger results one (or more) additional
axiom(s) must be set. In EU theory, a third axiom, namely the independence
axiom is set. It is valid over the whole setW. However, to account for anomalies,
one must weaken the axiom. This can be done through assuming that the inde-
pendence property is met only on subsets of prospects exhibiting the same zero-
disappoinment equivalent The reason for this is that the zero-disappointment
equivalent of a mix of two prospects exhibiting the same zero-disappoinment

6
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equivalents will be the common value of these two equivalents. Hence, we set
the following axiom:
Axiom 3 (weak independence axiom). The independence property is

met over each subset of prospects exhibiting the same zero-disappoinment equiv-
alent.
whose well-known consequence is the following proposition:
Proposition 5. Under Axioms 1 to 3, the weak order of preferences � may

be represented over Wπ by the following functional:

Uπ (w̃)
def
=
∫ b
a
υπ(x)dFw̃(x),

where Wπ
def
= {w̃ ∈W | E [u (w̃)] = π}. and where υπ (.) is a continuous and

increasing function mapping [a, b] on to [υπ(a),υπ(b)] which is defined up to an
affine and positive transformation.
Proof. See, for instance, Fishburn [1970].�
From now on, we set the following normalization conditions:
υπ(u

−1 (π)) = π and πυπ (b) + (1− π)υπ (a) = uπ (Eq. 2),

where uπ
def
= u(c(w̃a,bπ )). As a consequence, υπ(.) is, from now on, unambigu-

ously defined. Note thatUπ(w̃
a,b
π ) = uπ and thatUπ

(
δ
(
u
−1(π)

))
= π. Clearly,

any random prospect w̃ ∈Wπ is such that 0 ≤ Uπ(w̃) ≤ 1 or, equivalently such
that w̃a,bπ � w̃ � δ

(
u
−1(π)

)
(Ineq. 1)

We now turn to some other important consequences of the above set of
axioms. First, for any w̃ ∈ Wπ, there exists a unique real number α ∈ [0, 1]
such that w̃ ∼ Lπ (α).where:

Lπ (α)
def
= αδ (π)⊕ (1− α) w̃a,bπ .

Its existence is a consequence of Axiom 2. Moreover, α is well unique since
Lπ (α1) will strictly dominate Lπ (α2) by SSD2 iff α1 > α2. Next, since both
w̃ and Lπ (α) belong to Wπ, then, from Proposition 5, we get that:

Uπ (w̃) = Uπ (Lπ (α)) = αUπ(δ (π)) + (1−α)Uπ(w̃
a,b
π ) = απ+ (1−α)uπ.

Now recall that from (Ineq. 1) we get that the utility of the certainty
equivalent c(w̃) of w̃ (and of Lπ (α)) is a convex combination of π and uπ whose
weights (β, 1− β) are yet unknown, i.e., we have:

u(c(w̃)) = βπ + (1− β)uπ = βUπ(δ (π)) + (1− β)Uπ(w̃
a,b
π )

Clearly, consistency will be reached iff α = β i.e. iff δ (c(w̃)) is equivalent
to Lπ (α) (otherwise there would be a contradiction). Finally, we are led to set
the following axiom, which is self-explanatory:
Axiom 4 (consistency). The compound lottery αδ (π) ⊕ (1− α) w̃a,bπ is

equivalent to the degenerate lottery δ
(
u
−1
(
απ + (1− α)u(c(w̃a,bπ ))

))
.

As a consequence, we get the following proposition:
Proposition 6. Under Axioms 1 to 4, the weak order of preferences � may

be represented over W by the following lottery-dependent functional:

U (w̃)
def
=
∫ b
a
υE[u(w̃)](x)dFw̃(x), (6)

where υE[u(w̃)] is a continuous and increasing function mapping [a, b] on to[
υE[u(w̃)](a),υE[u(w̃)](b)

]
which satisfies the normalization conditions (Eq. 2).

Proof. It is trivial since we have u(c(w̃)) = U(w̃).�

7
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3.2 Properties of LS models

Many examples of models where preferences satisfy Axioms 1 to 4 can be given.
Before we review their properties, we now consider υz(x) as a function of the

two variables, namely z and x, and, consequently, we set f (z, x)
def
= υz(x). As

a preliminary, consider the case when marginal utility is constant (u (x) = x),
i.e. when the functional reads:

U(w̃) = c (w̃) =
∫ b
a
f(E[w̃], x)dFw̃(x) (Eq. 3).

From the properties of υz(x) we get that f (z, x) is is strictly increasing with
respect to x and meets the following condition: f (0, 0) = 0. It is of interest to
particularize f (z, x) to get a more operational specification. This can be done
through assessing additional conditions to preferences.

Consider the risk premium Π(w̃)
def
= E[w̃] − c (w̃) of an arbitrary prospect

w̃ ∈ W. One may assume that risk premia are translation-invariant, i.e.,
Π(w̃ + x) = Π(w̃) or, equivalently, c (w̃ + y) = c (w̃) + y. Under reasonable
mathematical assumptions, one may show that a necessary and sufficient con-
dition for Π(.) to exhibit the invariance property is that f(z, x) = x+ E (x− z)
where E (.) is strictly increasing and meets the requirement: E (0) = 0.
Now, we focus on risk-averse investors, which means that any prospect w̃ ∈

W, will exhibit a negative risk premia, i.e. we must have E [E (w̃ −E [w̃])] ≤ 0.
A sufficient condition8 for this to hold is to assume that E (.) is concave, which
will be, from now on, done.
Finally, the functional is that of a disappointment model where elation/disap-

pointment is an increasing and concave function of the excess of the actual
outcome over its expected value. It is a particular case of the model developed
by L&S. It may also be viewed as the opposite to a convex measure of risk (in
the sense of Föllmer and Schied [2002]), since one may set:9

r(w̃)
def
= −c (w̃) = −(E[w̃]+

∫ b
a
E(x−E[w̃])dFw̃(x)) = −U(w̃) (Eq. 5).

The interest of the above result is that it allows for grounding a convex measure
of risk on a theory of the behaviour of economic agents towards risk. The risk
controller is then assumed to behave according to Axioms 1 to 4 and to have
preferences endowed with the translation invariance property.
Moreover, from (Eq. 5) we also get a decomposition of the risk premium

Π(w̃)
def
= E[w̃] − c (w̃) into elementary premia, which can be viewed as the

contributions of the variance, the skewness, the kurtosis ... of a random prospect
to the total risk premium which is demanded by an investor. If E(.) is smooth
enough, one may write:

Π (w̃) = −
∑+∞

n=2E [(w̃ −E [w̃])
n
] E(n) (E [w̃]) /n! (Eq. 6).

The total risk premium is then an infinite sum of elementary premia, each
of which is proportional to the product of two terms: the nth order centered
moment of the random variable w̃, i.e. E [(w̃ −E [w̃])

n
], and the nth order

8This is a direct consequence of Jensen’s inequality.
9The proof of this statement may be found in Chauveau and Thomas [2014]: Valuing

non-quoted CDS with consistent default probabilities, forthcoming CES working paper
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derivative of E (.) taken at point z = E [w̃]. Any even moment is but a quantity
of a "symmetric" risk and its coefficient must be negative if the investor is
risk averse, whatever the considered definition of risk. An odd moment may
be viewed as a quantity of an "asymmetric" risk and its coefficient must be
positive if the investor is risk averse. Finally, Equation (Eq. 6) may be viewed
as a theoretical grounding of the multimoment approach of the Capital Asset
Pricing Model. Now recall that EU theory is often violated by experiments and
that no general agreement has yet been found about the explaining power of
its challengers, i.e. Non-EU theories. Hence it is interesting to point out that,
because of its flexibility, the functional (Eq. 6) is compatible with many of the
anomalies of financial theory.
We now turn to the general case of variable marginal utility. The func-

tional U(w̃) will now read: U(w̃) = u (c (w̃)) =
∫ b
a
f(E[u (w̃)], x)dFw̃(x). Here

again f (z, x) is strictly increasing and concave with respect to x and meets
the following condition: f (0, 0) = 0. Since investors care but about "utils",

the risk premium of an arbitrary prospect w̃ ∈ W is now defined as Π(w̃)
def
=

E[u (w̃)]−u (c (w̃)) and one may again assume that risk premia are translation-
invariant when they are expressed in utils, i.e.: u (c (w̃) + y) = u (c (w̃))+u (y).
Under reasonable mathematical assumptions, the functional may be identi-

fied to a LS-functional which expresses as: U (w̃)
def
=

∫ b
a
υE[u(w̃)](x)dFw̃ (x)

= E[u (w̃)] +
∫ b
a
E (u (x)−E[u (w̃)]))dFw̃ (x). Elation/disappointment is an in-

creasing and concave function of the excess of the actual outcome over its ex-
pected utility. We here also get a decomposition of the risk premium Π(w̃)
def
= E[u (w̃)] − u (c (w̃)) into elementary premia, which can be viewed as the
contributions of the variance, the skewness, the kurtosis ... of the utility of a
random prospect to the total risk premium which is demanded by an investor.
This was Allais’ [1979] original intuition. If E(.) is smooth enough, one may
now write:

Π (w̃) = −
∑+∞

n=2E [(u (w̃)−E [u (w̃)])
n
] E(n) (E [u (w̃)]) /n! (Eq. 6

bis).
Anyway, the above results are of interest iff u (.) can be elicited. This

question is now going to be addressed.

4 The elicitation property.

Actually, as shown in Chauveau and Nalpas [2010], an important property
of LS-models is the elicitation property. We briefly recall, in this Section, their
results. As a preliminary, we consider a new binary relation over W.
Definition 4 (strong indifference). Two prospects w̃1 and w̃2 are strongly

equivalent iff (a) they are equivalent and (b) they meet the betweenness prop-
erty.10 The binary relation "w̃1 and w̃2 are strongly equivalent" will be labelled
"w̃1 ≈ w̃2".

10Recall that two prospects share the betweenness property iff for any α ∈ [0, 1] , w̃1 � w̃2

⇒ w̃1 � αw̃1 ⊕ (1− α) w̃2 � w̃2.

9
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The binary relation ≈ is obviously an equivalence relation over W and
strong indifference implies indifference in the usual sense. The properties of
LS-functionals may then be summed up in the following propositions where
w̃a,xp (w̃y,b1−q) denotes the binary lottery [a, x; 1− p, p] ([y, b; q, 1− q]).
Proposition 7 (strong indifference). If preferences are represented by a

LS-functional, two prospects w̃1 and w̃2 are strongly equivalent iff they exhibit
the same certainty equivalent and the same zero-disappointment equivalent,
what formally reads:
w̃1 ≈ w̃2 ⇔ c (w̃1) = c (w̃2) and E [u (w̃1)] = E [u (w̃2)]
Proposition 8 (strong equivalents). If preferences are represented by a

LS-functional, there exists exactly one binary lottery of the w̃a,xp type (of the

w̃y,b1−q type) which is. strongly equivalent to w̃. Lottery w̃
a,x
p (w̃y,b1−q) will be

called the left (right) strong equivalent of w̃. The degenerate lottery δ (z) (the

binary lottery w̃a,b
u(z)) is a maximal (minimal) element in Wu(z), i.e. w̃

a,b

u(z) �

z � δ (z).
Proofs. The proofs are given in Appendix 2.�
Let w ∈ [a, b] (π ∈ [0, 1]) be an arbitrary level of wealth (probability).

Consider the sequence of binary lotteries labelled {w̃a,xnpn
}n∈N which meets the

below requirements:

x0 = w, p0 = π and w̃
xn+1,b
1−pn+1

≈ w̃a,xnpn

where w̃
xn+1,b

1−pn+1
is the right strong equivalent of w̃a,xnpn

. Clearly, {xn}n∈N is
a strictly decreasing sequence. The difference between the expected utilities
of two consecutive binary lotteries, w̃a,xnpn

and w̃
a,xn+1
pn+1 , is equal to the second

weight (1−pn+1) of the right strong equivalent w̃
xn+1,b
1−pn+1

of w̃a,xnpn
, what formally

reads:
E
[
u(w̃a,xnpn

)
]
−E

[
u(w̃

a,xn+1
pn+1 )

]
= 1− pn+1.

Consequently, the expected utility of the initial lottery —i.e. πu (w)— satisfies
the following equality:

πu (w) = E
[
u(w̃a,xnpn

)
]
+
∑n

i=1(1− pi) (Eq. 10).
As shown below, the sequence {w̃a,xnpn

}n∈N it converges, in LS-models, to-
wards δ (a). The result is valid, whatever the value of π.
Proposition 9 (elicitation property). Assume that preferences are rep-

resented by a LS-functional. Then, {xn}n∈N is a decreasing sequence of real
numbers converging towards a. The sequence {1− pn}n∈N is increasing and
converges towards π` where ` does not depend on π and is a strictly increasing
function of w, mapping [a, b] on to [0, 1].
Proof. It is given in Appendix 2.�
Finally, in LS-models, we have the following equality:
` = lim

n→∞
(
∑n

i=1 (1− pi))/π (Eq. 11)

and we may set u (w) = l. It is left to the reader to transpose the above results

when the sequence {w̃yn,bqn
}n∈N —where y0 = w; q0 = π and w̃

a,yn+1
qn+1 ≈ w̃yn,b1−qn

—
is substituted for {w̃a,xnpn

}n∈N. Finally, note that Axioms 1 to 4 are, at least in
principle, experimentally testable since their checking comes down to making
choices between binary loteries.

10
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5 Concluding remarks

In this paper, a fully choice-based theory of disappointment has been developed
that can be viewed as an axiomatic foundation of models à la L&S (1986). LS
models are endowed with many interesting properties which have been presented
and/or recalled above. Note that the results do not depend on the assumption
that the set of possible outcomes is bounded. Indeed, extensions to R itself
are straightforward. Moreover, under the assumption of constant relative risk
aversion(s), one can easily implement the above approach to value any financial
asset.11
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6 Appendix 1 (Further developments)

Up to now, it has been implicitly assumed that n. e. u. functions of interest
were concave or convex over [a, b]. However, such an assumption may seem too

11An example of this valuation for CDS’s may be found in Chauveau and Thomas [2014].
See footnote 7.
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restrictive and an straightforward generalization of the above results consists
in taking into account smooth n. e. u. functions whose graph includes N
successive concave and convex sections. In this paper, we focus on the simple
case when the investor’s behaviour may differ, as suggested by Kahneman and
Tversky [1979], when he faces gains or losses, i.e. when his ex-post wealth w̃ is
higher or lower than a reference level w0 which may be either his initial (certain)
wealth or his expected terminal wealth. For instance,the investor may then be
more severely disappointed when he looses money (i.e. when w̃ ∈ [a,w0]) than
when he gets more money than he initially had (i.e. when w̃ ∈ [w0, b]).
As a preliminary to thge study of this new case, note that n.e.u. utility

functions could have been normalized differently. Indeed the normalization con-
ditions u (a) = 0 and u (b) = 1, play no particular role in the above analysis.
Hence it is equivalent to state that u (x) is a rationalizing function with the
standard normalization conditions or that υ (.) is also a rationalizing function
checking the following conditions υ (a) = u 6= 0 and υ (b) = u 6= 1, iff.υ (x) =
u+ (u− u)u (x).
Now, from Proposition 4, we get that there exist a unique n.e.u. function

u1 (.) (u2 (.)) which rationalizes the investor’s preferences over [a,w0] ([w0, b]).
Let u1 (x) = u1 (x) (u

λ
2 (x) = u2 (x)) if x ∈ [a,w0] (x ∈ [w0, b]) and 0 elsewhere.

Then uλ1 (x) = λu1 (x) and u
λ
2 (x) = λ+(1− λ)u2 (x).(u

λ
2 (x)) is the ratio-

nalizing function over [a,w0] ([w0, b]) checking: u
λ
1 (w0) = 0 and uλ1 (w0) = λ

(uλ2 (w0) = λ and u
λ
2 (b) = 1 ). Let u (x) = u

λ
1 (x) + u

λ
2 (x). Then u (.) is a ra-

tionalizing function over [a,w0] and over [w0, b], To be smooth, it must check the
additional condition that its left-hand size derivative, calculated at point w0 , is
equal to the correesponding right-hand size one, i.e. uλ′2 (w0) = (1− λ)u

′
2 (w0)

or, equivalently: λ = u′
2
(w0) / (u

′
1 (w0) + u

′
2 (w0)). The condition is clearly

sufficient. As a consequence, the real number λ corresponding to the smooth
function u (.) is well defined.and the following result holds:12

Proposition 10. Let w0 be an arbirtrary level of wealth belonging to ]a, b[.
There exists a unique smooth n.e.u. function u (.) mapping [a, b] on to [0, 1]
which is such that its restriction over [a,w0] ( [w0, b]) rationalizes the investor’s
preferences over [a,w0] ( [w0, b]) It is concave or convex over each subinterval. It
will be denominated, from now on, the w0-rationalizing function of the investor’s
preferences.
Proof. See the above discussion.�
Note that if u1 (.) and u2 (.) are both concave (both convex), then u (x) is

concave (convex) and we go back to the case initially studied..

7 Appendix 2 (Proofs)

Proof of Proposition 1
Let ω̃i = u (w̃i) for i = 1, 2. By definition of SSD2, it is equivalent to state

(a) w̃2 -
u
2
w̃1, (b) ω̃2 -2 ω̃1

, or (c)
∫ v
0
[Fω̃1 (t)− Fω̃2 (t)] dt ≤ 0 for v ∈ [0, 1],.

This last condition is, in its turn equivalent to the following one:

12A geometrical illustration of Proposition 5 is given on Figures 2A to C.
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∫ z
a
u′ (x) (Fw̃1 (x)−Fw̃2 (x))dx ≤ 0 for any z ∈ [a, b], because of the following

equality:∫ v
0
[Fω̃1 (t)− Fω̃2 (t)] dt =

∫ u−1(v)
a

(Fw̃1 (x)− Fw̃2 (x))u
′ (x) dx. �

Proof of Proposition 2
Proof. We want to prove that if w̃1 dominates w̃2 by SSD2, then w̃1 is

preferred to w̃2. To do so, consider two prospects w̃1 and w̃2. Let

∫ b

a

u′ (t)Fw̃i (t) dt = −

∫ b

a

u (x) dFw̃i = −E [w̃i] = −λi

for i = 1, 2. Assume that w̃1 dominates w̃2 by SSD2, we get:

∫ b

a

u′ (t) (Fw̃1 (t)− Fw̃2 (t))dt = − (λ1 − λ2) ≤ 0⇒ λ1 − λ2 ≥ 0

We must now show that w̃1 is preferred to w̃2, or, equivalently, thatU (w̃1)−
U (w̃2) ≥ 0 . Since E (.) is strictly increasing we also get:

E (u (x)− λ1) ≤ E (u (x)− λ2)

and the difference between the two functionals,U (w̃1)−U (w̃2) = ∆U expresses
as:

∆U =

∫ b

a

(u (x) + E (u (x)− λ1))dFw̃1 (x)−

∫ b

a

(u (x) + E (u (x)− λ2))dFw̃2 (x)

= (λ1 − λ2) +

∫ b

a

E (u (x)− λ1) dFw̃1 (x)−

∫ b

a

E (u (x)− λ2) dFw̃2 (x)

and we get: ∆U = T1 + T2, where:

T1 = (λ1 − λ2) +

∫ b

a

(E (u (x)− λ1)− E (u (x)− λ2)) dFw̃2 (x)

and:

T2 =

∫ b

a

E (u (x)− λ1) (dFw̃1 (x)− dFw̃2 (x))

Straightworward calculations give:

T1 = (λ1 − λ2)−

∫ b

a

(λ1 − λ2) E
′ (u (x)− λ1 + θ1 (λ1 − λ2)) dFw̃2 (x)

13
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with θ1 ∈ [0, 1] and:

T2 = [E (u (x)− λ1) (Fw̃1 (x)− Fw̃2 (x))]
b

a

−

∫ b

a

E ′ (u (x)− λ1)u
′ (x) (Fw̃1 (x)− Fw̃2 (x))dx

= E (−λ1) (Fw̃1 (a)− Fw̃2 (a))−

∫ b

a

E ′ (u (x)− λ1)u
′ (x) (Fw̃1 (x)− Fw̃2 (x))dx

= E (−λ1) (Fw̃1 (a)− Fw̃2 (a))− E
′ (1− λ1)

∫ b

a

u′ (t) (Fw̃1 (t)− Fw̃2 (t)) dt

+

∫ b

a

E ′′ (u (x)− λ1)u
′ (x)

[∫ x

a

u′ (t) (Fw̃1 (t)− Fw̃2 (t))dt

]
dx

Clearly, if [1− sup E ′(z)] ≥ 0 we get: sign (T1) = sign (λ1 − λ2) and T1 is
positive since λ1 − λ2 ≥ 0.
The term T2 is also positive, since it is the sum of three positive terms:

indeed
he first term, which reads E (−λ1) (Fw̃1 (a) − Fw̃2 (a)), is positive because

E (−λ1) is negative and so is (Fw̃1 (a)− Fw̃2 (a)) (from SSD2)
The second term is positive because E ′ (1− λ1) is positive, and the integral∫ b

a
u′ (t) (Fw̃1 (t)− Fw̃2 (t)) dt is negative (from SSD2).
The last term is positive because E ′′ (u (x)− λ1) is negative, u

′ (x) is positive
and

∫ x
a
u′ (t) (Fw̃1 (t)− Fw̃2 (t)) dt is negative (from SSD2). Finally, U (w̃1) −

U (w̃2) ≥ 0 �

Proof of Proposition 3.
As a preliminary, recall that u (.) is more concave than v (.) if and only if

u ◦ v−1 (.) is concave i.e. if there exists g (.) mapping [0, 1] on to itself and such
that:u (x) = g ◦ v (x) with g′ (.) > 0 and g′′ (.) < 0
The proof is grounded on the following calculations:

Let ∆
def
=
∫ z
a
u′ (x) (Fw̃1 (x)− Fw̃2 (x)) dt, we get:

∆ =

∫ z

a

g′ (v (x)) v′ (x) (Fw̃1 (x)− Fw̃2 (x))dx

=

[
g′ (v (x))

∫ x

a

v′ (t) (Fw̃1 (t)− Fw̃2 (t)) dt

]z

a

−

∫ z

a

g′′ (v (x)) v′ (x)

[∫ x

a

v′ (t) (Fw̃1 (t)− Fw̃2 (t))dt

]
dx

= g′ (v (z))

∫ z

a

v′ (t) (Fw̃1 (t)− Fw̃2 (t))dt

−

∫ z

a

g′′ (v (x)) v′ (x)

[∫ x

a

v′ (t) (Fw̃1 (t)− Fw̃2 (t))dt

]
dx

14
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Finally, we get the following equivalences and/or implications which hold for
any z:

∫ z

a

v′ (t) (Fw̃1 (t)− Fw̃2 (t))dt < 0

⇒

∫ z

a

u′ (x) (Fw̃1 (x)− Fw̃2 (x))dx < 0

or:
w̃
1
-
v
2
w̃
2
⇒ w̃

1
-
u
2
w̃
2

⇔ W
v
2
⊂Wu

2

and, as a consequence:

W
v−
2
⊆Wu−

2
andWv+

2
⊆Wu+

2

�

Proof of Proposition 4.
Let U∗ ⊂ U denote the subset of concave or convex n.e.u. functions and

let U∗
I
(U∗

C
) be the subset of inconsistent (consistent) concave or convex n.e.u.

functions. We have U∗ = U∗
I
∪ U∗

C
and .U∗

I
∩ U∗

C
= {f (.)} where f (.) is the n.

e. u. affine function defined by f (x) = (x− a) / (b− a). Two cases may occur,
according to the fact that (standard) SD2 is violated or not.

A .U∗
C
6= ∅ i.e. we first assume that SD2 is not violated. As a consequence,

there exists at least one concave function which is consistent. It is the n. e. u.
affine function f (.).

1. A first subcase is when U∗
C
= {f (.)} ; Proposition 4 is then

clearly valid.
2. We now leave aside this trivial subcase and assume that U∗

C

includes at least one strictly concave n.e.u. function.
Let H =

⋂
u∈U∗

I

hypo(u). where hypo(u) is the strict hypograph of u ∈

U
∗

I
.Since the hypographs are convex, so is H and so is its "northern" frontier

which may be defined from the following equality: hypo (u)
def
=
⋂
u∈U∗

I

hypo(u).

Clearly function u (.) is concave. Since the hypographs hypo(u) are open, we
do not know yet whether H is closed —i.e whether u (.) belongs to H and,
consequently is consistent— or not. Finally, we are going to prove directly that
W

u−

2
= ∅. The proof is three-step.

(a)The first step consists in defining a consistent concave n. e. u. function
u (.) which is close to u (.). Now let u (.) be defined by the following equality:

u (x)
def
= u (x)− y (x)

where

y (x) = η

(
x− a

b− a

)
− η

(
x− a

b− a

)2

Clearly, y (x) ≥ 0 for x ∈ [a, b], y′ (x) ≥ 0 for x ∈ [a, a+ (b− a) /2], y′ (x) ≤ 0
for x ∈ [a+ (b− a) /2, ] b, y (a) = y (b) = 0, a+(b− a) /2 = Argmax [y (x)] and
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max [y (x)] = η/4. A sufficient condition for u (.) to be concave is that:

η <
1

2
(b− a)

2
inf

x∈[a,b]
(−u′′ (x))

Moreover, u (.) will be strictly increasing if u′ (x) is strictly positive. A sufficient
condition for this is that:

η < (b− a) inf
x∈[a,b]

(u′ (x))

and, finally, u (.) is concave and strictly increasing if the real number η satisfies
the below inequality:

η < min

[
1

2
(b− a)

2
inf

x∈[a,b]
(−u′′ (x)) , (b− a) inf

x∈[a,b]
(u′ (x))

]
(1)

Since u (a) = u (a) = 0 and u (b) = u (b) = 1, u (.) is normalized and since
η > 0, the hypograph of u (.) strictly includes that of u (.). As a consequence,
may not be inconsistent otherwise we would have hypo(u) ⊂ hypo (u) and simul-
taneously u (.) ∈ U∗

I
N. This would contradict the fact that H =

⋂
u∈U∗

I

hypo(u).

Finallyu (.) is well consistent. Finally, the function u (.) is a concave n. e. u.
function if (1) is met.
(b)The second step consists in looking for an upper bound for the following

difference:

∆ =
∣∣∫ z
a
u
′ (x) (Fw̃1 (x)− Fw̃2 (x))dx−

∫ z
a
u′ (x) (Fw̃1 (x)− Fw̃2 (x))dx

∣∣

Integrating by parts yields:

∆ =
∣∣∫ z
a
(u′ (x)− u′ (x))(Fw̃1 (x)− Fw̃2 (x))dx

∣∣

=
∣∣(u (z)− u (z)) (Fw̃1 (z)− Fw̃2 (z)) +

∫ z
a
(u′ (x)− u′ (x)) (dFw̃1 (x)− dFw̃2 (x))

∣∣

and, consequently:

∆ ≤ |(u (z)− u (z)) (Fw̃1 (z)− Fw̃2 (z))|+
∣∣∫ z
a
(u′ (x)− u′ (x)) (dFw̃1 (x)− dFw̃2 (x))

∣∣
(2)

The first term is bounded indicated as below:

|(u (z)− u (z)) (Fw̃1 (z)− Fw̃2 (z))| ≤ |(u (z)− u (z))| ≤ sup
z∈[a,b]

|u′ (z)− u′ (z)|

We now show that he second term may be bounded as indicated below
∣∣∫ z
a
(u′ (x)− u′ (x)) (dFw̃1 (x)− dFw̃2 (x))

∣∣ ≤ 2 sup
z∈[a,b]

|u′ (z)− u′ (z)|

Indeed, we have

∣∣∫ z
a
(u′ (x)− u′ (x)) (dFw̃1 (x)− dFw̃2 (x))

∣∣ ≤
∣∣∫ z
a
(u′ (x)− u′ (x)) dFw̃1 (x)

∣∣
+
∣∣∫ z
a
(u′ (x)− u′ (x)) dFw̃2 (x)

∣∣

16
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and, for i = 1, 2.:
∣∣∫ z
a
(u′ (x)− u′ (x)) dFw̃i (x)

∣∣ ≤ sup
z∈[a,b]

|u′ (z)− u′ (z)|
∫ z
a
dFw̃i (x)

≤ sup
z∈[a,b]

|u′ (z)− u′ (z)|

Finally, an upper bound of is given by the following inequality:

∆ ≤ 3 sup
z∈[a,b]

|u′ (z)− u′ (z)|

Now, recall that sup
z∈[a,b]

|u′ (z)− u′ (z)| = sup
z∈[a,b]

∣∣∣∣η
(
z−a
b−a

)
− η

(
z−a
b−a

)2∣∣∣∣ = η/4.

As a consequence, we get

∆ ≤ 3η/4

(c)The last step consists in showing that if u (.) were not consistent, then we
would get a contradiction. Indeed if u (.) were not consistent there would exist
two prospects w̃1 and w̃2 such that w̃1 � w̃2 and, simultaneously, there would
exist z ∈ [a, b], such that

∫ z
a
u
′ (x) (Fw̃1 (x) − Fw̃2 (x))dx > 0. In other words,

there would exist a strictly positive real number ε such that
∫ z
a
u
′ (x) (Fw̃1 (x)− Fw̃2 (x))dx ≥ ε > 0

Since u (.) is consistent, we must have
∫ z
a
u′ (x) (Fw̃1 (x) − Fw̃2 (x))dx < 0

and, consequently: we get:

∆ =
∫ z
a
u
′ (x) (Fw̃1 (x)− Fw̃2 (x))dx+

∣∣∫ z
a
u′ (x) (Fw̃1 (x)− Fw̃2 (x))dx

∣∣ ≥ ε

and, finally:
ε ≤ 3η/4

Hence, if η is small enough, i.e. if η < 4ε/3, we get a contradiction and,
finally, u (.) is well consistent.

B. U∗
C
= ∅. i.e. we now assume that SD2 is not violated. No concave

n. e. u. functions may be consistent. By contrast, the subset of convex n.
e. u. functions is never empty since it always includes the following function:
u (x) = 0 for x ∈ [a, b[ and u (b) = 1. The rest of the proof is analogous to the
above one.�

Proof of Proposition 7.
The first part of the proof consists in proving that, in LS-models, two equiv-

alent prospects w̃1 and w̃2 which have the same expected utility u and the same
certainty equivalent c, are strongly equivalent. Let w̃1 and w̃2 exhibit the same
expected utility u and the same certainty equivalent c. From (Eq. 1) we get,
for i = 1, 2:

u (c) = u+
∑N

n=1 p
i
n (E (u (wn)− u))
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where w̃i =
[
w1, ..., wN ; pi1, ..., p

i
N

]
(i = 1, 2) and where u =

∑N

n=1 p
i
nu (wn).

As a consequence, we have:

∑N

n=1 p
1
nE (u (wn)− u)−

∑N

n=1 p
2
nE (u (wn)− u) = 0 (3)

Now, consider the compound lottery

w̃α
def
= αw̃1⊕(1− α) w̃2 =

[
w1, ..., wN ; αp11 + (1− α) p

2
1, ..., αp

1
N + (1− α) p

2
N

]

Its expected utility is:

E [u (w̃α)] =
∑N

n=1(αp
1
n + (1− α) p

2
n)u (wn) = u

From (Eq. 1) we also get:

u (c (w̃α)) = u+
∑N

n=1

(
αp1n + (1− α) p

2
n

)
E (u (wn)− u)

where c (w̃α) is the certainty equivalent of w̃α and, finally:

u (c (w̃α))− u (c) = α
(∑N

n=1 p
1
nE (u (wn)− u)−

∑N

n=1 p
2
nE (u (wn)− u)

)
= 0

The proof of the converse is as follows.We must show that if w̃1 and w̃2 are
strongly equivalent —i.e. if they have the same certainty equivalent and if they
exhibit the betweenness property—, then they exhibit the same expected utility.
To do so, we consider two discrete prospects:

w̃i =
[
w1, ..., wN ; pi1, ..., p

i
N

]
i = 1, 2

and their probability mixture:

αw̃1 ⊕ (1− α) w̃2 =
[
w1, ..., wN ; αp11 + (1− α) p

2
1, ..., αp

1
N + (1− α) p

2
N

]

where α ∈ [0, 1].
We assume that they have the same certainty equivalent. Hence, we have,

for i = 1, 2:
u (c) = u (c (w̃i)) = ui +

∑N

n=1 p
i
nE
(
u
i
n

)
(4)

where:
ui =

∑N

n=1 p
i
nu (wn) and u

i
n = u (wn)− ui (5)

Now, recall that, by definition, we have:

u (c (αw̃1 ⊕ (1− α) w̃2)) = αu1 + (1− α)u2

+
∑N

n=1

[
αp1n + (1− α) p

2
n

]
E
(
αu1n + (1− α)u

2
n

)

and, from (4) and (5), we get :

αu (c (w̃1)) + (1− α)u (c (w̃2)) = αu1 + (1− α)u2

+
∑N

n=1 αp
1
nE
(
u
1
n

)
+
∑N

n=1 (1− α) p
2
nE
(
u
2
n

)

18
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Substracting the two above equations from one another and using the between-
ness property yields:

∑N

n=1 p
1
nαE

(
u
1
n

)
+
∑N

n=1 p
2
n (1− α) E

(
u
2
n

)
= α

(∑N

n=1 p
1
nE

(
αu1n

+(1− α)u2n

))

+(1− α)

(∑N

n=1 p
2
nE

(
αu1n+

(1− α)u2n

))

or, equivalently:

∑N

n=1 p
1
nαE

(
u
1
n

)
+
∑N

n=1 p
2
n (1− α) E

(
u
1
n

)
+
∑N

n=1 p
2
n (1− α)

(
E
(
u
2
n

)
− E

(
u
1
n

))

=
∑N

n=1

[
αp1n + (1− α) p

2
n

]
E
(
αu1n + (1− α)u

2
n

)

and, finally:

∑N

n=1

[
αp1n + (1− α) p

2
n

]



E
(
u
1
n

)
−

E

(
αu1n+

(1− α)u2n

)

 =

∑N

n=1 p
2
n (1− α)

(
E
(
u
1
n

)
− E

(
u
2
n

))

∑N

n=1

[
αp1n+

(1− α) p2n

] [
E (u (wn)− u1)
−E (u (wn)− uα)

]
(1− α)

−1
=
∑N

n=1 p
2
n

(
E (u (wn)− u1)
−E (u (wn)− u2)

)

∑N

n=1$n (α)
(
u
1
n − u

2
n

)
E ′
(

u (wn)− u1
+θn (α)

(
u
1
n − u

2
n

)
)
=
∑N

n=1 p
2
n

(
u
1
n − u

2
n

)

× E ′
(

u (wn)− u1
+ζn

(
u
1
n − u

2
n

)
)

(u1 − u2)

{∑N

n=1$n (α) E
′

(
u (wn)− u1

+θn (α) (u1 − u2)

)}
= (u1 − u2)

×

{∑N

n=1 p
2
nE

′

(
u (wn)− u1
+ζn (u1 − u2)

)}

(u1 − u2)F (α) = (u1 − u2) Λ

Since F (α) cannot be equal to Λ for any value of α, we must have u1−u2 =
0.�

Proof of Proposition 8.
Let:

w̃a,bπ
def
= [a, b; 1− π, π] , w̃αz,π

def
= αδ (z)⊕ (1− α) w̃a,bπ

and:

u
def
= αu (z) + (1− α)π = E [u(w̃απ )]

In LS-models we get:

U(w̃αz,π)
def
= u+ αE(u (z)− u)+ (1− α)πE(1− u) + (1− α) (1− π)E(− u)

and, consequently:

U(w̃αz,π) = αU(δ (z)) + (1− α)U(w̃
a,b
π ) + EXP
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where:

EXP
def
= αE(u (z)− u) + (1− α)

{
π (E(1− u)− E(1− π))
+(1− π)(E(−u)− E(−π))

}

We get:

EXP = α(u (z)− u)E ′(θ (u (z)− u)) + (1− α)π(π − u)E ′(1− π + ζ(π − u))

+ (1− α) (1− π)(π − u)E ′(−π + ξ(π − u))

or:

EXP = α (1− α) (u (z)− π)E ′(θ (1− α) (u (z)− π))

+ (1− α)α(π − u (z))

{
πE ′(1− π + ζα(π − u (z)))

+(1− π)E ′(−π + ξα(π − u (z)))

}

and, finally:

EXP = α (1− α) (u (z)− π)




E ′(θ (1− α) (u (z)− π))

−

{
πE ′(1− π + ζα(π − u (z)))

+(1− π)E ′(−π + ξα(π − u (z)))

}



The above condition can be rewritten as:

EXP = α (1− α) (u (z)− π) {E ′(θ (1− α) (u (z)− π))− exp}

where:

exp = πE ′(1− π + ζα(π − u (z))) + (1− π)E ′(−π + ξα(π − u (z)))

= πE ′(0) + πζα(π − u (z))E ′′(ζsα(π − u (z)) + (1− π)E ′(0)

+ (1− π)ζα(π − u (z))E ′′(ξkα(π − u (z))

Note that we have:

E ′(θ (1− α) (u (z)− π))− exp = E ′(0)− {πE ′(0) + (1− π)E ′(0)}

+ θ (1− α) (u (z)− π) E ′′(θt (1− α) (u (z)− π))

− πζα(π − u (z))E ′′(ζsα(π − u (z)))

− (1− π)ζα(π − u (z))E ′′(ξkα(π − u (z))

and, finally:

EXP = α (1− α) (u (z)− π)2





θ (1− α) E ′′(θt (1− α) (u (z)− π))
+πζαE ′′(ζsα(π − u (z)))

+(1− π)ζαE ′′(ξkα(π − u (z))



 < 0

' α (1− α) (u (z)− π)2E ′′(0) {θ (1− α) + ζα}

and the condition EXP = 0 implies u (z)− π = 0.�
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Proof of Proposition 9.
First, note that n.e.u. utility functions could be normalized differently. In-

deed the normalization conditions u (a) = 0 and u (b) = 1, play no particular
role in the above analysis. Hence it is equivalent to state that u (x) is a ra-
tionalizing function with the standard normalization conditions or that υ (.) is
also a rationalizing function checking the following conditions υ (a) = u 6= 0
and υ (b) = u 6= 1, iff.υ (x) = u+ (u− u)u (x).
Now let: uλ1 (x) = λu1 (x) and u

λ
2 (x) = λ+(1− λ)u2 (x). Then u

λ
1 (x)1[a,w0]

(uλ2 (x)1[w0,b]) is the rationalizing function over [a,w0] ([w0, b]) checking: u
λ
1 (w0) =

0 and uλ1 (w0) = λ (u
λ
2 (w0) = λ and u

λ
2 (b) = 1 ).Let u (x) = u

λ
1 (x)1[a,w0] +

u
λ
2 (x)1[w0,b]. Then u (.) is a rationalizing function over [a,w0] and over [w0, b],
To be smooth, it must check the additional condition that its left-hand size
derivative, calculated at point w0 , is equal to the correesponding right-hand
size one, i.e.
u
λ′
2 (w0) = (1− λ)u

′
2 (w0)

or, equivalently:
λ = u′

2
(w0) / (u

′
1 (w0) + u

′
2 (w0))

The condition is clearly sufficient.

If xn+1 were greater than xn, w̃
xn+1,b
1−pn+1

would exhibit first-order stochastic
dominance over w̃a,xnpn

. Hence, xn+1 is lower than xn and {xn}n∈N is a decreasing
sequence. It is also bounded below by a. Consequently, it converges towards
a limit ` ≥ a. Next, note that the two strongly equivalent lotteries w̃a,xnpn

and

w̃
xn+1,b
1−pn+1

have the same expected utility, i.e., we have:

pnu (xn) = pn+1u (xn+1) + (1− pn+1) for n = 0, 1, ... (6)

and summing the members of the above equalities yields:

πu (w) = pnu (xn) +
∑n

i=1 (1− pi) for n = 1, 2, ...

The above equality implies Sn
def
=
∑n

i=1 (1− pi) ≤ πu (w). Since{Sn}n∈N∗
is an increasing sequence, it converges towards a limit Σ ≤ πu (w). As a con-
sequence, Sn − Sn−1 = (1− pn.) → 0, i.e. pn. → 1. Moreover, since we have:

w̃
a,xn+1
pn+1 ≺ w̃

xn+1,b
1−pn+1

∼ w̃a,xnpn
, the sequence of binary lotteries

{
w̃a,xnpn

}
n∈N

is de-

creasing and converges towards w̃a,l1 = δ (l). Similarly, {w̃xn,b1−pn
}n∈N∗ converges

towards w̃l,b0 = δ (l).
We now show that ` = a. To see this, assume ` > a. Then, since w̃a,xnpn

�

δ (l), there exists a binary lottery w̃
a,x∗

n

pn such that l < x∗n < xn, and w̃
a,x∗

n

pn ∼ δ (l).

Let x∗n+1 and p
∗
n+1 be defined by w̃

x∗
n+1,b

1−p∗
n+1

≈ w̃
a,x∗

n

pn . Since {w̃xn,b1−pn
}n∈N∗ converges

towards δ (l), there exists an integer N , such that m ≥ N ⇒ l ≤ xm < x
∗
n+1 and

pm ≥ p
∗
n+1. This implies that w̃

x∗
n+1,b

1−p∗
n+1

should be preferred to the w̃xm,b1−pm
s and,

consequently, that δ (l) should be preferred to the w̃xm,b1−pm
s, that contradicts the

fact that {w̃xn,b1−pn
}n∈N is decreasing and converges towards δ (l). Hence ` = a
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and {Sn}n∈N converges towards Σ = πu (w). As a consequence, equality (Eq.
11) is checked.
Proof of Proposition 10.
First, note that n.e.u. utility functions could be normalized differently. In-

deed the normalization conditions u (a) = 0 and u (b) = 1, play no particular
role in the above analysis. Hence it is equivalent to state that u (x) is a ra-
tionalizing function with the standard normalization conditions or that υ (.) is
also a rationalizing function checking the following conditions υ (a) = u 6= 0
and υ (b) = u 6= 1, iff.υ (x) = u+ (u− u)u (x).
Now let: uλ1 (x) = λu1 (x) and u

λ
2 (x) = λ+(1− λ)u2 (x). Then u

λ
1 (x)1[a,w0]

(uλ2 (x)1[w0,b]) is the rationalizing function over [a,w0] ([w0, b]) checking: u
λ
1 (w0) =

0 and uλ1 (w0) = λ (u
λ
2 (w0) = λ and u

λ
2 (b) = 1 ).Let u (x) = u

λ
1 (x)1[a,w0] +

u
λ
2 (x)1[w0,b]. Then u (.) is a rationalizing function over [a,w0] and over [w0, b],
To be smooth, it must check the additional condition that its left-hand size
derivative, calculated at point w0 , is equal to the correesponding right-hand
size one, i.e.
u
λ′
2 (w0) = (1− λ)u

′
2 (w0)

or, equivalently:
λ = u′

2
(w0) / (u

′
1 (w0) + u

′
2 (w0))

The condition is clearly sufficient.
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