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Abstract

We study the existence of equilibrium and rational bubbles in a Ram-

sey model with heterogeneous agents, borrowing constraints and endoge-

nous labor.

Applying a Kakutani’s fixed-point theorem, we prove the existence

of equilibrium in a time-truncated bounded economy. A common argu-

ment shows this solution to be an equilibrium for any unbounded economy

with the same fundamentals. Taking the limit of a sequence of truncated

economies, we eventually obtain the existence of equilibrium in the Ram-

sey model.

In the second part of the paper, we address the issue of rational bubbles

and we prove that they never occur in a productive economy à la Ramsey.
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1 Introduction

Frank Ramsey’s (1928) seminal article on optimal capital accumulation ends
with a famous conjecture: ”... equilibrium would be attained by a division into
two classes, the thrifty enjoying bliss and the improvident at the subsistence
level”. In the long run, the most patient agent(s) would hold all the capi-
tal, while the others would consume at the minimum level necessary to sustain
their lives. Becker (1980) demonstrated the Ramsey conjecture in the case of
a stationary equilibrium when households face borrowing constraints. Without
such a constraint, markets are complete and the impatient households would
borrow against the future stream of their labor incomes, consume more in the
present and accept their consumption converges to zero as time tends to infin-
ity (Le Van and Vailakis (2003), and Becker (2012)).1 In contrast, borrowing
constraints result in impatient agents’ positive consumption (equal to wage) at
a steady state.

In the last three decades, the framework introduced by Becker (1980) has
been used for di↵erent purposes. For instance, Becker and Foias (1987, 1994)
and Sorger (1994, 1995) prove that persistent cycles of period two as well as
chaotic solutions arise when the capital income monotonicity fails. Under addi-
tional market imperfections (strategic behavior on capital markets and progres-
sive capital taxation), Becker and Foias (2007), Sarte (1997) or Sorger (2002,
2005, 2008) prove that impatient households may hold capital in the long run.
Bosi and Seegmuller (2010) extend the Ramsey model with heterogeneous house-
holds to endogenous labor.

Our Ramsey model with heterogeneous households, endogenous labor and
borrowing constraints addresses two important issues: the existence of equilib-
rium on the one hand and rational bubbles on the other hand.

To the best of our knowledge, the existence of bubbles has never been con-
sidered in such a context, while the existence of the equilibrium was tackled
only by Becker et al. (1991) and Bosi and Seegmuller (2010). In the latter,
labor supply is endogenous, but the existence of the intertemporal equilibrium
is shown only in a neighborhood of the steady state. Becker et al. (1991) focus
on the model with inelastic labor supply, but provide a global existence argu-
ment. Their proof rests on the introduction of a tâtonnement continuous map
in which each fixed point yields an equilibrium. However, their argument no
longer works when labor is elastically supplied. Our proof of existence holds in
this more general and challenging case and, by the way, a proof of nonexistence
for rational bubbles is also provided.2

1The introduction of a labor-leisure arbitrage implies in addition that impatient agents
work less today to enjoy the leisure time but more tomorrow to repay their debt (Le Van et
al. (2007)).

2To construct this continuous map, the authors require the intertemporal utility to be
continuous for the product topology on the whole space of sequences and the productivity at
the origin larger than the inverse of the time preference (�). In our paper, we only require
the utility to be continuous for the product topology on the feasible set and the productivity
at the origin to be larger than the capital depreciation rate.

However, even if we take the assumptions of Becker et al. (1991) on the utility function

2

 
Documents de travail du Centre d'Economie de la Sorbonne - 2014.40



We show the existence of Ramsey equilibrium in three steps. (1) We start
by considering a bounded time-truncated economy and adapt a Kakutani’s
fixed-point argument to account for the sequential budget constraints in the
model’s household sector.3 (2) This solution remains an equilibrium as the uni-
form bounds are relaxed. (3) Taking the limit of a sequence of time-truncated
economies, we eventually prove the existence of equilibrium in the infinite-
horizon economy. To the best of our knowledge, there are no papers that prove
the existence of equilibrium under imperfections in the financial markets (bor-
rowing constraint) in the case of capital accumulation and endogenous labor
supply.

Our setup is also suitable to address the important issue of existence of
rational bubbles in a general equilibrium model. The seminal models on the
existence of rational bubbles in a general equilibrium context are overlapping
generations (OG) economies (Tirole (1985)). Financially constrained economies
seem to share some of the same properties found in OG models. In connection
with the Tirole’s (1982) idea that new traders should enter the market each pe-
riod, more recent contributions have shown that bubbles may exist in exchange
economies with heterogeneous infinite-lived households facing some borrowing
constraints (Kocherlakota (1992), Huang and Werner (2000)). Conversely, we
prove that rational bubbles fail to exist when production is taken into account
because of a positive interest rate. Our condition for ruling out any bubble is
less demanding than the one one finds in Kocherlakota (1992) or in Huang and
Werner (2000), that is an endowment growth rate lower than the interest rate.

Section 2 introduces the model. Sections 3 and 4 focus on the definition and
the existence of a Ramsey equilibrium. Sections 5 proves that rational bubbles
never emerge. Technical details are gathered in Appendices 1 to 3.

2 The Ramsey model

The Ramsey equilibrium model specifies the behavior of a finite collection of
households and the profit motive governing production. Each household is
infinitely-lived and enjoys a felicity, or reward, at each time based on its con-
sumption and leisure time. Lifetime utility is the discounted sum of felicities and
each household’s discount factor is a given constant. The production technology
is defined by a one-sector model with a single all purpose consumption-capital
good. Households supply capital goods and labor services to the production
sector at each time. Time is discrete and there is an infinite horizon. Markets
are perfectly competitive and households act with perfect foresight when com-
posing their consumption and investment decisions. Each household’s budget

and the productivity, the proof of Becker et al. (1991) can not be carried over our model
under endogenous labor supply. Indeed, their assumptions allow to have the capital per head
bounded away from zero and, since the labor supply is exogenous in their paper, the paths
of capital stock are bounded away from zero. In our paper, since labor supply is endogenous,
labor and capitals are no longer ensured to be bounded away from zero.

3Our proof is quite general and holds even if some initial individual capital endowments
are zero and the capital depreciation rate equals one.
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constraint also reflects a borrowing constraint at each time.
Assumptions governing household behavior and relationships with the pro-

duction sector are detailed below.

2.1 The production sector

Consumption goods and new capital goods are produced at each time. The
technology is represented by a constant returns to scale production function:
F (Kt, Lt), where Kt and Lt denote the input demands for capital and labor at
time t. Profit maximization occurs at each time. All intertemporal decisions
reside with households as there are no adjustment costs in the production sector.
Under competition zero profits are earned at each time in this sector. Standard
assumptions are imposed on F as well as a boundary condition when the labor
supply is maximal. This additional condition simplifies the existence argument.

Let R+ = [0,1) and R2
+ = R+ ⇥ R+. Let m denote the maximum possible

labor supply within any period. This can occur if each household provides one
unit of labor at each time and there are m households. Note that all labor
services provided by the households are alike.

Notation: (@F/@K ) (0,m) ⌘ lim✏!0+
F (✏,m)

✏ ,
(@F/@K ) (1,m) ⌘ lim✓!+1 (@F/@K ) (✓,m) ,
(@F/@L) (1,1) ⌘ lim✓!+1 (@F/@L) (1, ✓)

It can be shown that lim✏!0+
F (✏,m)

✏ = lim✏!0+ (@F/@K ) (✏,m), lim✓!+1
F (✓,m)

✓ =

lim✓!+1 (@F/@K ) (✓,m) and lim✓!+1
F (1,✓)

✓ = lim✓!+1 (@F/@L) (1, ✓).

Assumption 1 The production function F : R2
+ ! R+ is C1 in the interior of

R2
+, homogeneous of degree one, strictly increasing, concave and strictly concave

separately in K > 0 and L > 0. Inputs are essential: F (0, L) = F (K, 0) = 0.
Limit conditions for production hold: F (K,L) ! 1 either when L > 0 and
K ! 1 or when K > 0 and L ! 1. Moreover, (@F/@K ) (0,m) > �, where
� 2 (0, 1] denotes the rate of capital depreciation.

Remark 1 Since F is homogeneous of degree one and F (1, 0) = 0, we obtain
(@F/@K ) (1,m) = 0 and (@F/@L) (1,1) = 0. Indeed,

F (K,mL) � (@F/@K ) (K,mL)K = (@F/@K ) (K/L,m)K.

This implies F (1,mL/K) � (@F/@K ) (K/L,m). Letting K/L go to 1 yields
0 = F (1, 0) � (@F/@K ) (1,m) � 0. The proof that (@F/@L) (1,1) = 0 is left
to the reader.

2.2 Households

We consider an economy without population growth where m households work
and consume. Each household i is endowed with ki0 units of capital at period
0 and one unit of time per period which may be divided between labor supply
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and leisure time. The leisure demand of agent i at time t is denoted by �it and
that agent’s labor supply is lit = 1 � �it. This individual’s capital supply and
consumption demands at time t are denoted by kit and cit, respectively. Agents
allocate their income at time t to consumption, cit, and capital accumulation,
denoted kit+1.

The aggregate, or total, initial capital endowment is positive.

Assumption 2 ki0 � 0 for i = 1, . . . ,m,
P

i ki0 > 0.

Each household maximizes a lifetime utility function which is separable over
time:

P1
t=0 �

t
iui (cit,�it), where �i 2 (0, 1) is agent i’s discount factor.

Assumption 3 ui : R2
+ ! R is C0, strictly increasing and concave. Without

loss of generality, we assume ui(0, 0) = 0 for any i.

For the proof of non-existence of bubbles, the following additional assump-
tion is required.

Notation:

@ui
@c (0,�) ⌘ lim✏!0+

ui(✏,�)
✏ , @ui

@� (c, 0) ⌘ lim✏!0+
ui(c,✏)

✏

It can be shown that lim✏!0+
ui(✏,�)

✏ = lim✏!0+ (@ui/@c) (✏,� ) and lim✏!0+
ui(c,✏)

✏ =
lim✏!0+ (@ui/@�) (c,✏ )

Assumption 4 (Inada conditions) The utility function is C1 in the interior of
R2

+, (@ui/@c) (0,�) = 1 if � > 0 and (@ui/@�) (c, 0) = 1 if c > 0.

Household heterogeneity can arise in terms of endowments (ki0), discounting
(�i) and per-period utility (ui).

In any period, the household faces a budget constraint:

pt [cit + kit+1 � (1� �) kit]  rtkit + wt (1� �it)

It is known that, in economies with heterogenous discounting factors and no
borrowing constraints, the more impatient agents borrow, consume more and
work less in the short run than the most patient agents. Over the longer run
those impatient agents consume less and work more in order to repay their debts
to patient agents (see Le Van et al. (2007)). In our model, as in Becker (1980),
agents are prevented from borrowing: kit � 0 for i = 1, . . . ,m and t = 1, 2, . . .
This constraint implies the model has an incomplete market structure as no
markets exist where agents can borrow against their future wage income in
order to consume more today.

3 Definition of equilibrium

Let an infinite-horizon sequences of prices and quantities be denoted by:

(p, r,w, (ci,ki,�i)
m
i=1 ,K,L)
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where

(p, r,w) ⌘ ((pt)
1
t=0 , (rt)

1
t=0 , (wt)

1
t=0) 2 R1 ⇥ R1

+ ⇥ R1
+ ;

(ci,ki,�i) ⌘ ((cit)
1
t=0 , (kit)

1
t=1 , (�it)

1
t=0) 2 R1

+ ⇥ R1 ⇥ R1
+ ;

(K,L) ⌘ ((Kt)
1
t=0 , (Lt)

1
t=0) 2 R1

+ ⇥ R1
+ ,

with i = 1, . . . ,m.

Definition 1 A Walrasian equilibrium
�
p̄, r̄, w̄,

�
c̄i, ¯ki,¯�i

�m
i=1

, ¯K, ¯L
�
satisfies

the following conditions.
(1) Price positivity: p̄t, r̄t, w̄t > 0 for t = 0, 1, . . .
(2) Market clearing:

goods :
mX

i=1

⇥
c̄it + k̄it+1 � (1� �) k̄it

⇤
= F

�
K̄t, L̄t

�
;

capital : K̄t =
mX

i=1

k̄it;

labor : L̄t =
mX

i=1

l̄it,

for t = 0, 1, . . ., where lit = 1� �it denotes the individual labor supply.
(3) Optimal production plans: p̄tF

�
K̄t, L̄t

�
� r̄tK̄t� w̄tL̄t is the value of the

program: max [p̄tF (Kt, Lt)� r̄tKt � w̄tLt], under the constraints Kt � 0 and
Lt � 0 for t = 0, 1, . . ..

(4) Optimal consumption plans:
P1

t=0 �
t
iui

�
c̄it, �̄it

�
is the value of the pro-

gram: max
P1

t=0 �
t
iui (cit,�it), under the following constraints:

budget constraint : p̄t [cit + kit+1 � (1� �) kit]  r̄tkit + w̄t (1� �it)

borrowing constraint : kit+1 � 0

leisure endowment : 0  �it  1

capital endowment : ki0 � 0 given

for t = 0, 1, . . .

The following observation is a critical feature of our economic model.

Remark 2 Under Assumption 1, individual and aggregate capital supplies, in-
dividual and aggregate consumption demands are uniformly bounded by max {K0,K

⇤},
where K⇤ is the unique solution to the equation (1� �)x + F (x,m) = x and
K0 ⌘

Pm
i=1 ki0 is the initial aggregate capital. This solution namely exists un-

der the assumption (@F/@K ) (0,m) > �. Labor supply is uniformly bounded by
m. We denote by A the common bound of the feasible consumption and capital
stocks sequences.

Let us prove now the existence of a Walrasian equilibrium. The proof will be
articulated in two parts. First, we consider an equilibrium with a finite horizon.
Then, we let the horizon go to infinity to obtain a Walrasian equilibrium as
limit of a sequence of finite-horizon economies.
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4 Existence of equilibrium

Our main result is the existence of an equilibrium for this heterogeneous agent
capital accumulation economy. The proof is given in two major steps. First,
we prove the existence of equilibrium in finite-horizon economies. This demon-
stration has two parts: an existence theorem with an artificial bound on agents
choice sets, and an extension of this theorem when those bounds are relaxed.
The last step proves an equilibrium exists in the infinite-horizon economy. That
economy is viewed as a limit of a sequence of truncated economies; the infinite
horizon equilibrium prices and quantities are naturally shown to be limits of
their finite horizon counterparts.

Consider a finite-horizon bounded economy which goes on for T +1 periods:
t = 0, . . . , T . Choose su�ciently large quantity bounds Bc, Bk, and so on,
with:

Xi ⌘ {(ci0, . . . , ciT ) : 0  cit  Bc} = [0, Bc]
T+1 ;

Yi ⌘ {(ki1, . . . , kiT ) : 0  kit  Bk} = [0, Bk]
T ;

Zi ⌘ {(�i0, . . . ,�iT ) : 0  �it  1} = [0, 1]T+1 ;

Y ⌘ {(K0, . . . ,KT ) : 0  Kt  BK} = [0, BK ]T+1 ;

Z ⌘ {(L0, . . . , LT ) : 0  Lt  BL} = [0, BL]
T+1

,

wheremBk < BK ,m < BL,m (1� �)Bk+F (BK , BL) < Bc, min {BK , Bc, BL} >
A (A is the common bound of the feasible allocations, see Remark 2).

Recall that ki0 is given and that the borrowing constraint inequalities kit � 0
model the imperfection in the credit market.4

Let ET denote this bounded economy with technology and preferences
as in Assumptions 1 to 3. Let Xi, Yi and Zi be the ith consumer-worker’s
bounded sets for consumption demand, capital supply and leisure demand re-
spectively (i = 1, . . . ,m). The sets Y and Z are the bounded sets constraining
the production sector’s capital and labor demands at each time.

Theorem 3 Under the Assumptions 1, 2 and 3, there exists an equilibrium�
p̄, r̄, w̄,

�
c̄h, ¯kh,¯�h

�m
h=1

, ¯K, ¯L
�
for the finite-horizon bounded economy ET .

Proof. See Appendix 1.
The unbounded economy, with relaxed artificial bounds, is shown to pos-

sess an equilibrium price system and allocation.

Corollary 1 Any equilibrium of ET is an equilibrium for the finite-horizon un-
bounded economy.

Proof. See Appendix 1.
Our main result is the following existence theorem for the infinite-horizon

economy.

4The credit constraint might be generalized by requiring: hi  kit with hi < 0 given. This
specification is left for another paper.
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Theorem 4 Under the Assumptions 1, 2 and 3, there exists an equilibrium
in the infinite-horizon economy with endogenous labor supply and borrowing
constraints.

Proof. We consider a sequence of time-truncated economies and the associated
equilibria. We prove that there exists a sequence of equilibria which converges,
when the horizon T goes to infinity, to an equilibrium of the infinite-horizon
economy. Appendix 2 contains the formal proof.

5 Non-existence of bubbles

There is considerable interest in whether or not a perfect foresight equilibrium
capital asset price sequence is consistent with the notion of a rational pricing
bubble. Some researchers points out that bubbles may occur with heterogeneous
infinite-lived households facing borrowing constraints in an exchange economy
(Kocherlakota (1992), Huang and Werner (2000)). We show this does not carry
over to a model with productive capital accumulation.

Let
�
p̄, r̄, w̄,

�
c̄i, ¯ki,¯�i

�m
i=1

, ¯K, ¯L
�
denote an equilibrium in the infinite hori-

zon economy. We will take p̄t = 1 for any t. We know that, for any t, r̄t > 0
and w̄t > 0.

Claim 5 Under Assumptions 1, 2, 3 and 4 (Inada), we have:
(1) c̄it > 0 if and only if �̄it > 0,
(2) for any i and any t, c̄it > 0 and �̄it > 0,
(3) for any i and any t,

@ui

@c

�
c̄it, �̄it

�
� (1� � + r̄t+1)�i

@ui

@c

�
c̄it+1, �̄it+1

�

and, if k̄it+1 > 0, then

@ui

@c

�
c̄it, �̄it

�
= (1� � + r̄t+1)�i

@ui

@c

�
c̄it+1, �̄it+1

�
,

(4) for any i and any t,

w̄t
@ui

@c

�
c̄it, �̄it

�
 @ui

@�

�
c̄it, �̄it

�
(1)

and, if �̄it < 1, then

w̄t
@ui

@c

�
c̄it, �̄it

�
=

@ui

@�

�
c̄it, �̄it

�

(5) Finally, K̄t, L̄t > 0.

Proof. See Appendix 3.
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Now define:

q̄t+1⌘max
i

�i (@ui/@c)
�
c̄it+1, �̄it+1

�

(@ui/@c)
�
c̄it, �̄it

� =
1

1� � + r̄t+1

The ratio q̄t has a natural interpretation as a market discount factor. The
maximum condition on the right-hand side (above) shows that this ratio reflects
the marginal rate of substitution between t and t + 1 for the highest marginal
valuation consumer.

Let

Q̄0 ⌘ 1 (2)

Q̄t ⌘
tY

s=1

q̄s for t > 0 (3)

Clearly, Q̄t =
Qt

s=1 (1� � + r̄s)
�1 for t > 0. Q̄t is the present value of a

unit of capital of period t with focal date t = 0. This present value is implic-
itly defined via the current value prices system that arises as an equilibrium
configuration in our main theorem. For any t, we obtain:

Q̄t = Q̄t+1 (1� � + r̄t+1) (4)

and, by induction, 1 = Q̄0 = Q̄T (1� �)T +
PT

t=1 Q̄tr̄t (1� �)t�1.
We define below the fundamental value of capital considered as a long-lived

asset with focal date t = 0. At date 1, one unit of this asset will give back 1� �
unit of capital and r̄1 unit of consumption good as its dividend. At period 2,
1� � unit of capital will give back (1� �)2 unit of capital and (1� �) r̄2 as its
dividend. This leads to the following definition of the Fundamental Value of
capital:

FV ⌘
1X

t=1

Q̄t (1� �)t�1
r̄t

Given that the price of capital at t = 0 is expected, with our normalizations,
to be 1 if capital is priced in an e�cient market (i.e. the present value of a unit
of capital is its present value of future rental rates), we say there is a bubble if

FV = 1� limT!1 Q̄T (1� �)T < 1. More formally:

Definition 2 The economy is said to experience a bubble if

lim
T!1

Q̄T (1� �)T > 0

Otherwise (limT!1 Q̄T (1� �)T = 0), there is no bubble.

The crucial question concerns the existence of bubbles in a productive econ-
omy. We show that a productive economy experiences no bubbles. The proof
rests on the following lemma.
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Lemma 1 If the economy experiences a bubble, then r̄t converges to zero.

Proof. It is equivalent to prove that, if r̄t does not converge to zero, there are
no bubbles. If r̄t does not converge to zero, there are, equivalently, ⇢ > 0 and a
strictly increasing sequence (ti)

1
i=1 such that r̄ti � ⇢ for i = 1, 2, . . . For T > tn,

we get

Q̄T (1� �)T =
TY

s=1

1� �

1� � + r̄s


nY

i=1

1� �

1� � + r̄ti

✓

1� �

1� �+⇢

◆n

and

0  lim sup
T!1

Q̄T (1� �)T  lim
n!1

✓
1� �

1� �+⇢

◆n

= 0

Now, we are able to prove the No-Bubble Theorem.

Theorem 6 Under the Assumptions 1, 2, 3 and 4, our productive economy
experiences no bubble.

Proof. See Appendix 3.

Remark 7 We have for any t and any i

�
Q̄tc̄it + Q̄tw̄t�̄it

�
+ Q̄tk̄it+1 = Q̄tw̄t + Q̄t (1� � + r̄t) k̄it

If we consider the capital as a long-lived asset, we can consider the sequence
of perfectly foreseen equilibrium wages at each time, w̄t, as if it is agent i’s
endogenously determined labor income present value or endowment. Summing
from t = 0 to t = T , we get:

TX

t=0

Q̄t

�
c̄it + w̄t�̄it

�
+ Q̄T k̄iT+1 =

TX

t=0

Q̄tw̄t + Q̄0 (1� � + r̄0) k̄i0

Following Huang and Werner (2000) among others, we may say that, when

the interest rate is high, in the sense that
PT

t=0 Q̄tw̄t < 1, then there is no

bubble. Indeed, if this property holds and if (w̄t) 2 int l1+ , then
PT

t=0 Q̄t < 1
which implies limt Q̄t = 0 and we have no bubble. However, here, we do not
know, without additional assumptions, that (w̄t) 2 int l1+ and

PT
t=0 Q̄tw̄t < 1.5

Nevertheless, no bubble holds in our economy.

6 Conclusion

We have analyzed the existence of the intertemporal equilibrium and the oc-
currence of rational bubbles in a Ramsey model with heterogeneous agents,
borrowing constraints and endogenous labor.

5Here, we consider the interior intl1+ when l1 is endowed with the supnorm topology.
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The assumed market incompleteness from the borrowing constraint nullifies
the equivalence between the planner’s and the market solution characteristic
of the complete markets modeling framework. Assuming borrowing constraints
are the financial market imperfection in our model economy, we adopt a three-
pronged proof strategy: existence in a (1) bounded and, then, (2) an unbounded
truncated economy, and, last, (3) existence in an infinite-horizon economy as
limit of a sequence of truncated unbounded economies. Moreover, as a by-
product of our proof we demonstrate that bubbles cannot exist despite the
presence of borrowing constraints because equilibrium interest-rental rates do
not converge to zero. One can observe for the existence of an equilibrium in
a truncated economy, we still use the demand approach and the Kakutani’s
fixed-point theorem.

Therefore, this paper adds to the existing Ramsey equilibrium literature on
two fronts. We provide a simple general proof of existence of an equilibrium
(because of the endogenous labor supply and the weaker assumptions on the
fundamentals); on the other hand, our arguments also furnish a proof that
bubbles are nonexistent in a productive economy.

7 Appendix 1: existence of equilibrium in a finite-
horizon economy

The proof of Theorem 3 requires some ingredients which are given below.
Define a bounded price set P ⌘ 4T+1 with the simplex

4 ⌘ {(p, r, w) : p, r, w � 0, p+ r + w = 1}

Focus now on the budget constraints: pt [cit + kit+1 � (1� �) kit]  rtkit +
wt (1� �it) for t = 0, . . . , T with kiT+1 = 0.

Consider the budget set:

CT
i (p, r,w)

⌘

8
<

:

(ci,ki,�i) 2 Xi ⇥ Yi ⇥ Zi :
pt [cit + kit+1 � (1� �) kit]  rtkit + wt (1� �it)

t = 0, . . . , T

9
=

;

and its interior

BT
i (p, r,w)

⌘

8
<

:

(ci,ki,�i) 2 Xi ⇥ Yi ⇥ Zi :
pt [cit + kit+1 � (1� �) kit] < rtkit + wt (1� �it)

t = 0, . . . , T

9
=

;

We denote by B̄T
i (p, r,w) the closure of BT

i (p, r,w). It is obvious that,
when BT

i (p, r,w) 6= ?, then CT
i (p, r,w) = B̄T

i (p, r,w). Nonemptiness of BT
i

is crucial for the existence of demands.
The following result is very useful for our proof of existence of a Walrasian

equilibrium.
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Lemma 2 Under Assumptions 1, 2 and 3, if w0 > 0 and rt + wt > 0, for
t = 1, . . . , T , then the set BT

i (p, r,w) is nonempty.

Proof. Take ki1 > 0 and �i0 < 1 such that p0ki1 < w0 (1� �i0)  r0ki0 +
w0(1 � �i0). Take ki2 > 0, �i1 < 1 such that p1ki2  r1ki1 + w1 (1� �i1) and
so on.

Observe that when � = 1, the set BT
i (p, r,w) is empty if rt = wt = 0 and

pt = 1 for some t and, when ki0 = 0, this set is empty if p0 = w0 = 0 and r0 = 1.
For that reason, at the beginning, we introduce the following sets.

Let " > 0 satisfym (1� �) (Bk + ")+F (BK , BL)+m" < Bc andmBk+m"<
BK . We define:

CT"
i (p, r,w)

⌘

8
<

:

(ci,ki,�i) 2 Xi ⇥ Yi ⇥ Zi :
pt [cit + kit+1 � (1� �) kit]  pt"+ pt (1� �) "+ rt (kit + ") + wt (1� �it)

t = 0, . . . , T

9
=

;

BT"
i (p, r,w)

⌘

8
<

:

(ci,ki,�i) 2 Xi ⇥ Yi ⇥ Zi :
pt [cit + kit+1 � (1� �) kit] < pt"+ pt (1� �) "+ rt (kit + ") + wt (1� �it)

t = 0, . . . , T

9
=

;

Remark 8 " represents a perturbation of the fundamental economy. In the "-
economy, the firm uses " as an additional input. " and kit are the same capital
good and experiences the same depreciation during the production process. When
the process ends, they are resold at the same price pt to earn pt (1� �) ("+ kit).

The next lemma plays a critical role. The perturbation of the fundamental
economy yields that each agent has a positive income at each time. As in
standard competitive equilibrium proofs for finite exchange and/or production
economies, this is required to show all agents are, in fact, finding their utility
maximizing bundles subject to a budget constraint (the cheaper point property
in standard equilibrium theories).

Lemma 3 Under Assumptions 1, 2 and 3, the set BT"
i (p, r,w) is nonempty

and CT"
i (p, r,w) = B̄T"

i (p, r,w). Moreover the correspondence BT"
i is lower

semicontinuous (lsc). Hence, the correspondence CT"
i is continuous.

Proof. Take �it = ⌘ < 1, kit+1 = 0, cit = 0. Then, pt" + pt (1� �) " +
rt ("+ kit) + wt (1� �it) > 0 for any (pt, rt, wt) 2 4 and, hence,

↵ ⌘ min
(p,r,w)24

[p"+ p (1� �) "+ r"+ w (1� ⌘)] > 0

We have

pt [cit + kit+1 � (1� �) kit] = �pt (1� �) kit  0 < ↵

 pt"+ pt (1� �) "+ rt("+ kit) + wt(1� �it)
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for any t. So, BT"
i (p, r,w) is nonempty. The proof of the remaining assertions

is easy.
The following lemma is crucial for the proof of Theorem 3.

Lemma 4 Under the Assumptions 1, 2 and 3, there exists

�
p̄ (") , r̄ (") , w̄ (") ,

�
c̄i (") , ¯ki (") ,¯�i (")

�m
i=1

, ¯K (") , ¯L (")
�

in the finite-horizon bounded economy ET which satisfies:
(1) price positivity: p̄t (") , r̄t (") , w̄t (") > 0 for t = 0, . . . , T ,
(2) market clearing:

goods :
mX

i=1

⇥
c̄it (") + k̄it+1 (")� (1� �) k̄it (")

⇤
= F

�
K̄t (") , L̄t (")

�
+m"+m (1� �) "

capital : K̄t (") =
mX

i=1

k̄it (") +m"

labor : L̄t (") =
mX

i=1

l̄it (")

for t = 0, . . . , T , where l̄it (") = 1� �̄it (") denotes the individual labor supply.
(3) Optimal production plans: p̄t(")F

�
K̄t("), L̄t(")

�
� r̄t(")K̄t(")� w̄tL̄t(")

is the value of the program: max [p̄t(")F (Kt, Lt)� r̄t(")Kt � w̄t(")Lt], under
the constraints ¯

K 2 Y and ¯

L 2 Z for t = 0, . . . , T . Moreover,

p̄t(")F
�
K̄t("), L̄t(")

�
� r̄t(")K̄t(")� w̄tL̄t(") = 0

(4) Optimal consumption plans:
P1

t=0 �
t
iui

�
c̄it("), �̄it(")

�
is the value of the

program: max
P1

t=0 �
t
iui (cit,�it), under the following constraints:

p̄t (") (cit + kit+1)  p̄t (") "+ [p̄t (") (1� �) + r̄t(")] (kit + ") + w̄t(") (1� �it)

c̄i 2 Xi, k̄i 2 Yi, �̄it 2 [0, 1], ki0 � 0 given

for t = 0, . . . , T .

Proof. We introduce the reaction correspondences 'i i = 0, . . . ,m + 1 where
i = 0 denotes an ”additional” agent, i = 1, . . . ,m the consumers, and i = m+1
the firm. These correspondences are defined as follows.

Agent i = 0 (the ”additional” agent):

'0 : ⇥m
h=1 (Xh ⇥ Yh ⇥ Zh)⇥ Y ⇥ Z ! P

with

'0 ((ch,kh,�h)
m
h=1 ,K,L) ⌘ argmax {H (p, r,w, (ch,kh,�h)

m
h=1 ,K,L) : (p, r,w) 2 P}
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and

H (p, r,w, (ch,kh,�h)
m
h=1 ,K,L)

⌘
TX

t=0

pt

 
X

i

[cit + kit+1 � (1� �) kit]�m"�m (1� �) "� F (Kt, Lt)

!

+
TX

t=0

rt

 
Kt �m"�

mX

i=1

kit

!

+
TX

t=0

wt

 
Lt �m+

mX

i=1

�it

!

The correspondence '0 is upper semicontinuous (from the Maximum Theo-
rem) and nonempty, convex, compact-valued.

Agents i = 1, . . . ,m (consumers-workers):

'i : P ! Xi ⇥ Yi ⇥ Zi

with

'i (p, r,w,K,L) ⌘ argmax

(
TX

t=0

�t
iui (cit,�it) : (ci,ki,�i) 2 CT"

i (p, r,w)

)

The correspondences ('i)
m
i=1 are upper semicontinuous (from the Maximum

Theorem) and nonempty, convex, compact-valued.
Agent i = m+ 1 (the firm):

'm+1 : P ! Y ⇥ Z

with

'm+1 (p, r,w) ⌘ argmax

(
TX

t=0

[ptF (Kt, Lt)� rtKt � wtLt] : (K,L) 2 Y ⇥ Z

)

Again, 'm+1 is upper semicontinuous (from the Maximum Theorem). Clearly,
it is nonempty, convex and compact-valued.

Apply the Kakutani Theorem. There exists a sequence
�
p̄, r̄, w̄,

�
c̄h, ¯kh,¯�h

�m
h=1

, ¯K, ¯L
�

satisfying

(p̄, r̄, w̄) 2 '0

��
c̄h, ¯kh,¯�h

�m
h=1

, ¯K, ¯L
�

�
c̄i, ¯ki,¯�i

�m
i=1

2 'i (p̄, r̄, w̄)

for any i and �
¯

K, ¯L
�
2 'm+1 (p̄, r̄, w̄)

Explicitly we have the following.
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(1) For every (p, r,w) 2 P ,

TX

t=0

(pt � p̄t)

 
mX

i=1

⇥
c̄it + k̄it+1 � (1� �) k̄it

⇤
�m"�m (1� �) "� F

�
K̄t, L̄t

�
!

+
TX

t=0

(rt � r̄t)

 
K̄t �m"�

mX

i=1

k̄it

!
+

TX

t=0

(wt � w̄t)

 
L̄t �m+

mX

i=1

�̄it

!

 0 (5)

(2) For i = 1, . . . ,m, (ci,ki,�i) 2 CT"
i (p̄, r̄, w̄) implies

TX

t=0

�t
iui (cit,�it) 

TX

t=0

�t
iui

�
c̄it, �̄it

�
(6)

(3) Finally, for t = 0, . . . , T and for every (K,L) 2 Y ⇥ Z, we have

TX

t=0

[p̄tF (Kt, Lt)� r̄tKt � w̄tLt] 
TX

t=0

⇥
p̄tF

�
K̄t, L̄t

�
� r̄tK̄t � w̄tL̄t

⇤
.

This is possible if and only if

p̄tF (Kt, Lt)� r̄tKt � w̄tLt  p̄tF
�
K̄t, L̄t

�
� r̄tK̄t � w̄tL̄t (7)

for any t. In particular, the equilibrium profit is nonnegative.

p̄tF
�
K̄t, L̄t

�
� r̄tK̄t � w̄tL̄t � 0 (8)

Let us show that p̄t > 0.
First, we have from the budget constraints:

p̄t
X

i

⇥
c̄it + k̄it+1 � (1� �) k̄it

⇤

 mp̄t"+mp̄t (1� �) "+mr̄t"+ r̄t
X

i

k̄it + w̄t

X

i

(1� �̄it)

Combining with (8), we get

0 � p̄t

 
X

i

⇥
c̄it + k̄it+1 � (1� �) k̄it

⇤
� F

�
K̄t, L̄t

�
�m (1� �) "�m"

!

+r̄t

 
K̄t �m"�

X

i

k̄it

!
+ w̄t

 
L̄t �

X

i

�
1� �̄it

�
!

(9)

Combining (5) with (9), we find

0 �
TX

t=0

pt

 
X

i

⇥
c̄it + k̄it+1 � (1� �) k̄it

⇤
� F

�
K̄t, L̄t

�
�m (1� �) "�m"

!

+
TX

t=0

rt

 
K̄t �m"�

X

i

k̄it

!
+

TX

t=0

wt

 
L̄t �

X

i

�
1� �̄it

�
!

(10)
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and, noticing that (10) holds for any (p, r,w) 2 P ,

K̄t �m"�
X

i

k̄it  0 (11)

L̄t �
X

i

�
1� �̄it

�
 0 (12)

X

i

⇥
c̄it + k̄it+1 � (1� �) k̄it

⇤
� F

�
K̄t, L̄t

�
�m (1� �) "�m"  0 (13)

Observe that (13) implies

X

i

c̄it  (1� �)mBk + F (BK , BL) +m (1� �) "+m" < Bc (14)

Suppose p̄t = 0. From the consumers’ problem, we obtain c̄it = Bc and
�̄it = 1 for any i. That is a contradiction with (14). Hence, p̄t > 0.

We want to prove now that, for any t,

p̄tF
�
K̄t, L̄t

�
� r̄tK̄t � w̄tL̄t = 0 (15)

and r̄t > 0, w̄t > 0.
From (11) and (12), we have K̄t  m" + mBk < BK and L̄t  m < BL.

Suppose p̄tF
�
K̄t, L̄t

�
�r̄tK̄t�w̄tL̄t = ⇡ > 0. Choose µ > 1 such that µK̄t < BK

and µL̄t < BL. We have

p̄tF
�
µK̄t, µL̄t

�
� r̄tµK̄t � w̄tµL̄t = µ⇡ >⇡ = p̄tF

�
K̄t, L̄t

�
� r̄tK̄t � w̄tL̄t

which is a contradiction to (7).
Assume r̄t = 0. Then, we have 0 � p̄tF (K,L)�w̄tL for any (K,L) 2 Y ⇥Z.

Take 0 < K < BK and 0 < L < BL. We obtain 0 � L [p̄tF (K/L, 1)� w̄t].
Since p̄t > 0 and limL!0 F (K/L, 1) = 1, we have [p̄tF (K/L, 1)� w̄t] > 0
when L is su�ciently close to 0, leading to a contradiction.

The proof that w̄t > 0 is similar.
Let us show now that

K̄t �m"�
X

i

k̄it = 0

L̄t �
X

i

�
1� �̄it

�
= 0

X

i

⇥
c̄it + k̄it+1 � (1� �) k̄it

⇤
� F

�
K̄t, L̄t

�
�m (1� �) "�m" = 0

Since p̄t > 0 the budget constraints bind. Combining with (11), (12), (13)
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and (15), we obtain

mp̄t"+mp̄t (1� �) "+mr̄t"+ r̄t
X

i

k̄it + w̄t

X

i

�
1� �̄it

�

= p̄t
X

i

⇥
c̄it + k̄it+1 � (1� �) k̄it

⇤

 p̄t
⇥
F
�
K̄t, L̄t

�
+m (1� �) "+m"

⇤

= r̄tK̄t + w̄tL̄t + p̄tm (1� �) "+ p̄tm"

 mp̄t"+mp̄t (1� �) "+mr̄t"+ r̄t
X

i

k̄it + w̄t

X

i

�
1� �̄it

�

Hence

p̄t
X

i

⇥
c̄it + k̄it+1 � (1� �) k̄it

⇤
= p̄t

⇥
F
�
K̄t, L̄t

�
+m (1� �) "+m"

⇤

and

r̄t

 
K̄t �m"�

X

i

k̄it

!
+ w̄t

"
L̄t �

X

i

�
1� �̄it

�
#
= 0 (16)

Since p̄t > 0, we have

X

i

⇥
c̄it + k̄it+1 � (1� �) k̄it

⇤
� F

�
K̄t, L̄t

�
�m (1� �) "�m" = 0

Since r̄t > 0, w̄t > 0 and (16) holds, inequalities (11) and (12) become

K̄t �m"�
X

i

k̄it = 0 and L̄t �
X

i

�
1� �̄it

�
= 0

The proof of Lemma 4 is now complete.
Proof of Theorem 3

Keeping in mind these results, we now prove Theorem 3. We let " converge
to 0. We denote the allocations and the prices obtained in Lemma 4 by

�
p̄ (") , r̄ (") , w̄ (") ,

�
c̄i (") , ¯ki (") ,¯�i (")

�m
i=1

, ¯K (") , ¯L (")
�

We recall that, for any t, p̄t (") + r̄t (") + w̄t (") = 1. Denote

�
p̄, r̄, w̄,

�
c̄i, ¯ki,¯�i

�m
i=1

, ¯K, ¯L
�

⌘ lim
"!0

�
p̄ (") , r̄ (") , w̄ (") ,

�
c̄i (") , ¯ki (") ,¯�i (")

�m
i=1

, ¯K (") , ¯L (")
�

For any t and any (Kt, Lt) 2 Y ⇥ Z, we have

0 = p̄tF
�
K̄t, L̄t

�
� r̄tK̄t � w̄tL̄t � p̄tF (Kt, Lt)� r̄tKt � w̄tLt

K̄0 =
P

i ki0 > 0 and L̄0  m < BL.
Let us show that w̄0 > 0 and r̄t + w̄t > 0, for t = 1, . . . , T .
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If w̄0 = 0 and p̄0 > 0 we have

0 = p̄0F
�
K̄0, L̄0

�
� r̄0K̄0 � p̄0F (K0, L0)� r̄0K0 (17)

for any (K0, L0) 2 Y ⇥ Z. Take K0 = ✏ > 0 and L0 = L 2 (0, BL). We obtain
a contradiction:

0 � p̄0F (✏, L)� r̄0✏ = [p̄0F (1, L/✏)� r̄0] ✏ > 0

when ✏ goes to zero since F (1,1) = 1. Hence w̄0 = 0 implies p̄0 = 0 and
r̄0 = 1 (because of the unit simplex). However, from (17), K̄0 = 0 which is
impossible.

Assume that w̄t = 0 for some t � 1. The same argument previously used
implies p̄t = 0 and r̄t = 1.

Assume r̄t = 0 for some t � 1 and p̄t > 0. Then,

0 � p̄tF (Kt, Lt)� w̄tLt

for any (Kt, Lt) 2 Y ⇥ Z. Take Kt = K 2 (0, BK) and Lt = ✏ > 0. We obtain
a contradiction

0 � p̄tF (K,✏ )� w̄t✏ = [p̄tF (K/✏, 1)� w̄t] ✏ > 0

when ✏ becomes su�ciently close to zero, since F (1, 1) = 1. Hence r̄t = 0
implies p̄t = 0 and w̄t = 1.

From Lemma 2, the set BT
i (p̄, r̄, w̄) is nonempty. Taking (ci,ki,�i) 2

BT
i (p̄, r̄, w̄), we have

p̄t [cit + kit+1 � (1� �) kit] < r̄tkit + w̄t (1� �it)

for any t. There exists "̄ > 0 such that for any " < "̄, we have for any t,

p̄t (") [cit + kit+1 � (1� �) kit] < r̄t (") kit + w̄t (") (1� �it)

< p̄t (") "+ p̄t (") (1� �) "+ r̄t (") "

+r̄t (") kit + w̄t (") (1� �it)

Therefore,
PT

t=0 �
t
iui (cit,�it) 

PT
t=0 �

t
iui

�
c̄it (") , �̄it (")

�
. Let " go to 0.

Then
PT

t=0 �
t
iui (cit,�it) 

PT
t=0 �

t
iui

�
c̄it, �̄it

�
. Let (ci,ki,�i) 2 CT

i (p̄, r̄, w̄).
There exists a sequence (cni ,k

n
i ,�

n
i )

1
n=1 ⇢ BT

i (p̄, r̄, w̄) which converges to (ci,ki,�i).
For any n, we have

TX

t=0

�t
iui (c

n
it,�

n
it) 

TX

t=0

�t
iui

�
c̄it, �̄it

�

Let n go to 1. Then
PT

t=0 �
t
iui (cit,�it) 

PT
t=0 �

t
iui

�
c̄it, �̄it

�
. The prices

(p̄t, w̄t) are strictly positive since the utility functions ui are strictly increasing.
The price r̄t is strictly positive since we have proved above that r̄t = 0 implies
p̄t = 0.
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It is easy to check that the list
�
p̄, r̄, w̄,

�
c̄i, ¯ki,¯�i

�m
i=1

, ¯K, ¯L
�
is an equilibrium

for the T + 1-horizon economy.
Proof of Corollary 1

Let
�
p̄, r̄, w̄,

�
c̄h, ¯kh,¯�h

�m
h=1

, ¯K, ¯L
�
with p̄t, r̄t, w̄t > 0, t = 0, . . . , T , be an

equilibrium of ET .
Let (ci,ki,�i) verify

PT
t=0 �

t
iui (cit,�it) >

PT
t=0 �

t
iui

�
c̄it, �̄it

�
. We want to

prove that this allocation violates at least one budget constraint, that is that
there exists t such that

p̄t [cit + kit+1 � (1� �) kit] > r̄tkit + w̄t (1� �it) (18)

Focus on a strictly convex combination of (ci,ki,�i) and
�
c̄i, ¯ki,¯�i

�
:

cit (�) ⌘ �cit + (1� �) c̄it

kit (�) ⌘ �kit + (1� �) k̄it (19)

�it (�) ⌘ ��it + (1� �) �̄it

with 0 < � < 1. Notice that we assume that the bounds satisfy Bc, Bk, BK > A
and BL > m in order ensure that we enter the bounded economy when the
parameter � is su�ciently close to 0.

Entering the bounded economy means (ci (�) ,ki (�) ,�i (�)) 2 Xi ⇥Yi ⇥Zi.
In this case, because of the concavity of the utility function, we find

TX

t=0

�t
iui (cit (�) ,�it (�)) � �

TX

t=0

�t
iui (cit,�it) + (1� �)

TX

t=0

�t
iui

�
c̄it, �̄it

�

>
TX

t=0

�t
iui

�
c̄it, �̄it

�

Since (ci (�) ,ki (�) ,�i (�)) 2 Xi⇥Yi⇥Zi and
�
p̄, r̄, w̄,

�
c̄h, ¯kh,¯�h

�m
h=1

, ¯K, ¯L
�

is an equilibrium for this economy, there exists t 2 {0, . . . , T} such that

p̄t [cit (�) + kit+1 (�)� (1� �) kit (�)] > r̄tkit (�) + w̄t (1� �it (�))

Replacing (19), we get

p̄t
�
�cit + (1� �) c̄it + �kit+1 + (1� �) k̄it+1 � (1� �)

⇥
�kit + (1� �) k̄it

⇤�

> r̄t
⇥
�kit + (1� �) k̄it

⇤
+ w̄t

�
1�

⇥
��it + (1� �) �̄it

⇤�

that is

�p̄t [cit + kit+1 � (1� �) kit] + (1� �) p̄t
⇥
c̄it + k̄it+1 � (1� �) k̄it

⇤

> � [r̄tkit + w̄t (1� �it)] + (1� �)
⇥
r̄tk̄it + w̄t

�
1� �̄it

�⇤

Since p̄t
⇥
c̄it + k̄it+1 � (1� �) k̄it

⇤
= r̄tk̄it + w̄t

�
1� �̄it

�
, we obtain (18).

Thus
�
p̄, r̄, w̄,

�
c̄h, ¯kh,¯�h

�m
h=1

, ¯K, ¯L
�
is also an equilibrium for the unbounded

economy.
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8 Appendix 2: existence of equilibrium in an
infinite-horizon economy

Proof of Theorem 4

We will denote by

�
p̄ (T ) , r̄ (T ) , w̄ (T ) ,

�
c̄i (T ) , ¯ki (T ) ,¯�i (T )

�m
i=1

, ¯K (T ) , ¯L (T )
�

an equilibrium for the T + 1-horizon economy and

⇣
p̂, r̂, ŵ,

⇣
ĉi, ˆki,ˆ�i

⌘m
i=1

, ˆK, ˆL
⌘

⌘ lim
T!1

�
p̄ (T ) , r̄ (T ) , w̄ (T ) ,

�
c̄i (T ) , ¯ki (T ) ,¯�i (T )

�m
i=1

, ¯K (T ) , ¯L (T )
�

for the product topology.
We claim that ŵ0 > 0, ŵt + r̂t > 0 for any t � 1. Indeed, we always have

0 = p̂0F
⇣
K̂0, L̂0

⌘
� ŵ0L̂0 � r̂0K̂0 � p̂0F (K,L)� ŵ0L� r̂0K

for any (K,L) 2 R2
+.

If ŵ0 = 0 and p̂0 > 0, then 0 � p̂0F (K,L)� r̂0K for any (K,L) 2 R2
+. Take

K > 0 and let L go to infinity to get a contradiction. Hence ŵ0 = 0 implies
p̂0 = 0 and r̂0 = 1. In this case we will have K̂0 = 0 which is impossible since
K̂0 =

P
i ki0 > 0. We conclude that ŵ0 > 0.

Assume ŵt = 0 and p̂t > 0 for some t � 1. Then 0 � p̂tF (K,L) � r̂tK for
any (K,L) 2 R2

+. Take K > 0 and let L go to infinity to have a contradiction.
Now assume r̂t = 0 and p̂t > 0 for some t � 1. Then 0 � p̂tF (K,L)� ŵtL for
any (K,L) 2 R2

+. Take L > 0 and let K go to infinity: a contradiction arises.
Then, r̂t + ŵt > 0 for any t. From Lemma 2, for any ⌧ � 1, the set B⌧

i (p̂, r̂, ŵ)
is nonempty. Fix some ⌧ � 1. Take (cit, kit+1,�it)

⌧
t=0 2 B⌧

i (p̂, r̂, ŵ). We have

p̂t [cit + kit+1 � (1� �) kit] < r̂tkit + ŵt (1� �it)

for t = 0, . . . , ⌧ . There exists N > ⌧ such that, for any T � N ,

p̄t (T ) [cit + kit+1 � (1� �) kit] < r̄t (T ) kit + w̄t (T ) (1� �it)

for t = 0, . . . , ⌧ . Take T � N . Define
⇣
c̃it (T ) , k̃it+1 (T ) , �̃it (T )

⌘T
t=0

by c̃it(T ) =

cit, k̃it+1(T ) = kit+1 and �̃it(T ) = �it for t = 0, . . . , ⌧ , and c̃it(T ) = k̃it+1(T ) =
�̃it(T ) = 0 for t = ⌧ + 1, . . . , T . Obviously, (c̃it(T ), k̃it+1(T ), �̃it(T ))Tt=0 2
CT

i (p̄(T), r̄(T), w̄(T)). Hence

⌧X

t=0

�t
iui (cit,�it) =

TX

t=0

�t
iui(c̃it, �̃it) 

TX

t=0

�t
iui

�
c̄it(T ), �̄it(T )

�
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This implies

⌧X

t=0

�t
iui (cit,�it)  lim

T!1

TX

t=0

�t
iui

�
c̄it (T ) , �̄it (T )

�
=

1X

t=0

�t
iui

⇣
ĉit, �̂it

⌘
(20)

Now let (cit, kit+1,�it)
1
t=0 2 R1

+ ⇥ R1
+ ⇥ [0, 1]1 satisfy:

p̂t [cit + kit+1 � (1� �) kit]  r̂tkit + ŵt (1� �it)

for t = 0, . . . ,1. In this case, (cit, kit+1,�it)
⌧
t=0 2 C⌧

i (p̂, r̂, ŵ). There exists a
sequence

��
cnit, k

n
it+1,�

n
it

�⌧
t=0

�
n
⇢ B⌧

i (p̂, r̂, ŵ) converging to (cit, kit+1,�it)⌧t=0.
We then have, from (20):

⌧X

t=0

�t
iui (c

n
it,�

n
it) 

1X

t=0

�t
iui

⇣
ĉit, �̂it

⌘

Let n go to 1:
P⌧

t=0 �
t
iui (cit,�it) 

P1
t=0 �

t
iui

⇣
ĉit, �̂it

⌘
. Let ⌧ go to 1:

P1
t=0 �

t
iui (cit,�it) 

P1
t=0 �

t
iui

⇣
ĉit, �̂it

⌘
. We have proved that

⇣
ĉ,ˆ�
⌘
solves

the consumer’s problem in the infinite-horizon economy. The prices (p̂t, ŵt) are
strictly positive thanks to the strict increasingness of the utility functions. The
price r̂t > 0 since we have proved r̂t = 0 implies p̂t = 0.

It is now easy to check that the list
⇣
p̂, r̂, ŵ,

⇣
ĉi, ˆki,ˆ�i

⌘m
i=1

, ˆK, ˆL
⌘

is an

equilibrium for the infinite-horizon economy.

9 Appendix 3: non-existence of bubbles

Proof of Claim 5

(1) c̄it + w̄t�̄it + k̄it+1 = (1� � + r̄t) k̄it + w̄t. Suppose c̄it > 0 and �̄it = 0.
By Assumption 4, we can decrease c̄it and increase �̄it to have a higher utility
for period t. Hence �̄it > 0. The converse is proved by the same argument.

(2) We first prove that c̄it = �̄it = 0 for any t is excluded. Suppose it is not
true. Then

P1
t=0 �

t
iui

�
c̄it, �̄it

�
= 0. Define kit = cit = �it = 0 for any t � 1

and ci0 + w̄0�i0 = (1� � + r̄0) ki0 + w̄0 with ci0 > 0 and �i0 2 (0, 1). ThenP1
t=0 �

t
iui (cit,�it) = ui (ci0,�i0) > 0, that is a contradiction.

Without loss of generality, we can assume that t = 1 is the first period where
the consumption and leisure are positive, i.e. c̄i1 > 0 and �̄i1 > 0 (because of
point (1)). Hence, c̄i0 = �̄i0 = 0. Define

ci0 + w̄0�i0 = " > 0, �i0 2 (0, 1), ci0 > 0, ki1 = k̄i1 � " > 0,
ci1 = c̄i1 � (1� � + r̄1)" > 0, �i1 = �̄i1, ki2 = k̄i2,
cit = c̄it, �it = �̄it, kit+1 = k̄it+1 for any t � 2.
The sequence (ci,ki,�i) belongs to the budget set of agent i. And we have,

by Assumption 4 (Inada),
P1

t=0 �
t
iui (cit,�it) >

P1
t=0 �

t
iui

�
c̄it, �̄it

�
for " su�-

ciently close to 0. This leads to a contradiction. Hence c̄i0 > 0 and �̄i0 > 0. By
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induction, we obtain also c̄it > 0 and �̄it > 0 for any i and any t.

(3) We have

c̄it + k̄it+1 = k̄it (1� � + r̄t) + w̄t(1� �̄it)

(c̄it � ") +
�
k̄it+1 + "

�
= k̄it (1� � + r̄t) + w̄t

�
1� �̄it

�

[c̄it+1 + " (1� � + r̄t+1)] + k̄it+2 =
�
k̄it+1 + "

�
(1� � + r̄t+1) + w̄t+1

�
1� �̄it+1

�

Then

0 � ui

�
c̄it � ", �̄it

�
� ui

�
c̄it, �̄it

�

+�i

⇥
ui

�
c̄it+1 + " (1� � + r̄t+1) , �̄it+1

�
� ui

�
c̄it+1, �̄it+1

�⇤

� @ui

@c

�
c̄it � ", �̄it

�
(�")

+�i
@ui

@c

�
c̄it+1 + " (1� � + r̄t+1) , �̄it+1

�
" (1� � + r̄t+1)

0 � �@ui

@c

�
c̄it � ", �̄it

�

+�i
@ui

@c

�
c̄it+1 + " (1� � + r̄t+1) , �̄it+1

�
(1� � + r̄t+1)

if " > 0 and small enough.
Let " go to zero. Then,

0 � �@ui

@c

�
c̄it, �̄it

�
+ �i

@ui

@c

�
c̄it+1, �̄it+1

�
(1� � + r̄t+1)

If k̄it+1 > 0, then we can take also " < 0 small enough in absolute value and
let it go to zero to obtain the reverse inequality.

(4) Since �̄it > 0, we can choose 0 < " < �̄it. Define cit = c̄it + w̄t" and
�it = �̄it � ". The budget constraint is satisfied. In addition, we have for
" 2

�
0, �̄it

�

0 � ui (cit,�it)� ui

�
c̄it, �̄it

�
� @ui

@c
(cit,�it) w̄t"+

@ui

@�
(cit,�it) (�")

0 � @ui

@c
(cit,�it)w̄t �

@ui

@�
(cit,�it)

Let " go to zero. Then

0 � w̄t
@ui

@c

�
c̄it, �̄it

�
� @ui

@�

�
c̄it, �̄it

�

Now, if �̄it < 1, then we can take " > 0 such that �̄it + " < 1 and let " go to
zero to get the reverse inequality.

(5) We have C̄t + K̄t+1 = F
�
K̄t, L̄t

�
+ (1� �) K̄t. If K̄t = 0, then C̄t = 0

and c̄it = 0 for any i contradicting point (2).
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If L̄t = 0, then we have

0 = F (K̄t, L̄t) = r̄tK̄t + w̄tL̄t = r̄tK̄t

Hence K̄t = 0, since r̄t > 0. As above, this contradicts the point (2) of the
claim.

Proof of Theorem 6

First, observe that the production function F satisfies Assumption 1 and

lim
b!0+

(@F/@L) (1, b) > 0 (21)

Since F is homogeneous of degree one, we have, for K > 0 and L > 0,
(@F/@K ) (K,L) = (@F/@K ) (K/L, 1) and (@F/@L) (K,L) = (@F/@L) (1, L/K).
Let

�
K̄t, L̄t

�
be an equilibrium sequence of aggregate capital stocks and labors.

Observe that r̄t = (@F/@K )
�
K̄t/L̄t, 1

�
.

Suppose the economy has a bubble in prices. Then, from Lemma 1, r̄t
converges to zero. But, in this case, K̄t/L̄t tends to infinity, or equivalently,
L̄t/K̄t goes to 0. Since K̄t is positive and bounded above, we obtain L̄t ! 0.
Recall that

C̄t + K̄t+1 = F
�
K̄t, L̄t

�
+ (1� �) K̄t = K̄t

⇥
F
�
1, L̄t/K̄t

�
+ 1� �

⇤

and choose " > 0 such that F (1, ")+1�� < 1. There exists T such that for any
t > T , K̄t+1  K̄t

⇥
F
�
1, L̄t/K̄t

�
+ 1� �

⇤
< [F (1, ") + 1� �] K̄t. This implies

K̄t ! 0 when t tends to infinity, and C̄t ! 0 too. Thus, limt!1 c̄it = 0 for any
i.

Reconsider the first-order conditions of point (4) of Claim 5:

w̄t
@ui

@c

�
c̄it, �̄it

�
 @ui

@�

�
c̄it, �̄it

�
(22)

It is easy to see that w̄t = (@F/@L)
�
K̄t, L̄t

�
. Since L̄t/K̄t converges to 0,

according to (21), we have limt!1 w̄t = limt!1 (@F/@L)
�
1, L̄t/K̄t

�
> 0. We

will show that limt!1 �̄it = 1 for any i. Indeed, at equilibrium, we have for
any i

c̄it + k̄it+1  (1� � + r̄t) k̄it + w̄t

�
1� �̄it

�

Since limt!1
�
c̄it, k̄it, r̄t

�
= 0, limt!1 w̄t > 0, we have limt!1 �̄it = 1 for

any i.
Thus,

lim
t!1


w̄t

@uj

@c

�
c̄jt, �̄jt

��
= 1

Since

@uj

@�

�
c̄jt, �̄jt

�
�̄jt  uj

�
c̄jt, �̄jt

�
� uj (c̄jt, 0)  uj

�
c̄jt, �̄jt

�
 uj (A, 1)

where A is defined in Remark 2, (22) implies a contradiction:

1 = lim
t!1

w̄t
@uj

@c

�
c̄jt, �̄jt

�
 lim sup

t

@uj

@�

�
c̄jt, �̄jt

�
 uj (A, 1) < 1
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