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The positive core for games with precedence constraints∗

Michel GRABISCH† Peter SUDHÖLTER‡

April 29, 2014

Abstract

We generalize the characterizations of the positive core and the positive prekernel to TU games
with precedence constraints and show that the positive core is characterized by non-emptiness (NE),
boundedness (BOUND), covariance under strategic equivalence, closedness (CLOS), the reduced game
property (RGP), the reconfirmation property (RCP) for suitably generalized Davis-Maschler reduced
games, and the possibility of nondiscrimination. The bounded positive core, i.e., the union of all
bounded faces of the positive core, is characterized similarly. Just RCP has to be replaced by a
suitable weaker axiom, a weak version of CRGP (the converse RGP) has to be added, and CLOS
can be deleted. For classical games the prenucleolus is the unique further solution that satisfies the
axioms, but for games with precedence constraints it violates NE as well as the prekernel. The positive
prekernel, however, is axiomatized by NE, anonymity, reasonableness, the weak RGP, CRGP, and
weak unanimity for two-person games (WUTPG), and the bounded positive prekernel is axiomatized
similarly by requiring WUTPG only for classical two-person games and adding BOUND.

Keywords: TU games, restricted cooperation, game with precedence constraints, positive core, bounded

core, positive prekernel, prenucleolus

1 Introduction

Since the seminal papers of Myerson (Myerson 1977) and Faigle (Faigle 1989) introducing the idea of

restricted cooperation, that is, considering the possibility to have unfeasible or forbidden coalitions, many

investigations have been done in order to study or adapt the main solution concepts of classical TU games,

for various structures of the set of feasible coalitions.

Considering a finite set of players N and a collection of feasible coalitions F ⊆ 2N , many structures

borrowed from combinatorial optimization and partially ordered sets have been proposed for F : feasible

coalitions induced by a communication graph (Myerson 1977), distributive lattices (Faigle and Kern 1992),

convex geometries (Bilbao, Lebrón, and Jiménez 1998), union-stable systems (Algaba, Bilbao, Borm, and

López 2000), antimatroids (Algaba, Bilbao, van den Brink, and Jiménez-Losada 2004), regular set systems

(Lange and Grabisch 2009), to cite a few (see a survey in Grabisch 2012 ). The case of distributive lattices
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appears to be of special interest since it corresponds by Birkhoff’s theorem to a situation which is often

encountered in practice: the presence of a hierarchy, or any kind of partial order �, on the set of players

N . In this case, feasible coalitions are those satisfying the following rule: if player i is present, then any

of its subordinates j ≺ i must be present (this is called by Faigle and Kern “precedence constraints”).

Moreover, the set of feasible coalitions is closed under union and intersection. For these reasons, we

precisely focus in this paper on this type of structure.

Considering that F is a distributive lattice induced by some partial order on N , the core of games on

such structures has already deserved much attention, and many results valid for classical games have

been extended to this case, in particular, the Shapley-Ichiishi theorem (Shapley 1971, Ichiishi 1981)

characterizing convex TU games (Derks and Gilles 1995, Grabisch and Sudhölter 2014). The essential

difference with classical games is that a nonempty core is always (unless F = 2N ) unbounded, however

it is pointed. Extremal rays of the core have been found by Tomizawa (1983), and bounded facets have

been studied by Grabisch (2011). The set of all bounded facets of the core, called the bounded core, has

been studied and axiomatized by Grabisch and Sudhölter (2012). From the interpretation point of view,

it is the set of core elements for which any player takes the maximum from its subordinates.

Other solution concepts like the nucleolus, the kernel, etc. have been much less studied in the context

of restricted cooperation. It is the main purpose of this paper to fill this gap for games with precedence

constraints. Our first aim is to study the positive core (Orshan and Sudhölter 2010), which is closely

related to the prenucleolus. We find that the positive core can be axiomatized in a way which is very close

to the classical case, up to a suitable generalization of the axioms, namely by non-emptiness (NE), rea-

sonableness (REAS), covariance (COV), the reduced game property (RGP), the reconfirmation property

(RCP), nondiscrimination (ND), and closedness (CLOS), the latter permitting to eliminate the relative

interior of the positive core as a candidate for the solution. The positive core being unbounded unless

F = 2N , we propose likewise the bounded positive core, which has the same intuitive interpretation as for

the bounded core. We find that it can be axiomatized by NE, COV, RGP, RCP restricted to classical

games, ND, boundedness (BOUND), and a variant of the converse reduced game property, called RCRGP.

The bounded positive core contains a particular point, which can be considered as the prenucleolus of

the game, since it coincides with the usual prenucleolus when F = 2N . It lexicographically minimizes

the excesses of all coalitions in F the complements of which are also in F , and then lexicographically

maximizes the remaining excesses so that they are non-positive (thereby keeping the idea that players

should take the maximum of their subordinates, while guaranteeing minimal losses if any). Lastly, we

study the prekernel. A simple consideration shows that the classical definition of the prekernel leads to

an empty set as soon as F 6= 2N . We propose therefore to study the positive prekernel instead (Sudhölter

and Peleg 2000), which contains the positive core. We show that it is characterized by NE, anonymity

(AN), REAS, a weak RGP property, CRGP, and weak unanimity for 2-persons games (WUTPG).

The paper is organized as follows. Section 2 gives the basic material on partially ordered sets, the core,

and the bounded core of games with precedence constraints. Section 3 introduces the positive core,

which is axiomatized in Section 4. Section 5 is devoted to the bounded positive core and introduces the

prenucleolus, for which a Kohlberg-like criterion is given. The positive prekernel and its axiomatization
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are addressed in Section 6, and Section 7 studies the logical independence of all the axioms introduced

in the various axiomatizations.

2 Notation, Definitions, and Preliminaries

A partially ordered set (poset) is a pair (P,�) such that P is a nonempty finite set and � is a partial

order on P , i.e., a reflexive, antisymmetric, and transitive binary relation on P . As usual, we write x � y

for (x, y) ∈ � and use x ≺ y if x � y and x 6= y. If x ≺ y and there is no z ∈ P such that x ≺ z ≺ y then

y covers x, denoted by x ≺· y. A chain in (P,�) is a sequence (x0, . . . , xq) such that x0 ≺ · · · ≺ xq where

q is called the length of the chain. The height of a poset is the length of a longest chain. The height of

x ∈ P , denoted by h(x), is the maximal length of a chain from a minimal element to x.

Let U , |U | > 3, be a set, the universe of players. A coalition is a finite nonempty subset of U . Let N

be a coalition and (N,�) be a poset. Then S ⊆ N is a downset of (N,�) if i ∈ S and j � i implies

j ∈ S. Denote by O(N,�) the set of downsets of (N,�). Note that (O(N,�),⊆) is a distributive lattice

of height1 |N |. By Birkhoff’s representation theorem the opposite statement is also true: If F ⊆ 2N and

(F ,⊆) is a distributive lattice of height |N |, then there exists a poset (N,�) such that F = O(N,�).

A (cooperative TU) game with precedence constraints (see Faigle and Kern (1992)) is a triple (N,�, v)

such that N is a coalition, (N,�) is a poset, and v : O(N,�) → R, v(∅) = 0. Note that a classical TU

game is a pair (N, v) such that v : 2N → R, v(∅) = 0. Hence, we may identify a game (N, v) with (N,�, v)

where (N,�) is the poset of height 0. Let Γ denote the set of TU games with precedence constraints.

Throughout this section let (N,�, v) be a game with precedence constraints and denote F = O(N,�).

Let

X∗(N, v) = {x ∈ R
N | x(N) 6 v(N)} and X(N, v) = {x ∈ R

N | x(N) = v(N)}

denote the set of feasible and Pareto efficient feasible payoffs (preimputations), respectively. We use

x(S) =
∑

i∈S xi (x(∅) = 0) for every S ∈ 2N and every x ∈ R
N as a convention. Additionally, xS denotes

the restriction of x to S, i.e. xS = (xi)i∈S , and we write x = (xS , xN\S).

The core of (N,�, v), denoted by C(N,�, v), is defined by

C(N,�, v) = {x ∈ R
N | x(N) = v(N) and x(S) > v(S) for all S ∈ F}. (2.1)

By its definition, the core of (N,�, v) is a convex polyhedral set. It is well known (see Derks and Gilles

(1995)) that it does not contain lines. More precisely,

C(N,�, v) = conv(ext(C(N,�, v))) + C(N,�, 0), (2.2)

where “conv” means “convex hull”, “ext” means “set of extreme points”, and “+” denotes “Minkowski

sum”. For any S ⊆ N, let NχS = χS ∈ R
N be the indicator function of S, i,e. χS

i = 1 for i ∈ S and χS
j = 0

1A poset (P,�) is a lattice if for any x, y ∈ P their supremum, denoted x ∧ y, and infimum, denoted x ∨ y, exist. A
lattice is distributive if ∧ and ∨ satisfy distributivity.

3

 
Documents de Travail du Centre d'Economie de la Sorbonne - 2014.36



for j ∈ N \ S. If (N,�, v) is a classical game, i.e., if the height of (N,�) is 0, then C(N,�, 0) = {0}.

Otherwise, i.e., if there exists a pair (i, j) ∈ N such that i ≺ j, then (see Derks and Gilles (1995))

C(N,�, 0) = cone({χ{i} − χ{j} | i, j ∈ N, i ≺ j}), (2.3)

where “cone” denotes “convex cone generated by”. For i ≺ j, say i = i0 ≺· · · · ≺· ik = j,

χ{i} − χ{j} =

k−1∑

ℓ=0

χ{iℓ} − χ{iℓ+1}

so that

C(N,�, 0) = cone({χ{i} − χ{j} | i, j ∈ N, i ≺· j}) (2.4)

(also shown by Tomizawa (1983), see also Fujishige (2005, Th. 3.26)).

The bounded core of (N,�, v), denoted by Cb(N,�, v), is the set of all elements x ∈ C(N,�, v) that satisfy

the following condition for any i, j ∈ N with i ≺· j: There is no ε > 0 such that x + ε
(
χ{j} − χ{i}

)
∈

C(N,�, v). Hence,

Cb(N,�, v) = {x ∈ C(N,�, v) | ({x} − C(N,�, 0)) ∩ C(N,�, v) = {x}}.

Therefore, if (N,�, v) is a classical game, the bounded core coincides with the classical core.

Remark 2.1 According to Rockafellar (1970, Section 18) a closed convex set is the disjoint union of

the relative interiors of its faces. Hence, any element of Cb(N,�, v) is in the interior of some face of

C(N,�, v). We conclude that Cb(N,�, v) is the disjoint union of the relative interiors of the bounded

faces of C(N,�, v), i.e., Cb(N,�, v) is the union of all bounded faces of C(N,�, v). Thus, the bounded

core is connected.

The bounded core may be non-convex and, hence, a proper subset of the convex hull of the extreme

points of the core (called “convex part of the core”) even if the poset is connected as Example 2.2 shows.

We say that i, j ∈ S ⊆ N are connected in (S,�) if there is a path in S that connects i and j, that is,

if there exist k ∈ N and i1, . . . , ik ∈ N such that i = i1, j = ik, and, for each ℓ = 1, . . . , k − 1, either

iℓ ≺ iℓ+1 or iℓ+1 ≺ iℓ. Any ∅ 6= S ⊆ N may be partitioned into its connected components, and S ⊆ N is

connected if S = ∅ or S consists of a single component.

Example 2.2 Let N = {1, 2, 3, 4} and (N,�, v) be defined by i ≺ 4 for i ∈ T = {1, 2, 3} and, for S ∈ F ,

v(S) = 6 if |S ∩ T | = 2, v(N) = 12, and v(S) = 0, otherwise. Then (0, 6, 6, 0), (6, 0, 6, 0), (6, 6, 0, 0) ∈

Cb(N,�, v), but the convex midpoint of these points x = (4, 4, 4, 0) /∈ Cb(N,�, v) because (2, 4, 4, 2) ∈

C(N,�, v), which can be obtained from (4, 4, 4, 0) by a transfer (−2, 0, 0, 2).

One can show that the vertices of Cb(N,�, v) are (0, 6, 6, 0), (6, 0, 6, 0), (6, 6, 0, 0) and (3, 3, 3, 3). Then,

the bounded core is the union of the three segments between (3, 3, 3, 3) and each of the vertices (0, 6, 6, 0),

(6, 0, 6, 0), and (6, 6, 0, 0). Indeed, any point in the segment between (3, 3, 3, 3) and (0, 6, 6, 0) has the form

(3α,−3α+6,−3α+6, 3α), and any transfer ε(χ{4}−χ{i}) for i ≺ 4 would lead to a point outside the core.
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The same conclusion holds for the two other segments by symmetry. Now, consider the point (3, 3, 5, 1),

which is the midpoint of (0, 6, 6, 0), (6, 0, 6, 0) and (3, 3, 3, 3). Observe that a transfer (0, 0,−2, 2) on this

point would give (3, 3, 3, 3) ∈ C(N,�, v), hence it does not belong to the bounded core. By symmetry

again, any point in the relative interior of the convex hull of (3, 3, 3, 3) and any two of the vertices

(0, 6, 6, 0), (6, 0, 6, 0), and (6, 6, 0, 0) is outside the bounded core.

For any S ∈ F and x ∈ R
N , let e(S, x, v) = v(S)− x(S) be the excess at x.

For any α ∈ R the α-core of (N,�, v), denoted by Cα(N,�, v), is the set

Cα(N,�, v) = {x ∈ X(N, v) | e(S, x, v) 6 α∀S ∈ F \ {∅, N}}.

The following lemma follows from Lemma 3.2 of Grabisch and Sudhölter (2012).

Lemma 2.3 If (N,�) is connected (i.e., N consists of a unique connected component) and α ∈ R, then

Cα(N,�, v) 6= ∅ and Cα(N,�, v) = conv(ext(Cα(N,�, v))) + C(N,�, 0).

Proof: Let w differ from v only inasmuch as w(S) = v(S)+α for all S ∈ F\{∅, N}. By the aforementioned

lemma, C(N,�, w) 6= ∅. As C(N,�, w) = Cα(N,�, v), the proof is finished by (2.2). q.e.d.

Let (N,�∗) be the reverse partially ordered set (i.e., i �∗ j iff j � i). Note that O(N,�∗) = {S ⊆

N | N \ S ∈ F}. Hence, (N,�) is connected iff (N,�∗) is connected. The dual game of (N,�, v) is the

game (N,�∗, v∗) defined by v∗(S) = v(N) − v(N \ S) for all S ∈ O(N,�∗). As for classical games, if

x ∈ X(N, v) and S ∈ O(N,�∗), then

e(S, x, v∗) = v∗(S)− x(S) = v(N)− v(N \ S)− x(N) + x(N \ S) = −e(N \ S, x, v). (2.5)

Hence

C−α(N,�∗, v∗) = {x ∈ X(N, v) | e(S, x, v) > α∀S ∈ F \ {∅, N}} for all α ∈ R. (2.6)

In order to generalize Lemma 2.3 to games that do not necessarily have a connected hierarchy, we define

the intermediate game (see Owen (1977) for a similar construction) of (N,�, v) as follows. Denote by

R(N,�) = R the partition ofN whose elements are the connected components of N . In the present context

R is considered as natural set of “a priori unions” and not a “coalition structure” à la Aumann and Drèze

(1974), i.e., we do not consider “component feasible” payoffs. The intermediate game of (N,�, v) is the

classical TU game (R, vR) defined by vR(T ) = v (
⋃
T ) for all T ⊆ R. Let O0(N,�) = F0 be the subset

of all elements of F that are not unions of connected components. Hence, F \F0 = {
⋃
T | T ⊆ R}. Now,

for any y ∈ X (R, vR) and α ∈ R define the α-core w.r.t. y, Cα,y(N,�, v), by

Cα,y(N,�, v) = {x ∈ X(N, v) | x(T ) = yT∀T ∈ R and e(S, x, v) 6 α∀S ∈ F0}.

By slightly abusing notation, for any S ⊆ N , S 6= ∅, the sub-poset of (N,�) on S, i.e., the intersection

of � and S × S, is denoted by (S,�). Note that R(S,�) = {T ∩ S | T ∈ R} \ {∅}, which we denote by

R(S) for simplicity. Similarly we denote for any ∅ 6= S ⊆ N , the sublattice O(S,�) = {T ∩ S | T ∈ F}

simply by F(S).
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Proposition 2.4 For any game (N,�, v) with precedence constraints, any preimputation y of the inter-

mediate game (R, vR), and any α ∈ R,

Cα,y(N,�, v) 6= ∅ and Cα,y(N,�, v) = conv(ext(Cα,y(N,�, v))) + C(N,�, 0).

Proof: Let F0 = O0(N,�) and R = R(N ,�). To show non-emptiness we construct the components of

some x ∈ Cα,y(N,�, v) as follows. Let β > (−α)+max{v(S) | S ∈ F0}−min{y(T ) | T ⊆ R} and β > 0.

For Q ∈ R define (Q,�, vQ) by

vQ(S) =





0 , if S = ∅,

yQ , if S = Q,

β , if S ∈ F(Q) \ {∅, Q}.

As (Q,�) is connected there exists xQ ∈ C(Q,�, vQ) by Lemma 2.3. Hence, x(Q) = yQ for all Q ∈ R.

Let S ∈ F0 and T̂ = {Q ∈ R | Q ⊆ S}. Then there exists Q̂ ∈ R such that ∅ 6= Q̂ ∩ S 6= S. As β > 0,

x(S) = x(S ∩ Q̂) + x(S \ Q̂) > β + y(T̂ ) > −α+ v(S) + max{−y(T ) | T ⊆ R}+ y(T̂ ) > −α+ v(S).

Hence v(S)− x(S) 6 α.

The observation that z(Q) = 0 for any z ∈ C(N,�, 0) and any Q ∈ R implies the second statement of

the proposition. q.e.d.

Note that for any y ∈ X (R, vR),

C−α,y(N,�∗, v∗) = {x ∈ X(N, v) | x(T ) = yT∀T ∈ R, e(S, x, v) > α∀S ∈ F0} for all α ∈ R. (2.7)

3 The positive core

In order to expand the definition of the positive core (Orshan and Sudhölter 2010) to TU games with

precedence constraints, we employ and recall Justman’s (1977) notion of the “generalized nucleolus”

(Schmeidler 1969).

Let D be a finite nonempty set, X be a set, let h : X → R
D, and denote d := |D|. Define θ : X → R

d by

θt(x) = max
T⊆D,|T |=t

min
i∈T

hi(x) for all x ∈ X and all t = 1, . . . , d,

that is, for any x ∈ X , θ(x) is the vector, whose components are the numbers hi(x), i ∈ D, arranged

in non-increasing order. Let ≥lex denote the lexicographical order of Rd. The nucleolus of h w.r.t. X ,

NUC(h,X), is defined by

NUC(h,X) = {x ∈ X | θ(y) ≥lex θ(x) for all y ∈ X}.

Let (N,�, v) ∈ Γ, F = O(N,�),R = R(N,�), and recall that F \ F0 = {
⋃
T | T ⊆ R} . For x ∈ R

N and

S ∈ F denote e(S, x, v) = v(S)−x(S) (the excess of v at x). Then the positive core of (N,�, v), denoted

by C+(N,�, v), is defined by

C+(N,�, v) = NUC((e(S, ·, v)+)S∈F , X
∗(N, v))

6
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where t+ = max{0, t} for t ∈ R. Let x ∈ C+(N,�, v). Then x ∈ X(N, v) (otherwise there are positive

excesses and all of them could be diminished) and, e(S, x, v) 6 0 for all S ∈ F0 (otherwise, if e(S, x, v) > 0

for some S ∈ F0, then there exist ℓ 6∈ S ∋ k, k ≺· ℓ, and one could diminish this excess and the excesses

of all S′ ∈ F0, ℓ 6∈ S′ ∋ k, by a transfer t(χ{k} − χ{ℓ}), t > 0, without changing the excesses of further

coalitions). We conclude that

C+(N,�, v) = {x ∈ X(N, v) | (x(Q))Q∈R ∈ C+(R, vR) and e(S, x, v) 6 0 for all S ∈ F0}. (3.1)

It is well-known that for a classical TU game (N, v) the prenucleolus, i.e., the set

NUC((e(S, ·, v))S⊆N , X∗(N, v)),

consists of a single element ν(N, v) (the prenucleolus point) and that

C+(N, v) = {x ∈ X(N, v) | e(S, x, v)+ = e(S, ν(N, v), v)+ for all S ⊆ N}. (3.2)

Now, let ν be the prenucleolus point of the intermediate game (R, vR) and define (N,�, w) by w (
⋃
T ) =

ν(T ) for all T ⊆ R such that e(T , ν, vR) > 0 and w(S) = v(S) for all other S ∈ F . By (3.2),

C+(N,�, v) = C(N,�, w) so that, by (2.2),

C+(N,�, v) = conv(ext(C(N,�, w))) + C(N,�, 0)

and we may define the bounded positive core by

Cb
+(N,�, v) = Cb(N,�, w). (3.3)

Remark 3.1 The variant of the “Kohlberg (1971) criterion” for the positive core of classical games is

still valid. For (N,�, v) ∈ Γ and x ∈ R
N and α ∈ R let D(α, x, v) = {N} ∪ {S ∈ F | e(S, x, v) > α}

where F = O(N,�, v). Recall that D ⊆ 2N is balanced if there are balancing coefficients for D, i.e., there

are δS > 0, S ∈ D such that
∑

S∈D δSχ
S = χN . If x ∈ X(N, v), then following statements are equivalent

(Orshan and Sudhölter 2010, Theorem 3.4):

x ∈ C+(N,�, v) (3.4)

α > 0, y ∈ R
N , y(N) = 0, y(S) > 0∀S ∈ D(α, x, v) =⇒ y(S) = 0∀S ∈ D(α, x, v) (3.5)

α > 0 =⇒ D(α, x, v) is balanced (3.6)

We also note that the definitions of the classical bargaining set and its variants use the notion of “indi-

vidual” objections. In a TU game (N,�, v) with precedence constraints a player ℓ ∈ N has no objection

against any of her subordinates k ≺ ℓ so that the Aumann-Davis-Maschler pre-bargaining set (Aumann

and Maschler 1964, Davis and Maschler 1967), the reactive pre-bargaining set (Granot 1994), and the

semireactive pre-bargaining set (Sudhölter and Potters 2001) consist of all preimputations x so that

(x(Q))Q∈R belongs to the respective pre-bargaining set of the intermediate game (R, vR) and, moreover,

e(S, x, v) 6 0 for all S ∈ F0. For the Mas-Colell pre-bargaining (Mas-Colell 1989) of (N,�, v) we only

have one inclusion: If (y(Q))Q∈R belongs to the Mas-Colell pre-bargaining set of the intermediate game

and if e(S, x, v) 6 0 for all S ∈ F0, then y belongs to the Mas-Colell pre-bargaining set of (N,�, v).

However, the positive core is a subset of any of the mentioned pre-bargaining sets.
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4 Characterizing the positive core

On classical games the prenucleolus and the positive core are the unique solutions that satisfy a collection

of plausible properties. In this section we show that the positive core on the set of TU games with

precedence constraints is characterized by these axioms.

We first recall the mentioned axioms of a solution. Let F = O(N,�) wherever it occurs in this section.

Let (N,�, v) ∈ Γ, ∅ 6= S ⊆ N , x ∈ R
N , and let π : N → N be a bijection (a permutation of N). The

reduced game of (N,�, v) w.r.t. S and x is the game (S,�, vS,x) defined by

vS,x(T ) =





0 , if T = ∅,

v(N)− x(N \ S) , if T = S,

max{v(P )− x(P \ T ) | P ∈ F , P ∩ S = T } , if T ∈ F(S) \ {∅, S}.

(4.1)

The permutation π is a symmetry of (N,�, v) if {π(S) | S ∈ F} = F and v(π(S)) = v(S) for all S ∈ F .

Let SYM(N,�, v) denote the set of symmetries.

A solution is a mapping σ that assigns a subset σ(N,�, v) of X∗(N, v) to any (N,�, v) ∈ Γ. Its restriction

to a set Γ′ ⊆ Γ is again denoted by σ. Moreover, a solution on Γ′ is the restriction to Γ′ of some solution.

A solution σ on Γ′ ⊆ Γ satisfies

• non-emptiness (NE) if σ(N,�, v) 6= ∅ for all (N,�, v) ∈ Γ′;

• Pareto optimality (PO) if σ(N,�, v) ⊆ X(N, v) for all (N,�, v) ∈ Γ′;

• Covariance under strategic equivalence (COV) if, for all (N,�, v), (N,�, w) ∈ Γ′, α > 0, and β ∈

R
N , the following holds: If w(S) = αv(S)+β(S) for all S ∈ F , then σ(N,�, w) = ασ(N,�, v)+β;

• Anonymity (AN) if, for all (N,�, v) ∈ Γ′ and all injective mappings π : N → U the following

holds: If (π(N),�′, πv) ∈ Γ′, where π(i) �′ π(j) iff i � j, (πv)(π(S)) = v(S) for all S ⊆ F , and

π(x) = y ∈ R
π(N) is defined by yπ(i) = xi∀x ∈ R

N , ∀i ∈ N , then σ(π(N),�′, πv) = π(σ(N,�, v));

• Boundedness (BOUND) if σ(N,�, v) is a bounded set for all (N,�, v) ∈ Γ′;

• reasonableness (REAS) if, for all (N,�, v) ∈ Γ′ and all x ∈ σ(N,�, v) the following property holds

for each minimal element k and each maximal element ℓ in N :

xk > min{v(S ∪ {k})− v(S) | S ∈ F , k /∈ S} and xℓ 6 max{v(S)− v(S \ {ℓ}) | S ∈ F , ℓ ∈ S};

• closedness (CLOS) if σ(N,�, v) is a closed set for all (N,�, v) ∈ Γ′;

• reduced game property (RGP) if the following condition holds: If (N,�, v) ∈ Γ′, ∅ 6= S ⊆ N, and

x ∈ σ(N,�, v), then (S,�, vS,x) ∈ Γ′ and xS ∈ σ(S,�, vS,x);

• reconfirmation property (RCP) if the following condition holds for every (N,�, v) ∈ Γ′, every

x ∈ σ(N,�, v), and every ∅ 6= S ⊆ N : If (S,�, vS,x) ∈ Γ′ and yS ∈ σ(S,�, vS,x), then (yS , xN\S) ∈

σ(N,�, v);
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• the possibility of nondiscrimination (ND) if, for every (N,�, v) ∈ Γ′ with σ(N,�, v) 6= ∅, there

exists x ∈ σ(N,�, v) such that π(x) = x for all π ∈ SYM(N,�, v), i.e., x is invariant under all

symmetries.

NE, PO, BOUND and CLOS are self-explanatory. COV means that the solution should not depend

on a change of unit and an initial endowment to the players. AN means that the solution should be

independent of the labeling of the players. REAS means that any player k corresponding to a minimal

element in the hierarchy should receive at least her minimal marginal contribution (in particular, at least

v({k})), while a player ℓ being a maximal element should not receive more than her maximal marginal

contribution (in particular, not more than v(N)−v(N \{ℓ})). RGP means that if x is a solution element,

then its restriction to a subset S should be an element of the solution of the corresponding reduced game.

RCP means that from a solution element x and a solution element y of the reduced game on S, one can

build another solution element by concatenating y and xN\S . Lastly, ND means that it is possible to find

a solution element invariant under all symmetries of the game, and thus not favoring any player.

Remark 4.1 (1) Let Γfree be the set of classical TU games2. We recall (Orshan and Sudhölter 2010,

Theorem 4.1) that, if |U | = ∞, there there are precisely three solutions on Γfree that satisfy NE,

REAS, COV, RGP, RCP, and ND, namely the prenucleolus, the positive core C+, or its relative

interior rint C+. Here, for (N,�, v) ∈ Γ and with R = R(N,�),

rint C+(N,�, v) =



x ∈ C+(N,� v)

∣∣∣∣∣∣
e(S, x, v) < 0 for S ∈ F0 or S =

⋃
T for some

T ⊆ R such that e(T , ν(R, vR), vR) < 0



 . (4.2)

For classical TU games, the foregoing set is nonempty because it contains the prenucleous point.

Hence, by Proposition 2.4 it is also nonempty in the general case so that it indeed coincides with

the relative interior of the positive core.

(2) Note that C+ satisfies REAS. Indeed, let (N,�, v) ∈ Γ, x ∈ X(N, v), and k, ℓ ∈ N such that

k is minimal and ℓ is maximal. If xk < t := minS∈F ,k/∈S v(S ∪ {k}) − v(S), then choose ε > 0

such that xk + (|N | − 1)ε < t, define y ∈ X(N, v) by yk = xk + (|N | − 1)ε and yi = xi − ε for

all i ∈ N \ {k} and let S ∈ F \ {∅, N}. If k ∈ S, then e(S, y, v) ≤ e(S, x, v) − ε and if k /∈ S,

then e(S, y, v) < e(S ∪ {k}, x, v). As e({k}, x, v) > 0, x /∈ C+(N,�, v). Similarly it is shown that

xℓ > maxS∈F ,ℓ∈S v(S)− v(S \ {ℓ} implies that x /∈ C+(N,�, v).

(3) It is straightforward to verify that C+ on any Γ′ ⊆ Γ satisfies NE, PO, COV, AN, and CLOS.

We say that Γ′ ⊆ Γ is closed under reduction if, for all (N,�, v) ∈ Γ′, ∅ 6= S ⊆ N, and x ∈ X(N, v),

(S,�, vS,x) ∈ Γ′.

Lemma 4.2 Let Γ′ ⊆ Γ.

(1) If Γ′ is closed under reduction, then both C+ and rint C+ on Γ′ satisfy RGP.

2When cooperation is not restricted, i.e., all coalitions are feasible, we call a game unrestricted (free).
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(2) Both C+ and rint C+ on Γ′ satisfy RCP.

Proof: For C+, Remark 3.1 (3.5) implies (see Theorem 6.3.14 of Peleg and Sudhölter 2007) RGP, and

in order to show RCP the relevant part of the proof of Theorem 6.3.14 of RCP may be literally copied.

In the case of rint C+ we may proceed similarly as before to show RGP. The “Kohlberg criterion” has

to be modified only inasmuch as α > 0 has to be replaced by α > 0 in (3.5) and (3.6).

In order to show that rint C+ satisfies RCP, let (N,�, v) ∈ Γ, x ∈ rint C+(N,�, v), ∅ 6= S ⊆ N ,

y ∈ rint C+(S,�, vS,x), T ∈ F = O(N,�), and put z = (y, xN\S). We have to show that e(T, z, v) 6

e(T, x, v)+ and that e(T, x, v) < 0 implies e(T, z, v) < 0. If x(T∩S) = y(T∩S), then e(T, x, v) = e(T, z, v).

Hence, we may assume that y(T ∩ S) 6= x(T ∩ S). Therefore T ∩ S ∈ F(S) \ {∅, S}. Let P ⊆ N \ S

such that (T ∩ S) ∪ P ∈ F and vS,x(T ∩ S) = v((T ∩ S)∪ P )− x(P ). By definition of the reduced game,

e((T ∩ S) ∪ P, z, v) > e(T, z, v). If e((T ∩ S) ∪ P, z, v) > 0 or e((T ∩ S) ∪ P, x, v) > 0, then by RCP

of C+, e((T ∩ S) ∪ P, z, v) = e((T ∩ S) ∪ P, x, v) so that x(T ∩ S) = y(T ∩ S) which was excluded. If

e((T ∩ S) ∪ P, z, v) = 0, then e((T ∩ S) ∪ P, x, v) < 0 so that e(S ∩ T, xS , vS,x) < 0 = e(S ∩ T, y, vS,x) so

that y /∈ rint C+(S,�, vS,x) by RGP of rint C+. q.e.d.

Lemma 4.3 On any Γ′ ⊆ Γ the positive core satisfies ND.

Proof: For any (N,�, v) ∈ Γ′, x ∈ C+(N,�, v), and π ∈ SYM(N �, v), by AN also π(x) ∈ C+(N,�, v).

By convexity of the positive core, y =
∑

π∈ SYM(N,�,v)
π(x)

|SYM(N,�,v)|
∈ C+(N,�, v). Finally, y is

invariant under symmetries. q.e.d.

Lemma 4.4 If σ is a solution that satisfies REAS and RGP, then e(S, x, v) 6 0 for all (N,�, v) ∈ Γ, x ∈

σ(N,�, v), and all S ∈ O0(N,�).

Proof: Let x ∈ σ(N,�, v), T ∈ O0(N,�), and assume, on the contrary, that e(T, x, v) > 0. Then there

exist k ∈ T and ℓ ∈ N \ T such that k ≺ ℓ. Now, v{k,ℓ},x({k}) > v(T ) − x(T \ {k}) and, by RGP,

x{k,ℓ} ∈ σ({k, ℓ},�, v{k,ℓ},x) so that REAS is violated. q.e.d.

Lemma 4.5 Let σ be a solution that satisfies RGP. If, for any (N, v) ∈ Γfree, σ(N, v) ⊆ C+(N, v),

and if, for any (N,�, v) ∈ Γ and any x ∈ σ(N,�, v), e(T, x, v) 6 0 for all T ∈ O0(N,�), then σ is a

subsolution of the positive core, i.e., σ(N,�, v) ⊆ C+(N,�, v) for (N,�, v) ∈ Γ.

Proof: Let S ⊆ N such that |Q∩S| = 1 for all Q ∈ R. For any i ∈ S denote Qi the connected component

that contains i. Hence, the mapping S → R, i 7→ Qi for all i ∈ S, is a bijection. As F(S) = 2S, by RGP

and our assumption, xS ∈ C+(S,�, vS,x). Now, let y ∈ R
R be defined by yQ = x (

⋃
Q) for all Q ∈ R.

Then, for any T ⊆ S, e(T, xS , vS,x)+ = e({Qi | i ∈ T }, y, vR)+. Indeed, vS,x(T ) = v(T ∪ P ) − x(P )

for some P ⊆ N \ S such that T ∪ P ∈ F . If e(T, xS , vS,x) > 0 then T ∪ P must be a union of

connected components, hence T ∪ P =
⋃

i∈T Qi so that the foregoing equation is valid. Conversely, if

e({Qi | i ∈ T }, y, vR) > 0, then e({Qi | i ∈ T }, y, vR) = v(
⋃

i∈T Qi)− x(
⋃

i∈T Qi) 6 e(T, xS , vS,x).

By Remark 3.1 (3.5), y ∈ C+(R, vR). The proof is finished by (3.1). q.e.d.
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Theorem 4.6 Assume that |U | = ∞. There is a unique solution that satisfies NE, REAS, COV, CLOS,

RGP, RCP, and ND, and it is the positive core.

Proof: The positive core satisfies the desired axioms by Remark 4.1, Lemma 4.2, and Lemma 4.3.

In order to show the remaining direction, let σ be a solution that satisfies the desired axioms. On Γfree, σ

must be one of the following three solutions (Orshan and Sudhölter 2010, Theorem 4.1): The prenucleolus,

the positive core, or its relative interior. Hence, σ is a subsolution of the positive core by Lemmas 4.4

and 4.5.

Step 1: We claim that, on Γfree, σ is the positive core. In order to show this statement it suffices to

construct a single TU game (M,u) ∈ Γfree such that σ(M,u) \ rint C+(M,u) 6= ∅. For this purpose,

choose any set M ′ of three players, say without loss of generality, M ′ = {1, 2, 3}, and let �′ be defined by

1 ≺′ 2. Moreover, let (M ′,�′, u′) ∈ Γ be defined by u′(M) = 2 and u′(S) = 0 for S ∈ F ′ \ {M ′}, where

F ′ = O(M ′,�′). Let P = {1, 3}, Q = {2, 3}, and R = {1, 2}. By NE, there exists x ∈ σ(M ′,�′, u′).

As x ∈ C+(M
′,�′, u′), x1, x3 > 0, x3 6 2, and x(M ′) = 2. Note that all reduced games of (M ′,�′, u′)

w.r.t. P or Q belong to Γfree. By RGP, (x2, x3) ∈ σ(Q, u′
Q,x). As u′

Q,x({2}) = −x1, u
′
Q,x({3}) = 0,

(1 − x1, 1) is the prenucleolus of (Q, u′
Q,x). As σ(Q, u′

Q,x) contains the prenucleolus, RCP implies that

y = (x1, 1 − x1, 1) ∈ σ(M ′,�′, u′). Now, if x1 = 0, then by RGP (0, 1) ∈ σ(P, u′
P,y). However, (0, 1) ∈

C+(P, u
′
P,y) \ rint C+(P, u

′
P,y). If x1 > 0, then by RGP, yR ∈ σ(R,�′, u′

R,y). As u′
R,y({1}) = 0 and

u′
R,y(R) = 1, by (translation) COV (x1,−x1) ∈ σ(R,�′, 0) and by (scale) COV, (t,−t) ∈ σ(R,�′, 0)

for all t > 0 (choose α = t
x1

in the definition of scale COV). By CLOS, (0, 0) ∈ σ(R,�′, 0) so that by

translation COV and RCP, z = (0, 1, 1) ∈ σ(M ′,�′, u′). Finally, RGP yields that (0, 1) ∈ σ(P, u′
P,z) and

(0, 1) ∈ C+(P, u
′
P,z) \ rint C+(P, u

′
P,z).

Let (N,�, v) ∈ Γ. It remains to show that

C+(N,�, v) ⊆ σ(N,�, v). (4.3)

Let F = O(N,�, v). By Step 1 we may assume that F 6= 2N .

Step 2: We consider the case |N | = 2 first and assume without loss of generality that N = {1, 2} and

1 ≺ 2. By COV we may assume that v(S) = 0 for all S ∈ F . With (M ′,�′, u′) defined in Step 1, by NE

there exists y ∈ σ(M ′,�′, u′). As in Step 1 we may assume that y3 = 1. By RGP and RCP applied to

R, we may assume that y2 > 0. Furthermore, by RGP and RCP applied to P , we may replace (y1, y3)

by (y1 + y3, 0) ( or by (0, y1 + y3) if necessary because σ(P, u′
P,y) = C+(P, u

′
P,y)). Thus, there exists

z, z′ ∈ σ(M ′,�′, u′) with z1 > 0 and z′1 = 0. By RGP and COV, (z1,−z1), (0, 0) ∈ σ(N,�, v) so that by

scale covariance, (t,−t) ∈ σ(N,�, v) for all t > 0, i.e., σ(N,�, v) = C+(N,�, v).

Now the proof of (4.3) can be finished by induction on |N |. For |N | = 1, C+(N,�, v) is a singleton so that

(4.3) holds by NE and Lemmas 4.4 and 4.5. For |N | = 2, Step 2 shows (4.3). Assume that (4.3) is proved

whenever |N | 6 k for some t ∈ N with t > 1. If |N | = t+ 1, we may assume by Step 1 that R = R(N,�)

contains a non-singleton Q. Let k ∈ Q be minimal. Let A = {xk | x ∈ C+(N,�, v)}. Then A = [α,∞[

for some α ∈ R. Indeed, by REAS, A has a lower bound and by closedness, there is a largest lower bound
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α. Moreover, let ℓ ∈ Q with k ≺ ℓ. Replacing xk by xk + t and xℓ by xℓ − t for any t > 0 yields another

element of C+(N,�, v). Similarly, if y ∈ σ(N,�, v), then by RCP applied to {k, ℓ}, we may replace yk by

yk + t and yℓ by yℓ− t and receive another element of σ(N,�, v). Also, by applying RCP to the coalition

N ′ = N \{k}, by the the inductive hypothesis, y′ = (yk, zN ′) ∈ σ(N,�, v) for any zN ′ ∈ C+(N
′,�, vN ′,y).

By RGP and RCP of C+, C+(N
′,�, vN ′,y) = {zN ′ ∈ R

N ′

| (yk, zN ′) ∈ C+(N,�, v)}. Hence, it remains

to show that σ(N,�, v) contains an element x such that xk = α. Let x′ arise from x by replacing xk by

yk and xℓ by xℓ + xk − yk. Then x′ ∈ σ(N,�, v) as we have shown. Now, applying RCP to {k, ℓ} allows

us to reverse this modification so that x ∈ σ(N,�, v). q.e.d.

5 Characterizing the bounded positive core

This section is devoted to the characterization of the bounded positive core. Let (N,�, v) ∈ Γ, F =

O(N,�), and R = R(N,�). We may rewrite (3.3) as

Cb
+(N,�, v) = {x ∈ C+(N,�, v) | max{e(S, x, v) | S ∈ F , ℓ /∈ S ∋ k} = 0 for all k, ℓ ∈ N, k ≺· ℓ}. (5.1)

Note that Cb
+ inherits the following properties from C+: NE, PO, COV, AN, REAS, and CLOS. We now

define a particular subsolution of Cb
+ that is single-valued and satisfies ND. Let F∗ = O(N,�∗) where

(N,�∗) is the reverse order of (N,�). Moreover, denote by ν the prenucleolus of the intermediate game

(R, vR). The prenucleolus of (N,�, v) is the set

N (N,�, v) = NUC ((e(S, ·, v∗))S∈F∗ , {y ∈ C+(N,�, v) | y(Q) = νQ for Q ∈ R}) . (5.2)

Proposition 5.1 For any (N,�, v) ∈ Γ, N (N,�, v) is a singleton that is contained in Cb
+(N,�, v).

Proof: Let y ∈ C+(N,�, v) such that y(Q) = νQ for all Q ∈ R and define µ∗ = max{e(S, y, v∗) | S ∈

F∗}, µ = max{e(S, y, v) | S ∈ F}, and

X = {x ∈ C+(N,�, v) | x(Q) = νQ for all Q ∈ R and e(S, x, v∗) 6 µ∗ for all S ∈ F∗}.

Then X 6= ∅ because y ∈ X . Therefore

N (N,�, v) = NUC ((e(S, ·, v∗))S∈F∗ , X) .

Moreover, X is closed and convex. We now show that X is bounded. For i ∈ N let h(i) the height of i

w.r.t. (N,�). Let x ∈ X . If h(i) = 0, then i ∈ F and, hence, xi > v({i})−µ. Moreover, N \ {i} ∈ F∗ so

that x(N \ {i}) > v∗(N \ {i})− µ∗, i.e., xi 6 µ∗ + v({i}). Assume now that we have shown already that

all xi with h(i) < k for some k ∈ N are bounded. If, now, h(i) = k, then let S = {j ∈ N | j � i}. On the

one hand, xi > v(S)− µ− x(S \ {i}), hence xi has a lower bound because h(j) < k for all j ∈ S \ {i} so

that the inductive hypothesis can be applied. On the other hand xi 6 µ∗ + v(S)− x(S \ {i}) so that xi

is bounded from above.

As the excess functions are continuous and convex, and as X is nonempty, compact, and convex, the

prenucleolus NUC ((e(S, ·, v∗))S∈F∗ , X) is a nonempty convex set such that e(S, x, v∗) = e(S, x′, v∗) for
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all S ∈ F∗ and (Justman 1977) all x, x′ ∈ N (N,�, v). By induction on h∗(i), the height of i w.r.t.

(N,�∗) we show that xi = x′
i. Indeed, if h∗(i) = 0, then {i} ∈ F∗ so that e({i}, x, v∗) = e({i}, x′, v∗)

implies xi = x′
i. If h

∗(i) > 0, then, with S = {j ∈ N | j �∗ i},

e(S, x, v∗) = v∗(S)− x(S \ {i})− xi = v∗(S)− x′(S \ {i})− x′
i = e(S, x′, v∗)

so that xi = x′
i by the inductive hypothesis applied to j ∈ S \ {i}. Let ν(N,�, v) = ν̂ denote the unique

element of N (N,�, v). Moreover, let k, ℓ ∈ N such that k ≺· ℓ. Assume that t = max{e(S, ν̂, v) | S ∈

F , ℓ /∈ S ∋ k} < 0. Let 0 < ε < −t and let x ∈ R
N only differ from ν̂ inasmuch as xk = ν̂k − ε

and xℓ = ν̂ℓ + ε. Then x ∈ X and e(T, x, v∗) < e(T, ν̂, v∗) for all T ∈ F∗ such that k /∈ T ∋ ℓ and

e(T, x, v∗) = e(T, ν̂, v∗) for all other T ∈ F∗ which is a contradiction. By (5.1), ν̂ ∈ Cb
+(N,�, v). q.e.d.

Remark 5.2 The solution N (·) satisfies ND because it is single-valued and satisfies AN.

We provide now a combinatorial characterization of the prenucleolus of (N,�, v) by a Kohlberg-like

criterion. To this end, we introduce the following collections, for any Q ∈ R:

D′(α, x, v∗, Q) = {S ∩Q | S ∈ F∗
0 , e(S, x, v

∗) > α}

E(x, v,Q) = {T ∩Q | T ∈ F0, x(T ) = v(T )} ∪ {Q},

where F∗
0 = O0(N,�∗). For two collections B,B′ in 2N such that B ⊆ B′, we say that B is balanced

within B′ if there exists a collection B ⊆ C ⊆ B′ which is balanced.

Proposition 5.3 Let (N,�, v) ∈ Γ, and consider x ∈ C+(N,�, v) s.t. x(Q) = νQ for Q ∈ R, where ν

is the prenucleolus of (R, vR). The following are equivalent:

(1) x = N (N,�, v)

(2) For α > 0, Q ∈ R, y ∈ R
Q, with y(Q) = 0 and y(S) 6 0 for all S ∈ D′(α, x, v∗, Q) ∪ E(x, v,Q), we

have y(S) = 0 for all S ∈ D′(α, x, v∗, Q).

(3) For α > 0 and Q ∈ R, D′ = D′(α, x, v∗, Q) is balanced within D′ ∪ E(x, v,Q).

Proposition 5.3 generalizes Kohlberg’s (1971) characterization of the nucleolus. The equivalence between

(1) and (2) is proved similarly as in the classical case. The equivalence between (2) and (3) which is an

immediate consequence of Farkas’ lemma occurs as a special case of Lemma 2.1 of Derks, Peters, and

Sudhölter (2014) and is, e.g., explicitly proved by Derks and Peters (1998).

By Remark 5.2 and Proposition 5.1 the bounded positive core satisfies ND. Moreover, a careful inspection

of the definition of the reduced game together with (5.1) show that, by Lemma 4.2, Cb
+ also inherits RGP

from C+. Thus, C
b
+ does not satisfy RCP if |U | = ∞ by Theorem 4.6.

In order to characterize the bounded positive core, the following properties of a solution σ on a set Γ′ ⊆ Γ

are useful. The solution σ satisfies
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• the converse reduced game property (CRGP) if for (N,�, v) ∈ Γ′ with |N | > 2 and x ∈ X(N, v) the

following condition holds: If, for every S ⊆ N with |S| = 2, (S,�, vS,x) ∈ Γ′ and xS ∈ σ(S,�, vS,x),

then x ∈ σ(N,�, v).

• the restricted converse reduced game property (RCRGP) if for (N,�, v) ∈ Γ′ and x ∈ X(N, v), with

R = R(N,�) the following condition holds: If there exists S ⊆ N such that |S ∩ Q| = 1 for all

Q ∈ R, (S,�, vS,x) ∈ Γ, and xS ∈ σ(S, vS,x), and if (T �, v) ∈ Γ′ and xT ∈ σ(T,�, vT,x), for any

T = {k, ℓ} ⊆ N with k ≺· ℓ, then x ∈ σ(N,�, v);

• the unrestricted reconfirmation property (RCPfree) if the restriction of σ to Γ′ ∩ Γfree satisfies RCP.

RCRGP has not been used in the literature. It may be interpreted as follows. If every “block”, i.e., every

connected component, may select a representative so that the coalition of representatives S is satisfied

with the preimputation x (i.e., xS ∈ σ(S, vS,x)) and if every pair of players consisting of a player ℓ and

her immediate subordinate k is also satisfied (i.e., xT ∈ σ(T,�, vT,x), where T = {k, ℓ}), then no player

in the grand coalition has an objection against x (i.e., x ∈ σ(N,�, v)).

As C+ satisfied RCP, Cb
+ satisfies RCP on Γfree, i.e., Cb

+ satisfies RCPfree. By (3.3), it also satisfies

BOUND.

The following result may be proved similarly to Lemma 4.5.

Lemma 5.4 The bounded positive core satisfies RCRGP.

Proof: Let (N,�, v) ∈ Γ, F = O(N,�, v), R = R(N,�), and let x ∈ X(N, v) such that x{k,ℓ} ∈

Cb
+({k, ℓ},�, v{k,ℓ},x) for all k, ℓ ∈ N such that k ≺· ℓ and such that there exists S ⊆ N with |Q∩S| = 1

for all Q ∈ R and xS ∈ Cb
+(S, vS,x). For any i ∈ S denote Qi the connected component that contains i.

Hence, the mapping S → R, i 7→ Qi for all i ∈ S, is a bijection.

Let k, ℓ ∈ N such that k ≺· ℓ. Now, v{k,ℓ},x({k}) = v(T )− x(T \ {k}) for some T ∈ F with ℓ /∈ T ∋ k.

As x{k,ℓ} ∈ Cb
+({k, ℓ},�, v{k,ℓ},x), 0 = v(T )− x(T ) = max{v(P )− x(P ) | ℓ /∈ P ∋ k, P ∈ F}.

By (3.1) and (5.1) it suffices to show that y = (x(Q))Q∈R ∈ C+(R, vR). Now, xS ∈ C+(S, vS,x). As in

the proof of Lemma 4.5, e(T, xS , vS,x)+ = e({Qi | i ∈ T }, y, vR)+ for all T ⊆ F(S) so that the proof is

finished by (3.5). q.e.d.

Remark 5.5 In the proof of Theorem 5.6 we shall employ the following stronger version Theorem 4.1

of Orshan and Sudhölter (2010) in which REAS is replaced by BOUND: If |U | = ∞, then the unique

solutions on Γfree that satisfy NE, BOUND, COV, RGP, and ND, are (a) the prenucleolus, (b) the positive

core, and (c) the relative interior of the positive core. This result is Theorem 4.9 of Orshan and Sudhölter

(2001). The article from 2010 is a modification of the discussion paper from 2001. Theorem 4.9 relies

on the lengthy and technically sophisticated proof of Lemma 4.2, whereas when replacing BOUND by

REAS, the proof of the corresponding lemma (Lemma 4.6) takes just a few lines so that the authors used

the well-accepted REAS in their 2010 article basically to offer an easier reading. In the present context,

when restrictions are possible, REAS is not implying BOUND.
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Theorem 5.6 The bounded positive core is the unique solution that satisfies NE, BOUND, COV, RGP,

RCPfree, ND, and RCRGP, provided |U | = ∞.

We postpone the proof and first show a useful variant of Lemma 4.4.

Lemma 5.7 If σ is a solution that satisfies BOUND, COV, and RGP, then, for any k, ℓ ∈ N such that

k ≺·ℓ with P = {k, ℓ}, σ(P,�, vP,x) = Cb(P,�, vP,x) for any x ∈ σ(N,�, v), which yields max{e(S, x, v) |

l 6∈ S ∋ k, S ∈ F} = 0.

Proof: Let u = vP,x. Define y ∈ R
P by yk = xk − u({k}) and yℓ = xℓ + u({k})− u(P ). By RGP and

translation COV, y ∈ σ(P,�, 0). By scale COV, ty ∈ σ(P,�, 0) for t > 0 so that, by BOUND, y = 0,

which yields xk = max{v(S ∪ {k})− x(S) | k /∈ S ∈ F}. q.e.d.

Proof of Theorem 5.6: It remains to show the uniqueness part. Let σ be a solution that satisfies the

desired properties. By Lemmas 5.7 and 4.5, σ is a subsolution of Cb
+. Thus, it remains to show that

Cb
+(N,�, v) ⊆ σ(N,�, v).

Claim: The solution σ coincides with C+ = Cb
+ on Γfree. Recall that (M ′,�′, u′) ∈ Γ of the proof

of Theorem 4.6 is defined by M ′ = {1, 2, 3}, u′(M) = 2 and u′(S) = 0 for S ∈ F ′ \ {M ′}, where

F ′ = O(M ′,�′). Also, let P = {1, 3}, Q = {2, 3}, and R = {1, 2}. By NE, there exists x ∈ σ(M ′,�′, u′).

As x ∈ Cb
+(M

′,�′, u′), x1 = 0 (by (5.1)) and 0 6 x3 6 2. If x3 > 0, then (x1, x3) ∈ C+(P, u
′
P,x) \

rint C+(P, u
′
P,x), and if x3 = 0, then (x2, x3) ∈ C+(Q, u′

Q,x) \ rint C+(Q, u′
Q,x). Hence, our claim is

valid by Remark 5.5 in any case.

Now we can finish the proof. Let x ∈ Cb
+(N,�, v) and choose any S ⊆ N such that |S ∩ Q| = 1 for

any Q ∈ R(N,�). Then (S,�) has height 0 so that the reduced game w.r.t. S belongs to Γfree. By RGP

of Cb
+, xS ∈ C+(S, vS,x). Hence, by our claim xS ∈ σ(S, vS,x). Moreover, if k, ℓ ∈ N satisfy k ≺· ℓ,

then ({k, ℓ},�, v{k,ℓ},x) has a single-valued bounded (positive) core by (5.1). By RGP of Cb
+, the unique

element is (xk, xℓ), i.e., xk = v{k,ℓ},x({k}). Hence, (xk, xℓ) ∈ σ({k, ℓ},�, v{k,ℓ},x) by NE of σ. By RCRGP,

x ∈ σ(N,�, v). q.e.d.

Remark 5.8 Assume that |U | = ∞. According to Sobolev (1975), the prenucleolus is the unique solution

on Γfree that satisfies SIVA, AN, COV, and RGP. For a single-valued solution, however, RGP is equivalent

to RCP. Moreover, Orshan (1993) showed that AN may be replaced by the equal treatment property,

and Orshan and Sudhölter (2003) proved that the four axioms may be replaced by NE, ETP, COV,

and RCP. However, a nonempty solution on Γ that contains the prenucleolus for unrestricted games and

satisfies RGP or RCP and COV, cannot coincide with the prenucleolus on Γfree as an easy analysis of

the reduced games of (M ′,�′, u′) (the game used in the proofs of the characterizations) shows. Hence,

in the foregoing sense there is no “prenucleolus” on Γ.
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6 Characterizing the positive prekernel and its bounded variant

This section is devoted to generalize the definition and characterization (Sudhölter and Peleg 2000) of

the positive prekernel to games with precedence constraints. Let (N,�, v) ∈ Γ, F = O(N,�), and

R = R(N,�). For x ∈ R
N and k, ℓ ∈ N, k 6= ℓ, denote by skℓ(x, v) the maximum surplus of k over ℓ at x,

defined by

skℓ(x, v) = sup{e(S, x, v) | ℓ /∈ S ∋ k}.

The positive prekernel of (N,�, v) is the set

PK+(N,�, v) = {x ∈ X(N, v) | skℓ(x, v) 6 sℓk(x, v)+ for all k, ℓ ∈ N, k 6= ℓ}. (6.1)

If the height of (N,�) is not 0, i.e., if restrictions are present, then the prekernel (an element x of which,

similarly as in (6.1), has to satisfy skℓ(x, v) = sℓk(x, v)) is empty. Indeed, if k ≺ ℓ, then skℓ(x, v) ∈ R,

but sℓk(x, v) = sup ∅ = −∞. Hence, if x ∈ PK+(N,�, v), then skℓ(x, v) 6 0. We conclude that

PK+(N,�, v) = {x ∈ X(N, v) | (x(Q))Q∈R ∈ PK+(R, vR) and e(S, x, v) 6 0 for all S ∈ F0}. (6.2)

Thus, we define the bounded positive prekernel by

PKb
+(N,�, v) = {x ∈ PK+(N,� v) | max{e(S, x, v) | S ∈ F , ℓ /∈ S ∋ k} = 0 for all k, ℓ ∈ N, k ≺· ℓ}.

(6.3)

Remark 6.1 On Γfree the positive prekernel is characterized by NE, AN, REAS, the weak reduced

game property (WRGP) the definition of which differs from RGP only inasmuch as only reduced games

w.r.t. coalitions S ⊆ N with |S| 6 2 are considered, CRGP, and weak unanimity for 2-person games

(WUTPG) requiring that, applied to any 2-person game (N, v), the solution contains {x ∈ X(N, v) |

xi > v({i}) for i ∈ N}. (Sudhölter and Peleg 2000, Theorem 7.1)

We now show that the result mentioned in Remark 6.1 may be generalized to Γ. A solution σ on

Γ′ ⊆ Γ satisfies WUTPG if for all (N,�, v) ∈ Γ′ with |N | = 2, σ(N,�, v) ⊇ {x ∈ X(N, v) | xi >

v({i}) for all minimal i ∈ N}.

Proposition 6.2 The positive prekernel is characterized by NE, AN, REAS,WRGP, CRGP, and WUTPG.

Proof: By Proposition 2.4 and non-emptiness of PK+ on Γfree, PK+ satisfies NE, and clearly it satisfies

AN and WUTPG. Moreover, REAS, RGP, and CRGP follow from (6.2) and the corresponding properties

on Γfree. In order to show the uniqueness part, let σ be a solution that satisfies the desired properties.

By WRGP applied to 1-person reduced games and REAS, σ satisfies PO. Morever, for any (N, v) ∈ Γfree,

σ(N, v) = PK+(N, v) by the mentioned classical result. If (N,�, v) ∈ Γ \ Γfree, then |N | > 2. If |N | = 2,

then by PO and REAS, σ(N,�, v) ⊆ PK+(N,�, v). By WUTPG, σ(N,�, v) = PK+(N,�, v). If |N | > 2

and x ∈ σ(N,�, v), then, by WRGP of σ, xS ∈ σ(S,�, vS,x), and hence, xS ∈ PK+(S,�, vS,x), for all
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S ⊆ N with |S| = 2. By CRGP of PK+, x ∈ PK+(N,�, v). The opposite inclusion follows similarly by

interchanging the roles of σ and PK+. q.e.d.

The bounded positive prekernel inherits NE, AN, REAS, RGP, and CRGP from the positive preker-

nel. Hence, the bounded variant exclusively violates WUTPG of the axioms in Proposition 6.2, i.e.,

PKb
+(N,�, v) is a singleton whenever |N | = 2 and (N,�) has not height 0. Hence, we note that the

bounded positive prekernel is characterized by NE, AN, REAS, WRGP, CRGP, WUTPGfree (requiring

that the core is contained in the solution applied to any classical 2-person game), and BOUND.

Here, REAS cannot be deleted. Indeed, let t > 0 and, define the following solution σ by the requirement

that x ∈ σ(N,�, v) if skℓ(x, v) 6 (sℓk(x, v))+ for all k, ℓ ∈ N, k 6= ℓ, and maxi∈S 6∋j,S∈F e(S, x, v) = 0 for

all i, j ∈ N, i ≺ j, and v(N)− t 6 x(N) 6 v(N), then PKb
+ is a subsolution of σ that, hence, satisfies NE

and WUTPGfree. Also, it satisfies BOUND and AN and the remaining properties (WRGP and CRGP)

are easily deduced as well. However, σ does not coincide with PKb
+ already for 1-person games.

7 On the logical independence of the employed axioms

By generalizing or slightly modifying the solution concepts σ1, . . . , σ5 of Orshan and Sudhölter (2010,

Sect. 4.1), we will show that each of the axioms (1) NE, (2) REAS (respectively, BOUND), (3) COV,

(4) RGP, (5) RCP (respectively, RCPfree) in Theorem 4.6 or Theorem 5.6, respectively, is logically

independent of the remaining axioms. Indeed, for any (N,�, v) ∈ Γ with F = O(N,�), R = R(N,�),

and µ = maxT ⊆R e(T , ν(R, vR), vR), let

σ1(N,�, v) = C(N,�, v);

σ1b(N,�, v) = Cb(N,�, v);

σ2(N,�, v) = X(N,�, v);

σ3(N,�, v) = NUC((max{e(S, ·, v), t})S∈F , X(N, v)) for some t < 0;

σ3b(N,�, v) = {x ∈ σ3(N,�, v) | max{e(S, x, v) | S ∈ F , ℓ /∈ S ∋ k} = t for all k, ℓ ∈ N, k ≺· ℓ};

σ4(N,�, v) = {x ∈ X(N, v) | e(T , (x(Q))Q∈R, vR) 6 µ for T ⊆ R and e(S, x, v) 6 0 for S ∈ F0};

s4b(N,�, v) = {x ∈ σ4(N,�, v) | max{e(S, x, v) | S ∈ F , ℓ /∈ S ∋ k} = 0 for all k, ℓ ∈ N, k ≺· ℓ};

σ5(N,�, v) = PK+(N,�, v); and

σ5b(N,�, v) = PKb
+(N,�, v).

Then it is easy to check that σi satisfies all axioms from (1) to (5) except (i), for all i = 1, . . . , 5, and

similarly for σib and the bounded version of the axioms. Also, as mentioned, rint C+ satisfies all axioms

of Theorem 4.6 except CLOS. The solutions σ1 and σ1b, respectively, also show that NE is logically

independent in the characterization of the positive prekernel (Proposition 6.1) and its bounded variant.

Similarly, the (bounded) positive core has all properties except CRGP and the correspondence X only

violates REAS in Proposition 6.2. The solution that assigns the positive prekernel to each (N,�, v) with
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|N | 6 2 and otherwise the set of all reasonable preimputations only violates WRGP, and its bounded

variant may be used to show that RGP is independent of the remaining axioms in the characterization

of the bounded positive prekernel. We now generalize the definition of the solution of Example 8.3 of the

aforementioned article. Choose two players, say 1 and 2 and define, for all (N,�, v) ∈ Γ, σ6(N,�, v) =

PK+(N,�, v) if |N | ≤ 2 and {1, 2} 6⊆ N or C(N,�, v) 6= ∅. If N = {1, 2} and C(N,�, v) = ∅ (hence the

height of (N,�) is 0), put σ6(N,�, v) = PK(N, v) ∪ {(v({1}), v(N)− v({1})), (v(N)− v({2}), v({2}))}.

For |N | > 3, put σ6(N,�, v) = {x ∈ X(N, v) | xS ∈ σ6(S,�, vS,x) for all S ⊆ N, |S| = 2} and let σ6b be

its bounded pendant. Hence,

σ6(N,�, v) = {x ∈ X(N, v) | (x(Q))Q∈R ∈ σ6(R, vR), e(S, x, v) 6 0 for all S ∈ F0} and

σ6b(N,�, v) = {x ∈ σ6(N,�, v) | max{e(S, x, v) | S ∈ F , ℓ /∈ S ∋ k} = 0 for all k, ℓ ∈ N, k ≺· ℓ}.

As in the classical case, σ6 (respectively, σ6b) satisfies NE, REAS (respectively, BOUND), RGP, CRGP,

and WUTPG (respectively, WUTPGfree); and it violates AN.

Let t > 0 and

σ7(N,�, v) = {x ∈ X(N, v) | skℓ(x, v) 6 max{−t, sℓk(x, v)} for all k, ℓ ∈ N, k 6= ℓ}.

Then σ7 exclusively violates WUTPG and the variant defined by

σ7b(N,�, v) = {x ∈ σ6(N,�, v) | max{e(S, x, v) | S ∈ F , ℓ /∈ S ∋ k} = −t for all k, ℓ ∈ N, k ≺· ℓ}

satisfies the remaining axioms of the bounded positive prekernel.

We don’t know if ND is logically independent of the remaining axioms in the characterizing result of the

(bounded) positive core. We remark that NE is logically independent of NE, REAS (BOUND), COV,

and RGP on Γfree (Orshan and Sudhölter 2010), i.e., there are solutions that satisfy NE, REAS, COV,

and RGP, and do neither coincide with the prenucleolus nor with the positive core or its relative interior.

But as soon as an axiom is added that guarantees that the positive core is the only solution that has also

this property, then it is an open problem whether or not ND is still needed.

Moreover, we have to admit that we don’t know whether RCRGP is logically independent of the remaining

axioms in Theorem 5.6.

Finally, examples of the mentioned paper may be generalized to show that the infinity assumption on |U |

is necessary in the characterization of the (bounded) positive core and that for |U | = 2 the statement of

Proposition 6.2 is no longer valid.
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