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Abstract

We study rationalizable solutions in a linear asymmetric Cournot oligopoly. We
show that symmetry across firms favors multiplicity of rationalizable solutions: A
merger (implying a greater asymmetry across firms) makes out-of-equilibrium be-
havior less likely and should dampen ‘coordination’ volatility. The market structure
maximizing consumers’ surplus at a rationalizable solution is not always the competi-
tive one: This may be a symmetric oligopoly with few firms. An empirical illustration
to the airlines industry shows that a reallocation of 1% of market share from a small
carrier to a larger one yields a 1.3% decrease in volatility, measured by the within
carrier standard error of the number of passengers.
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1 Introduction

The issue of rationalizability in a Cournot oligopoly with identical firms has received much
attention in the literature (see, e.g., Bernheim, 1984; Basu, 1992; or Börgers and Janssen,
1995). Our paper considers the rationalizable outcomes in a linear asymmetric Cournot
setup. We interpret multiplicity of rationalizable outcomes as favoring coordination failures.
The main results of our paper show that identical firms are detrimental to the uniqueness of
the rationalizable outcome (dominance solvability of the equilibrium): Firm’s homogeneity
actually favors efficiency in equilibrium, but it makes multiplicity of rationalizable outcomes
(and thus coordination failures) more likely.

We consider the rationalizable outcomes in a linear Cournot oligopoly where the overall
quantity of productive assets can be controlled (Perry and Porter, 1985). This allows us to
separate the own effect of a change in the market size (measured by the total number of
available productive assets) from the effect of a greater asset inequality given the overall
quantity of assets. This setup naturally arises in competition policy when a competition
regulator has to choose how production facilities should be allocated across competitors.
Examples include airlines routes and airports (Borenstein, 1990), nuclear reactors in the
power industry (Davis and Wolfram, 2011), hospitals in the health insurance market (Town
et al., 2006) or water sources (Compte et al., 2002). In these examples, firms possibly differ
according to the number of productive assets under their control, but the overall quantity
of assets is given. A monopoly-like situation, where one firm holds most of the assets, is
detrimental to efficiency in the equilibrium: The aggregate production is lower than in the
equilibrium where facilities are equally shared across several competitors.

A unique rationalizable outcome is obtained when the spectral radius of the best-
response map mapping a vector of individual productions to the vector of best-responses is
less than one (Bernheim, 1984; Moulin, 1984). We show that this spectral radius increases
when the total number of available productive assets increases: A large market size favors
multiplicity of rationalizable outcomes.

Our main results concern reallocations of productive assets across firms. A reallocation
of a given number of assets from a large firm (a firm which owns a high number of assets)
to a smaller one also yields a higher spectral radius: Asymmetry across firms also favor
multiplicity of rationalizable outcomes. In addition, in the case where there are multiple
rationalizable outcomes, this same reallocation enlarges the set of rationalizable aggregate
productions.

The intuition for these results proceeds as follows. The spectral radius of the best-
response map is increasing in the slopes of the firms’ reaction functions. These slopes
are increasing and concave in the firms’ number of assets. Concavity implies that, when
productive assets are reallocated from a large firm to a smaller one, the increase in the
slope of the reaction function of the smaller firm dominates the decrease in the slope of the
larger one. The overall effect then favors multiplicity. Intuitively, this reallocation relaxes
the capacity constraint of the smaller firm. The behavior of the smaller firm becomes
less predictable. The behavior of the larger firm, reacting to its expectation about the
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production of the smaller firm, in turn becomes less predictable.
Since the equilibrium aggregate production decreases when the market gets closer to

the monopoly situation (where one firm holds most of the available productive assets),
our results show that a reallocation of assets whose goal is to reach more efficiency in the
Cournot equilibrium may in fact result in a multiplicity of rationalizable outcomes.

These first results allow us to study the optimal allocation of assets among firms con-
sidering the rationalizable outcomes, rather than the equilibrium outcome only. We first
solve for the distribution of assets maximizing the aggregate equilibrium production sub-
ject to the constraint that this equilibrium is the only rationalizable outcome. Of course,
the equilibrium production reaches its maximum in the competitive case (corresponding
to an infinite number of small identical firms). Thus, when the competitive equilibrium
is the only rationalizable outcome, it is the solution we look for. Otherwise, we find that
the solution is an oligopoly with few identical firms: the optimal allocation of assets now
yields a non competitive market. Finally, we show that this same distribution of assets
also maximizes the lowest aggregate production in a rationalizable outcome. In this sense,
there is no room for an asset distribution which would give rise to multiple rationalizable
outcomes.

Bernheim (1984), Basu (1992) and Börgers and Janssen (1995) study rationalizable
outcomes in symmetric Cournot games. Guesnerie (1992) studies eductive stability (that
coincides with uniqueness of rationalizable outcomes) in the competitive case, and Gaballo
(2013) considers eductive stability in linear symmetric Cournot games. The closest paper
to ours is Moulin (1984). Moulin (1984) provides a condition for local Cournot stability
and shows that this same condition also governs elimination of non-best responses. Our
paper considers global stability of the equilibrium (that amounts to take account of the
entry decision of the firms). It provides a global characterization of the set of rationalizable
outcomes in the presence of asymmetric firms. It also studies how this set relates to the
asset distribution.

There are close links between the outcomes surviving an iterated elimitation process
(dominance solvability, iterated weak dominance, etc.) and the outcomes stable under
adaptive learning. See, among others, Milgrom and Roberts (1990), Guesnerie (1993),
Marx (1999), Hommes and Wagener (2010) or Durieu, Solal and Tercieux (2011). Our
paper does not adress this issue. However this literature suggests that our results may
have close counterparts in adaptive learning.

In practice it is well known that there is no clear evidence that concentration of produc-
tion facilities is associated with higher prices (Gugler et al., 2003). This lack of conclusive
evidence is usually viewed as reflecting a trade-off between economies of scale and the ability
of larger firms to exercise market power (Williamson, 1968; Perry and Porter, 1985; Farrell
and Shapiro, 1990). Our theoretical analysis suggests that this lack of evidence may reflect
different out-of-equilibrium rationalizable behaviors: A reallocation of production facilities
changes the set of rationalizable outcomes. A merger (reducing possible out-of-equilibrium
rationalizable behavior) should dampen market volatility by making easier for each firm to
form accurate predictions about others’ behavior. We illustrate this prediction by studying
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the impact of the merger between Delta Airlines and Northwest in 2008. We use the within
carriers standard error of the number of passengers as a measure of ‘coordination’ volatility.
We provide evidence that the change in market power implied by this merger has reduced
‘coordination’ volatility: A 1 percent transfer of market share from a small firm to a larger
one would decrease volatility by 1.3 percent.

The paper is organized as follows. In Section 2, we briefly present the setup, and we
show that equilibrium production increases following a reallocation of assets from a large
firm to a smaller one. In Section 3, we give a necessary and sufficient condition for the
equilibrium to be the only rationalizable outcome. In Section 4, we establish the trade-off
between efficiency in equilibrium and uniqueness of the rationalizable outcome. In Section
5, we characterize the optimal distribution of assets. Finally the illustration to the airline
industry is given in Section 6.

2 Setup

Following Perry and Porter (1985), we consider a single product model of Cournot com-
petition with M firms and N units of a productive asset. Firm ℓ owns Nℓ units of the
asset, with Nℓ decreasing in ℓ (Nℓ ∈ R+). The only source of heterogeneity across firms is
the (exogenous) distribution of assets. Producing qℓ costs C (qℓ, Nℓ) = q2ℓ/2σNℓ to firm ℓ
(σ > 0). A possible interpretation of this cost function is to think of a unit of the asset
as a plant, and to assume that producing q units of the good in one plant costs q2/2σ. By
convexity, a firm minimizes its overall cost by producing the same quantity in each plant.

Firm ℓ produces qℓ which maximizes p(qℓ+Q−ℓ)qℓ−C (qℓ, Nℓ), whereQ−ℓ is the aggregate
production of firms other than ℓ and p (·) = δ0 − δQ is the inverse demand function (where
Q is the aggregate production, and δ, δ0 > 0). The best response of firm ℓ is

Rℓ(Q−ℓ) =

{

qmℓ − bℓQ−ℓ if Q−ℓ ≤ δ0/δ,

0 if Q−ℓ ≥ δ0/δ,
(1)

where qmℓ = bℓδ0/δ is the monopoly production of firm ℓ, and

bℓ =
σδNℓ

2δσNℓ + 1
. (2)

The linear/quadratic specification implies that the sensitivity parameter bℓ (the slope of
the reaction function) is increasing and concave in Nℓ.

A Cournot equilibrium is a vector (q∗ℓ ) such that q∗ℓ = Rℓ(Q
∗
−ℓ) for every ℓ. Straightfor-

wardly, there is a unique equilibrium. Let Q∗ be the aggregate production in equilibrium.
Since the equilibrium price p(Q∗) is positive (otherwise no firm would be active in equilib-
rium) and the marginal cost tends to zero when the production tends to zero, it is always
profitable for a firm to enter the market. Hence all the firms are active in equilibrium
(q∗ℓ > 0 for every ℓ).

Our first result confirms that an equal distribution of assets across the firms yields the
highest aggregate production in equilibrium, and thus the highest consumers’ surplus.
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Proposition 1. A transfer of assets from firm h to firm s increases the aggregate output
Q∗ in the Cournot equilibrium if and only if Nh > Ns (firm h is larger than firm s).

Proof. The equilibrium aggregate production is

Q∗ =
S

1 + S

δ0
δ
, with S =

M
∑

ℓ=1

bℓ
1− bℓ

. (3)

The production Q∗ increases in S, and the ratio bℓ/(1− bℓ) is increasing and concave in Nℓ.
A transfer of assets from a large to a small firm implies a lower bh/(1 − bh) and a higher
bs/(1− bs). By concavity, S increases, and so Q∗ increases. �

This result is a particular case of Perry and Porter (1985) or Farrell and Shapiro (1990).
It includes the case of a merger (a merger between firms s and h amounts to transfer all
the assets of s to h). A corollary of Proposition 1 is that, when all the firms have the
same number of assets, the aggregate output Q∗ increases in the number M of firms (at a
symmetric oligopoly with M firms, the transfer of all the assets of one firm to the others
results into a symmetric oligopoly with M − 1 firms, and Q∗ decreases). Hence, Q∗ and
the consumers’ surplus are maximized in a competitive equilibrium (an equilibrium with
an infinite number of identical firms).

3 Dominance solvability of the equilibrium

An equilibrium is dominant solvable when it is the unique rationalizable outcome of the
Cournot game. To study dominance solvability, we first define rationalizable strategies by
the following elimination process.

Suppose first that the strategy set of every firm ℓ is
[

qinfℓ (0), qsupℓ (0)
)

= [0,+∞). Then,
define iteratively (for all t ≥ 1) the sequences

[

qinfℓ (t) , qsupℓ (t)
]

of sets of best responses of
firm ℓ to the belief that the aggregate production of others is in

[

Qinf
−ℓ (t− 1) , Qsup

−ℓ (t− 1)
]

,
with Qinf

−ℓ (t− 1) =
∑

k 6=ℓ q
inf
k (t− 1) and Qsup

−ℓ (t− 1) =
∑

k 6=ℓ q
sup
k (t− 1). Strategic substi-

tutabilities imply that

qinfℓ (t) = Rℓ

(

Qsup
−ℓ (t− 1)

)

, and qsupℓ (t) = Rℓ(Q
inf
−ℓ (t− 1)). (4)

These sequences are converging since (qinfℓ (t)) increases in t, (qsupℓ (t)) decreases in t, and
they are bounded (0 ≤ qinfℓ (t) ≤ q∗ℓ ≤ qsupℓ (t) ≤ qmℓ for all t ≥ 1). Their limits, denoted
qinfℓ and qsupℓ , are fixed points of the recursive system (4). The limit set [qinfℓ , qsupℓ ] is the set
of rationalizable productions of firm ℓ.

Let us first adopt a local viewpoint. Local dominance solvability is defined as the
uniqueness of the rationalizable outcome in a game where the strategy sets are restricted
to a neighborhood of the equilibrium (qinfℓ (0) and qsupℓ (0) are close to the equilibrium q∗ℓ
for every firm). Local dominance solvability obtains whenever the recursive system (4) is
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locally contracting at the equilibrium. Since the system (4) is linear, this is equivalent to
the spectral radius of the matrix

B =











0 b1 · · · b1

b2
. . .

...
...

. . . bM−1

bM · · · bM 0











being less than 1.

Lemma 1. The spectral radius of B is the unique positive root ρ of

F (ρ) ≡
M
∑

ℓ=1

bℓ
ρ+ bℓ

= 1. (5)

We have ρ < 1 ⇔ F (1) < 1.

Proof. Let e be an eigenvalue of B, and v an associated eigenvector. Then, ev = Bv
yields

evℓ + bℓvℓ = bℓ

M
∑

k=1

vk ⇔ vℓ =
bℓ

e+ bℓ

M
∑

k=1

vk for all ℓ.

Summing over ℓ implies that every eigenvalue e of B is such that

F (e) ≡
M
∑

ℓ=1

bℓ
e+ bℓ

= 1.

For e ≥ 0, the function F is continuous and decreasing. Moreover, F (0) = n > 1 > 0 =
F (+∞). Hence, B admits a unique positive real eigenvalue. Since B is a positive matrix,
it follows from Perron-Frobenius theorem that this positive real eigenvalue is the spectral
radius ρ of B. That is, F (ρ) = 1 for ρ > 0. Finally, since F is decreasing, we have: ρ < 1
if and only if F (1) < 1. �

The inequality F (1) < 1 is the local condition found by Moulin (1984). We show below
that it is also the condition for global dominance solvability of the equilibrium. This is
done by investigating the set of rationalizable outcomes. Characterizations of this set have
been obtained by Bernheim (1984), Basu (1991), Börgers and Janssen (1995) and Gaballo
(2013) in the context of Cournot competition with identical firms (all the firms own the
same number of assets). With identical firms, either the equilibrium is dominant solvable
(qinfℓ = qsupℓ = q∗ℓ ≡ q∗ for all ℓ), or [qinfℓ , qsupℓ ] = [0, qm] with qm = qmℓ for all ℓ. Indeed, by
symmetry, either qinfℓ > 0 for all ℓ or qinfℓ = 0 for all ℓ. In the first case, the linear system
(4) admits a unique fixed point which coincides with the equilibrium. In the latter case
(∀ℓ, qinfℓ = 0), qsupℓ is the best response of firm ℓ to others producing 0: This is the monopoly
production qm.

6
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In our setup firms are heterogenous and it is no longer true that qinfℓ = 0 for every ℓ
when the equilibrium is not dominant solvable. The next result shows that the values of
qinfℓ are ranked according to ℓ.

Lemma 2. The bounds qinfℓ and qsupℓ are nonincreasing in ℓ. Furthermore, the lowest
rationalizable production qinfℓ is 0 if and only if ℓ > ℓ̄, where ℓ̄ ≥ 0 is the largest ℓ such that

∑

k≤ℓ

bk
1 + bk

+
∑

k>ℓ

bk
1 + bℓ

< 1. (6)

Proof. See in appendix. �

To get an intuition about the existence of the threshold ℓ̄, let us consider the first two
steps of the iterative process of elimination of non best responses. In the first step, qsupℓ (1)
is the monopoly production qmℓ which is decreasing in ℓ (it is increasing in the number of
assets). In the second step, qinfℓ (2) is the best response to Qsup

−ℓ (1) which is increasing in ℓ
(small firms face a higher aggregate production of others than large firms). It follows that
qinfℓ (2) is decreasing in ℓ and qinfℓ (2) is possibly 0 for ℓ large enough. The argument extends
to every further step of the elimination process.

Given the threshold ℓ̄, we can characterize the rationalizable outcomes of a linear
Cournot game.

Lemma 3. The set of rationalizable aggregate productions is the interval
[

Qinf , Qsup
]

, where

Qinf =

(

1 +
c− a

a2 − c (c+ e)

)

δ0
δ
, Qsup = Qinf +

e

a2 − c (c+ e)

δ0
δ
, (7)

with

a = 1 +
∑

ℓ≤ℓ̄

b2ℓ
1− b2ℓ

, c =
∑

ℓ≤ℓ̄

bℓ
1− b2ℓ

and e =
∑

ℓ>ℓ̄

bℓ.

Proof. See in appendix. The appendix also characterizes the set
[

qinfℓ , qsupℓ

]

of ratio-
nalizable individual productions. �

Lemma 2 directly yields a necessary and sufficient condition for dominance solvability of
the Cournot game. On the one hand, when all the firms are active (ℓ̄ = M), qinfℓ = qsupℓ = q∗ℓ
for all ℓ since the equilibrium is the unique fixed point of the linear system (4). On the
other hand, the Cournot equilibrium is not the only rationalizable outcome when some
firms remain inactive (ℓ̄ < M).

Proposition 2. The Cournot equilibrium is globally dominant solvable (the unique ratio-
nalizable outcome) if and only if ℓ̄ = M , or equivalently

Γ ≡
∑

ℓ

bℓ
1 + bℓ

< 1. (8)
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Dominance solvability is obtained whenever the total sensitivity of firms is low enough,
an intuition similar to the one found in the competitive case (Guesnerie, 1992). Proposition
2 generalizes the local analysis by taking into account the decision of entry analyzed in
Lemma 2. It shows that condition (8) also governs global dominance solvability, and thus
it governs rationalizability of entry.

4 Rationalizability and asset distribution

We now relate the asset distribution to the set of rationalizable outcomes. A first ap-
proach consists in studying the variations of the spectral radius ρ w.r.t. the distribution
of assets. The underlying idea is that a lower spectral radius favors dominance solvability.
The spectral radius indeed reflects the speed of convergence of the sequences qinfℓ (t) and
qsupℓ (t) toward their limits qinfℓ and qsupℓ . Desgranges and Ghosal (2010) provides a formal
justification of the interpretation of ρ as a plausibility index for dominance solvability.

Proposition 3. A transfer of assets from firm h to firm s increases the spectral radius ρ
of B if and only if firm h is larger than firm s (Nh > Ns).

Proof. Consider a transfer of dN > 0 assets from firm h to firm s, i.e., Ns increases by
dN and Nh decreases by dN (Ns < Nh). The resulting change dρ in the spectral radius is
obtained by differentiating (5):

F ′(ρ)dρ+

[

∂

∂Ns

(

bs
1 + bs

)

−
∂

∂Nh

(

bh
1 + bh

)]

dN = 0.

Since the ratio bℓ/(1+bℓ) is increasing and concave in Nℓ, the term into brackets is positive.
Since F ′(ρ) < 0 for ρ > 0, we have dρ > 0. �

Proposition 3 shows that introducing asymmetries across firms favors dominance solv-
ability: For a given number of firms, the equilibrium is more likely to be dominant solvable
when there are both large and small firms, rather than identical firms.

The effect of a transfer of assets from h to s is a priori ambiguous. Dominance solvability
is favored by firms’ inertia to changes in the (expected) production of others, i.e., a slope of
the reaction functions close to 0. The (absolute value of the) slope is always increasing in
the number of assets. Therefore the transfer of assets considered in Proposition 3 implies
that the slope bs of the reaction function of the smaller firm increases (which is detrimental
to dominance solvability) while the slope bh for the large firm decreases (which favors
dominance solvability). The overall effect is made unambiguous by appealing to concavity
of the ratio bℓ/ (1 + bℓ) in the number of assets (so that the increase in bs has a greater
effect than the decrease in bh). When every slope bℓ is increasing in the number of assets
Nℓ, this ratio is concave when bℓ is concave in the number of assets Nℓ.

1

1In a general nonlinear setup, Proposition 3 holds in the neighborhood of the equilibrium when these
monotonicity and concavity properties are satisfied locally. Such properties rely on assumptions on 4th
derivatives of cost and demand functions (the slope bℓ of the reaction function being characterized by
second derivatives of these functions).
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Propositions 1 and 3 highlight that any reallocation of assets which improves consumers’
surplus in equilibrium makes less likely that this equilibrium is the unique rationalizable
outcome.2

A second approach to the impact of assets reallocations bears on the set of rationalizable
aggregate productions

[

Qinf , Qsup
]

. The difference Qsup −Qinf can be viewed as a measure
of the strategic uncertainty in the market. When the equilibrium is not dominant-solvable,
multiplicity of rationalizable outcomes corresponds to the possible occurrence of fluctua-
tions due to out-of-equilibrium beliefs: some ‘coordination’ volatility occurs following the
process of elimination of non-best response strategies. The magnitude of this volatility
can be measured by the size of the interval

[

Qinf , Qsup
]

of rationalizable aggregate produc-
tions. Volatility is dampened when

[

Qinf , Qsup
]

is a narrow interval around the Cournot
equilibrium Q∗.

The next result is another version of the trade-off between efficiency and dominance
solvability: A reallocation of assets which yields a higher aggregate production in equilib-
rium also enlarges the set of rationalizable outcomes.

Proposition 4. Assume that the equilibrium is not dominant solvable (Qinf < Qsup).
Consider an infinitesimal reallocation of assets from a large firm h to a smaller one s,
dNh = −dNs < 0 (Ns < Nh). We have:

d
(

Qsup −Qinf
)

> 0.

Proof. See in appendix. �

In order to grasp some intuition, consider again the iterative process (4). There, the
production qsupℓ (1) is the monopoly production qmℓ which is increasing and concave in Nℓ.
The reallocation of assets from firm h to firm s implies that qmh decreases while qms increases.
The total effect is not ambiguous because of concavity: qms + qmh increases. Hence, for each
firm ℓ 6= s, the reallocation of assets implies an increase in Qsup

−ℓ (1) so that qinfℓ (2) decreases
(firm s faces a smaller production Qsup

−s (1) but we show that this effect is dominated by the
aggregate effect on all the other firms). The argument then extends to every further step
of the iterative process.

5 Optimal asset distribution

This section characterizes the distribution of assets which maximizes consumers’ surplus.
When one considers the issue of multiplicity of rationalizable solutions, there are two ways
of assessing consumers’ surplus. One way is to maximize consumers’ surplus in equilibrium
under the additional constraint that the equilibrium is the only rationalizable solution.
The other way is to maximize consumers’ surplus at some (non-equilibrium) rationalizable

2An alternative assessment could refer to Γ characterized in Proposition 2. Proposition 3 actually holds
true when the spectral radius ρ is replaced by Γ .
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solution. Assuming risk aversion of the competition regulator whose goal is to maximize
consumers’ surplus leads to consider rationalizable solutions involving low production lev-
els. We consider the polar case of the worst scenario where the lowest rationalizable aggre-
gate production Qinf occurs (this corresponds to an arbitrarily large risk aversion towards
strategic uncertainty).

First, we characterize the distribution of assets which maximizes the aggregate produc-
tion in a Cournot equilibrium subject to the constraint that this equilibrium is the unique
rationalizable outcome. Second, we show that this same distribution also maximizes the
lowest rationalizable aggregate production Qinf .

Consider first the distribution of assets (Nℓ) and the numberM of firms which maximize
the equilibrium aggregate production Q∗ defined in (3) subject to two constraints: the
constraint of dominant solvability (F (1) < 1 in (8)), and the feasibility constraint

M
∑

ℓ=1

Nℓ ≤ N. (9)

Proposition 5. Any ((Nℓ),M) maximizing the aggregate equilibrium production Q∗ given
by (3) subject to the constraints (8) and (9) involves an equal sharing of productive assets:
Nℓ = N/M for all ℓ. Furthermore,

• if σδN < 1, then the solution involves an infinite number of firms (competitive mar-
ket), and (9) is the only binding constraint;

• if σδN ≥ 1, then the solution is a symmetric oligopoly with

M∗∗ =
3σδN

σδN − 1

firms.3 The aggregate production is

Q∗∗ =
1

2

3σδN

1 + 2σδN

δ0
δ

(10)

Both constraints (8) and (9) are binding at the optimum.

Proof. See in appendix. �

By Proposition 5 the competitive equilibrium is the only rationalizable outcome when
σδN < 1. This is the condition found by Guesnerie (1992) in a setup where there is
a continuum of size N = 1 of competitive firms. The competitive case with a unique
rationalizable outcome can be viewed as a situation where a large number of identical firms
share a small capacity of production.

3When M∗∗ is not an integer, the solution is the largest integer below M∗∗.
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Figure 1: Optimal distribution of assets

When σδN ≥ 1, the competitive equilibrium is not dominant solvable. Uniqueness
could be restored using two different kinds of policies. The first kind consists in allocating
only a part of the existing production assets: the Cournot equilibrium becomes dominant
solvable when only 1/σδ assets (1/σδ < N) are allocated to a large number of firms, so
that one goes back to the previous competitive situation. High competition then goes
with production inefficiency, since some productive assets are not used. The second policy
is to allocate the whole stock of assets to few firms, so that the market gets closer to a
monopoly-like situation. Proposition 5 shows that this last policy is better for consumers’
surplus.

At this stage, however, Proposition 5 only gives partial insights into the optimal dis-
tribution of assets. Indeed, when σδN ≥ 1, there might exist some distributions of assets
such that the associated lowest rationalizable production Qinf is greater than Q∗∗ exhib-
ited in Proposition 5. With such distributions, the consumers’ surplus at a rationalizable
outcome is necessarily greater than the highest surplus achievable at a dominant solvable
equilibrium.

An illustration is given in Figure 1. The solid curve represents the equilibrium aggregate
quantity when the productive assets are equally shared across firms. This quantity increases
in the number M of firms and eventually coincides with the competitive equilibrium.

In Figure 1 the competitive equilibrium is not dominant solvable: By Proposition 5
there exists a finite threshold M∗∗ such that the equilibrium is dominant solvable if and
only if the number M of firms satisfies M ≤ M∗∗. For all M , the highest equilibrium
production obtains in the case of identical firms. Suppose that there are M0 firms in the
market, with M0 ≥ M∗∗. The equilibrium production in the case of identical firms is at
point B. When the market structure is close to the monopoly situation, the equilibrium is
the only rationalizable outcome. By Proposition 5 the aggregate production then stands
below Q∗∗. Figure 1 depicts the case where the market structure is close the the symmetric
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case, with a set of rationalizable outcome being not reduced to the Cournot equilibrium.
Point A corresponds to an equilibrium aggregate production where firms differ according
to the number of productive assets they hold.

There are two possible cases for the set of rationalizable aggregate productions. In the
first case rationalizable production is always higher than Qinf

0 (M0) satisfying Qinf
0 (M0) >

Q∗∗. In this case any rationalizable outcome in a market with M0 firms dominates (in
terms of consumers’ surplus) the dominant solvable symmetric equilibrium with M∗∗. The
optimal distribution of assets then involves a multiplicity of rationalizable outcomes. The
other possibility where the lowest rationalizable aggregate production isQinf

1 (M0) is however
theoretically possible too. Then, Q∗∗ > Qinf

1 (M0), so that a multiplicity of rationalizable
outcomes can be detrimental to consumers’ surplus.

The next result shows that the last configuration always prevails: for all M > M∗∗, the
lowest rationalizable aggregate production is always below Q∗∗, as is Qinf

1 (M0) in Figure 1.

Proposition 6. There is no distribution of assets such that the lowest aggregate production
Qinf is greater than Q∗∗.

Proof. See in appendix. �

This result implies that there is no asset distribution such that the competition regulator
can hold for sure that one can achieve a surplus higher than in the Cournot-Nash equilibrium
where the aggregate production is Q∗∗ defined in Proposition 6. In this sense, one can not
justify a policy which would give rise to multiple rationalizable outcomes.

In summary, this section raises the question of the choice by a competition regulator of
the distribution of assets. If one relaxes the Nash equilibrium assumption and one consid-
ers rationalizable outcomes as possible outcomes, then one must wonder whether out-of-
equilibrium outcomes may improve consumers’ surplus. Looking at Qinf as in Proposition
6 amounts to have a competition regulator whose risk aversion toward the strategic uncer-
tainty is infinite (the regulator puts a high probability on worst aggregate productions in
the case of multiplicity of rationalizable outcomes). Proposition 6 shows that sufficient risk
aversion leads to select a distribution of assets which yields dominance solvability of the
Cournot equilibrium. But sufficient risk aversion does not always recommend to pick out
the competitive outcome: The optimal distribution of assets is an oligopolistic one when
the production capacity is large (σδN > 1).

6 An Illustration from the U.S. Airline Industry

Our analysis predicts that a merger dampens ‘coordination’ volatility by making out-of-
equilibrium behavior less likely. We assess this prediction by considering the merger be-
tween Delta Air Lines (DL) and Northwest Airlines (NW) in the U.S. airline industry. This
merger was announced on April 2008, approved by the Department of Justice on October
2008, and completed on January 2010. It took place over a period of high volatility, with
the global recession, soaring fuel prices and H1N1 flu pandemic.

12

Documents de Travail du Centre d'Economie de la Sorbonne - 2014.28



In this industry a route linking two cities can be viewed as a separate market, and
carriers as producing an amount of passengers transported. The number of passengers
transported in a given route by a given airline is limited by the time allocated by the
airports to this airline under the form of landing slots. In the short/medium run, the
distribution of the slots across airlines can be considered as given. These slots, or the
corresponding seat capacity, are used as a proxy for the productive assets of our Cournot
setup.

6.1 Data Description

Our data comes from the Airline Origin and Destination Survey, a quarterly 10% sample
of airline tickets collected by the U.S. Department of Transportation. The data gives the
origin and the destination airports, the ticketing carrier, the number of passengers and the
airfare for about 5 millions observations per quarter.

A market (route) is defined as all flights between two U.S. cities, irrespective of the
serving airports, intermediate transfer points and the direction of the flight path. The
period of analysis comprises 18 quarters from 2006:3 to 2010:4, i.e., 9 quarters before and
after the merger approval.4

There are 1, 154 (resp. 3, 305) routes from which DL (resp. NW) is absent every quarter
during the whole period of analysis. The intersection of these two sets of routes yields a
group of 1, 099 routes. These routes are considered to be not affected by the merger, and
they are used as control group. The treatment group consists of all the routes where both
DL and NW are active every quarter before the merger approval. This is the case in 2, 934
(resp. 1, 702) routes for DL (resp. NW). DL and NW were not competing directly on most
routes: The intersection of these two sets of routes only comprises 839 routes.

The data is aggregated so that one observation gives the number of tickets per carrier,
quarter and route. The final sample comprises 12, 639 observations, corresponding to 1, 939
routes linking 235 cities. The market share of DL (resp. NW) computed from 2006:3 to
2008:3 equals 11.3% (resp. 6.7%). Table 1 shows that routes in the treatment group involve
a lower traffic volume and greater competition, with a lower Herfindahl index and more
carriers active in 2006:3.

6.2 Variable Definitions

The main variable of interest is the variance within firms of the number of passengers
transported. It measures how much a firm changes its output with respect to its own
average output. It provides a proxy for ‘coordination’ volatility by reflecting the difficulties

4Data cleaning proceeds as in Kim and Singal (1993). We remove observations with missing carrier,
with a zero fare or abnormal fares in the bottom and top 1% of observations, and tickets with a fare higher
than 3 USD per mile. Following Ciliberto and Williams (2010) we only consider carriers with at least
20 reported passengers per quarter. This corresponds to an airline using at least a 20-seat plane at full
capacity every week. Finally we neglect routes with less than 30 reported passengers per quarter, and
routes where information is missing for some quarter during the period of analysis.
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Table 1: Descriptive statistics

Variable Control Treatment

Number of routes 1, 099 839
Number of cities 219 125
Number of passengers by route (2006:3) 3, 071 1, 194
Mean fare by route (2006:3) 205.2 226.5
Number of carriers by route (2006:3) 2.25 5.64
Herfindahl by route (2006:3) 0.7 0.3

faced by a carrier to set a suitable output level, i.e., to adjust suitably its production to
others’ behavior. This variance is our endogenous variable.

Let carriers be indexed by i, routes by j, quarters by t = 1, . . . , 18 (2006:3 – 2010:4),
and periods by p, with p = 0 before the merger announcement (t ≤ 7) and p = 1 after the
announcement. Let P0 (resp. P1) the set of quarters such that p = 0 (resp. p = 1). The
average production of firm i in market j over period P ∈ {P0,P1} is

q̄ij =
1

(#P)

∑

t∈P

qij(t),

and our measure of ‘coordination’ volatility is

σ2
w(i, j) =

1

(#P)− 1

∑

t∈P

(qij(t)− q̄ij)
2 .

The set of regressors includes route and airline variables. All the route variables are
computed from the first quarter of the period of analysis (2006:3). They consist of the
number of passengers transported and the average fare for each route, the number of active
carriers, and the Herfindahl index of the route. We also use the lowest distance between
the two market endpoints and the total number of airports in the corresponding cities.

Airline variables include a company fixed effect, the fuel price per gallon paid by the
company (the ratio between its domestic fuel cost in USD and its domestic fuel consumption
in gallons) and the distance between the market endpoints and the closest hub of the
company. The last two variables vary over time to control for changes in the production
cost in a context of sharp increase in oil prices.

6.3 Merger and Market Volatility

Figure 2 shows the evolution of the (log of the) total number of passengers transported in
the control and treatment group. Both follow a regular seasonal pattern, with a slight (not
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Figure 2: Number of passengers by group

statistically significant) decrease in the control group. The two vertical lines respectively
indicate the time of the merger announcement (2008:2) and approval (2008:4).

We consider the model

log(σij(p)) = cste + rj+c0i+c1i (p)+Period+Treatment+(Period×Treatment)+ǫij(p), (11)

where rj comprises the route variables, c0i is a company fixed effect, and c1i (p) includes the
two company variables which change over time (fuel price and the distance to the closest
hub of the company). The variable Period is 0 before the merger announcement, and 1
after the announcement. Treatment is a dummy which takes value 0 if the route belongs
to the control group, and 1 otherwise. The interaction term (Period × Treatment) gives
the impact of the merger onto the within standard error of the number of passengers.

Table 2 reports the results for three variants of the model (11). In each variant the
period before the merger covers all the quarters from 2006:3 to the quarter preceding the
announcement of the merger (2008:1), and the period after the merger begins on the merger
announcement (2008:2). In the variant reported in Column 1 (resp., 2 and 3) the period
after the merger ends at the merger approval in 2008:4 (resp., the merger completion in
2010:1, and the last quarter of 2010).

Route and company variables affect within volatility in a similar way in the three
variants. Routes with a low traffic volume and a low fare display low volatility. This tends
to be also the case for routes with a high number of competitors dominated by few large
airlines. The company fixed effects indicate that large companies typically have a stabilizing
effect, though the two merging companies DL and NW seem to encounter greater difficulties
to set a stable output.
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The merger occurs over a period of steep rise in the price of oil in 2008, and including
the begining of the global crisis in 2008:3. The overall period of analysis has indeed seen a
huge increase in the within standard error of the number of passengers. This effect dampens
in 2010 but remains 58.3% higher than before the merger announcement.

One could have expected the merger to magnify market volatility: The market could
have reached an equilibrium that is perturbed by the merger. The merger would then
cause an increase in the standard error as the market transitions to the new equilibrium.
This is not what happens: The short-run (three-quarter) impact of the merger is to reduce
significantly the within standard error of the number of passengers transported. The merger
is found to reduce ‘coordination’ volatility by 23.2% in the short-run. This large impact
dampens over time: Volatility is only reduced by 8.6% during the whole completion period
(Variant 2), which covers eight quarters after the announcement. The impact entirely looses
significance after two years.

There is consequently a strong stabilizing effect of the merger in the short/medium
run, in a context of high volatility. Following Kim and Singal (1993) one can interpret the
result in Variant 2 as reflecting the own impact of a change in market power. Indeed they
argue that the anticipation of the merger make DL and NW more cooperative from the
announcement quarter, and that efficiency gains (synergies) are absent until reaching the
completion: Only the change in market power matters during the period from announce-
ment to completion. The impact measured in Variant 3 would instead mix changes in
market power and synergies by covering about one year after the completion. A possible
interpretation of our results is therefore that the change in market power due the merger
stabilizes ‘coordination’ volatility by 8.6% while synergies eventually offset most of the
effect of market power.

From the model in Variant 2, NW having 6.7% market share before the annoucement,
we find that the own impact of a change in market power corresponding to a 1% transfer of
market share is to reduce the within standard error of the output by about 1.3% (≃ 8.6/6.7).
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Table 2: Impact of the merger

log(σw(i, j))

2006:3–2008:1 vs 2008:2–2008:4 2006:3–2008:1 vs 2008:2–2010:1 2006:3–2008:1 vs 2008:2–2010:4

Constant 14.473∗∗∗ 10.538∗∗∗ 13.025∗∗∗

(1.063) (1.168) (1.282)
Route variables (2006:3)

log(Nb of passengers) 0.761∗∗∗ 0.739∗∗∗ 0.728∗∗∗

(0.008) (0.008) (0.008)

log(Fare) 0.070∗∗ 0.063∗ 0.084∗∗

(0.035) (0.035) (0.035)

log(Nb of carriers) −0.827∗∗∗ −0.785∗∗∗ −0.731∗∗∗

(0.032) (0.032) (0.032)

log(Herfindahl index) −0.022 0.005 −0.006
(0.015) (0.016) (0.016)

log(Market distance) −0.018 0.005 −0.006
(0.015) (0.016) (0.016)

log(Nb of airports) 0.013 0.010 0.002
(0.015) (0.015) (0.015)

Company (ref: American Airlines)

AS (Alaska Airlines) −0.063 −0.079∗ −0.101∗∗

(0.042) (0.043) (0.042)

CO (Continental Airlines) −0.293∗∗∗ −0.236∗∗∗ −0.228∗∗∗

(0.025) (0.025) (0.025)

DL (Delta Air Lines) 0.097∗∗∗ 0.244∗∗∗ 0.231∗∗∗

(0.031) (0.028) (0.028)

FL (AirTran) 0.371∗∗∗ 0.349∗∗∗ 0.332∗∗∗

(0.041) (0.041) (0.040)

G4 (Allegiant Air) 1.467∗∗∗ 1.568∗∗∗ 1.595∗∗∗

(0.111) (0.112) (0.111)

HA (Hawaiian Airlines) 0.554∗∗∗ 0.614∗∗∗ 0.614∗∗∗

(0.113) (0.118) (0.120)

NW (Northwest Airlines) 0.039 0.085∗∗ 0.073∗∗

(0.032) (0.033) (0.034)

UA (United Airlines) −0.229∗∗∗ −0.174∗∗∗ −0.209∗∗∗

(0.024) (0.024) (0.024)

US (US Airways) −0.012 0.007 −0.013
(0.024) (0.025) (0.025)

WN (Southwest Airlines) 0.221∗∗∗ 0.136∗∗∗ 0.186∗∗∗

(0.033) (0.032) (0.032)

YX (Midwest Airlines) −0.099 −0.180∗∗∗ −0.241∗∗∗

(0.066) (0.064) (0.061)

log(Distance to the closest hub) −0.096∗∗∗ −0.103∗∗∗ −0.104∗∗∗

(0.003) (0.003) (0.003)

log(Fuel price) 1.143∗∗∗ 0.840∗∗∗ 1.030∗∗∗

(0.081) (0.089) (0.098)

Impact of the merger

Period 0.838∗∗∗ 0.717∗∗∗ 0.583∗∗∗

(0.023) (0.027) (0.026)

Treatment −0.213∗∗∗ −0.285∗∗∗ −0.314∗∗∗

(0.028) (0.029) (0.029)

Period × Treatment −0.232∗∗∗ −0.086∗∗∗ −0.014
(0.029) (0.029) (0.029)

Observations 11,770 12,397 12,639
R2 0.697 0.647 0.632
Adjusted R2 0.697 0.646 0.632
Residual Std. Error 0.714 (df = 11747) 0.748 (df = 12374) 0.759 (df = 12616)
F Statistic 1,229.037∗∗∗ (df = 22; 11747) 1,030.666∗∗∗ (df = 22; 12374) 985.608∗∗∗ (df = 22; 12616)

Notes: ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.
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7 Proof of Lemmas 2 and 3

Let L0 be the set of values of ℓ such that qinfℓ = 0. The relations (4) give:

∀ℓ /∈ L0 , qinfℓ = bℓ

(

δ0
δ
− (Qsup − qsupℓ )

)

,

∀ℓ ∈ L0 , qinfℓ = 0,

∀ℓ , qsupℓ = bℓ

(

δ0
δ
−
(

Qinf − qinfℓ

)

)

.

Solving for qinfℓ and qsupℓ gives

∀ℓ /∈ L0 , qinfℓ =
b2ℓ

1− b2ℓ

(

δ0
δ
−Qinf

)

+
bℓ

1− b2ℓ

(

δ0
δ
−Qsup

)

, (12)

∀ℓ /∈ L0 , qsupℓ =
bℓ

1− b2ℓ

(

δ0
δ
−Qinf

)

+
b2ℓ

1− b2ℓ

(

δ0
δ
−Qsup

)

, (13)

∀ℓ ∈ L0 , qsupℓ = bℓ

(

δ0
δ
−Qinf

)

, (14)

and ∀ℓ ∈ L0, q
inf
ℓ = 0. Summing over ℓ gives a linear system in Qinf and Qsup whose solution

is (7), namely:

Qinf =

(

1 +
c− a

a2 − c (c+ e)

)

δ0
δ
, Qsup = Qinf +

e

a2 − c (c+ e)

δ0
δ
,

with

a = 1 +
∑

ℓ/∈L0

b2ℓ
1− b2ℓ

, c =
∑

ℓ/∈L0

bℓ
1− b2ℓ

and e =
∑

ℓ∈L0

bℓ.

For every ℓ ∈ L0, q
inf
ℓ = 0 so that

∑

k 6=ℓ q
sup
k > δ0/δ. Using (13), (14) and the expressions

of Qinf and Qsup, this latter inequality is equivalent to:

(c− a) (bm + 1) + e

a2 − c (e+ c)
> 0. (15)

Since e ≥ 0 and

Qsup −Qinf =
e

a2 − c (e+ c)

δ0
δ

≥ 0, (16)

it follows that a2 − c2 − ce > 0, so that the inequality (15) is equivalent to

(a− c) (bm + 1) < e, (17)

which is equivalent to (6) since

c− a =
∑

k/∈L0

bk
1 + bk

− 1.

Hence, qinfℓ = 0 if and only if (6) does not hold true. Since the LHS of (6) is increasing in
ℓ, there is a value ℓ̄ such that qinfℓ = 0 if and only if ℓ > ℓ̄.
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8 Proof of Proposition 4

Let dNh = −dNs < 0. By (2), bℓ is increasing and concave in Nℓ. Hence we have dbh <
0 < dbs and dbh + dbs > 0. Differentiating (16) gives:

dQsup − dQinf =
δ0
δ
d

(

e

a2 − c (c+ e)

)

. (18)

We distinguish between 3 cases for the computation of dQsup − dQinf .
Case 1: ℓ̄ < h < s. a and c remain constant and (18) writes:

dQsup − dQinf =
δ0
δ

a2 − c2

(a2 − c (c+ e))2
de,

where de = dbh+ dbs > 0. Since a2− c2 = (a− c) (a+ c), simple algebra allows us to check
that the above numerator is positive so that dQsup − dQinf > 0.

Case 2: h < s ≤ ℓ̄. e remains constant and (18) writes:

dQsup − dQinf = −
δ0
δ

e

(a2 − c (c+ e))2
(2ada− (2c+ e) dc) .

This has the same sign as ((2c+ e) dc− 2ada). It is positive if and only if
(

c+
1

2
e

)

∑

ℓ≤ℓ̄

d

(

bℓ
1− b2ℓ

)

> a
∑

ℓ≤ℓ̄

d

(

b2ℓ
1− b2ℓ

)

. (19)

On the one hand, bℓ
1+bℓ

is increasing and concave in Nℓ, which implies

∑

ℓ≤ℓ̄

d

(

bℓ
1 + bℓ

)

> 0.

This latter inequality rewrites

∑

ℓ≤ℓ̄

d

(

bℓ
1− b2ℓ

)

>
∑

ℓ≤ℓ̄

d

(

b2ℓ
1− b2ℓ

)

, (20)

The LHS is positive since bℓ
1−b2

ℓ

is shown to be increasing and concave in Nℓ (but the RHS

cannot be signed because
b2
ℓ

1−b2
ℓ

is neither concave nor convex in Nℓ). If the RHS is negative,

then (20) implies that (19) holds true. If the RHS is positive, then rewriting (17) for ℓ̄
gives

a− c >
e

1 + bℓ̄
, (21)

which implies c+ 1
2
e < a. Combining this latter inequality with (20) proves that (19) holds

true. This shows that dQsup − dQinf > 0.
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Case 3: h ≤ ℓ̄ < s. (18) writes:

dQsup − dQinf = −
δ0
δ

e

(a2 − c (c+ e))2
(2ada− (2c+ e) dc)

+
δ0
δ

a2 − c2

(a2 − c (c+ e))2
de

dQsup − dQinf has the same sign as

−e (2ada− (2c+ e) dc) +
(

a2 − c2
)

de

= e
(2c+ e) (1 + b2h)− 4abh

(1− bh)
2 (1 + bh)

2 dbh +
(

a2 − c2
)

dbs

Since dbs > 0 > dbh and dbh + dbs > 0, the above expression is positive if

e
(2c+ e) (1 + b2h)− 4abh

(1− bh)
2 (1 + bh)

2 <
(

a2 − c2
)

(22)

Inequality (21) implies (h ≤ ℓ̄):

a− c >
e

1 + bℓ̄
≥

e

1 + bh
> 0. (23)

Using (a2 − c2) = (a− c) (a+ c) a sufficient condition for Inequality (22) is

e
(2c+ e) (1 + b2h)− 4abh

(1− bh)
2 (1 + bh)

2 < (a+ c)
1

1 + bh
e.

This rewrites:
(2c+ e)

(

1 + b2h
)

− 4abh < (a+ c) (1− bh)
2 (1 + bh) .

Using again Inequality (23) (e < (a− c) (1 + bh)), a sufficient condition for the above
inequality is

(2c+ (a− c) (1 + bh))
(

1 + b2h
)

− 4abh < (a+ c) (1− bh)
2 (1 + bh) .

This rewrites

2abh (bh − 1) < −c2b2h (1− bh) ,

a > cbh.

Since a− c > 0, a > c > cbh. This shows dQ
sup − dQinf > 0.
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9 Proof of Proposition 5

We maximize Q∗ subject to (8) and (9) in three steps. Since Q∗ is increasing in S (see (3)),
the optimization problem is to maximize S subject to (8) and (9).

Step 1. Consider the Lagrangian:

M
∑

ℓ=1

σδNℓ

σδNℓ + 1
+ µ

(

1−
M
∑

ℓ=1

σδNℓ

3σδNℓ + 1

)

+ η

(

N −

M
∑

ℓ=1

Nℓ

)

.

It is the Lagrangian associated with the maximization problem for a given value of M .
Any solution to the initial optimization problem satisfies the first-order conditions in Nℓ

associated with this Lagrangian. The first-order conditions in Nℓ are:

σδP (σδNℓ) = 0, for every ℓ,

where

P (x) =
1

(1 + x)2
− µ

1

(1 + 3x)2
−

η

σδ
.

Hence, the number of different firms (different values of Nℓ) at a solution of the optimization
problem equals the number of positive roots of P . Observe that

P ′(x) = −
2

(1 + x)3
+ µ

6

(1 + 3x)3
.

Since P ′(x) ≥ 0 rewrites

(3− (3µ)1/3)x ≤ (3µ)1/3 − 1,

P ′ can change its sign at most once. Hence, either P is monotonic or P admits one
local extremum. It follows that P admits at most 2 positive roots: the solution to the
optimization problem involves at most two types of firms.

Denote i = 1, 2 the type of a firm. Let Mi the number of firms of type i (i = 1, 2).
Every type i firm uses Ni assets (0 ≤ N1 ≤ N2 w.l.o.g.).

Step 2. We maximize S for given N1 and N2 under the 2 constraints (8) and (9). S is
linear in M1 and M2:

S = M1
σδN1

σδN1 + 1
+M2

σδN2

σδN2 + 1
.

The stability constraint (8) is linear:

M1 ≤
3σδN1 + 1

σδN1

−
N2

N1

3σδN1 + 1

3σδN2 + 1
M2,

and the feasibility constraint (9) is linear too:

M1 ≤
N

N1

−
N2

N1

M2.
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The marginal rate of substitution of S is
σδN2

σδN2+1

σδN1
σδN1+1

, it lies between the slopes of the constraints:

N2

N1

3σδN1 + 1

3σδN2 + 1
<

σδN2

σδN2+1

σδN1

σδN1+1

<
N2

N1

.

Thus, we have 3 cases:
Case 1: N1 ≥

σδN−1
3σδ

. Then

3σδN1 + 1

σδN1

≥
N

N1

,

and the feasibility constraint is the only relevant constraint (i.e., feasibility implies stabil-
ity). The solution is M2 = 0, M1 = N/N1. The value of S is

σδN

σδN1 + 1
.

Case 2:N2 ≤
σδN−1
3σδ

. Then,
3σδN2 + 1

σδN2

≤
N

N2

,

and the stability constraint is the only relevant constraint (i.e., stability implies feasibility).
The solution is M1 = 0, M2 =

3σδN2+1
σδN2

. The value of S is

3σδN2 + 1

σδN2 + 1
.

Case 3: N1 < σδN−1
3σδ

< N2. The 2 constraints are relevant. The solution is at the
unique intersection between the constraints, namely















M1 =
1

N2 −N1

3σδN1 + 1

3σδN1

(

3σδN2 + 1

σδ
−N

)

M2 =
1

N2 −N1

3σδN2 + 1

3σδN2

(

N −
3σδN1 + 1

σδ

)

The value of S is (after some computations):

σδN1 (1 + 3σδN2) + σδN2 +
2σδN+1

3

(σδN1 + 1) (σδN2 + 1)
.

Step 3. We solve for N1 and N2 maximizing S in each of the 3 above cases.
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Case 1. Maximizing S amounts to minimize N1. If σδN ≤ 1, then the solution is
N1 = 0 and M1 = +∞ (M2 = 0) and the aggregate production is σδN (we are in the
competitive case). If σδN > 1, then the solution is N1 =

σδN−1
3σδ

and

M1 =
3σδN

σδN − 1
,

S =
3σδN

σδN + 2
.

The aggregate production is

Q∗ =
S

1 + S

δ0
δ

=
1

2

3σδN

1 + 2σδN

δ0
δ
.

Case 2. (this case requires σδN > 1) Maximizing S amounts to maximize N2. The
solution is

N2 =
σδN − 1

3σδ
,

this is the same solution as Case 1.
Case 3. (this case requires σδN > 1). The derivatives of S w.r.t. N1 and N2 have the

following signs:

∂S

∂N1

∼ 3σδN2 −Nσδ + 1 > 3σδ
σδN − 1

3σδ
−Nσδ + 1 = 0,

∂S

∂N2

∼ 3σδN1 −Nσδ + 1 < 3σδ
σδN − 1

3σδ
−Nσδ + 1 = 0.

S is increasing in N1 and decreasing in N2. At the optimum,

N1 = N2 =
σδN − 1

3σδ
.

This is again the same solution as Case 1.

Summing up the 3 cases:

• If σδN ≤ 1, then Case 1 is the only possible case and the solution is that N is divided
equally across an infinite number of firms (competitive market).

• If σδN > 1, then the 3 cases give the same solution: a symmetric oligopoly with 3σδN
σδN−1

firms and where each firm owns the same number σδN−1
3σδ

of assets. The aggregate
production is 1

2
3σδN

1+2σδN
δ
δ0
. One easily checks that both constraints (8) and (9) are

binding.

25

Documents de Travail du Centre d'Economie de la Sorbonne - 2014.28



10 Proof of Proposition 6

The expression (7) of Qinf implies:

1

1− δ
δ0
Qinf

= 1 +
∑

ℓ≤ℓ̄

bℓ
1− bℓ

+

(

∑

ℓ≤ℓ̄
bℓ

1−b2
ℓ

)

∑

ℓ>ℓ̄ bℓ
∑

ℓ≤ℓ̄
bℓ

1+bℓ
− 1

.

By definition of ℓ̄ and Lemma 2, we have

∑

ℓ≤ℓ̄

bℓ
1 + bℓ

<
∑

ℓ≤ℓ̄

bℓ
1 + bℓ

+
∑

ℓ>ℓ̄

bℓ
1 + bℓ̄

≤ 1,

where the strict inequality comes from the equilibrium being unstable. Hence

∑

ℓ≤ℓ̄

bℓ
1 + bℓ

− 1 < 0,

and
1

1− δ
δ0
Qinf

≤ 1 +
∑

ℓ≤ℓ̄

bℓ
1− bℓ

.

From (10), we have
1

1− δ
δ0
Q∗∗

= 2
1 + 2σδN

2 + σδN
.

Since every aggregate production (Qinf or Q∗∗) is smaller than δ0
δ
, we have:

Qinf < Q∗∗ ⇔
1

1− δ
δ0
Qinf

<
1

1− δ
δ0
Q∗∗

.

A sufficient condition for this last inequality is

1 +
∑

ℓ≤ℓ̄

bℓ
1− bℓ

< 2
1 + 2σδN

2 + σδN
. (24)

Let αℓ = Nℓ/N ≥ 0 (αℓ decreasing in ℓ and
∑

αℓ = 1). Using the definition (2) of bℓ, (24)
rewrites

∑

ℓ≤ℓ̄

σδαℓN

σδαℓN + 1
<

3σδN

σδN + 2
. (25)

Note that f (αℓ) =
σδαℓN

σδαℓN+1
is concave in αℓ so that (Jensen inequality)

∑

ℓ≤ℓ̄

f (αℓ)
∑

ℓ≤ℓ̄ αℓ

≤ f

(

∑

ℓ≤ℓ̄ αℓ
∑

ℓ≤ℓ̄ αℓ

)

= f(1).
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This rewrites
∑

ℓ≤ℓ̄

f (αℓ) ≤
σδN

σδN + 1

∑

ℓ≤ℓ̄

αℓ

Since
∑

ℓ≤ℓ̄ αℓ ≤ 1 and
σδN

σδN + 1
<

3σδN

σδN + 2
,

this implies
∑

ℓ/∈L0

f (αℓ) <
3σδN

σδN + 2
,

which shows that (25) holds true.
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