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Abstract
In this paper we analyze the risk attitude of a group of heterogeneous

agents and we develop a theory of comparative collective risk tolerance.
In particular, we characterize how shifts in the distribution of individual
levels of risk tolerance affect the group’s attitude towards risk. In a model
with effi cient risk-sharing and two agents an increase in the level of risk
tolerance of one or of both agents might have an ambiguous impact on
the collective level of risk tolerance; the latter increases for some levels of
aggregate wealth while it decreases for other levels of aggregate wealth.
For more general populations we characterize the effect of first-order like
shifts (individual levels of risk tolerance more concentrated on high values)
and second-order like shifts (more dispersion on individual levels of risk
tolerance) on the collective level of risk tolerance. We also evaluate how
shifts in the distribution of individual levels of risk tolerance impact the
collective level of risk tolerance in a framework with exogenous egalitarian
sharing rules. Our results permit to better characterize differences in risk
taking behavior between groups and individuals and among groups with
different distributions of risk preferences.

1 Introduction

Many decisions to undertake risks are made by groups. A priori, one would
expect that the theory of comparative risk aversion developed by Pratt (1964)
and Arrow (1965), which characterizes the proclivity of individuals to undertake
risks, would easily translate into a theory of group risk taking. Consider, for
instance, three individuals, A, B, and C. Suppose that C is more risk averse
than B and B is more risk averse than A. Intuition strongly suggests that, when
acting together, A and C would be less willing to undertake risks than A and B.
Paradoxically, Mazzocco (2004) showed that such intuition is not always correct.
For some levels of wealth an increase in the degree of risk aversion of the most
risk averse individual in a group may decrease the collective level of risk aver-
sion.1 Mazzocco (2004) presented this paradoxical result through a numerical

1The fact that effi cient groups may behave in a complex manner is well known. Pratt and
Zeckhauser (1989) showed, for example, that a group may be willing to accept a gamble which
combines two individually unacceptable lotteries.
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example with two individuals and isoelastic preferences. Our objective in this
paper is to extend this line of inquiry by establishing precisely the conditions
for this phenomenon to occur and, more generally, by evaluating how changes
in the distribution of individual preferences affect a group’s attitudes towards
risk.
To be perfectly clear, the Arrow-Pratt theory of comparative risk aversion

does apply to utility functions of groups. So, for example, if a group is more
risk averse than another in the Arrow-Pratt sense then this group will also
require a larger risk premium to eliminate a fair risk. The interpretation of such
comparative statics result, however, is clouded by the following fact. The degree
of risk aversion of the group depends upon both the distribution of preferences
among the agents and their optimal allocations. So a change in the distribution
of preferences impacts the collective level of risk aversion through two channels.
A direct one as well as an indirect one due to the fact that changes in the
distribution of preferences lead, in turn, to changes in the effi cient allocation of
wealth. Therefore, if risk is shared effi ciently, collective risk aversion has to be
determined endogenously.
There is one special case in which the problem greatly simplifies: given an

effi cient allocation of wealth, if all individuals in the group have a constant and
common absolute cautiousness (the derivative of the reciprocal of absolute risk
aversion) - e.g. under CARA or CRRA utility functions with a common level of
relative risk aversion -, the group has the same absolute cautiousness (Wilson
1968). Comparative statics of risk aversion at the aggregate level is then not
different from comparative statics at the individual level. The assumption of
homogeneity in individual preferences, however, does not have empirical sup-
port (e.g. Barsky et al. 1997) and, in fact, defeats the purpose of Arrow-Pratt’s
theory of comparative risk aversion. Therefore, in this paper we tackle the prob-
lem of comparing attitudes towards risk among groups composed by individuals
with heterogeneous risk preferences.
We show, in the setting of Mazzocco (2004)’s paper, that the collective level

of risk tolerance is a wealth share weighted average of the individual levels
of risk tolerance and increasing the risk tolerance level of one agent has two
effects: an increase of one of the terms of the average but a possible decrease
of its relative weight in the average. As a result, there are two possible shapes
for the collective risk tolerance as a function of the risk tolerance level of one of
the agents: increasing curve or increasing then decreasing curve.
In fact, we establish the possibility of an even more perplexing situation:

An increase in the degree of risk tolerance of both members of a couple may
decrease their collective degree of risk tolerance.2 We clearly characterize these
different situations in terms of the size of the aggregate endowment relative
to the endowment that corresponds to the fair effi cient allocation. We also
characterize, for the two-agent case and for more general populations, first-order
like shifts (individual levels of risk tolerance more concentrated on high values)

2We also show, however, that a uniform increase in the degree of risk tolerance of both
individuals unambiguously increases the risk tolerance of the group.
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that have an unambiguous impact on the collective level of risk tolerance.
Since the key aspect of our analysis is preference heterogeneity we also eval-

uate how more dispersion on the individual levels of risk tolerance (second-order
shifts) affects the collective risk preferences. We show that, for high levels of
wealth (relative to the level that corresponds to the fair effi cient allocation),
more heterogeneity tends to increase collective risk tolerance, while the oppo-
site is true for low levels of wealth.
Finally, we extend our analysis to a framework in which all members of a

group receive the same endowment (egalitarian groups). This setup is appropri-
ate to analyze situations in which the members of a group derive utility from a
public good and situations in which a private good is simultaneously consumed
by many individuals. For example, many goods within a household are simulta-
neously consumed by all the members of a family. Within this framework, and
under very general individual preferences, we establish the impact of first-order
shifts and second-order shifts on the collective level of risk tolerance.
In addition to the work of Mazzocco (2004), our paper is closely related to

the work of Hara et al (2007), who studied the properties of collective preferences
for a given distribution of individual risk preferences. We extend their analysis
by evaluating how changes in the distribution of individual preferences affect
the collective attitudes towards risk. In this way, our analysis also complements
the work of Gollier (2001, 2007), who explored how heterogeneity in the initial
endowment of wealth and how heterogeneity in beliefs affect a group’s attitude
towards risk. At a more general level, we believe that our results may shed light
into the empirical literature on ’choice shifts’, which compares decisions made
by groups relative to decisions made by the members of the group in situations
of uncertainty (e.g. Baker et al. 2008, Shupp and Williams 2008, Masclet et al.
2009), a topic which we further discuss in the conclusion.3

The paper proceeds as follows. In Section 2 we present the model with effi -
cient risk sharing and we establish a number of useful results about the effi cient
allocations of endowments and the collective risk preferences. In Section 3 we
briefly evaluate the case of CARA preferences, which serves as a useful bench-
mark. In Section 4 we analyze the case of isoelastic heterogeneous preferences.
After presenting general properties of collective preferences we evaluate shifts
in the distribution of individual preferences, first in the case of two agents and
then under more general populations. In Section 5 we evaluate collective risk
preferences for the case of exogenous egalitarian sharing rules, while section 6
concludes. All the proofs are provided in the Appendix.

3 In this literature the objective is to elicit the risk attitude of groups as compared to the
members of the group. Another strand of related empirical literature evaluates whether, under
uncertainty, groups behave in a more consistent manner than individuals (see e.g. Bone et al.
1999, Charness et al. 2007).
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2 The model

We consider a standard static model in which a group of heterogeneous agents
consume a single good. The endowment per person in the consumption good
is defined by a random variable x on the probability space (Ω, F, P ). Agents
have a common belief over the probability space. In order to take into account
finite as well as infinite sets of agents, the agent space is described by (I, ι, Q),
where I = [0,∞) and Q is a probability measure on I. Individuals are indexed
by i ∈ I and we denote by EQ the expectation with respect to Q.
We consider a ’consensus’group à la Samuelson (1956). That is, the group

acts as if there was a social planner who wants to reach a Pareto effi cient allo-
cation of risks and solves the following maximization program

U(x) = max∫
xidQ(i)=x

∫
λiui(xi)dQ(i). (1)

where ui is the utility function of agent i, where xi is the consumption of agent i
and where λi is the weight (e.g. decision power) granted to agent i. The utility
function U(x) corresponds to the highest social utility level among all possible
endowment distributions across agents.
Throughout the paper, we make the following assumption on the utility

functions.
Assumption (U) For all i, the utility function ui : [di,∞) → R ∪ {−∞} is
assumed to be infinitely differentiable on (di,∞) with u′i > 0 and u′′i < 0 and
satisfies Inada’s conditions, i.e. limx→di u

′
i(x) =∞ and limx→∞ u′i(x) = 0.

For a given agent i and a given consumption level x, the absolute (resp.
relative) risk aversion Ai(x) (resp. Ri(x)), the absolute (resp. relative) risk
tolerance ti(x) (resp. si(x)) are given by

Ai(x) = −u
′′
i (x)

u′i(x)
, Ri(x) = −xu

′′
i (x)

u′i(x)
= xAi(x)

ti(x) = − u
′
i(x)

u′′i (x)
=

1

Ai(x)
, si(x) = − u′i(x)

xu′′i (x)
=

1

Ri(x)
=
ti(x)

x
.

Note that CARA and CRRA utility funtions clearly satisfy assumption (U).
If we denote by v the function defined by v(x, i) = u′i(x), we will also make

the following assumption.
Assumption (LSPM) The function v is log-supermodular in (x, i) , i.e. ∂ log v

∂x (x, i)
is nondecreasing in i.
Remark that the log-supermodularity of v(x, i) means that A(x, i) = Ai(x)

is nonincreasing in i or that agent i is less risk averse (and more risk tolerant)
than agent j when i ≥ j.
We have then the following classical result

Proposition 1 Under Assumption (U), there exists a family of functions (fi)i∈[0,∞]

such that
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• fi : [d,∞) → [di,∞) with d =
∫
didQ(i) is infinitely differentiable and

increasing

•
∫
fi(x)dQ(i) = x for all x ∈ [d,∞)

• U(x) =
∫
λiui(fi(x))dQ(i).

We will say that (fi)i∈[0,∞] is an effi cient sharing rule associated with the
maximization program of Eq. (1).
We recall the following well known results that relate the collective risk

aversion and risk tolerance to the individual ones through the effi cient sharing
rule.

Proposition 2 (Wilson, 1968 and Hara et al. 2007) Let us assume that
(U) is satisfied. Let x be a given aggregate wealth and let (fi)i∈I be the effi -
cient sharing rules associated with the maximization program of Eq. (1). The
collective absolute risk tolerance t(x) = − U ′(x)

U ′′(x) and the collective relative risk

tolerance s(x) = − U ′(x)
xU ′′(x) are given by

t(x) =

∫
ti(fi(x))dQ(i),

s(x) =

∫
fi(x)

x
si(fi(x))dQ(i).

The relative risk tolerance s(x) of the group is then an average of the individ-
ual levels of relative risk tolerances si(fi(x)) weighted by the optimal individual
shares of consumption. Analogously, the degree of relative risk aversion of the
group is an average of the individual degrees of relative risk aversion.The group
is then less risk averse than the most risk averse agent and more risk averse than
the least risk-averse one. In terms of the example given in the introduction this
implies, in particular, that a group composed by B and C will always be less
willing to undertake risks than a group composed by A and B.
It is easy to show that s′(x) is positive and then that the collective relative

risk aversion R(x) = −xU
′′(x)
U ′(x) is decreasing in x. This fact has been underlined

by Hara et al. (2007, Proposition 6). They further show (Corollary 7) that
R(x) approaches the degree of relative risk aversion of the most (least) risk
averse agent as x converges to zero (infinity).
At this stage we consider very general utility functions and we may assume,

without loss of generality, that all the members of the group are granted the
same weight (it suffi ces to replace the utility function ui by λiui, note that the
LSPM property is not impacted by this modification). In the next we consider
then the equally weighted Pareto optimum. We also assume that there exists
an effi cient fair allocation. In other words, there exists x∗ such that (xi)i∈I ,
with xi = x∗ for all i, is effi cient.
The following proposition provides an analysis of how the aggregate con-

sumption x is shared among the agents depending on the position of x relatively
to the fair effi cient allocation x∗
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Proposition 3 Under the Assumptions (U) and (LSPM), we have the following
results.

1. For x ≥ x∗, the optimal allocation (xi)i∈I associated to the aggregate
wealth x is such that xi ≥ x∗, for all i, and xi increases with i. Fur-
thermore, if all the utility functions are DARA then ti(xi) increases with
i.

2. For x ≤ x∗, the optimal allocation (xi)i∈I associated to the aggregate
wealth x is such that xi ≤ x∗, for all i, and xi decreases with i.

Although of some interest by itself, this Proposition will also play an impor-
tant role in the analysis that follows.

3 CARA utility functions

Let us consider constant absolute risk-aversion/tolerance utility functions of the
form

ui(x) = −θi exp(− x
θi

). (2)

We have ti(x) = θi and t(x) =
∫
θidQ(i). If the agents are indexed by their

absolute levels of risk tolerance we have θi = i and the log-supermodularity

assumption is satisfied. We have then t(x) = EQ
[
θ̃
]
and the collective level of

risk tolerance does not depend on the wealth allocation among the agents. It
is immediate that FSD shifts on the distribution of the individual levels of risk
tolerance lead to an increase of the collective level of absolute (and relative)
risk tolerance. More heterogeneity, in the sense of shifts in the distribution of
preferences that preserve the mean, have no effect on the group’s risk tolerance.
These results will serve as a useful benchmark.

4 CRRA utility functions

Let us consider constant relative risk-aversion/tolerance utility functions of the
form

ui(x) =
1

1− 1
bi

x
1− 1

bi . (3)

where bi is the level of relative risk tolerance of individual i and 1
bi
is his level

of relative risk aversion. In such a setting, we have

Ai =
1

bix
, Ri =

1

bi
, ti = bix, and si = bi.

Since the utility functions are no more defined up to a multiplicative con-
stant, we do not assume anymore that the λi = 1 for all i. However, we still
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assume that there exists a wealth level x∗ for which the fair allocation (xi)i∈I
with xi = x∗ for all i, is effi cient. Note that the existence of such a fair allo-
cation can always be granted through a judicious choice of the weights (λi)i∈I .

The first-order conditions for Pareto optimality give then that λi (x∗)
1− 1

bi is
independent of i. The Pareto problem can be rewritten as follows U(x) =

max∫ xi
x∗ dQ(i)= x

x∗

∫
1

1− 1
bi

(
xi
x∗

)1− 1
bi dQ(i), up to a multiplicative constant. If we

renormalize the individual consumptions in order to measure them in terms of
multiples of x∗, we are led to analyze the situation where ui(x) = 1

1− 1
bi

x
1− 1

bi

and all the weights λi are equal to 1. Note that with this renormalization, x = 1
corresponds to the effi cient fair allocation.
In the next we consider then the equally weighted Pareto optimum. Since

the agents differ by only one characteristic, namely their level bi of relative risk
tolerance, we might index them by this characteristic or we may, in other words,
assume that bi = i. For a given function h, we may then write indifferently∫
h(bi)dQ(i) or

∫
h(b)dQ(b) or EQ

[
h(b̃)

]
. The level of relative risk-aversion is

then decreasing with i and the log-supermodularity condition is immediately
satisfied.
The following Proposition uses these assumptions to characterize precisely

the functions defining collective preferences and the collective level of risk aver-
sion.

Proposition 4 In a group made of agents with constant but heterogeneous lev-
els of relative risk aversion, we have at the equally weighted Pareto optimum

U(x) =

∫
bi

bi − 1
e(1−bi)Φ−1(x)dQ(i)

with

Φ (t) ≡
∫
e−bitdQ(i).

The collective degree of relative risk aversion R(x) is given by

R(x) ≡ −xU
′′ (x)

U ′ (x)
=

x∫
bidQ̃(i)

=
1

s(x)
. (4)

with dQ̃
dQ ≡

e−bΦ
−1(x)∫

e−biΦ
−1(x)dQ(i)

.

As seen in the proof in the Appendix, the Lagrange multiplier of the Pareto
optimum problem is given by q = exp(Φ−1(x)) and q is then the shadow price
associated to the constraint

∑
i∈I xi = x. We clearly have Φ(0) = 1, which

means that Φ−1(x∗) = 0 and q(x∗) = 1 for the effi cient fair allocation x∗ = 1.
Since the agents are risk averse, high levels of aggregate wealth have a low
shadow price and low levels of aggregate wealth have high shadow price and we
can easily derive that q(x) < 1 for x > x∗and q(x) > 1 for x < x∗. This means,
in particular, that we have Φ−1(x) < 0 for x > 1 and Φ−1(x) > 0 for x < 1.
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4.1 A model with two agents

Mazzocco (2004) shows that, in a model with two agents, an increase in the
level of risk tolerance of one of the agents might have an ambiguous impact on
the collective level of risk tolerance. It increases for some levels of aggregate
wealth while it decreases for other levels of aggregate wealth. Since this is only
stated on a numerical example in Mazzocco (2004), let us clearly express this
result.

Proposition 5 In a model with two agents with b1 < b2, there exists x ≤ 1
such that a small increase of b2 leads to an increase of the collective level of
risk tolerance t(x) for all x ≥ x and to a decrease of the collective level of risk
tolerance t(x) for all x ≤ x.

Recall that after our normalization, x∗ = 1 corresponds to the fair effi cient
allocation. Proposition 5 means then that an increase of the risk tolerance level
of the most risk tolerant agent increases (decreases) the collective level of risk
tolerance for levels of wealth above (below) a given threshold that is below
the fair effi cient allocation. Note that the threshold x depends on b1 and b2.
This means that for x above the fair allocation, any increase of b2 increases the
collective risk tolerance. In fact, above the fair allocation, an increase of b2 also
increases the weight granted to b2 leading to an increase of the collective level
of risk tolerance. For a wealth level x below the fair allocation, the impact of
an increase of b2 is less clear. Indeed, we showed in Proposition 3 that for low
levels of aggregate wealth the least risk tolerant agent (the most risk averse)
has a larger share of the total wealth and an increase of b2 leads to an increase
of the weight granted to b1 (the share of total wealth of agent 1). The increase
of b2 has then two effects in opposite directions: an increase of one of the terms
of the average (namely the greatest one) and an increase of the weight of the
smallest one. Since the second effect does not exist for x = 1, the first effect
continues to dominate for x above a given threshold x ≤ 1 while the second
effect dominates for x ≤ x.
Figures 1 and 2 illustrate the impact of an increase of b2.
The next Proposition analyzes more in detail how the collective level of risk

tolerance evolves as a function of b2.

Proposition 6 In a model with two agents with b1 < b2, b1 being given, for
x ≥ 1

2 , the function b2 → tx(b2) is increasing on (b1,∞) with limb2→b1 tx(b2) =
xb1 and tx(b2) ∼b2→∞

(
x− 1

2

)
b2. For x < 1

2 , there exists b
∗(x, b1) > b1 such

that the function b2 → tx(b2) is increasing on (b1, b
∗(x, b1)) and decreasing on

(b∗(x, b1),∞) with limb2→b1 tx(b2) = xb1 and limb2→∞ tx(b2) = xb1.

In summary, for (very) low levels of wealth, increasing the risk tolerance of
the more risk tolerant agent has an ambiguous impact on the collective attitude
towards risk. Proposition 6 characterizes precisely the conditions for this para-
doxical result to occur. Figures 3, 4 and 5 illustrate the different possible shapes
for b2 → tx(b2) (or equivalently of b2 → sx(b2)). The asymptotic behavior of
tx(b2)/b2 is illustrated in Figures 6 and 7.
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Propositions 5 and 6 establish the behavior of collective preferences as a
function of one of the agent’s risk tolerance. Another important question is
what happens to the collective level of risk tolerance when both agents become
more risk tolerant. In the next Proposition we show that the ambiguous impact
disappears when we consider a uniform increase of risk tolerance across the
agents, but that for non-uniform increases in risk tolerance the collective degree
of risk tolerance may still be lower.

Proposition 7 Let b1 < b2 be given.

1. Let us consider a uniform increase of the individual levels of risk tolerance
of the form b1 +h and b2 +h with h > 0. The associated level of collective
risk tolerance tx(h) increases with h for all x.

2. Let k > 0 be given and let us consider an increase of the individual levels
of risk tolerance of the form b1 +kh and b2 +h with h > 0. The associated
level of collective risk tolerance tx(h) increases with h for x ≤ 1 if k ≥ b1

b2
and increases with h for x ≥ 1 if k ≤ 1. In particular, tx(h) increases with

h for all x if k ∈
[
b1
b2
, 1
]
.

Let us illustrate the second point by two extreme situations. For k very
small (near to 0), the shifts we are considering are almost of the form (b1, b2)→
(b1, b2 + ε) that have already been considered in Proposition 5. These shifts
increase the risk tolerance level of the second agent and also increase its weight
for x ≥ 1. These shifts lead then to an unambiguous increase of the aggregate
level of risk tolerance for x ≥ 1. For k near infinity (and h very small), the shifts
we are considering are almost of the form (b1, b2)→ (b1 + ε, b2) and such shifts
increase the risk tolerance level of the first agent and also increase its weight
when x ≤ 1. These shifts lead then to an unambiguous increase of the aggregate
level of risk tolerance for x ≤ 1. The proposition shows that there is a range
for k for which the shifts have an unambiguous impact without restrictions on
x. However, for small levels of k we cannot conclude that the collective level of
risk tolerance is higher.4

We are also interested in the impact of more heterogeneity among our 2
agents. The next result shows that more heterogeneity leads to a higher collec-
tive risk tolerance level for high wealth levels (above the fair effi cient allocation)
and to a lower collective risk tolerance level for low wealth levels (below the fair
effi cient allocation).

Proposition 8 Let b1 and b2 be given with b1 < b2 and let us consider a shift
of the form b1 − h and b2 + h with h > 0. The associated level of collective risk
tolerance tx(h) increases (resp. decreases) with h for x ≥ 1 (for x ≤ 1).

This result is very intuitive. We have already seen that the collective level of
risk tolerance is near the risk tolerance level of the most risk tolerant agent for

4This should not be ’too’surprising given our previous results since for k = 0 we are back
in the situation in which only b2 increases.
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high levels of wealth and is near the risk tolerance level of the least risk tolerant
level agent for low levels of wealth. More heterogeneity leads to an increase of
the risk tolerance level of the most risk tolerant agent and to a decrease of the
risk tolerance level of the least risk tolerant agent. This leads then to an increase
of the collective level of risk tolerance for high levels of wealth and to a decrease
of the collective level of risk tolerance for low levels of wealth. Proposition 8
permits to give a precise meaning to high and low levels of wealth since the fair
effi cient allocation appears to be the relevant threshold. Figure 8 illustrates this
result.

4.2 General populations

The different results of the previous section permit to see that first-order sto-
chastic dominance shifts do not guarantee an increase in the collective degree
of risk tolerance. In this section we initially consider whether a stronger no-
tion of first-order stochastic dominance leads to an unambiguous impact on the
group’s degree of risk tolerance. Then we evaluate the effect of more hetero-
geneity within a group. In order to treat the problem in a quite general setting,
we consider from now on general populations described by a distribution on
I = [0,∞) . To relate the results in this more general setting to those obtained
in the 2-agent framework, we will attach a specific attention to distributions
with a 2-point support.
Since FSD is not a good candidate to obtain comparative static results, let

us recall the following definition corresponding to a stronger notion of first-order
dominance.
Definition 1. Monotone Likelihood Ratio Dominance (MLR). Let P and

Q denote two probability measures on I = [0,∞). We say that P dominates Q
in the sense of MLR (P <MLR Q) if there exist numbers 0 ≤ α ≤ β ≤ ∞ and a
nondecreasing function h : [α, β] → [0,∞] such that P ([0, α)) = Q((β,∞)) = 0
and dP (i) = h(i)dQ(i).

In other words, an MLR dominated shift for a given probability measure
puts less weight for higher values of i. This concept is widely used in the
statistical literature and was first introduced in the context of portfolio problems
by Landsberger and Meilijson (1990). MLR dominance is stronger than FSD
and, in particular, an MLR dominated shift for a given distribution reduces the
mean.
When the supports of P andQ are reduced to two points, (b11, b

1
2) with b11 < b12

for P and (b21, b
2
2) with b21 < b22 for Q, we necessarily have b

2
1 < b22 ≤ b11 < b12

or b21 = b11 and b22 = b12. In the first case, any average of the risk tolerance
levels in the support of Q is smaller than any average of the risk tolerance levels
in the support of P and the collective risk tolerance level is higher under P.
The (most) interesting case is when both probability measures have the same
support. We then have two populations with the same set of possible levels
of individual level of risk tolerance b1 and b2 but with different proportions of
agents in each category: a proportion p1 (resp. p2 = 1 − p1) of agents that
have an individual level b1 (resp. b2) of risk tolerance under P and a proportion
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q1 (resp. q2 = 1 − q1) of agents that have an individual level b1 (resp. b2) of
risk tolerance under Q. The MLR dominance is characterized in this setting by
p2

p1
≥ q2

q1
(or equivalently q1 ≥ p1 or q2 ≤ p2)

Proposition 9 Let us consider two populations. In the first one, we have pro-
portions p1 (resp. p2 = 1− p1) of agents with an individual level b1 of risk tol-
erance (resp. b2). In the second one, we have proportions q1 (resp. q2 = 1− q1)
of agents with an individual level b1 of risk tolerance (resp. b2). If we assume
that p2

p1
≥ q2

q1
, then the collective level of risk tolerance is higher in the first

population.

In summary, when the support of the population is reduced to two points,
an MLR dominant shift in the degree of risk tolerance of the members of the
group increases the group’s risk tolerance, so such shift clearly characterizes the
notion of a "more risk tolerant group". The following proposition generalizes
the impact of MLR shifts for distributions with more general supports.

Proposition 10 Let us consider two populations characterized by two distrib-
utions P and Q of individual levels of risk tolerance. If P <MLR Q then for
all x ≤ 1, we have tPx ≥ tQx . However, P <MLR Q does not guarantee an increase
of the collective level of risk tolerance when x > 1.

MLR provides then a satisfying answer to the impact of shifts for low levels
of wealth (when x ≤ 1), which corresponds to the case where the unilateral
increase of one of the individual levels of risk tolerance failed to guarantee an
increase of the aggregate level of risk tolerance. In the following Proposition we
show that when the density function (introduced in Definition 1) h = dP

dQ has an
exponential growth rate, then we do have an unambiguous impact on collective
risk tolerance.

Proposition 11 Let us consider two populations characterized by two distribu-
tions P and Q on [0,∞)of individual levels of risk tolerance such that P <MLR

Q with dP
dQ (b) = λ exp(kb) for some positive k and λ. For all x, we have tPx ≥ tQx .

We have seen in the 2-agent setting (Proposition 8) that more heterogeneity
has a clear impact on the collective level of risk tolerance depending on the rela-
tive position of the aggregate wealth with respect to the fair effi cient allocation.
We are now interested in establishing the effect of "more heterogeneity" in the
general setting. For this purpose, we introduce the following definition.
Definition 2. Portfolio Dominance (PD). Let Q1 and Q2 denote two prob-

ability measures on I = [0,∞). We say that Q1 dominates Q2 in the sense of
PD (Q1 <PD Q2) if we have

∫
v(i − a)dQ1(i) = 0 ⇒

∫
v(i − a)dQ2(i) ≤ 0 for

any real number a and any nonnegative and nonincreasing function v.
This concept has been introduced in the context of portfolio problems by

Landsberger and Meilijson (1990) and further studied by Gollier (1997). In the
portfolio context it is related to the degree of riskiness of the asset returns.
In our context, it is related to the level of individual heterogeneity in relative
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risk tolerance. In particular, a mean preserving PD dominated shift for a given
distribution increases the variance (Jouini and Napp, 2008, Proposition 3).
The following proposition uses this concept to characterize the impact of

"more heterogeneity" in the distribution of individual preferences.

Proposition 12 Let us consider two populations respectively characterized by
distributions P and Q of individual levels of risk tolerance. If P and Q are
symmetric with respect to some b∗ with dQ

dP nonincreasing before b∗ and nonde-
creasing after b∗ then P <PD Q and P <SSD Q and the collective level of risk
tolerance tQx under Q is higher than (resp. lower than) the aggregate level of
risk tolerance tPx under P for x ≥ 1 (for x ≤ 1).

The intuition is, in essence, the same as that in Proposition 8. At high
wealth levels those individuals that have a high tolerance for risk are more
representative of the collective level of risk tolerance, but the opposite is true
at low wealth levels. More dispersion in the levels of risk tolerance of the group
then leads to a higher (lower) level of collective risk tolerance for high (low)
wealth levels.

5 The case of egalitarian groups

It is interesting to analyze the aggregate behavior in a model where all the
agents consume the total consumption x. This is the case when x is a public
good. This also the case when x is a private good but simultaneously consumed
by all the agents in the group. We may consider that both agents in a couple get
utility from saving money or from holding consumption goods and consider these
goods as owned by the couple and not shared among them through an effi cient
sharing rule. This is also the setup used in a number of recent experiments
that compare the degree of risk aversion of groups with that of individuals (e.g.
Shupp and Williams 2008, Baker et al. 2008, Masclet et al. 2009) and where the
rewards of the group are exogenously divided equally among its members. We
may imagine, for example, that such experiments reflect the widely observed
regularity of partnerships with equal sharing rules.
In the next, the endowment in the consumption good is defined by a random

variable x on the probability space (Ω, F, P ) and the social utility function is
given by

U(x) =

∫
λiui(x)dQ(i). (5)

where ui is the utility function of agent i and where λi is the weight granted to
agent i.
We have then

R(x) ≡ −xU
′′(x)

U ′(x)
= −x

∫
λiu
′′
i (x)dQ(i)∫

λiu′i(x)dQ(i)
=

∫
Ri(x)dPu(i) (6)

where Pu is the probability measure defined by dPu

dQ (i) =
λiu
′
i(x)∫

λiu′i(x)dQ(i)
.

12



Let us first analyze the case with 2 agents and CRRA functions. We have
then ui(x) = 1

1− 1
bi

x
1− 1

bi , i = 1, 2, and we take λi = 1, i = 1, 2, as in the previous

section. Equation (6) can be rewritten as follows

R(x) =
1
b1
x−

1
b1 + 1

b2
x−

1
b2

x−
1
b1 + x−

1
b2

=
R1x

−R1 +R2x
−R2

x−R1 + x−R2

and the aggregate relative risk aversion is a weighted arithmetic average of
the individual levels of relative risk aversion. As in the private good case,
the collective level of relative risk aversion decreases with x and it approaches
the degree of relative risk aversion of the most (least) risk averse agent in the
economy as x converges to zero (infinity). Notice also that the weights are
given by the individual marginal utilities and the highest weight is granted to
the lowest (highest) individual level relative risk aversion for x > 1(for x < 1).
An increase of the individual level of risk tolerance of the most risk tolerant
agent might then have an ambiguous impact. We have the following result

Proposition 13 In a model with a public good, two agents and CRRA functions
with b1 < b2, there exists x ≤ 1 such that a small increase of b2 leads to an
increase of the collective level of risk tolerance t(x) for all x ≥ x and to a
decrease of the collective level of risk tolerance t(x) for all x ≤ x.

In particular, this means that FSD shifts of the individual levels of risk
tolerance are not suffi cient to increase the collective level of risk tolerance. The
next result illustrates the impact of a mean preserving spread on the individual
levels of risk aversion in a 2-agent setting.

Proposition 14 In a model with a public good, two agents and CRRA functions
with b1 < b2 (or equivalently R1 > R2), a shift of the form R1 − h and R2 + h
with h > 0 increases (decreases) the aggregate level of relative risk aversion
R(x) for x ≤ 1 (for x ≥ 1). It increases (decreases) the collective level of risk
tolerance t(x) for x ≥ 1 (for x ≤ 1).

In the next we characterize, in a general distribution setting, the impact
of MLR shifts on the collective level of risk tolerance/aversion. Note that the
following result is obtained for very general utility functions.

Proposition 15 Let us consider two populations respectively characterized by
distributions P1 and P2 on (I, ι). Under Assumptions (U) and (LSPM) and if
P2 <MLR P1 then the collective level of risk aversion (risk tolerance) under P1

is higher (lower) than under P2.

The result in Proposition 15 is quite powerful. Under the assumption that
the members of the group consume the same endowment, and under weak re-
strictions on the individual utility functions, if the individual levels of risk aver-
sion are more concentrated on high values (in the sense of MLR dominance)
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then the collective level of risk aversion will be higher for all endowment levels.
In this case MLR dominance provides a clear characterization of comparative
collective risk aversion5 .
The next proposition analyzes the impact of more heterogeneity on the in-

dividual levels of risk aversion. For a given distribution P on (I, ι) and for a

given x, we denote by P x the image measure of P by i→ −u
′′
i (x)

u
′
i(x)

. The measure

P x describes the distribution of the individual levels of risk aversion at a given
wealth level x.

Proposition 16 Let us consider two populations respectively characterized by
distributions P1 and P2 on (I, ι) and let us assume that (U) is satisfied. If,

for a given x, u′i(x) is nondecreasing in i, −u
′′
i (x)

u
′
i(x)

is decreasing with i6 and

P x2 <PD P x1 , then the collective level of risk aversion (risk tolerance), at x,
under P2 is higher (lower) than under P1.

In particular, if there exists x∗ such that all the individual marginal utilities
u′i(x

∗) are equal, then u′i(x) is nondecreasing in i for x ≤ x∗. It suffi ces then

to have that −u
′′
i (x)

u
′
i(x)

is decreasing with i and P x2 <PD P x1 to conclude that the

aggregate level of risk aversion, at x, under P2 is higher than under P1. In other
words, under weak assumptions on the utility function, less heterogeneity in risk
aversion, in the sense of PD dominance, implies a higher level of collective risk
aversion when wealth is suffi ciently low.

6 Conclusion

Mazzocco (2004) established the counter-intuitive result that an increase in the
level of risk tolerance of one of the individuals in a couple may reduce their
collective degree of risk tolerance. We studied precisely the conditions for this
phenomenon to occur. More generally, we established conditions under which
groups with individual levels of risk tolerance more concentrated on high values
and groups that are more heterogeneous will display higher risk tolerance, both
with effi cient risk-sharing and with an exogenous egalitarian sharing rule. Our
results permit to better characterize differences in risk taking behavior between
groups and individuals and among groups with different distributions of risk
preferences.
It should be possible to design experiments to evaluate if our results are

consistent with elicited risk attitudes of groups and individuals. Shupp and
Williams (2008) compare the willingness to pay for lotteries of small groups
and individuals in a setup similar to that of Section 5. They conclude that,
for most lotteries, group choices are significantly different from the mean of

5Note that Proposition 15 can easily be extended for higher order collective preferences
towards risk. For example, if we assume that u′′(x, i) is LSPM in (x, i), then an MLR dominant
shift decreases the collective degree of absolute (and relative) prudence.

6Note that this last condition is just a little bit stronger than the LSPM condition.
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the individual choices (groups tend to be more risk averse than individuals
for low-expected-value lotteries but less risk averse than individuals for high-
expected-value lotteries). These results are consistent with a large number of
studies in social psychology that show "risky" and "cautious" shifts in group
risk-taking behavior relative to the mean of the individual choices (see e.g. Clark
1971). We have seen that there is no reason to believe that the group’s will-
ingness to pay (derived from the collective preferences), and more generally the
willingness to take risks, should be the same as the mean of the individual mem-
bers’willingness to pay. In particular, even with CRRA individual preferences,
the fact that the group’s relative risk aversion decreases with x implies that
"cautious" shifts should be more prevalent in low-expected-value (low-stakes)
lotteries while "risky" shifts should be more prevalent in high-expected-value
(high-stakes) lotteries, precisely what Shupp and Williams (2008) found.7 It
would be interesting to further explore the experimental relevance of our results
by proceeding to inter-groups comparisons. For instance, to analyze the differ-
ence in risk attitudes between two couples that only differ by the risk aversion
level of one of the members, e.g. the man.

7 Appendix

Proof of Proposition 1. Let us denote by ϕ the function defined by ϕ(q) =∫
(u′i)

−1
( qλi )dQ(i). By Inada’s conditions and since ui is increasing and strictly

concave for all i, ϕ is well defined on (0,∞) and decreasing. Furthermore, from
the monotone convergence Theorem we have limx→0 ϕ(q) =∞ and limx→∞ ϕ(q) =

d. Let us then define fi : [d,∞)→ [di,∞) by fi(x) = (u′i)
−1

(ϕ
−1(x)
λi

), we clearly
have x =

∫
fi(x)dQ(i) and λiu′i(fi(x)) = ϕ−1(x) for all i and is independent

of i. The family (fi(x)) satifies then the first-order conditions of the maximiza-
tion program defined by Eq. (1) and since this program is concave we have
U(x) =

∫
λiui(fi(x))dQ(i).�

Proof of Proposition 3. Since the fair allocation xi = x∗, i ∈ I, is effi cient and
since we granted the same weight to all the agents, the first-order conditions
for Pareto optimality give us that u′i(x) is independent of i. Since ∂u

∂x (x, i) is
LSPM, integrating ∂

∂x log u′i(x) between x ≥ x∗ and x∗, gives us that u′i(x)
increases with i. Let us consider the Pareto allocation (xi)i∈I associated to the
aggregate wealth x ≥ x∗. We have that u′i(xi) is independent of i. We also
necessarily have xi0 ≥ x∗ for some i0 and then u′i0(xi0) ≤ u′i0(x∗) by concavity
of the utility functions. We have then u′i(xi) ≤ u′i(x∗) for all i and consequently
xi ≥ x∗ for all i. Since u′i(x) increases with i and u′i(x) is independent of i and
since u′i(x) is decreasing in x, we have that xi increases with i. By the LSPM
property t(x, i) is increasing in i and by the DARA property, it is increasing in
x. We have then that t(xi, i) is increasing in i.
For x ≤ x∗, integrating ∂

∂x log u′i(x) between x and x∗, gives us that u′i(x)

7Eliaz et al (2006) show that risky and cautious shifts in groups can be seen as a failure of
expected utility theory.
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decreases with i. The same kind of arguments as above give that xi decreases
with i.�
Proof of Proposition 4. The first-order condition gives us the optimal al-
location of agent i, xi = q−bi , where q is the Lagrange multiplier. Using the
resource constraint we obtain

∫
q−bidQ(i) = x or

∫
exp(−bi ln q)dQ(i) = x. We

obtain that q = exp(Φ−1(x)) hence xi = e−biΦ
−1(x). Plugging this back into the

utility function we obtain the representative agent’s utility.
The degree of relative risk aversion of the representative agent can be derived

directly from the expression of the representative agent utility function or using
Proposition 2. We have s =

∫
si
xi
x dQ(i). Since xi = e−biΦ

−1(x) the result
follows.�
Proof of Proposition 5. Let us consider b1 as given and denote by tx(b2) the
aggregate risk tolerance level when the risk tolerance level of agent 2 is given
by b2 ≥ b1. We have

tx(b2) =
1

2
b1 exp(−b1ax(b2)) +

1

2
b2 exp(−b2ax(b2))

where ax(b2) is the solution of

ψ(ax(b2), b1, b2) = x

with
ψ(a, b1, b2) =

1

2
exp(−b1a) +

1

2
exp(−b2a).

We get after computations

d

db2
tx(b2) =

1

2

exp (−(b1 + b2)ax(b2))

b1 exp(−b1ax(b2)) + b2 exp(−b2ax(b2))
ϕ(ax(b2), b1, b2)

with
ϕ(a, b1, b2) = b1 + b2 exp((b1 − b2) a)− a (b2 − b1) b1.

For x ≥ 1, we have ax(b2) ≤ 0 and d
db2
tx(b2) > 0. The aggregate level of risk

tolerance is an increasing function of b2.
Let us now focus on the case x ≤ 1. It is easy to check that ax(b2) is always

positive for x ∈ (0, 1) and decreases with x from ∞ to 0. It is also easy to see
that ϕ(a, b1, b2) is decreasing in a, positive for a = 0 and converges to −∞ when
a converges to ∞. There exists then a level x∗ < 1 such that d

db2
tx(b2) = 0. For

x < x∗ (resp. x > x∗), we have d
db2
tx(b2) < 0 (resp. d

db2
tx(b2) > 0).�

Proof of Proposition 6. We have

tx(b2) =
1

2
b1 exp(−b1ax(b2)) +

1

2
b2 exp(−b2ax(b2))

where ax(b2) is the solution of

1

2
exp(−b1ax(b2)) +

1

2
exp(−b2ax(b2)) = x.
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We know that
d

db2
tx(b2) = ϕ(ax(b2), b1, b2) = b1 + b2 exp((b1 − b2) ax(b2))−ax(b2) (b2 − b1) b1.

We have already seen that ϕ(a, b1, b2) is decreasing in a, positive for a = 0
and converges to −∞ when a converges to ∞. Let us denote by a(b1, b2) the
solution of ϕ(a, b1, b2) = 0. Let us first consider the case x ≤ 1

2 . The func-
tion ax(b2) is clearly decreasing with b2 and we have limb2→b1 ax(b2) = − ln x

b1

and limb2→∞ ax(b2) = − ln 2x
b1

. Furthermore, since ∂ϕ
∂a is decreasing, ∂a

∂b2
has

the same sign as ∂ϕ
∂b2

. Direct computations give ∂ϕ
∂b2

= u − ab1 − ab2u with
u = exp((b1 − b2) a) and a such that b1 + b2u − b1a(b2 − b1) = 0. Substi-
tuting a in ∂ϕ

∂b2
gives ∂ϕ

∂b2
= (b1 − b2)

−1
b−1
1

(
b2b1u+ b21 + b21u+ b22u

2
)
< 0. The

function a(b1, b2) decreases then with b2 and we have limb2→b1 a(b1, b2) = ∞
and limb2→∞ ax(b2) = 0. There exists then b∗2 such that ax(b2) = a(b1, b2) and
d
db2
tx(b2) = 0.

It is immediate that for ax(b2) > a(b1, b2) we have d
db2
tx(b2) < 0 and for

ax(b2) < a(b1, b2) we have d
db2
tx(b2) > 0. It suffi ces to show that ax(b2) and

a(b1, b2) cross only once to establish the result. Let us consider b∗2 such that
ax(b2) = a(b1, b2) and let us compute d

db2
(ax(b2)− a(b1, b2)) at b∗2. By definition,

we have a(b1, b
∗
2) = ax(b∗2) and we denote it by a∗. Direct computations give

d

db2
(ax(b∗2)− a(b1, b

∗
2))

=

∂ϕ
∂b2
∂ϕ
∂a

(a∗, b1,b
∗
2)−

∂ψ
∂b2
∂ψ
∂a

(a∗, b1,b
∗
2)

=
A(

b1e−a
∗b1 + b∗2e

−a∗b∗2
) (
b1 + b∗2e

a∗(b1−b∗2)
)

(b∗2 − b1)
.

with

A =
(
a∗b21e

−a∗b1 + a∗b21e
−a∗b∗2 + (a∗b1b

∗
2e
−a∗b1 + a∗b1b

∗
2e
−a∗b∗2 − b1e−a

∗b1 − b∗2e−a
∗b∗2 )ea

∗(b1−b∗2)
)
.

By definition, we have ϕ(a∗, b1, b
∗
2) = 0. Replacing b∗2e

a∗(b1−b∗2) by a∗ (b∗2 − b1) b1−
b1, we get

d

db2
(ax(b∗2)− a(b1, b

∗
2)) =

b21a
∗ (e−a∗b1 + e−a

∗b∗2 + a∗(b∗2 − b1)e−a
∗b∗2
)(

b1e−a
∗b1 + b∗2e

−a∗b∗2
) (
b1 + b∗2e

a∗(b1−b∗2)
)

(b∗2 − b1)
> 0.

We have then that d
db2
ax(b2) > d

db2
a(b1, b2) each time these two functions cross.

This means that they can cross only once.
For x ≥ 1, we have already shown that d

db2
tx(b2) is positive for all b2 and

tx(b2) is then increasing.
For 1 ≥ x ≥ 1

2 , let us show that there is no crossing between ax(b2) and
a(b1, b2). For that purpose let us consider a = ax(b2) = a(b1, b2). We have then

1

2
exp(−b1a) +

1

2
exp(−b2a) = x

and b1 + b2 exp((b1 − b2) a)− a (b2 − b1) b1 = 0
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which can be rewritten as follows

exp((b1 − b2) a) = 2x exp(b1a)− 1

and exp((b1 − b2) a) =
a (b2 − b1) b1 − b1

b2

which gives

2x exp(b1a)− 1 =
a (b2 − b1) b1 − b1

b2
or 2xb2 exp(b1a) = (ab1 + 1) (b2 − b1)

Remark that exp(b1a) ≥ 1 + b1a and we have then 2xb2 ≤ (b2 − b1) or
(2x− 1) b2 ≤ −b1 which is impossible since we assumed 2x− 1 ≥ 0.
For x ≥ 1

2 , it is easy to check that limb2→b1 ax(b2) = − ln x
b1
and ax(b2) ∼b2→∞

− ln(2x−1)
b2

. The limits of tx derive from there.�
Proof of Proposition 7. It suffi ces to prove directly the second point. We
have

tx(h) =
1

2
(b1 + kh) exp(−(b1 + kh)ax(h)) +

1

2
(b2 + h) exp(−(b2 + h)ax(h))

where ax(h) is the solution of ψ(ax(h), b1, b1 + kh) = x.
We get after computations

d

dh
tx(0) ≡ φ(ax(0), b1, b2)

where

φ(a, b1, b2) = kb1 exp((b2 − b1) a)+b2 exp((b1 − b2) a)+b1+kb2+a (b2 − b1) (kb2−b1).

For x ≤ 1, we have ax(0) ≥ 0 and it suffi ces to impose k ≥ b1
b2
to have

d
dh tx(0) ≥ 0 for all x.

For x ≥ 1, we have ax(0) ≤ 0 and it suffi ces to remark that ∂2φ
∂a2 is positive,

that ∂φ∂a (0, b1, b2) = (b2−b1)(b2+b1)(k−1) and φ (0, b1, b2) = (k+1) (b1 + b2) > 0.

It suffi ces to impose k ≤ 1 to have ∂φ
∂a (0, b1, b2) ≤ 0 and then φ(a, b1, b2) ≥ 0 for

a ≤ 0 and hence d
dh tx(0) ≥ 0.�

Proof of Proposition 8. We have

tx(h) =
1

2
(b1 − h) exp (−(b1 − h)ax(h)) +

1

2
(b2 + h) exp (−(b2 + h)ax(h))

where ax(h) is the solution of ψ(ax(h), b1 − h, b2 + h) = x. We want to show
that for x < 1, we have dtx

dh (0) < 0 and for x > 1 we have dtx
dh (0) < 0.
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We have dax
dh (0) = a(exp(−ab1)−exp(−ab2))

b1 exp(−ab1)+b2 exp(−ab2) where a = ax(0), and

dtx
dh

(0) = −1

2
exp (−ab1) +

1

2
exp (−ab2) +

1

2
ab1 exp (−ab1)− 1

2
ab2 exp (−ab2)

−
(

1

2
b21 exp (−ab1) +

1

2
b22 exp (−ab2)

)(
a (exp(−ab1)− exp(−ab2))

b1 exp(−ab1) + b2 exp(−ab2)

)
which is of the same sign as g(a) with

g(a) = (b1 exp (−ab1) + b2 exp (−ab2)) (exp (−ab2)− exp (−ab1) + ab1 exp (−ab1)− ab2 exp (−ab2))

−(a (exp(−ab1)− exp(−ab2)) (b21 exp (−ab1) + b22 exp (−ab2))

= −b1 exp (−2ab1) + b2 exp (−2ab2)− (b2 − b1 − ab21 + ab22) exp (−a (b1 + b2))

which has the same sign as −`(a) with

`(a) = b1 exp (−a(b1 − b2))− b2 exp (−a(b2 − b1)) + (b2 − b1 − ab21 + ab22).

We have lima→∞ `(a) =∞, `(0) = 0 and lima→−∞ `(a) = −∞.We also have

`′(a) = (b1 − b2)(−b2 − b1 − b1 exp (a(b2 − b1))− b2 exp (a(b1 − b2)) > 0.

The function ` is then negative on R− and positive on R+. Since a > 0 for x < 1
and a < 0 for x > 1 this gives the result.�
Proof of Proposition 9. We denote by tPx (resp. t

Q
x ) the aggregate level of

risk tolerance in the first (resp. second) population when the aggregate wealth
is x. We have

tPx = p1b1 exp(−b1aPx ) + p2b2 exp(−b2aPx )

where aPx is the solution of

p1 exp(−b1aPx ) + p2 exp(−b2aPx ) = x.

We have similar formulas for tQx and we have that t
P
x ≥ tQx if and only

q1 exp(−b1aQx )

p1 exp(−b1aPx )
≥ q2 exp(−b2aQx )

p2 exp(−b2aPx )
or equivalently p1 exp(−b1aPx ) ≤ q1 exp(−b1aQx )

(7)
If x ≤ 1, we have aPx ≤ aQx and the result is immediate. Let us now consider the
case x ≥ 1. Note that exp(−b1aQx ) and exp(−b2aQx ) correspond to the Pareto op-
timal allocations xQ1 and x

Q
2 in population Q while exp(−b1aPx ) and exp(−b2aPx )

correspond to the Pareto optimal allocation xP1 and x
P
2 in population P.We want

to prove that p1

q1
xP1 ≤ xQ1 . Remark that the allocation (p1

q1
xP1 ,

p2

q2
xP2 ) is feasible

in population Q. Let us compare u′1
(
p1

q1
xP1

)
and u′2

(
p2

q2
xP2

)
or
(
p1

q1
xP1

)− 1
b1 and(

p2

q2
xP2

)− 1
b2
. By construction we have

(
xP1
)− 1

b1 =
(
xP2
)− 1

b2 and since p1

q1
≤ 1

and p2

q2
≥ 1 we have u′1

(
p1

q1
xP1

)
≥ u′2

(
p2

q2
xP2

)
. Since Pareto optimal allocations
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are characterized by the condition u′1
(
xQ1

)
= u′2

(
xQ2

)
and since the alloca-

tion (p1

q1
xP1 ,

p2

q2
xP2 ) is feasible, we necessarily have, by concavity of u1 and u2,

p1

q1
xP1 ≤ x

Q
1 .�

Proof of Proposition 10. We first prove that for x ≤ 1 an MLR shift is sufi-
cient to increase the aggregate level of risk tolerance. Suppose that P <MLR Q.
Since the MLR order is stronger than the FSD order, we have for all nonde-

creasing function h, EP
[
h
(
b̃
)]
≥ EQ

[
h
(
b̃
)]
, hence ΦQ (t) ≥ ΦP (t) for t ≥ 0.

Since ΦQ and ΦP are decreasing, then for all x ≤ 1, Φ−1
P (x) ≤ Φ−1

Q (x) . Since

dQ̃

dP̃
= dQ

dP e
−b(Φ−1

Q
(x)−Φ−1

P (x))
EP

[
e
−bΦ−1

P
(x)
]

EQ

[
e
−bΦ−1

Q
(x)
] , we obtain that dQ̃

dP̃
is the product

(modulo a constant) of the decreasing function e
−b(Φ−1

Q
(x)−Φ−1

P
(x))

with the de-
creasing function dQ

dP (both of them being positive) and is then decreasing and

P̃ �MLR Q̃ which gives EQ̃
[
b̃
]
≤ EP̃

[
b̃
]
and tPx ≥ tQx or RPx ≤ RQx .

However, MLR does not guarantee an increase of the aggregate level of risk
tolerance when x > 1 as shown in the next counter-example.

Let us consider a model in which the distribution of the risk tolerances is
given by exp(−b)1b≥0 and let us consider a shift obtained through multiplication
of the exponential density by 1 + ε1b>b∗ (for some b∗ > 0 and some ε > 0) and
by renormalization. The function b→ 1 + ε1b>b∗ is nondecreasing and the shift
is MLR. The aggregate level of risk tolerance in the initial population is given by
t(x) =

∫∞
0
b exp(−b) exp(−ab)db where a solves

∫∞
0

exp(−b) exp(−ab)db = x.

We obtain a = 1
x − 1 and t(x) = 1

(a+1)2 = x2.

After the shift, the aggregate level of risk tolerance is given by

tε(x) =

∫∞
0
b exp(−b) exp(−aεb)db+ ε

∫∞
b∗
b exp(−b) exp(−aεb)db∫∞

0
exp(−b)db+ ε

∫∞
b∗

exp(−b)db

=

1
(aε+1)2 + ε

(
1

aε+1b
∗ exp (−(aε + 1)b∗) + 1

(aε+1)2 exp (−(aε + 1)b∗)
)

1 + ε exp (−b∗)

where aε solves
∫∞
0

exp(−b) exp(−aεb)db+ε
∫∞
b∗ exp(−b) exp(−aεb)db∫∞

0
exp(−b)db+ε

∫∞
b∗ exp(−b)db = x or

1
aε+1 +ε 1

aε+1 exp(−(aε+1)b∗)

1+ε exp(−b∗) =

x.We have then 1
a+1 =

1
aε+1 +ε 1

aε+1 exp(−(aε+1)b∗)

1+ε exp(−b∗) . Let us consider the difference
tε(x)− t(x). It is positively proportional to

∆ =

(
1

β2 + ε

(
1

β
y∗ exp (−βy∗) +

1

β2 exp (−βy∗)
))

(1 + ε exp (−y∗))−
(

1

β
+ ε

1

β
exp (−βy∗)

)2

where β = aε + 1 and where 1
a+1 has been replaced by its value as a function of

β. This quantity is of the form µε+ νε2 and since we want it to be positive for
all ε > 0 we have to check if µ is positive. But µ = (exp(βb∗)−exp(b∗)+βb∗ exp(b∗))

exp(βb∗) exp(b∗)β2

and is positively proportional to exp (βb∗) − exp (b∗) + βb∗ exp (b∗) . It is easy
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to remark that for β = 1
b∗2 and b

∗ suffi ciently large, this quantity is negative.
Let us chose then a pair (β, b∗) for which this quantity is negative and let
us take ε suffi ciently small such that the quantity ∆ itself is negative and let

us finally take x =
1

(aε+1)2
+ε
(

1
aε+1 b

∗ exp(−(aε+1)b∗)+ 1
(aε+1)2

exp(−(aε+1)b∗)
)

1+ε exp(−b∗) . The
resulting shift leads then to a decrease of the collective level of risk tolerance at
x.�
Proof of Proposition 11. We just have to consider the case where x ≥ 1.We
have

dQ̃

dP̃
=

dQ

dP
e
−b(Φ−1

Q
(x)−Φ−1

P (x))
EP

[
e−bΦ

−1

P
(x)
]

EQ
[
e
−bΦ−1

Q
(x)
]

= exp(−kb− b(Φ−1
Q

(x)− Φ−1
P (x))).

To conclude, it is suffi cient to show that k + (Φ−1
Q

(x)− Φ−1
P (x)) > 0. We have

EP
[
e
−b(Φ−1

Q
(x)+k)

]
=

EQ

[
e
−bΦ−1

Q
(x)
]

EQ[exp(kb)]
< x and since Φ−1

P
(x) is characterized by

EP
[
e−bΦ

−1

P
(x)
]

= x we have k + (Φ−1
Q

(x)− Φ−1
P (x)) > 0.�

Proof of Proposition 12. Assume that P andQ are symmetric with respect to
some b∗ with dQ

dP nonincreasing before b
∗ and nondecreasing after b∗ then P <PD

Q and P <SSD Q ( Jouini-Napp, 2008). Let us denote by ΦP and ΦQ the func-
tions respectively defined by ΦP (t) =

∫
e−btdP (b) and ΦQ (t) =

∫
e−btdQ(b).

Since e−bt is decreasing and convex for t ≥ 0, we have by SSD, ΦQ (t) ≥ ΦP (t)
for all t ≥ 0. For x ≤ 1, Φ−1

P (x) and Φ−1
Q (x) are positive. Furthermore, both

ΦQ and ΦP are decreasing and we have then Φ−1
Q (x) ≥ Φ−1

P (x) for all x ≤ 1.

Since b→ e−bΦ
−1

P
(x) is decreasing and positive, we have by PD,

EP

[
be
−bΦ−1

P
(x)
]

EP

[
e−bΦ

−1
P

(x)

] ≥
EQ

[
be
−bΦ−1

P
(x)
]

EQ

[
e−bΦ

−1
P

(x)

] = EP1 [b] with dP1

dQ = e−bΦ
−1
P

(x)

EQ

[
e−bΦ

−1
P

(x)

] . Let us consider Q1 defined

by dQ1

dQ = e
−bΦ−1

Q
(x)

EQ

[
e
−bΦ−1

Q
(x)
] .We have dQ1

dP1
=

EQ

[
e
−bΦ−1

P
(x)
]

EQ

[
e
−bΦ−1

Q
(x)
]e−b(Φ−1

Q (x)−Φ−1

P
(x)) and is

decreasing. Hence EP1 [b] ≥ EQ1 [b] =
EQ

[
be
−bΦ−1

Q
(x)
]

EQ

[
e
−bΦ−1

Q
(x)
] . We have then the result

for x ≤ 1. For x ≥ 1, since both distributions are symmetric with respect to

b∗, we have
EP

[
be
−bΦ−1

P
(x)
]

EP

[
e−bΦ

−1
P

(x)

] =
EP

[
(2b∗−b)e−(2b∗−b)Φ−1

P
(x)
]

EP

[
e−(2b∗−b)Φ−1

P
(x)

] = 2b∗ −
EP

[
be
bΦ−1

P
(x)
]

EP

[
ebΦ
−1
P

(x)

]

and
EQ

[
be
−bΦ−1

P
(x)
]

EQ

[
e−bΦ

−1
P

(x)

] = 2b∗ −
EQ

[
be
bΦ−1

P
(x)
]

EQ

[
ebΦ
−1
P

(x)

] . Since Φ−1
P

(x) is negative for x ≥ 1,
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the function b → ebΦ
−1

P
(x) is decreasing and positive, and we have by PD that

EP

[
be
bΦ−1

P
(x)
]

EP

[
ebΦ
−1
P

(x)

] ≥ EQ

[
be
bΦ−1

Q
(x)
]

EQ

[
e
bΦ
−1
Q

(x)
] or EP1 [b] =

EQ

[
be
−bΦ−1

P
(x)
]

EQ

[
e−bΦ

−1
P

(x)

] ≥ EP

[
be
−bΦ−1

P
(x)
]

EP

[
e−bΦ

−1
P

(x)

] .

Since dQ1

dP1
=

EQ

[
e
−bΦ−1

P
(x)
]

EQ

[
e
−bΦ−1

Q
(x)
]e−b(Φ−1

Q (x)−Φ−1

P
(x)), it is now increasing, we have then

EP1 [b] ≤ EQ1 [b] which gives the result.�
Proof of Proposition 13. Let us denote by t(x, h) the aggregate level of risk
tolerance at x when the individual levels of risk tolerance are given by b1 and
b2 + h, we have

t(x, h) =
exp(− ln x

b1
) + exp(− ln x

b2+h )
1
b1

exp(− ln x
b1

) + 1
b2+h exp(− ln x

b2+h )

and

∂t

∂h
(x, 0) =

b1

(
(b2 − b1) (lnx) e−

ln x
b1 + b1b2

(
e−

ln x
b1 + e−

ln x
b2

))
e−

ln x
b2

b2

(
b1e
− ln x

b2 + b2e
− ln x

b1

)2

and we clearly have ∂t
∂h (x, 0) > 0 for x > 1. Furthermore, if we denote by L(x)

the quantity L(x) = (b2 − b1) (lnx) + b1b2

(
1 + e

ln x
(

1
b1
− 1
b2

))
, we have dL

d ln x =

(b2 − b1)

(
1 + e

ln x
(

1
b1
− 1
b2

))
> 0 and limx→0 L(x) = −∞ and L(1) = 2b1b2 > 0.

There exists then x∗ < 1 such that ∂t
∂h (x, 0) < 0 for x < x∗ and ∂t

∂h (x, 0) > 0 for
x > x∗.�
Proof of Proposition 14. Let us denote by R(x, h) the aggregate level of risk
aversion at x when the individual levels of risk aversion are given by R1 − h
and R2 + h, we have R(x, h) = (R1−h) exp(− ln x(R1−h))+(R2+h) exp(− ln x(R2+h))

exp(− ln x(R1−h))+exp(− ln x(R2+h))

and ∂R
∂h (x, 0) = − e

−2 ln xR1−e−2 ln xR2+2 ln x(R2−R1)e− ln xR1e− ln xR2

(e− ln xR1+e− ln xR2)
2 which is clearly

negative for x > 1 and positive for x < 1. �
Proof of Proposition 15. Let us denote by U(x, 1) and U(x, 2) the social
utility functions respectively associated to P1 and P2. We denote respectively
by F (i, 1) and F (i, 2) the cumulative distributions of P1 and P2. We have

U ′(x, j) =

∫
∂u

∂x
(x, i)F ′(i, j)di, j = 1, 2.

By assumption, ∂u
∂x (x, i) is log-supermodular. Furthermore, since P2 <MLR

P1, F
′(i, j) is also LSPM. By Karlin’s Theorem U ′(x, j) is log-supermodular.

Therefore, ∂ lnU ′(x,j)
∂x increases with j or in other words

−U
′′(x, 1)

U ′(x, 1)
≥ −U

′′(x, 2)

U ′(x, 2)
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which gives R1(x) ≥ R2(x).�
Proof of Proposition 16. Let us denote by U(x, 1) and U(x, 2) the social
utility functions respectively associated to P1 and P2. Since ∂u∂x (x, i) is increasing

in i and −u
′′
i (x)

u
′
i(x)

is decreasing in i, there exists a nonnegative and decreasing

function Ψx such that E
[
u
′

i(x)
∣∣∣− u′′i (x)

u
′
i(x)

]
= Ψx

(
−u

′′
i (x)

u
′
i(x)

)
for i ∈ I. We have

then

−U
′′(x, j)

U ′(x, j)
=

∫
−u

′′
i (x)

u
′
i(x)

u
′

i(x)dPj(i)∫
u
′
i(x, j)dPj(i)

, j = 1, 2

=
EP

x
j [XΨx (X)]

EP
x
j [Ψx (X)]

.

By Portfolio Dominance we immediately have EPx2 [XΨx(X)]

EPx2 [Ψx(X)]
≥ EPx1 [XΨx(X)]

EPx1 [Ψx(X)]
.�
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Figure 1 & 2: These figures represent, at two different scales, the collective
relative risk tolerance as a function of the total wealth with b1 = 1 and b2 = 2 for
the blue curve and b′1 = 1 and b′2 = 3 for the green curve. Both curves converge
slowly to the associated level of relative risk tolerance as can be shown on the
second figure. An increase of the risk tolerance level of the most risk tolerant
agent leads to an increase (decrease) of the collective level of risk tolerance above
(below) a given threshold x∗ ≤ 1. With our parameters, we have x∗ = 0.21.
When b2 = 2 and b′2 is in the neighborhood of b2, we have x

∗ = 0.14. When
b′2 = 3 and b2 is in the neighborhood of b′2, we have x

∗ = 0.27.
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Figure 3: In a setting with two agents with levels of relative risk tolerance b1
and b2, we represent the collective relative risk tolerance sx(b2) as a function of
b2 for b1 = 1 and for x = 0.4. For b2 = b1 = 1, sx is equal to 1. The collective
relative risk tolerance increases then decreases with b2 and limb2→∞ sx(b2) = b1
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Figure 4: In a setting with two agents with levels of relative risk tolerance b1
and b2, we represent the collective relative risk tolerance sx(b2) as a function of
b2 for b1 = 1 and for x = 0.55. For b2 = b1 = 1, sx is equal to 1. The collective
relative risk tolerance increases with b2.
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Figure 5: In a setting with two agents with levels of relative risk tolerance b1
and b2, we represent the aggregate relative risk tolerance sx(b2) as a function of
b2 for b1 = 1 and for x = 0.9. For b2 = b1 = 1, sx is equal to 1. The aggregate
relative risk tolerance increases with b2 and is almost linear.
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Figure 6: In a setting with two agents with levels of relative risk tolerance b1
and b2, we represent the ratio tx(b2)/b2 for x = 4 and b1 = 1. For b2 = b1 = 1 it
is immediate that tx(b2)/b2 = tx(b2) = x. The ratio converges to x − 0.5 = 3.5
when b2 converges to ∞.
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Figure 7: In a setting with two agents with levels of relative risk tolerance b1
and b2, we represent the ratio tx(b2)/b2 for x = 1.1 and b1 = 1. For b2 = b1 = 1
it is immediate that tx(b2)/b2 = tx(b2) = x. The ratio converges to x−0.5 = 0.6
when b2 converges to ∞.
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Figure 8: In a setting with two agents with levels of relative risk tolerance b1
and b2, we represent the collective relative risk tolerance as a function of the
total wealth with b1 = 1 and b2 = 2 for the blue curve and b′1 = 3

4 and b
′
2 = 9

4 for
the green curve. The shift from (b1,b2) to (b′1,b

′
2) is a Mean Preserving Spread

as in Proposition 8 and the two curves cross at x∗ = 1.
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