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Abstract

This paper discusses models of choice under imprecise objective proba-
bilistic information featuring beliefs about beliefs – second order beliefs. A
new model, called Second Order Dual Expected Utility (SODEU) featuring
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Order Subjective Expected Utility (SOSEU) model (Klibanoff, Marinacci, and
Mukerji, 2005; Nau, 2006; Seo, 2009) for which, for the sake of comparison, we
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1 Introduction

This paper discusses models of choice under imprecise objective probabilistic infor-

mation featuring beliefs about priors – second order beliefs, when preferences are

defined on act-information pairs (f,P), f mapping some state space S to some

outcome space X and P being a set of priors on S summarizing the information

available to the decision maker. We axiomatize a new functional to represent such

preferences, Second Order Dual Expected Utility (SODEU), defined as follows:

V
SODEU

(f,P) =

∫

P

∫

S

u ◦ fdP dνP(P ),

where u is a utility function on X, νP is a nonadditive probability or capacity,

defined on the closed convex hull of P and modeling second-order beliefs, and the

outer integral is a Choquet integral.1

SODEU is similar to a version in the act-information setting of a more familiar

model, Second Order Subjective Expected Utility (SOSEU)(Klibanoff et al., 2005;

Nau, 2006; Seo, 2009; Rustichini, 1992), where preferences are represented by:

V
SOSEU

(f,P) =

∫

P

Φ

(∫

S

u ◦ f dP

)

dµP(P ),

where Φ : u(X) → u(X) is nondecreasing and µP is a probability measure on P.

Both models are particular cases of the Second Order Choquet Expected Utility

(SOCEU) model, whereby act-information pairs (f,P) are evaluated by

V
SOCEU

(f,P) =

∫

P

Φ

(∫

S

u ◦ f dP

)

dνP(P ),

where Φ : u(X) → u(X) is nondecreasing and νP is a capacity on P. In SOSEU the

capacity is additive whereas in SODEU Φ is affine. In that sense, SODEU is dual

to SOSEU,2 hence its name. The second contribution of this paper is to make this

duality explicit at the axiomatic level by providing a new axiomatization of SOSEU.3

1Both concepts of capacity and Choquet integral are formally defined in section 3.1.1.
2The use of the term dual here should not be understood as referring to an underlying theory of

duality but to an analogy with the relationship between Expected Utility and Yaari’s Dual theory
of choice under risk (Yaari, 1987). Strictly speaking this duality concept has been developed for
choice under risk, and, to the best of my knowledge, there is no agreement on what would be the
analogue of the dual theory under uncertainty; therefore one might allow oneself a certain amount
of freedom in using the term dual.

3Axiomatizing SOCEU in the same framework would require addressing very difficult and open
technical problems regarding the extension of comonotonic additive functionals, so we leave this
for further research.
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In a nutshell, SOSEU satisfies (second order) independence but not reduction of

compound lotteries while SODEU satisfies reduction but not independence.

Why should we be interested in the domain of act-information pairs rather than

the standard domain of preferences, however? Why should we care about SODEU

besides SOSEU? Why do we need a new axiomatization of SOSEU? Let us address

these questions.

1.1 Objective Information in Decision Theory

In many decision making situations, people have some objective information about

decision-relevant events (past cases, advice from experts, and so on), and ignor-

ing this while modeling the decision maker’s behavior may have undesirable con-

sequences (Giraud and Tallon, 2010). For instance, this leads to an interpreta-

tion problem with the Maxmin Expected Utility model of decision under ambiguity

(Gilboa and Schmeidler, 1989): because in this model acts are evaluated by taking

the minimum expected utility with respect to a purely subjective set of priors, it

is often interpreted as characterizing pessimistic behavior. However, the validity

of this interpretation heavily relies on construing the set of priors as incorporating

all information available to the decision maker: in this case, the minimum expected

utility is truly the (ex ante) worst case scenario for this decision maker, and arguably

basing one’s decision on the worst case scenario is very pessimistic indeed. If the

subjective set of priors is actually much smaller than the maximal one compatible

with the available information, though, then taking the minimum expected utility

with respect to this smaller set is not that pessimistic after all. Ghirardato and

Marinacci (2002) have furthermore shown that in this model a decision maker is

more ambiguity averse than another if and only if his set of priors is larger. But

this makes sense only if the two decision makers have the same information: other-

wise, one decision maker may have a larger set of priors because he knows less than

another one, even if he is less ambiguity averse. Ambiguity aversion is a subjective

trait that has nothing to do in principle with objective information.

In applications, the set of priors may or may not be regarded as subjective,

depending on the problem at hand, but in any case, available information is usually

not explicitly made clear. Therefore, the comparison of the size of the sets of priors

cannot safely be interpreted as revealing more pessimism.4 To do this we need to

4Note that Ghirardato, Maccheroni, and Marinacci (2004)’s axiomatization of a generalization of
Gilboa and Schmeidler (1989)’s model, designed to differentiate ambiguity and ambiguity attitude,
cannot completely succeed in settling the controversy. Indeed, even though it is immune from
the accusation of excessive pessimism, it allows only (as the authors make perfectly clear) to
differentiate between revealed or perceived ambiguity and attitude toward revealed ambiguity.
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know where the set of priors comes from and how it relates to available information,

and we cannot know this in the context of fully subjective axiomatizations for lack of

a sufficiently rich setup. A similar problem arises in the Invariant Biseparable Model

(Ghirardato et al., 2004). In this model, revealed beliefs are represented by a purely

subjective set function called the willingness to bet. However, just as in Savage’s

model, in the standard framework there is no explicit link between these beliefs and

the objective information available to the decision maker. Therefore, it is impossible

in this model to distinguish information and attitude toward it; hence, notions like

comparative ambiguity aversion, characterized through comparisons of the capacities

of different decision makers, are likely to confound the possible discrepancies in the

information available to each of them and attitude with respect to it.

A series of papers (Gajdos, Tallon, and Vergnaud, 2004; Gajdos, Hayashi, Tallon,

and Vergnaud, 2008) have systematically addressed this interpretation problem for

the Maxmin model by providing new foundations for it when preferences are defined

over act-information pairs. We shall do the same for a model that is essentially the

Invariant Biseparable Model (Ghirardato et al., 2004).

By incorporating objective information, the act-information setting allows for a

clear separation between objective information and attitude toward it. To illustrate

this point, consider Epstein (2010)’s claim that one of SOSEU’s fundamental fea-

tures and flaws is nonreduction of timeless compound lotteries. Epstein considers

a decision maker facing two urns. One urn, called the second order urn, contains

three balls, labeled r, b or g. A draw from this urn determines the composition of

the other urn, the first order urn, a slightly modified three-color Ellsberg urn also

containing three balls, one red and the other two either blue or green. If a ball

labeled r is drawn from the second order urn, then there are one blue and one green

ball in the first order urn; if the ball is labeled b, then there are two blue balls, and

if it is labeled g then there are two green balls. The induced distributions on the set

S = {R,B,G} are thus

Pr =

(

1

3
,
1

3
,
1

3

)

, Pb =

(

1

3
,
2

3
, 0

)

and Pg =

(

1

3
, 0,

2

3

)

.

Define P = {Pr, Pb, Pg}. Epstein discusses two situations, Situations I and II,

where the decision maker behaves according to the SOSEU model with parameters

(uI ,ΦI , µI) and (uII ,ΦII , µII) respectively, where µI and µII have support in P. In

Situation I, the decision maker knows nothing more than what was just described.

Assuming by symmetry that µI
b = µI

g (with µI
d := µi({Pd}), d ∈ {r, b, g}), and

normalizing uI so that uI(0) = 0 and uI(100) = 1, preference for betting on red over
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betting on blue in Situation I implies :

ΦI

(

1

3

)

> µI
rΦ

I

(

1

3

)

+
1− µI

r

2
ΦI

(

2

3

)

+
1− µI

r

2
ΦI (0) . (1)

In Situation II, the decision maker is told in addition that µI is actually the true

second order distribution. Does this piece of information have any impact on behav-

ior? There are two points of view, depending on whether we think that objective

information affects the decision maker’s beliefs or not.

According to the first point of view, which is Epstein’s, “We would expect the

announcement not to change risk preferences or preferences over acts defined within

the second-order urn, nor to cause the individual to change his beliefs about that

urn” (Epstein, 2010, p. 2094), hence (uI ,ΦI , µI) = (uII ,ΦII , µII) and equation (1)

still holds in Situation II with (uII ,ΦII , µII) instead of (uI ,ΦI , µI): reduction of

objective compound lotteries does not take place in Situation II.

From a different point of view (e.g. Klibanoff, Marinacci, and Mukerji, 2012, a

reply to Epstein), however, one could argue that, although it makes perfect sense to

assume that the taste parameters u and Φ are not affected by a change in objective

information, so that Epstein’s argument applies to them, it is more of a stretch

to assume that information does not affect beliefs. The justification for the first

point of view is that, if a decision maker behaves according to subjective expected

utility (as it is the case here at the second order level) and if he learns that his

subjective prior happens to coincide with the objective probability distribution, he

has no reason to change it. But that doesn’t mean he will use this prior in the same

way if he believes it is right or if he knows it is. For instance, if the second order

prior is possibly wrong but the first order prior is objective, the decision maker might

consider that by reducing the compound lottery he might so to speak “contaminate”

the latter with the possible falseness of the former. If both are objective, he can go

ahead and proceed with the reduction without fear. If he does in Situation II, he

will thus consider that the new objective information set is the singleton set {ρµ
I

},

where

ρµ
I

= µI
rPr +

1− µI
r

2
Pb +

1− µI
r

2
Pg = Pr.

The support of µII is thus {Pr},
5 and

V II(fB , {Pr}) = ΦI

(

1

3

)

= µII
r ΦI

(

1

3

)

+
1− µII

r

2
ΦI

(

2

3

)

+
1− µII

r

2
ΦI (0) = V II(fR, {Pr}).

The claim that there is an essential contradiction between the reduction of com-

pound lotteries and SOSEU is therefore not valid without some extra assumption.

5µII is thus degenerate, as pointed out in Klibanoff et al. (2012).
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When both stages of the compound lottery are objective, reduction can perfectly

take place.

What is going on here? In the standard framework, the distinction between ob-

jective and subjective priors cannot formally be made, and thus a different treatment

of them does not readily suggest itself to the modeler. On the other hand, in our

framework, the distinction is not only formally possible but it can also be opera-

tionalized by implementing the different attitudes one may have regarding objective

and subjective beliefs. To sum up, what our framework makes possible is to distin-

guish between the mathematical nature of a prior (which probability measure it is)

and its cognitive status (is it objective information or a purely subjective belief?)

and this additional distinction allows for a different treatment of this prior in the

decision making process.

Another advantage of the act-information setting is that it makes it possible to

distinguish two possible attitudes toward uncertainty (Gajdos et al., 2008): attitude

toward ambiguity and attitude toward information. Attitude toward ambiguity is

defined in the context of fixed, albeit imprecise (and generally unspecified), infor-

mation on the likelihood of events. It is usually assessed by the ranking of more or

less ambiguous acts. Thus, we might say that ambiguity is a property of acts, given

an informational context. Attitude toward information itself, on the other hand, is

assessed by the comparison of various pieces of information, given a fixed act. This

allows us to study various properties of information described as sets of probability

measures, such as how precise it is, given an act, and attitudes toward such proper-

ties, such as imprecision aversion. A contribution of this paper is to systematically

explore this distinction in the context of the SODEU model. We will show that the

second order capacity can be used to model attitude toward ambiguity, whereas the

decision maker’s willingness-to-bet can be used to model imprecision aversion.

1.2 Descriptive Motivation

A lot of the appeal of SOSEU to economists outside the field of decision theory comes

from the fact that, under standard assumptions, the SOSEU functional is smooth,

allowing one to apply the standard expected utility machinery to ambiguity (e.g.,

Gollier, 2011). However, smoothness limits its descriptive adequacy. For instance,

Ahn, Choi, Gale, and Kariv (2011) estimate several models of choice under uncer-

tainty on a rich data set of portfolio choices between ambiguous and risky assets and

find that “approximately sixty percent of subjects are well approximated by SEU

preferences” while the remainder of subjects exhibit ambiguity aversion of a sort
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that “the smooth specification associated to REU6 cannot [explain].”(Ahn et al.,

2011, p. 25). Of course, one experimental study is not enough to discard smooth

specifications of SOSEU altogether. But it suggests that it is perfectly sound to

examine non-smooth alternative theories of second order beliefs, like SODEU.

Moreover, as shown in section 3.2.2, Example 1, SOSEU cannot account for

certain ambiguity aversion-driven choices in a modified Ellsberg paradox. The con-

struction of this modified Ellsberg paradox parallels the construction of modified

Saint-Petersburg paradoxes. It is well known that, even though we can solve the

latter by introducing a concave utility function for money, for any increasing and

continuous Bernoulli utility function u, a new Saint-Petersburg paradox can be con-

structed by replacing the 2n payoff by u−1(2n). Similarly, even though the SOSEU

model can account for the standard Ellsberg paradox, for any given (continuous and

increasing) second order utility Φ, there exists a rescaling of first order expected

utilities leading to a new Ellsberg paradox that it cannot account for. As will be

made clear later in the paper, this happens because the SOSEU model satisfies a

form of independence, called in the paper Second Order Independence.

1.3 Technical Motivation: first order versus second order

objects

At a more technical level, our axiomatization has the advantage over extant ones

(Klibanoff et al., 2005; Seo, 2009; Nau, 2006) of being based on standard first-order

Anscombe-Aumann acts7 only. We do not require the decision maker to have pref-

erences on other somewhat complex objects like lotteries over Anscombe-Aumann

acts (Seo, 2009) or conditional acts (Nau, 2006), and in particular on second order

acts (Klibanoff et al., 2005).

While this might look like anecdotal, it actually has behavioral implications

regarding second order versions of the three-color Ellsberg paradox, Epstein (2010)’s

“Paradox for the ‘smooth ambiguity’ model”. Epstein’s argument to derive it relies

on an assumption made by Klibanoff et al. (2005) about preferences on second

order acts, and not from the SOSEU functional form itself, hence one may ask:

does the paradox persist without this assumption? Axiomatizing SOSEU in a first-

order context, dispensing with this assumption, is a first step toward answering this

6REU is the name given by Ahn et al. to SOSEU.
7We should distinguish between the standard Anscombe-Aumann approach, as standardized by

Fishburn (1970), and the original Anscombe-Aumann approach, featuring lotteries on Anscombe-
Aumann acts, as revived in Seo (2009) to provide a clean axiomatization of SOSEU and further
and fruitfully exploited in Nascimento and Riella (2011) to generalize SOSEU.
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question; we show in section 3.2.3 that while the paradox in the form proposed by

Epstein does not follow from SOSEU per se, it still holds under slight perturbations.

1.4 Related Literature

The idea of generalizing the notion of risk, i.e., known probability distributions,

to some notion of imprecise risk, i.e., imprecisely known probability distributions,

dates back to Jaffray (1989), who applied the Von Neumann and Morgenstern (1947)

axioms to belief functions8 instead of lotteries to obtain a representation à la Arrow-

Hurwicz (Arrow and Hurwicz, 1972). This idea was recently revived by several

authors who proposed to model imprecise risk either by necessity measures (Rébillé,

2006) or by sets of lotteries (Stinchcombe, 2003; Olszewski, 2007; Ahn, 2008).

Our approach differs from the above mentioned in that we consider act-information

pairs and do not assume that the decision maker is indifferent between two act-

information pairs inducing the same set of lotteries. This approach originates in

Wang (2003) where primitives are triples (f,P, P ∗) with P ∗ a reference prior.

Wang’s main result is to provide axiomatic foundations for a general version of

the minimum relative entropy principle of Anderson, Hansen, and Sargent (1999).

In the same setting, Gajdos et al. (2004) axiomatize a generalized maxmin rule

whereby the decision maker maximizes the minimum expected utility over a subset

of the set of initial priors, the so-called contraction model. Such a rule is a special

case of our model if and only if this subset is the core of a convex second order

capacity; not all contraction representations have SODEU representations. Gajdos

et al. (2008) generalize Gajdos et al. (2004) by endogenizing the reference prior.

Nehring (2007, 2009) studies a related framework where, along with the usual

preference relation, the decision maker is endowed with a (potentially incomplete)

comparative likelihood relation modeling his/her beliefs. He investigates the compat-

ibility of revealed betting preferences with the decision maker’s beliefs represented

by the comparative likelihood relation. In turn, Sagi (2007) studies a form of multi-

prior probabilistic sophistication that can be seen as the subjective counterpart to

Nehring’s objective approach.

Amarante (2009) studies the functional form that we call here SODEU, and

we shall elaborate on the relationship with the present paper later on. Finally,

the present paper has evolved out of a first attempt at axiomatizing the SODEU

functional (Giraud, 2005).

8They roughly speaking correspond to sets of lotteries
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1.5 Organization of the Paper

The paper is organized as follows: section 2 introduces the setup and the basic

axioms, while in section 3 additional axioms and representation theorems for SODEU

and SOSEU are stated and discussed. In section 4 we study ambiguity aversion and

imprecision aversion in this setup. Section 5 contains concluding remarks. Proofs

are gathered in the appendix.

2 The Model

2.1 Setup and Basic Definitions

The setup is Fishburn (1970)’s version of the Anscombe-Aumann framework. (S,Σ)

is the measurable space of states of nature and (X,B) the measurable space of

outcomes. X is a convex subset of a vector space and B contains the singletons.

Let F be the set of simple acts, i.e., the set of finite-valued measurable functions

f from S toX. As usual, we identify constant acts with elements ofX. For α ∈ [0, 1],

the α-mixture of two acts f and g is defined pointwise: (αf+(1−α)g)(s) = αf(s)+

(1−α)g(s). If (Ai)i=1,...,n is a measurable partition of S , we write f = (xi, Ai)i=1,...,n

whenever f(s) = xi for all s ∈ Ai.

Let pc(Σ) be the set of all probability charges (finitely additive and normalized

set functions) on Σ and P be the set of all nonempty subsets P of pc(Σ). Elements

of a set P ∈ P will be referred to as scenarios. Here they will often play the

role that states usually play in models of decision under uncertainty: for instance

dominance will be considered scenario-wise rather than state-wise. In that case, we

say that we are dealing with second order concepts.

An act-information pair (f,P) ∈ F ×P corresponds to a situation where the

decision maker considers choosing act f while P is the maximal set of priors con-

sistent with the information available to him/her. Preferences are defined over act-

information pairs and are denoted by %. We refer to Gajdos et al. (2008) and section

1.1 for a justification of this setup.

2.2 Basic Axioms

In this section we introduce the axioms shared by both models we seek to axiomatize.

We start with the standard ordering, continuity and nondegeneracy axioms, adapted

to our setting:

Axiom 1 (Weak Order) % is transitive and complete.

9



Axiom 2 (Continuity) For all P ∈ P, for all f, g, h ∈ F , if

(f,P) ≻ (g,P) ≻ (h,P)

then there exist α, β ∈ (0, 1) such that:

(αf + (1− α)h,P) ≻ (g,P) ≻ (βf + (1− β)h,P).

Axiom 3 (Non-Degeneracy) There exists x∗ and x∗ in X such that for all P ∈ P,

(x∗,P) ≻ (x∗,P).

The next axiom is a dominance axiom saying that if f is preferred to g given all

scenarios in P, then it is preferred to g given P. Formally:

Axiom 4 (Information Dominance) For all f, g ∈ F , for all P ∈ P,

[∀P ∈ P, (f, {P}) % (g, {P})] =⇒ (f,P) % (g,P).

For simplicity we will require the existence of certainty equivalents.

Axiom 5 (P-Certainty Equivalent) For all P ∈ P, for all f ∈ F , there exists

x ∈ X such that (f,P) ∼ (x,P).

Given the first three axioms this axiom holds if preferences satisfy state-wise

dominance (as opposed to scenario-wise). However, we do not assume this form of

dominance since it is not needed for the axiomatizations we seek. For all f ∈ F

and P ∈ P, denote by c(f,P) the set of certainty equivalents of f under objective

information P. We may sometimes abuse this notation by using it to denote any

certainty equivalent of f under P when there is no need to distinguish between

distinct certainty equivalents.

Finally, in both models information is irrelevant for constant acts.

Axiom 6 (Information Irrelevance for Constant Acts ) For all x ∈ X, for all P,Q ∈

P, (x,P) ∼ (x,Q).

3 Representations

3.1 Second Order Dual Expected Utility (SODEU)

3.1.1 Representation Concept

Recall the following definitions. Let (Ω,E ) be a measurable space. A capacity on

(Ω,E ) is a function ν : E → R such that ν(∅) = 0, ν(Ω) = 1 and ν(A) ≤ ν(B)

10



whenever A ⊆ B. A mapping ϕ : Ω → R is E -measurable if, for all t ∈ R,

(ϕ ≥ t) := {ω ∈ Ω | ϕ(ω) ≥ t} ∈ E . For any E -measurable functions ϕ, the Choquet

integral of ϕ with respect to ν is defined by:

∫

Ω

ϕ dν :=

∫ 0

−∞

[ν(ϕ ≥ t)− 1] dt+

∫ +∞

0

ν(ϕ ≥ t) dt. (2)

Definition 1 A binary relation % on F ×P admits a Second Order Dual Expected

Utility (SODEU) representation based on the utility function9 u : X → R and the

family of capacities (νP)P∈P, where νP is defined on the closed convex hull co(P)

of P if

(f,P) % (g,Q) ⇐⇒

∫

co(P)

∫

S

u ◦ fdP dνP(P ) ≥

∫

co(Q)

∫

S

u ◦ gdQ dνQ(Q).

According to SODEU, given some imprecise information objectively describable

by a set of probability scenarios, the decision maker forms a not necessarily addi-

tive prior regarding the likelihood of each of the scenarios, computes the (Choquet)

weighted average expected utility of the acts considered and chooses the act with

higher average expected utility. Whenever the second order capacity is actually

non-additive, this decision procedure is consistent with an intuitive account of the

Ellsberg paradox according to which ambiguity aversion is a form of second order

pessimism: the decision maker deems unfavorable scenarios more likely than favor-

able ones.

3.1.2 Axioms

We now introduce the axioms specific to SODEU preferences.

The first axiom restricts the possibility of hedging between acts to certain kinds

of acts. Let us first introduce the relevant notion of mixing and the relevant category

of acts for which hedging is useless.

Definition 2 Let f, g ∈ F , α ∈ [0, 1] and P ∈ P. Then h ∈ F is a P-second

order α-mixture of f and g if, for all P ∈ P, there exists x, y ∈ X such that

(i) (f, {P}) ∼ (x, {P}),

(ii) (g, {P}) ∼ (y, {P}),

(iii) (h, {P}) ∼ (αx+ (1− α)y, {P}).

9Nothing is assumed here of u since we want our definition of SODEU to be general and not
tied to a particular framework.
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The (possibly empty) set of P-second order α-mixtures of f and g is denoted

αf ⊕
P
(1−α)g. The name of this concept is based on the fact that, given the basic

axioms:

h ∈ αf ⊕
P

(1− α)g iff c(h, {P}) = αc(f, {P}) + (1− α)c(g, {P}), ∀P ∈ P.

Hence, a second order mixture of two acts may be regarded as their scenario-wise

mixture.

Now, let us define the class of acts for which these mixtures provide no hedging

gain:

Definition 3 Let f, g ∈ F and P ∈ P. f and g are P-comonotonic if

(f, {P}) ≻ (f, {Q}) =⇒ (g, {P}) % (g, {Q}), ∀P,Q ∈ P.

The underlying intuition is that: each act induces a certain ranking of proba-

bilistic scenarios based on how favorable a scenario is for this act. For instance, in

the three color Ellsberg urn with 30 red balls and 60 black or yellow balls, if fB is

the act corresponding to betting on black, if P = (1
3
, 2
3
, 0) and Q = (1

3
, 0, 2

3
), then

(fB, {P}) ≻ (fB, {Q}). Two acts are P-comonotonic if the ranking of scenarios

they induce are the same up to indifference.

Comonotonicity was introduced in the literature on decision under uncertainty

for states of nature, not for scenarios. Given an information set P, two acts f and

g are comonotonic if, for all s, s′ ∈ S,

(f(s),P) ≻ (f(s′),P) =⇒ (g(s),P) % (g(s′),P).

It can readily be shown that in general these two notions are completely independent

of one another (counterexamples and details are available upon request).

Now, if two acts are P-comonotonic, since they order scenarios in the same

way, they do not provide a hedging opportunity against each other, in the sense of

compensating bad scenarios for one act with good scenarios for the other. Therefore,

if f is preferred to g given information P, mixing them (in the second order sense)

with another act that is P-comonotonic with both of them will result in two acts

that induce the same ranking of scenarios as f and g. The preference ranking of the

mixed acts should thus be the same as that of the original acts, This is what the

next axiom requires:

Axiom 7 (Information-Comonotonic Second Order Independence) For all P ∈ P,

12



for all f, g, h ∈ F pairwise P-comonotonic, for all α ∈ (0, 1]

(f,P) % (g,P) ⇐⇒ (f ′,P) % (g′,P),

for any f ′ ∈ αf ⊕
P

(1 − α)h and g′ ∈ αg ⊕
P

(1 − α)h whenever these sets are

nonempty.

The last axiom, introduced by Gajdos et al. (2008), states that given a scenario,

the certainty equivalent of an act is its (X-valued) expectation.

Axiom 8 (Reduction under Precise Information) Let f ∈ F and P ∈ pc(Σ). Then

(f, {P}) ∼

(

n
∑

i=1

P (Ai)xi, {P}

)

whenever f = (xi, Ai)i=1,...,n.

In the standard Anscombe-Aumann framework, X is a set of probability dis-

tributions, or roulette lotteries, over an outcome space Z, whereas F is the set of

horse race lotteries. This axiom says that in the case of precise information, the

decision maker does not care about the horse race stage and focuses on the in-

duced roulette lottery. It holds for most decision under uncertainty models in the

Anscombe-Aumann framework as long as beliefs are probabilistic. This axiom is

the counterpart in our setup of the Reduction of Compound Lotteries axiom used

by Seo (2009) and has essentially the same effect of delivering linearity at the first

order level.

3.1.3 Representation Theorem

Theorem 1

A preference relation % satisfies axioms 1 through 8 if and only if there exist a

nonconstant affine function u : X → R and for all P ∈ P, a capacity νP defined on

the closed convex hull of P, co(P), such that % admits an SODEU representation

based on them.

Moreover, if (u, (νP)P∈P) and (v, (µP)P∈P) both represent % in the previous

sense then v is a positive affine transformation of u and

∫

co(P)

T dνP =

∫

co(P)

T dµP

for each P ∈ P and each affine function T : co(P) → R.

The above theorem shows that the axioms are necessary and sufficient for the

representation of preferences by an SODEU functional, and thus for the existence

13



of second order beliefs. However it falls short of pinning them down. Indeed, the

proof involves defining a monotonic and comonotonic additive function on a subset

of the space of bounded real functions on co(P) and extending it to a Choquet

integral with respect to a certain capacity. Since the subset in question does not

contain the indicator functions, this capacity cannot be uniquely identified.10 This

may be surprising as we should expect that under ideal circumstances, i.e., if we

were able to observe preferences on every pair, we should be able to infer beliefs.

But since we are talking about second order beliefs, observing preferences over first

order acts is not necessarily sufficient to identify them. We can therefore hardly say

that circumstances are ideal. Klibanoff et al. (2005)’s model is cast in this ideal

framework, and this is why they can uniquely identify second order beliefs.11

Moreover, the theorem is silent about the relationship between the capacities νP

as P varies, and in particular nothing is said about updating νP when new informa-

tion about P arrives. There are two reasons for that. First, except for Dominance

and Information Irrelevance for Constant Acts, our axioms imply conditions within

the context of a particular information set, and therefore, they do not imply any-

thing regarding the relationship between belief representations. Second, one could

in principle introduce axioms that force a relationship between them based on stan-

dard updating rules for capacities. However, all axiomatizations in the literature

are based on acts of the form fAg, that take the value f(s) for s ∈ A and g(s) for

s /∈ A. To transpose these axiomatizations to the level of second order beliefs, one

would need to use similar constructions for second order acts. Yet second order acts

are not primitive objects in our setting, they are derived from first order acts in a

way that does not give rise to a set closed under such act-mixing operations at the

second order level. So this road seems to be barred.

3.2 Second Order Subjective Expected Utility (SOSEU)

3.2.1 Representation Concept

Definition 4 A binary relation % on F × P admits a Second Order Subjective

Expected Utility (SOSEU) representation based on the utility function u : X → R,

10Some authors (Zhou, 1999, 1998; Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio,
2011) approach the uniqueness problem using continuity requirements, that deliver unique contin-
uous (in a suitable sense) capacities; but this does not exclude the possibility that a non continuous
capacity may also represent the functional.

11Actually they assume their existence and uniqueness, but axiomatizations of this assumption
are readily available.

14



the evaluation function12 Φ : u(X) → R and the family of probability charges

(µP)P∈P each defined on the respective P ∈ P if

(f,P) % (g,Q) ⇐⇒

∫

P

Φ

(∫

S

u ◦ f dP

)

dµP(P ) ≥

∫

Q

Φ

(∫

S

u ◦ g dQ

)

dµQ(Q).

3.2.2 Axioms

The axiomatization of SOSEU we propose relies on an independence axiom at the

second order level and a weakening of the reduction axiom used for SODEU.

Axiom 7’ (Second Order Independence) For all P ∈ P, for all f, g, f ′, g′ ∈ F , if

(f,P) % (g,P) and (f ′,P) % (g′,P),

then

(h,P) % (h′,P),

for all α ∈ (0, 1], h ∈ αf ⊕
P

(1 − α)f ′ and h′ ∈ αg ⊕
P

(1 − α)g′, whenever they

exist, and the converse holds whenever f ′ = g′.

This axiom is stronger than the standard independence axiom applied to second

order α-mixtures, which would feature f ′ = g′ in the first part of the axiom. We use

this version of the axiom because second order α-mixtures may not exist in certain

cases, so that the full force for the standard independence axiom is not preserved.

As mentioned in the introduction, section 1.2, Axiom 7’ – the counterpart in our

framework of Klibanoff et al. (2005)’s Assumption 2 – is violated by a modified

version of the Ellsberg paradox, that we now present.

Example 1 An urn contains 90 balls, either red, black or yellow. The state space is

therefore S = {R,B, Y } and the outcome space is R. The decision maker knows that

the composition of the urn can only be either one of C1 = (29, 30, 31), C2 = (30, 60, 0)

and C3 = (30, 0, 60), where the first figure is the number of red balls, the second the

number of black balls and the third the number of yellow balls. For a composition,

Ci = (ri, bi, yi), let Pi =
(

ri
3
, bi
3
, yi

3

)

be the associated probability distribution and

let P = {P1, P2, P3}. Assume preferences have an SOSEU representation based

on (u,Φ, (µP)) such that u(X) = R and Φ is strictly increasing and continuous.

Consider the acts the expected utilities of which, with respect to the distributions in

12Note that, here again, we give a general definition of SOSEU without tying it to a particular
framework ( e.g.,, the Anscombe-Aumann framework) and hence without assuming properties for
u and Φ, like linearity, that would make sense only in such contexts.
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Act f1 f2 f3 f4 f5 f0 f1,5

EU w.r.t P1 Φ−1
(

100

3

)

Φ−1
(

100

3

)

Φ−1
(

200

3

)

Φ−1
(

200

3

)

Φ−1
(

100

3

)

Φ−1 (0) Φ−1
(

100

3

)

EU w.r.t. P2 Φ−1
(

100

3

)

Φ−1
(

200

3

)

Φ−1
(

200

3

)

Φ−1
(

100

3

)

Φ−1 (0) Φ−1 (0) Φ−1
(

50

3

)

EU w.r.t. P3 Φ−1
(

100

3

)

Φ−1 (0) Φ−1
(

200

3

)

Φ−1 (100) Φ−1
(

200

3

)

Φ−1 (0) Φ−1 (50)

Table 1: Modified Ellsberg Paradox: Expected Utilities

P, are as given in table 1.13 Examples of f1 through f4 are given in table 2 .14 Since

f1,5 ∈
1
2
f1 ⊕P

1
2
f5 and f1 ∈

1
2
f2 ⊕P

1
2
f5,

15 Second Order Independence implies16

(f1,P) % (f2,P) ⇐⇒ (f1,5,P) % (f1,P).

Similarly, since f1,5 ∈
1
2
f4 ⊕P

1
2
f0 and f1 ∈

1
2
f3 ⊕P

1
2
f0,

17 it implies18

(f4,P) % (f3,P) ⇐⇒ (f1,5,P) % (f1,P).

Hence,

(f1,P) % (f2,P) ⇐⇒ (f4,P) % (f3,P).

However, it may be argued that this behavior is contrary to what ambiguity aver-

sion suggests. Indeed, first, the situation described is approximately the same as

the simplified Ellsbergian context used in Epstein (2010) (Situation I described in

the introduction, section 1.1).19 Moreover, up to the transformation by Φ−1 (an

increasing function) the expected utilities of f1, f2, f3 and f4 are those of the bets

13Their existence follows from lemma 1 in appendix A.1.
14We don’t give the values of f0 – actually 0 –, f1,5 and f5, in table 2, as they are only intermediate

constructs used for the derivation of a prediction from Seconder Order Independence, so that
knowing what they actually are would not provide any intuition about the fact we want to highlight
and would be an unnecessary distraction of the reader’s mind.

15Indeed, for any P ∈ P,

Φ

(∫

u ◦ f1,5 dP

)

=
1

2
Φ

(∫

u ◦ f1 dP

)

+
1

2
Φ

(∫

u ◦ f5 dP

)

=
1

2
Φ

(∫

u ◦ f4 dP

)

+
1

2
Φ

(∫

u ◦ f0 dP

)

16Take f = f1, g = f2, f
′ = g′ = f5, h = f1,5, h

′ = f1 in the statement of the axiom.
17For any P ∈ P

Φ

(∫

u ◦ f1 dP

)

=
1

2
Φ

(∫

u ◦ f2 dP

)

+
1

2
Φ

(∫

u ◦ f5 dP

)

=
1

2
Φ

(∫

u ◦ f3 dP

)

+
1

2
Φ

(∫

u ◦ f0 dP

)

.

18Take f = f4, g = f3, f
′ = g′ = f0, h = f1,5, h

′ = f1 in the statement of the axiom.
19For technical reasons, f1, f2, f3 and f4 as in table 1 may not exist for the set of probability

distributions P = {Pr, Pb, Pg} corresponding to Situation I. See lemma 1 in the appendix.
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on, respectively, Red, Black, not-Red and not-Black in Situation I. Hence, I suggest

that – assuming that the composition (29, 30, 31) is close enough to the composition

(30, 30, 30) not to alter preferences – ambiguity aversion would lead to the standard

Ellsberg paradox preference pattern (f1,P) ≻ (f2,P) and (f3,P) ≻ (f4,P). To

α = 0.1 α = .99 α = 10.1

Acts R B G Acts R B G Acts R B G

u ◦ f1 1.7× 1015 1.7× 1015 1.7× 1015 u ◦ f1 34.5 34.5 34.5 u ◦ f1 1.4 1.4 1.4

u ◦ f2 5.2× 1019 −2.3× 1019 −2.6× 1019 u ◦ f2 14.6 97.1 -7.3 u ◦ f2 -39.4 22 19.7

u ◦ f3 1.7× 1018 1.7× 1018 1.7× 1018 u ◦ f3 69.6 69.6 69.6 u ◦ f3 1.5 1.5 1.5

u ◦ f4 3× 1021 −1.5× 1021 −1.4× 1021 u ◦ f4 110.3 -3.4 102 u ◦ f4 0.4 1.9 2.2

Table 2: Modified Ellsberg Paradox: First-order Acts (Φ(t) = tα)

support this intuition, consider the acts in table 2. For α = 0.1, f2 and f4 may be

construed as bets on Red, while f1 and f3 are sure bets. A cautious20 decision maker

having chosen the constant f1 over f2 would be expected to also choose the constant

f3 over f4. The choice of f1 over f2 and f4 over f3 predicted by SOSEU seems thus

unlikely given the parallel structures of the two pairs of acts.21 For α = .99, f2 may

be construed as a bet on Black, while f4 may be construed as a bet on not-Black.

Moreover, f1 (respectively f3) is very close to the expected utility of f2 (respectively

f3) with respect to the uniform distribution. Therefore a risk averse decision maker

would be expected to choose f1 over f2 and f3 over f4, and a risk loving decision

maker would make the opposite choices, but again the SOSEU prediction seems un-

likely. Finally, when α = 10.1, f2 and f4 may be construed as bets on not-Red, f1 is

(approximately) twice the expectation of f2 w.r.t. the uniform distribution while f3

is (up to rounding) the expectation of f4, so again a risk averse decision maker would

be expected to choose f1 over f2 and f3 over f4, not complying with the SOSEU

predictions. The behavior suggested in these examples is thus precluded by Second

Order Independence. On the other hand, since f2 and f5 are not P-comonotonic,

it is not precluded by Information Comonotonic Second Order Independence.22

20We prefer to avoid here the term risk averse since we are not under precise risk so it wouldn’t
be rigorous. Actually one can show that there exists a distribution on {R,B,G} such that f1 is
the expectation of f2 and f3 the expectation of f4.

21Based on the order of magnitude of f2 with respect to f1, and of f4 with respect to f3, it is also
possible that an adventurous decision maker would choose f2 over f1, but in that case he would
probably also choose f4 over f3.

22SODEU predicts (f1,P)≻(f2,P) and (f3,P)≻(f4,P) whenever νP ({P1})=
1
3

Φ−1( 200

3
)−Φ−1( 100

3
)

Φ−1(100)−Φ−1( 200

3
)
,

νP ({P2})=νP ({P3})=
1
3

Φ−1( 100

3
)−Φ−1(0)

Φ−1( 200

3
)−Φ−1( 100

3
)
and νP ({P1, P3})=νP ({P2, P3})=νP ({P1, P2}) =

1
3
.

17



The next three axioms weaken Reduction under Precise Information. They are

the counterpart in our setting of Assumption 1 in Klibanoff et al. (2005), which

requires an expected utility representation for preferences on lottery acts.23 Here we

have something similar: an act together with a singleton information set generates

a lottery and these axioms imply that induced preferences on lotteries have an

expected utility representation.

For any f ∈ F and P ∈ pc(Σ) let P f denote the lottery induced by f on X:

for all B ∈ B, P f (B) = P (f−1(B)). Then, the first of the next three axioms states

that, under risk, decision makers care only about the induced lotteries.

Axiom 9 (Probabilistic Sophistication under Precise Information) For all f, g ∈ F ,

P,Q ∈ pc(Σ), P f = Qg ⇒ (f, {P}) ∼ (g, {Q}).

The second axiom states that given a fixed act, precise information can be slightly

modified without affecting preferences.

Axiom 10 (Precise Information Continuity) For all f ∈ F , P,Q,R ∈ pc(Σ), if

(f, {P}) ≻ (f, {Q}) ≻ (f, {R}),

then there exist α, β ∈ (0, 1) such that

(f, {αP + (1− α)R}) ≻ (f, {Q}) ≻ (f, {βP + (1− β)R}).

The third axiom states that if, from the point of view of a specific act, a prob-

ability distribution P is more favorable than a probability distribution Q, then a

common modification of these two distributions by their mixture with a third dis-

tribution should not change this preference.

Axiom 11 (Precise Information Independence) For all f ∈ F , P,Q,R ∈ pc(Σ),

λ ∈ (0, 1],

(f, {P}) % (f, {Q}) ⇐⇒ (f, {λP + (1− λ)R}) % (f, {λQ+ (1− λ)R}).

Finally, for technical reasons we must strengthen the Information Dominance

axiom. Recall that c(f,Q) stands for any certainty equivalent of f under informa-

tion Q.

Axiom 4’ (Information Dominance for Second Order Mixtures) Let (fi)i=1,...,n,

23Skipping details this is the subset of the first order acts such that for any probability distri-
bution on the set of outcomes there exists an act in this subset that together with the Lebesgue
measure on (0, 1] generates the same probability distribution.
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(gj)j=1,...,m be families of acts, and (λi)i=1,...,n ∈ [0, 1]n, (µj)j=1,...,m ∈ [0, 1]m such

that
∑n

i=1 λi = 1 and
∑m

j=1 µj = 1 and let P ∈ P. Then,

(

n
∑

i=1

λi c(fi, {P}), {P}

)

%

(

m
∑

j=1

µj c(gj, {P}), {P}

)

∀P ∈ P

=⇒

(

n
∑

i=1

λi c(fi,P),P

)

%

(

m
∑

j=1

µj c(gj,P),P

)

.

Consider a family of acts and a system of weights. By definition, if the second

order mixture of this family, with the corresponding weights, exists,24 then in any

given scenario, its certainty equivalent is the convex combination, with the same

weights, of the certainty equivalents for this scenario of the acts in the family. This

axiom forces the “mixture-linearity” of the certainty equivalent mapping to also hold

when the scenario is only imprecisely known. It imposes, more generally, that if a

certain inequality between certainty equivalents of families of acts holds scenario-

wise, then it should also hold when the scenario is not precisely known. Whenever

certainty equivalents exist and the families of acts involved in this axiom have a

single member, it reduces to Information Dominance .

3.2.3 Representation Theorem

These axioms together with the other basic axioms are necessary and sufficient for

a representation of preferences by an SOSEU functional:

Theorem 2

A preference relation % satisfies axioms 1, 2, 3, 4’, 5, 6, 7’, 9, 10 and 11 if and only

if there exist a function u : X → R, an increasing function Φ : u(X) → R such

that Φ ◦ u is affine and, for all P ∈ P, a probability µP defined on P such that %

admits an SOSEU representation based on them.

Moreover, if (u1,Φ1, (µP

1 )P∈P) and (u2,Φ2, (µP

2 )P∈P) both represent the prefer-

ences, then u1 and u1 are equal up to an affine transformation, so are Φ1 ◦ u1 and

Φ2 ◦ u2 and
∫

P

Φ1 (T ) dµP

1 =

∫

P

Φ1 (T ) dµP

2

for all affine functions T : co(P) → R.

24Mixtures of more than two acts are defined in the standard way by repeated applications of
the mixture operation whenever possible.
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3.2.4 The Second Order Paradox and SOSEU

In section 1.2, we raised the issue of how the SOSEU model fares with respect to

Epstein (2010)’s second order Ellsberg paradox. We claimed that if we restrict the

analysis to first order acts then with Epstein’s specific example there is no paradox

anymore, but there still is one for slight perturbations of this example. Let us

now prove this point formally. Let P = {Pr, Pb, Pg} be any set of probability

distributions on the set of colors S = {R,B,G}. Which distribution is actually the

case is determined by a draw from an urn containing three balls labelled r, b, or g,

and exactly one red ball. Let Fr, Fb, Frg and Fbg be bets on the label of these balls

(table 3). Epstein argues that the problem of choosing between these second-orders

Fr Fb Frg Fbg

Pr 100 0 100 0

Pb 0 100 0 100

Pg 0 0 100 100

Table 3: Epstein’s Second Order Ellsberg Paradox

bets is isomorphic to the standard three-color Ellsberg paradox, and thus that the

ambiguity aversion-based prediction would be that Fr ≻2
P
Fb and Fbg ≻2

P
Frg. He

also claims that SOSEU, as axiomatized in Klibanoff et al. (2005), because it assumes

expected utility at the second order level, predicts that that Fr ≻
2
Pε

Fb if and only if

Frg ≻
2
Pε

Fbg. For there to be a second order paradox, therefore, we need to examine

whether this prediction is still valid when no direct assumption is made about second

order preferences. Hence, in line with Klibanoff et al. (2005)’s assumption 2, define

preferences on second order acts defined on P using the SOSEU model by letting

F %2
P
G⇐⇒

∫

P

Φ (F (P )) dµP(P ) ≥

∫

P

Φ (G(P )) dµP(P ).

Consistency (Klibanoff et al. (2005)’s assumption 3) thus requires that (f,P) %

(g,P) whenever

∫

S

u ◦ f dP = F (P ) and

∫

S

u ◦ g dP = G(P ), ∀P ∈ P

and F %2
P
G.
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Now, for fixed ε ∈ [−1
3
, 1
3
], consider the distributions

P ε
r =

(

1

3
− ε,

1

3
,
1

3
+ ε

)

, Pb =

(

1

3
,
2

3
, 0

)

and Pg =

(

1

3
, 0,

2

3

)

and let Pε = {P ε
r , Pb, Pg}. Table 4 gives,25 for linear utility, the acts fE, E ∈

{r, b, rg, bg}, such that, for all P ∈ Pε,

∫

S

u ◦ fE dP = FE(P ).

As can be seen, they exist if and only if ε 6= 0.

fr fb frg fbg

R −200
3 ε

100
3 ε

300 ε−100
3 ε

300 ε+200
3 ε

B 100
3 ε

450 ε−50
3 ε

−150 ε−50
3 ε

300 ε−100
3 ε

G 100
3 ε

− 50
3 ε

300 ε+50
3 ε

300 ε−100
3 ε

Table 4: Epstein’s Second Order Ellsberg Paradox: First-Order Acts.

The case considered by Epstein is ε = 0. In that case, since the acts fr, etc.

do not exist, SOSEU makes no prediction, and there is therefore no genuine second

order paradox: it does not follow from the functional form of SOSEU by itself, but

from additional assumptions on second order acts. For ε 6= 0, however, the first

order acts exist and SOSEU does predict that Fr ≻
2
Pε

Fb if and only if Frg ≻
2
Pε

Fbg.

The vulnerability of SOSEU to second order paradoxes is therefore robust.26

3.3 Relationship with other Decision Models

3.3.1 Invariant Biseparable Preferences

Preferences are biseparable (Ghirardato and Marinacci, 2001) if27 they can be repre-

sented by a monotonic functional V , unique up to increasing affine transformations

25Details are available upon request, but existence of these acts is guaranteed by lemma 1 in
Appendix A.1.

26Klibanoff et al.’s reply (Klibanoff et al., 2012) to this second order paradox involves redefining
the first order state-space to incorporate the draws from the second order urn and showing that
an SOSEU model based on this first order state space and with concave utility will predict the
behavior on second order acts hypothesized by Epstein. Their argument is that all information
available to the decision maker should be modeled. I am obviously sympathetic with this claim,
but doing it this way strikes me as rather circular, since then sources of ambiguity become both
the support and the source of the same probability distributions. While more thought should be
devoted to understanding the legitimacy of this procedure, I think the road taken here is logically
safer.

27Leaving aside technicalities in the original definition related to the presence of nonnull events.
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and a capacity ρ : Σ → [0, 1] such that

V (xAy) = ρ(A)uV (x) + (1− ρ(A))uV (y) for all bets xAy, (3)

where uV (x) := V (x). ρ is actually independent of the choice of V and is called

the willingness to bet, while V is called the canonical representation. A biseparable

preference relation is invariant if its canonical representation can be written

V (f) = J(uV ◦ f),

where J : B0(Σ) → R is a constant linear28 functional defined on the set of simple

Σ-measurable functions B0(Σ).

Since the Choquet integral is constant linear, whenever % admits an SODEU

representation, for each P its restriction to F ×{P} is invariant biseparable, with

willingness to bet ρP defined for all A ∈ Σ by

ρP(A) =

∫

P

P (A) dνP(P ).29 (4)

Now, Amarante (2009) showed conversely that any invariant biseparable prefer-

ence relation can be represented by an SODEU functional, the second order capacity

being defined on a subjective set of relevant priors. By contrast, in the present paper,

the second order capacity is defined on the (closed convex hull of the) given set of

priors representing objective information. These two approaches can be reconciled.

Following Ghirardato et al. (2004), for each P ∈ P, say that f is unambiguously

preferred to g given P, denoted f %∗
P
g, if

(λf + (1− λ)h,P) % (λg + (1− λ)h,P) for all λ ∈ (0, 1] and h ∈ F .

Then,

Corollary 1 Let % satisfy axioms 1 to 8. Then, there exists a unique weak∗-closed

and convex set Γ(P) ⊆ co(P) such that

f %∗
P
g ⇔

∫

S

u ◦ f dP ≥

∫

S

u ◦ g dP for all P ∈ Γ(P)

28J(λϕ+ c) = λJ(ϕ) + c, for all λ > 0, ϕ ∈ B0(Σ) and c ∈ R.

29And with constant-linear functional J
P

defined by J
P
(ϕ) =

∫

P

∫

S

ϕ dP dνP (P ).
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and % admits an SODEU representation based on capacities (νP)P∈P such that

νP(Q) = νP(Q ∩ Γ(P)),

for all P ∈ P and Q ⊆ co(P).

This corollary may be interpreted as identifying the set Γ(P) as the relevant

subset of co(P), since priors outside this set are given zero probability. It can help

identify perceived ambiguity as opposed to objective ambiguity.

3.3.2 Choquet Expected Utility and Expected Utility

When can preferences represented by an SODEU functional also be represented by

a Choquet Expected Utility with respect to the willingness to bet? A necessary con-

dition is obviously that they satisfy Schmeidler (1989)’s Comonotonic Independence

axiom:

Axiom 12 (Comonotonic Independence) For all P ∈ P, for all f, g, h ∈ F pairwise

comonotonic, for all α ∈ (0, 1]

(f,P) % (g,P) ⇐⇒ (αf + (1− α)h,P) % (αg + (1− α)h,P).

As it turns out, it is also sufficient:

Proposition 1

A preference relation % satisfies axioms 1 through 8 and 12 if and only if there exist

an affine function u : X → R and, for all P ∈ P, a capacity νP defined on P such

that

(f,P) % (g,P ′) ⇐⇒

∫

S

u ◦ f dρP ≥

∫

S

u ◦ g dρP′ ,

where for all A ∈ Σ and P ∈ P,

ρP(A) =

∫

co(P)

P (A) dνP .

Moreover, ρP (but not νP) is unique and u is unique up to an affine transformation.

Proposition 1 shades light on the link between objective information and subjec-

tive beliefs in the Choquet expected utility model: first order beliefs aggregate (in

the sense of Choquet) the probabilistic information available to the decision maker.

In particular, by standard properties of the Choquet integral, for all A,B ∈ Σ,

[P (A) ≥ P (B), ∀P ∈ P] =⇒ ρP(A) ≥ ρP(B).
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Thus, ρP aggregates available information in a way satisfying a unanimity prop-

erty: if in all scenarios A is more likely than B, then the decision maker will be

more willing to bet on A than to bet on B. Moreover, if νP is additive, then so is

ρP , given its definition. This is incompatible with the occurrence of Ellsberg-type

paradoxes. As a matter of fact, if νP is additive then SODEU collapses to subjective

expected utility with respect to ρP . Furthermore, previous results show, roughly

speaking, that axiomatizing SODEU is characterized by a strong reduction axiom

and a weak independence axiom, whereas SOSEU is characterized by a weaker re-

duction axiom and a stronger independence condition. According to Proposition 2

below, combining both strong axioms delivers Expected utility.30

Proposition 2

A preference relation % satisfies axioms 1 through 6, 7’ and 8 if and only if there

exist an affine function u : X → R and, for all P ∈ P, a probability µP defined on

the power set of P such that

(f,P) % (g,P ′) ⇐⇒

∫

S

u ◦ f dρP ≥

∫

S

u ◦ g dρP′ ,

where for all A ∈ Σ and P ∈ P,

ρP(A) =

∫

P

P (A) dµP .

Moreover, ρP (but not µP) is unique and u is unique up to an affine transformation.

4 Analysis of Attitudes toward Information

When objective but imprecise probabilistic information is explicit ,one can clearly

distinguish between information itself and the attitude toward it. Thanks to this,

Gajdos et al. (2008) have formally shown in the context of Gilboa and Schmeidler

(1989)’s Maxmin EU model how attitude toward information affects perceived am-

biguity. In this section, we pursue this analysis in the context of SODEU. Actually,

in this model one can distinguish between attitude toward ambiguity and attitude

toward imprecision. Attitude toward ambiguity is defined in the context of fixed,

albeit imprecise, information on the likelihood of events, and usually assessed by the

ranking of more or less ambiguous acts. Attitude toward imprecision, on the other

hand, has to do with the quality of information. It is assessed by the comparison of

more or less imprecise information, given a fixed act. Thus ambiguity is a property

30The simple proof is left to the reader.
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of acts, relative to an informational context, whereas imprecision is a property of

information, given a particular act.

4.1 Attitude toward Ambiguity

An agent is more ambiguity averse than another if whenever the first prefers a more

ambiguous act to a less ambiguous one, so does the second. Without probabilistic in-

formation, the only unquestionably unambiguous acts are the constant acts,31 hence

Ghirardato and Marinacci (2002)’s definition of comparative ambiguity aversion:

Definition 5 Let %1 and %2 be the preference relations of two decision makers.

Then decision maker 1 is more GM-ambiguity averse32 than decision maker 2 at P

if and only if, for all x ∈ X, for all f ∈ F :

(f,P) %1 (x,P) =⇒ (f,P) %2 (x,P)

and

(f,P) ≻1 (x,P) =⇒ (f,P) ≻2 (x,P).

With objective information, however, one can specify unambiguous acts: given

information context P, an act is P-unambiguous if it induces the same lottery no

matter which prior in P is chosen:

Definition 6 For P ∈ P, f ∈ F is a P-unambiguous act if P f = Qf , ∀P,Q ∈ P.

Hence the definition of comparative ambiguity aversion given information P:

Definition 7 Let %1 and %2 be the preference relations of two decision makers.

Then decision maker 1 is more ambiguity averse than decision maker 2 given infor-

mation P if and only if, for any P-unambiguous act k, for all f ∈ F :

(f,P) %1 (k,P) =⇒ (f,P) %2 (k,P)

and

(f,P) ≻1 (k,P) =⇒ (f,P) ≻2 (k,P).

As it turns out, these two definitions are equivalent in the SODEU model and

characterized by a property of the second order capacity:

31Provided state-independence holds of course.
32This is actually Ghirardato and Marinacci’s definition of comparative uncertainty aversion;

comparative ambiguity aversion adds to it a condition on the utility function that is automatically
satisfied in the Anscombe-Aumann framework (Ghirardato and Marinacci, 2002, Proposition 11).
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Proposition 3

Let %1 and %2 admit SODEU representations with utility functions u1 and u2 and

second order capacities νP

1 and νP

2 . Then the following are equivalent:

(i) Decision maker 1 is more GM-ambiguity averse than decision maker 2 at P;

(ii) Decision maker 1 is more ambiguity averse than decision maker 2 given infor-

mation P;

(iii) u2 is a positive affine transformation of u1 and

∫

co(P)

T dνP

2 ≥

∫

co(P)

T dνP

1 .

for any affine function T : co(P) → R.

An affine function T : co(P) → R can be viewed as an expected utility profile

(generated by of some unspecified act). This proposition therefore shows that a

decision maker is more ambiguity averse than another if the former always expects to

get less out of an expected utility profile than the latter; he is thus more pessimistic.

This provides a rigorous foundation to the interpretation of ambiguity aversion as

second order pessimism.

4.2 Imprecision Aversion

One expects an ambiguity averse decision maker to prefer, when making a decision,

having precise rather than imprecise information about the probabilities. Following

this intuition, Gajdos et al. (2008) introduced the notion of (comparative) aversion

to bet imprecision:

Definition 8 Let %1 and %2 be the preference relations of two decision makers.

Then decision maker 1 is more averse to bet imprecision than decision maker 2

given information P if and only if, for all A ∈ Σ, x, y ∈ X s.t. (x,P) ≻i (y,P),

i = 1, 2, and P ∈ co(P),

(xAy,P) %1 (xAy, {P}) =⇒ (xAy,P) %2 (xAy, {P}).

In SODEU, aversion to bet imprecision is connected to the agent’s willingness

to bet.

Proposition 4

Let %1 and %2 be the preference relations of two decision makers admitting an
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SODEU representation. Then, decision maker 1 is more averse to bet imprecision

than decision maker 2 given information P if and only if ρP

2 ≥ ρP

1 .

An immediate consequence of the characterizations of comparative ambiguity

aversion (Proposition 3) and comparative imprecision aversion (Proposition 4) is

the following corollary (the proof is straightforward and left to the reader):

Corollary 2 Let %1 and %2 be the preference relations of two decision makers

admitting an SODEU representation. Then if decision maker 1 is more ambiguity

averse than decision maker 2, he or she is also more averse to bet imprecision.

As noted above, there is, in principle, no relationship between ambiguity aversion,

revealed by the comparison of different acts in the context of fixed information and

aversion to (bet) imprecision, revealed by the comparison of different information

sets relative to a fixed act; in the SODEU model, however, they are connected: the

behavior of an SODEU decision maker exhibits a certain form of consistency across

decision situations that are in principle unrelated. His or her ambiguity attitude

spills over to his or her imprecision aversion. This is a testable implication of the

SODEU model, and is therefore worth studying from an experimental point of view.

5 Conclusion

We axiomatized a model of decision making under ambiguous objective information

(imprecise risk) where the decision maker maximizes the (Choquet) average expected

utility of a given act with respect to some non-necessarily additive second order be-

lief. We provided a parallel axiomatization of the SOSEU model. We discussed some

special cases, among which the case where this functional form reduces to Choquet

Expected Utility with respect to a capacity that is consistent with information in

the sense that it ascribes higher likelihood to A than to B whenever for each prior

A is more likely than B. This provides foundations for the intuition according to

which decision makers facing imprecise risk aggregate information into one single

likelihood measure in a way compatible with ambiguity aversion. We show how

ambiguity aversion and imprecision aversion can be characterized in our model in

terms of the different capacities that can be defined in the SODEU model, and how

they are related to each other.

Some open problems remain. Our axiomatization of second order beliefs has in

our opinion the advantage over some other axiomatizations of not taking as primi-

tives second order objects like second order acts in Klibanoff et al. (2005) or lotteries

over acts in Seo (2009). This, however, implies using a coarser language with a more
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limited expressive power, and this has some drawbacks. First, as noted above, it

makes it very difficult to study the question of updating the second order capaci-

ties in the light of new objective information about the probabilities. Second, since

SODEU and SOSEU are special cases of Second Order Choquet Expected Utility,

with nonlinear second order utility (the function Φ in SOSEU) and non-additive

second order beliefs, it would be desirable to axiomatize this nesting model. This is

left for further research.

Appendices

A Proofs

A.1 Modified Ellsberg paradox

The results rely on the following lemma:

Lemma 1 Let

P =







P1(R) P1(B) P1(Y )

P2(R) P2(B) P2(Y )

P3(R) P3(B) P3(Y )






.

Assume u : X → R is onto. Then, if P is nonsingular, then for all E = (ek)k∈{1,2,3} ∈

u(X)3, there exists f : {R,B, Y } → R, such that
∫

S
u ◦ f dPk = ek for all k ∈

{1, 2, 3}.

Proof. If P is nonsingular, then the matrix equation PU = E with unknown U =

(ui)i∈{R,B,Y } ∈ R
3 has a solution. Then, since E ∈ u(X)3 and u(X) = R, U =

P−1E ∈ u(X)3, hence we can find xi ∈ X such that u(xi) = ui and define f(i) = xi.

By construction this will ensure that
∫

u ◦ f dPk = ek for any k ∈ {1, 2, 3}. �

A.2 Proof of Theorem 1

Proving the necessity of the axioms being routine, we focus on the proof of sufficiency.

We thus assume that all the axioms hold. We proceed in several steps.

Step 1. Second order and first order mixtures. The following lemma will be

used through the whole proof:

Lemma 2 Let f, g ∈ F and α ∈ [0, 1]. Then, αf + (1 − α)g is a second

order α-mixture of f and g.
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Proof. Suppose f = (xi, Ai)i=1,...,n and g = (yj, Bj)j=1,...,m. For all i, j, let

Cij = Ai∩Bj. We can rewrite f = (xi, Cij) i=1,...,n
j=1,...,m

and g = (yj, Cij) i=1,...,n
j=1,...,m

.

Then, αf+(1−α)g = (αxi+(1−α)yj, Cij) i=1,...,n
j=1,...,m

. Therefore, by Reduction

under precise information:

(αf + (1− α)g, {P}) ∼







∑

i=1,...,n
j=1,...,m

P (Cij)(αxi + (1− α)yj), {P}







∼






α
∑

i=1,...,n
j=1,...,m

P (Cij)xi + (1− α)
∑

i=1,...,n
j=1,...,m

P (Cij)yj, {P}







But, by Reduction under precise information again,

(f, {P}) ∼







∑

i=1,...,n
j=1,...,m

P (Cij)xi, {P}






and (g, {P}) ∼







∑

i=1,...,n
j=1,...,m

P (Cij)yj, {P}






,

proving the point. �

Because of this lemma, we can and will replace the second order mixture

of f and g by their pointwise mixture everywhere in the rest of the proof.

Step 2. Construction of V .

The following lemma follows from Weak Order, Continuity and Second Or-

der Information-Comonotonic Independence and the Mixture Space Theo-

rem:

Lemma 3 Let P ∈ P and let M ⊆ F be such that for all f, g ∈ M , for

all α ∈ [0, 1], αf + (1−α)g ∈ M and such that all acts in M are pairwise

P-comonotonic. Then there exists a mapping

VM : M × {P} → R

unique up to affine transformations such that

(i) For all f, g ∈ M , for all α ∈ [0, 1],

VM (αf + (1− α)g,P) = αVM (f,P) + (1− α)VM (g,P);

(ii) (f,P) % (g,P) ⇐⇒ VM (f,P) ≥ VM (g,P) , for all f, g ∈ M .
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Define V : F × P → R by setting V (f,P) = VM (f,P) for some M

satisfying the conditions of the lemma and such that f ∈ M and X ⊆ M .

To show that this function is well-defined, we must show that:

(i) For all f ∈ F , there exists M satisfying the conditions of the lemma

such that f ∈ M and X ⊆ M .

(ii) The value of V does not depend on the choice of M .

For (i), when P = {P}, M = F satisfies the required conditions, and we

can therefore let

V (f, {P}) := V
F
(f, {P}).

Moreover, let v(x) = V (x, {P}) for any P . Note that v is well defined

since, by Axiom 6, V (x, {P}) = V (x, {Q}), for all P,Q ∈ pc(Σ), x ∈ X.

Now, we need to show that V represents % on F × {{P} | P ∈ pc(Σ)}.

Indeed, let (f, {P}) and (g, {Q}) be two act-information pairs. Axioms 5

and 6 imply:

(f, {P}) % (g, {Q}) ⇐⇒ (c(f, {P}), {P}) % (c(g, {Q}), {Q})

⇐⇒ (c(f, {P}), {P}) % (c(g, {Q}), {P})

⇐⇒ v(c(f, {P})) ≥ v(c(g, {Q}))

⇐⇒ V (f, {P}) ≥ V (g, {Q}).

When P is not a singleton, let

Mf = {αf + (1− α)x | x ∈ X,α ∈ [0, 1]}.

Clearly X ⊆ Mf . We will now show that Mf satisfies the conditions of

lemma 3.

Let g, g′ ∈ Mf , with g = αf + (1 − α)x and g′ = α′f + (1 − α′)x′. Let

us first show that g and g′ are P-comonotonic. Let P,Q ∈ P such that

(g, {P}) ≻ (g, {Q}). Then by lemma 3, and because constants are P

30



comonotonic with any act (because of axiom 6):

V (g, {P}) > V (g, {Q})

⇐⇒ αV (f, {P}) + (1− α)v(x) > αV (f, {Q}) + (1− α)v(x)

⇐⇒ V (f, {P}) > V (f, {Q})

⇐⇒ α′V (f, {P}) + (1− α′)v(x′) > α′V (f, {Q}) + (1− α′)v(x′)

⇐⇒ V (g′, {P}) > V (g′, {Q})

=⇒ (g′, {P}) % (g′, {Q}).

It is routine to show that for all α ∈ [0, 1], αg + (1 − α)g′ ∈ Mf . This

shows (i).

As for (ii), by axiom 3 (non-degeneracy), there exists x∗ and x∗ in X

such that (x∗,P) ≻ (x∗,P). For any sets M and M ′ satisfying the

conditions above, X ⊆ M ∩ M ′, hence, since VM and VM ′ are unique

up to affine transformations, they are completely determined upon setting

VM (x∗,P) = VM ′(x∗,P) = 1 and VM (x∗,P) = VM ′(x∗,P) = 0. Since

they both represent % on M ∩M ′, after normalization they must be equal

on this set, and since f necessarily belongs to this intersection VM (f) does

not depend on the choice of M . Obviously V thus constructed represents

% on F × {P}.

Step 3. Construction of u. By Reduction under Precise Information (axiom 8),

for f = (x1, A1, . . . , xn, An),

V (f, {P}) = V

(

n
∑

i=1

P (Ai)xi, {P}

)

=
n
∑

i=1

P (Ai)V (xi, {P}).

Thefore setting u := v, we have for all f ∈ F and all P ∈ pc(Σ),

V (f, {P}) =

∫

S

u ◦ f dP.

Step 4. Let P ∈ P. Let B(co(P)) be the set of all real-valued bounded func-

tions on co(P) (the closed convex hull of P) endowed with the uniform

convergence topology. For any f ∈ F , let Ψ(f) ∈ B(co(P)) be defined by

Ψ(f)(P ) = V (f, {P}) =

∫

S

u ◦ f dP.
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Let B0(co(P)) := Ψ(F ). Let us show that B0(co(P)) is convex. Let

ϕ, ψ ∈ B0(co(P)). Let f, g ∈ F such that ϕ = Ψ(f) and ψ = Ψ(g). Let

α ∈ [0, 1]. Then, for all P ∈ pc(Σ)

(αϕ+ (1− α)ψ)(P ) = (αΨ(f) + (1− α)Ψ(g))(P )

= αΨ(f)(P ) + (1− α)Ψ(g)(P ))

= αV (f, {P}) + (1− α)V (g, {P})

= V (αf + (1− α)g, {P}).

This implies that αϕ+ (1− α)ψ = Ψ(αf + (1− α)g) ∈ B0.

We will now show that there exists a mapping I
P

: B0(co(P)) → R such

that V (f,P) = I
P
(Ψ(f)).

If Ψ(f) = Ψ(g), then V (f, {P}) = V (g, {P}) for all P ∈ P. By Informa-

tion Dominance, therefore, (f,P) ∼ (g,P), hence V (f,P) = V (g,P).

This shows the existence of I
P
.

Step 5. We claim that I
P

has the following properties (we drop the reference to

P for now):

(i) If ϕ ≥ ψ, then I(ϕ) ≥ I(ψ).

(ii) If ϕ = Ψ(f) and ψ = Ψ(g) are comotonic, then I(αϕ + (1− α)ψ) =

αI(ϕ) + (1− α)I(ψ) for all α ∈ (0, 1).

(i) follows easily from Information Dominance. For (ii), given what we

have shown above,

I(αΨ(f) + (1− α)Ψ(g)) = I(Ψ(αf + (1− α)g))

= V (αf + (1− α)g,P)

= αV (f,P) + (1− α)V (g,P)

= αI(Ψ(f)) + (1− α)I(Ψ(g)),

since if Ψ(f) and Ψ(g) are comonotonic, then f and g are P-comonotonic.

Step 6. Construction of νP . We will now show that I restricted to B0 is the

Choquet integral with respect to some capacity νP . I is monotonic and

comonotonic additive for functions in B0. In order to apply Schmeidler

(1986)’s representation theorem, we need to extend I to a monotonic and

comonotonic additive function on B. We will do this by applying Corollary
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1 in Amarante (2009). Let A be the set of continuous affine functions on

co(P). This corollary implies that any monotonic and comonotonic addi-

tive function defined on A can be extended to a monotonic and comonotonic

additive function on B. We must therefore show first that that I can be

extended to a monotonic and comonotonic additive function on A.

Consider first the (convex) cone generated by B0,

C0 = {λϕ | λ > 0, ϕ ∈ B0}.

We can extend I to a positively homogeneous function Î on C0 by letting

Î(λϕ) = λI(ϕ).

Let us show that Î is well-defined. If λϕ ≤ µψ, assume without loss of

generality that λ ≥ µ. Then ϕ ≤ µ

λ
ψ = µ

λ
ψ + (1 − µ

λ
)0. Notice that

0 ∈ B0 since 0 = Ψ(x∗). Moreover, I(0) = V (x∗,P) = 0. Therefore

I(ϕ) ≤ µ

λ
I(ψ), hence λI(ϕ) = µI(ψ). It is furthermore easy to see that

Î is positively homogeneous and is the unique positively homogeneous ex-

tension of I. We therefore call it I again. In particular, for any k > 0,

I(k1P) = kI(1P) = kV (x∗,P) = k. It is easily seen to be comonotonic

additive and monotonic. Similarly, we can extend I to the set

C1 = {ϕ+ k | ϕ ∈ C0 and k ∈ R}

by setting

Ĩ(ϕ+ k) = I(ϕ) + k.

If ϕ + k ≤ ϕ′ + k′, assume wlog that k′ ≥ k. Then ϕ ≤ ϕ′ + k′ − k and,

since I is comonotonic additive and monotonic, this implies that

I(ϕ) ≤ I(ϕ′) + I((k′ − k)1P) = I(ϕ′) + k′ − k,

hence I(ϕ) + k ≤ I(ϕ′) + k′. Therefore Ĩ is well-defined and monotonic.

It is the unique monotonic and constant-additive extension of I to C1,

therefore we call it I again. In particular, I is Lipschitz-continuous (w.r.t.

the sup-norm) on C1 and can therefore be uniquely extended to the closure

of C1, denoted C2.

Let us now show that A ⊆ C2. Note first that [0, 1] ⊆ u(X), since u is affine,

u(x∗) = 1 and u(x∗) = 0. Now, take ϕ ∈ A. By a standard result (Dunford
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and Schwartz, 1958, p. 258), there exists a bounded Σ-measurable function

w : S → R such that for all P ∈ co(P),

ϕ(P ) =

∫

S

w dP.

Since w is bounded, it is the limit of a sequence (wn) of simple Σ-measurable

functions. Now, for each n, wn is bounded, therefore it is possible to find

an > 0, bn ∈ R and a simple Σ-measurable function w′
n such that 0 ≤

w′
n ≤ 1 and wn = anw

′
n + bn. Letting, w′

n =
kn
∑

i=1

tin1Ain
with Ain ∈ Σ and

tin ∈ [0, 1] for all i ∈ {1, . . . , kn}, since [0, 1] ⊆ u(X) there exist x1n . . . xknn

in X such that u(xin) = tin for all i, hence, setting fn = (xin, Ain)1≤i≤k, we

have w′
n = u ◦ fn and we can define ϕn = anΨ(fn) + bn ∈ C1. Then,

ϕn(P ) =

∫

S

wn dP

and

‖ϕ− ϕn‖∞ = sup
P∈P

∣

∣

∣

∣

∫

S

w − wn dP

∣

∣

∣

∣

≤ sup
P∈P

∫

S

|w − wn| dP

≤ sup
P∈P

∫

S

‖w − wn‖∞ dP

= ‖w − wn‖∞,

hence ϕn → ϕ in the sup-norm, and therefore ϕ ∈ C2.

We can now apply Amarante (2009)’s result and Schmeidler (1986)’s the-

orem to show that there exists a capacity νP on co(P) such that I is the

Choquet integral with respect to it. In particular,

V (f,P) = I(Ψ(f)) =

∫

co(P)

Ψ(f) dνP .

Step 7. We now need to show that V actually represents %. We have:

(f,P) % (g,P ′) ⇐⇒ (c(f,P),P) % (c(f,P ′)),P ′)

⇐⇒ v(c(f,P)) ≥ v(c(g,P ′))

⇐⇒ V (f,P) ≥ V (g,P ′).
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where the second line follows from Axiom 6.

This completes the existence proof.

Step 8. For uniqueness, let V1 be another SODEU representation. Let us show that

there exists a > 0 and b ∈ R such V1 = aV + b. Indeed, we know that since

V and V1 represent the same ordering there exists an increasing mapping

T : V (F ×P) → R such that V1 = T ◦ V . Let us show that T is affine on

its domain. Consider t and t′ in the domain of T . Then there exists (f,P)

and (g,Q) in F ×P such that t = V (f,P) and t′ = V (g,Q). Let x and

y be their respective certainty equivalents. Then, for any α ∈ [0, 1]:

T (αt+ (1− α)t′) = T (αV (f,P) + (1− α)V (g,Q))

= T (αv(x) + (1− α)v(y))

= T (v(αx+ (1− α)y))

= v1(αx+ (1− α)y)

= αv1(x) + (1− α)v1(y)

= αT (v(x)) + (1− α)T (v(y))

= αT (t) + (1− α)T (t′).

This implies in particular that u is defined up to a positive affine transfor-

mation.

For the uniqueness result regarding the capacity, fix an SODEU represen-

tation V with utility u and second order capacities (νP)P∈P and another

V ′ with the same utility u and second order capacities (µP)P∈P. Since we

use the same utility, we have V (f,P) = V ′(f,P) for all (f,P), i.e.,

∫

co(P)

∫

S

u ◦ f dP dνP =

∫

co(P)

∫

S

u ◦ f dP dµP

for all (f,P). Since we have shown above (step 6) that for any affine

function T : co(P) → u(X) there exists f ∈ F such that T = Ψ(f), this

shows that for such affine functions,

∫

co(P)

T dνP =

∫

co(P)

T dµP .

Letting the normalization of u vary, the same can be obtained for affine

functions with values in any interval.
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Corollary 1. As discussed in paragraph 4.2, if the preference relation % admits

an SODEU representation, then its restriction to sets of the form F × {P} is

invariant biseparable as defined in Ghirardato et al. (2004). Hence, by Ghirardato

et al. (2004, Proposition 5), there exists a unique closed and convex set Γ(P) such

that

f %∗
P
g ⇔

∫

X

u ◦ f dP ≥

∫

X

u ◦ g dP for all P ∈ Γ(P).

Define the relation %∗∗
P

by

f %∗∗
P
g ⇐⇒ (f, {P}) % (g, {P}) for all P ∈ P.

Then

f %∗∗
P
g ⇐⇒

∫

X

u ◦ f dP ≥

∫

X

u ◦ g dP for all P ∈ P

and, by Information Dominance,

f %∗∗
P
g ⇒ (f,P) % (g,P).

This implies that %∗∗
P

is a sub-relation of % that satisfies independence and is rep-

resented by P. By Ghirardato et al. (2004, Proposition 4) therefore:

f %∗∗
P
g ⇒ f %∗

P
g.

and, by Ghirardato et al. (2004, Proposition A.1), we have Γ(P) ⊆ co(P).

Now from Amarante (2009) we know that if the restriction of the preference

relation % to sets of the form F × {P} is invariant biseparable, then it admits an

SODEU representation. Specifically, there exists a capacity ν∗
P

defined on Γ(P)

such that preferences on F × {P} can be represented by the function W ∗
P

defined

by

W ∗
P
(f) =

∫

Γ(P)

(∫

S

u ◦ f dP

)

dν∗
P
(P ).

Since for a given P, V (·,P) and W ∗
P

are both invariant biseparable representa-

tions of preferences, we can assume (Ghirardato and Marinacci, 2001, Theorem 9)

that their corresponding utility functions are the same, and we denote that function

u. Normalize it so that u∗ = 1 and u∗ = 0. Let f ∈ F and P ∈ P. There exists

x ∈ X such that (f,P) ∼ (x,P). Therefore V (f,P) = u(x) = W ∗
P
(f). Therefore,

if we extend ν∗
P

to co(P) by letting

ν∗
P
(Q) = ν∗

P
(Q ∩ Γ(P))
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for all Q ⊆ co(P), then

W ∗
P
(f) =

∫

co(P)

(∫

S

u ◦ f dP

)

dν∗
P
(P )

and represents preferences.

A.3 Proof of Theorem 2

Let us first prove the necessity of the axioms. We proceed in several steps.

Step 1. Construction of V . Note first that since x ∈ c(x, {P}) for any x ∈ X

and P ∈ P, the following useful fact holds:

Fact 1 For all x, y ∈ X, and for all α ∈ [0, 1], αx + (1 − α)y is a second

order α-mixture of x and y.

As a consequence, by Weak Order, Continuity, Second Order Independence,

Information Irrelevance for Constant Acts and the Mixture Space Theorem,

there exists a mapping v : X → R unique up to affine transformations such

that

(i) For all x, y ∈ X, for all α ∈ [0, 1],

v(αx+ (1− α)y) = αv(x) + (1− α)v(y);

(ii) (x,P) % (y,Q) ⇐⇒ v(x) ≥ v(y) , for all x, y ∈ X, P,Q ∈ P.

Now define V : F ×P → R by V (f,P) = v(c(f,P)).

Step 2. Let P ∈ P. Let B(P) be the set of all real-valued bounded functions on

P endowed with the uniform convergence topology. For any f ∈ F , let

Ψ(f) ∈ B(P) be defined by

Ψ(f)(P ) = V (f, {P}).

Let B0(P) := Ψ(F ). Contrary to what was the case in the proof of the

previous theorem, B0(P) is not necessarily convex.

By the same arguments as above (with Information Dominance replaced by

Information Dominance for Second Order Mixtures) there exists a mapping

I
P

: B0(P) → R such that V (f,P) = I
P
(Ψ(f)).

37



Step 3. I
P

has the following properties (we drop the reference to P for now):

(i) Let (fi)i=1,...,n ∈ F n, (gj)j=1,...,m ∈ Fm, (λi)i=1,...,n ∈ [0, 1]n and(µj)j=1,...,m ∈

[0, 1]m with
∑n

i=1 λi = 1 and
∑m

j=1 µj = 1 and let P ∈ P. Then, if

n
∑

i=1

λiΨ(fi) ≥
m
∑

j=1

µjΨ(gj),

then
n
∑

i=1

λiI(Ψ(fi)) ≥
m
∑

j=1

µjI(Ψ(gj).

(ii) If ϕ = Ψ(f) and ψ = Ψ(g), then I(αϕ + (1 − α)ψ) = αI(ϕ) + (1 −

α)I(ψ) for all α ∈ (0, 1] such that αϕ+ (1− α)ψ ∈ B0(P).

The first property follows from Information Dominance for Second Order

Mixtures: if
n
∑

i=1

λiΨ(fi) ≥
m
∑

j=1

µjΨ(gj),

then
n
∑

i=1

λiΨ(fi)(P ) ≥
m
∑

j=1

µjΨ(gj)(P ),

for all P ∈ P, hence

n
∑

i=1

λiv(c(fi, {P})) ≥
m
∑

j=1

µjv(c(gj, {P})),

for all P ∈ P, and therefore

v

(

n
∑

i=1

λic(fi, {P})

)

≥ v

(

m
∑

j=1

µjc(gj, {P})

)

,

for all P ∈ P, using the affinity of v, hence, by Information Dominance

for Second Order Mixtures,

v

(

n
∑

i=1

λic(fi,P)

)

≥ v

(

m
∑

j=1

µjc(gj,P)

)

,

and therefore
n
∑

i=1

λiv(c(fi,P)) ≥
m
∑

j=1

µjv(c(gj,P)),
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which implies
n
∑

i=1

λiI(Ψ(fi)) ≥
m
∑

j=1

µjI(Ψ(gj)).

Let us prove the second property. The proof follows directly from the

following facts:

Fact 2 For all h ∈ F , αΨ(f) + (1 − α)Ψ(g) = Ψ(h) if and only if h is a

second order α-mixture of f and g.

Proof.

αΨ(f) + (1− α)Ψ(g) = Ψ(h)

⇐⇒ ∀P ∈ P, αΨ(f)(P ) + (1− α)Ψ(g)(P ) = Ψ(h)(P )

⇐⇒ ∀P ∈ P, αv(c(f, {P})) + (1− α)v(c(g, {P})) = v(c(h, {P}))

⇐⇒ ∀P ∈ P, v(αc(f, {P}) + (1− α)c(g, {P})) = v(c(h, {P}))

⇐⇒ ∀P ∈ P, (αc(f, {P}) + (1− α)c(g, {P}), {P}) ∼ (c(h, {P}), {P}). �

Fact 3 For all f, g ∈ F , for all α ∈ (0, 1],

(c(h,P),P) ∼ (αc(f,P) + (1− α)c(g,P),P), ∀h ∈ αf ⊕
P

(1− α)g.

Proof. This follows directly from the Second Order Independence Axiom

and the definition of certainty equivalents. �

Wemay now prove the property. Let ϕ = Ψ(f) and ψ = Ψ(g) and α ∈ (0, 1]

such that αϕ + (1 − α)ψ ∈ B0(P). Then, there exists h ∈ F such that

αϕ+ (1−α)ψ = Ψ(h). By fact 2, therefore, h is a second order α-mixture

of f and g. Therefore:

I(αϕ+ (1− α)ψ) = I(Ψ(h))

= v(c(h,P))

= v(αc(f,P) + (1− α)c(g,P)) by fact 3

= αv(c(f,P)) + (1− α)v(c(g,P))

= αI(Ψ(f)) + (1− α)I(Ψ(g))

= αI(ϕ) + (1− α)I(ψ).

Step 4. Construction of µP . We will now show that I restricted to B0 is the

integral with respect to some probability charge µP . First, let us extend I
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to the convex hull of B0. Let ϕ ∈ co(B0). Consider

ϕ =
n
∑

i=1

λiϕi,

with λi ≥ 0,
∑n

i=1 λi = 1 and ϕi ∈ B0 for all i, a decomposition of ϕ. Note

first that if such an extension Î exists, it must satisfy

Î(ϕ) =
n
∑

i=1

λiÎ(ϕi) =
n
∑

i=1

λiI(ϕi).

This shows in particular that such an extension is unique. We can therefore

denote it I again. We must show that this formula consistently defines

the extension. But this follows from property (i) above. Moreover, this

property implies that the extension is monotonic. Since we can normalize

V (·,P) so that V (x,P) = 0 for some x ∈ X, I can be extended to a linear

and monotonic (hence sup-norm continuous) mapping defined on B(P).

By the Riesz Representation Theorem, therefore, I is the integral w.r.t.

some probability charge µP .

In particular,

V (f,P) = I(Ψ(f)) =

∫

P

Ψ(f) dµP =

∫

P

V (f, {P}) dµP(P ).

Step 5. Construction of u and Φ such that for all f ∈ F and all P ∈ pc(Σ),

V (f, {P}) = Φ

(∫

S

u ◦ f dP

)

.

Consider the ordering <ℓ defined on the set ∆0(X) of simple lotteries over

elements of X defined by

π <ℓ π′ ⇐⇒ (f, {P}) % (f, {Q}),

for some f ∈ F , P,Q ∈ pc(Σ) such that P f = π and Qf = π′. This

ordering is well defined because of axiom 9. We want to show that there

exists a utility function u : X → R such that

π <ℓ π′ ⇐⇒

∫

X

u dπ ≥

∫

X

u dπ′.

For this it suffices to show that it satisfies all the axioms of the mixture
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space theorem. We need a preliminary lemma:

Lemma 4 For any triple (π, π′, π′′) of simple lotteries, there exist an act

f and probability charges P,Q,R ∈ pc(Σ) such that

P f = π, Qf = π′ and Rf = π′′.

The proof is fairly standard and available upon request.

Lemma 5 <ℓ is a weak order.

Proof. Transitivity follows from lemma 4, axiom 9 and transitivity of %.

Completeness follows from lemma 4 and completeness of %. �

Lemma 6 For all π, π′, π′′ such that π ≻ℓ π′ ≻ℓ π′′, there exist α, β ∈ (0, 1)

such that

απ + (1− α)π′′ ≻ℓ π′ ≻ℓ βπ + (1− β)π′′.

Proof. This follows from lemma 4 and axiom 10. �

Lemma 7 For all π, π′, π′′ ∈ ∆0(X) and all α ∈ (0, 1]

π <ℓ π′ iff απ + (1− α)π′′ <ℓ απ′ + (1− α)π′′.

Proof. This follows from lemma 4 and axiom 11. �

Given lemmas 5, 6 and 7, by the mixture space theorem, there exists u :

X → R such that

π <ℓ π′ ⇐⇒

∫

X

u dπ ≥

∫

X

u dπ′.

Now, axiom 9 implies that there exists a function σ : ∆0(X) → R such that

V (f, {P}) = σ(P f ) for all f ∈ F and P ∈ pc(Σ). Given the definition of

<ℓ, σ is a utility function for<ℓ. Therefore, there exists a strictly increasing

Φ : R → R such that σ(π) = Φ
(∫

X
u dπ

)

. Hence,

V (f, {P}) = σ(P f ) = Φ

(∫

X

u dP f

)

= Φ

(∫

S

u ◦ f dP

)

.

Step 6. Cardinal uniqueness of u and Φ ◦ u follows from standard arguments, and

the uniqueness property of µP follows from arguments similar to the ones

used in the proof of Theorem 1.
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A.4 Proofs of Propositions 1, 3, ?? and 4.

Proposition 1. Let us first prove sufficiency of the axioms. First by theorem 1 we

know the existence of u and νP for all P ∈ P. Moreover by Schmeidler (1989)’s

representation theorem there exists an affine utility function v and for all P ∈ P a

capacity ζP such that VC defined by

VC(f,P) :=

∫

S

v ◦ f dζP

represents preferences. Now both V (defined in theorem 1) and VC are canonical

biseparable representations of preferences, with utility indexes u and v and willing-

ness to bet ρP and ζP . Therefore, u and v must be affine transformations of one

another and ρP and ζP must be identical. �

Proposition 3. Since (iii) ⇒ (ii) and (ii) ⇒ (i) are straightforward, we need

only show that (i) ⇒ (iii). Fix P ∈ P and assume that 1 is weakly more ambiguity

averse than 2 given P. Since both preferences are c-linear and biseparable, it

follows from Ghirardato and Marinacci (2001, Proposition 11) and Ghirardato and

Marinacci (2001, Proposition 16) that there exist a > 0 and b ∈ R such that u2 =

au1 + b as wished. Without lost of generality, therefore, since ui is defined up to

positive affine transformations, we can choose u1 = u2 := u.

Now, let f ∈ F . There exists x ∈ X such that (f,P) ∼1 (x,P). Therefore

V1(f,P) = u(x). But since 1 is weakly more ambiguity averse than 2, this implies

(f,P) %2 (x,P), i.e., V2(f,P) ≥ u(x) = V1(f,P). This implies, given the def-

inition of the associated functionals I1 and I2, that I2 ≥ I1 on B0. Therefore, we

have
∫

co(P)

T dνP

2 ≥

∫

co(P)

T dνP

1 .

for any affine function T : co(P) → u(X). Letting the normalization of u vary, the

same can be obtained for affine functions with values in any interval. �

Proposition 4. Necessity is straightforward. We prove sufficiency. For simplic-

ity we drop the superscript P. Suppose there exists A ∈ Σ such that ρ1(A) > ρ2(A).

By definition of ρ, this implies

min
P∈co(P)

P (A) ≤ ρ2(A) < ρ1(A) ≤ max
P∈co(P)

P (A).

Therefore, there exists P∗ and P ∗ in co(P) such that P∗(A) < ρ2(A) < ρ1(A) <

P ∗(A). Therefore, there exists α ∈ (0, 1) and P = αP ∗ + (1 − α)P∗ ∈ co(P) such
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that

ρ2(A) < P (A) < ρ1(A).

But this contradicts the definition of imprecision aversion. �
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