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Abstract

The paper proposes a new concept of solution for TU games, called multicoalitional
solution, which makes sense in the context of production games, that is, where v(S) is the
production or income per unit of time. By contrast to classical solutions where elements
of the solution are payoff vectors, multicoalitional solutions give in addition an allocation
time to each coalition, which permits to realize the payoff vector. We give two instances of
such solutions, called the d-multicoalitional core and the c-multicoalitional core, and both
arise as the strong Nash equilibrium of two games, where in the first utility per active unit
of time is maximized, while in the second it is the utility per total unit of time. We show
that the d-core (or aspiration core) of Benett, and the c-core of Guesnerie and Oddou are
strongly related to the d-multicoalitional and c-multicoalitional cores, respectively, and that
the latter ones can be seen as an implementation of the former ones in a noncooperative
framework.

Keywords: cooperative game, core, aspiration core, strong Nash equilibrium
JEL Classification: C71

Introduction

In neoclassical microeconomic models (for example, of labour market), agents are assumed to
be rational and seeking to maximize their utility function. In these models, the utility function
of the agents is determined by the choice between income and leisure. For such kind of agents,
a natural way for assuming that an alternative A is better than another alternative B is: either
alternative A ensures (at least) the same income with more time for leisure, or alternative
A ensures more income and (at least) the same length of time devoted to leisure. In both
cases, agents maximize their ”hourly wage”, either through an increase of leisure time (hence a
reduction of labour time), or through an increase of income. On the other hand, agents want
also to work enough time for earning a sufficient income. Hence, the ranking of alternatives by
such agents should be based on a comparison of incomes and hourly incomes.

We deal with such a problem in this paper, and we assume that players can freely form
coalitions in order to achieve some task and get an income, up to two restrictions:

(i) Each coalition produces a linear income over time and can redistribute this income among
the players who are members of the coalition;

∗We wish to thank Walter Trockel, Peter Sudhölter and Juan Camilo Gómez for their helpful comments.
†Corresponding author.
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(ii) One player cannot be in two different coalitions at the same time.

Defined as such, the problem appears to be a coalition formation problem viewed under the
point of view of cooperative game theory with transferable utility. Indeed, cooperative game
theory is a suitable tool for describing coalition formation and for defining the best redistribution
of an amount generated by cooperation of some group of players. In the classical framework,
it is supposed that the grand coalition will form, and a feasible redistribution is simply a
redistribution of the worth of the grand coalition. Under this assumption, the natural concept
of core (Gillies, 1953, 1959) is a key solution, since it ensures a distribution among individual
players such that no player, no coalition, has a rational interest to leave the grand coalition: It is
the concept of coalitional rationality (for applications of the core in economy, see, e.g., (Trockel,
2005; Shitovitz, 1997; Flam and Koutsougeras, 2010)). Unfortunately, in many cases, such
distribution does not exist: The core is empty. To extend the notion of coalitional rationality to a
larger set of games, it is necessary to change the classical view of what a feasible redistribution is.
The k-additive core (Grabisch and Miranda, 2008; Gonzalez and Grabisch, 2012), for example,
assumes that a feasible redistribution may not be limited to a redistribution among individual
players, but a redistribution among coalitions up to size k: With this assumption, coalitional
rationality is ensured for every game as soon as k is at least equal to two.

Alternatively, the c-core (Guesnerie and Oddou, 1979; Sun et al., 2008) supposes that the
grand coalition is not the unique possibility of coalition formation but that every partition of the
grand coalition can be formed: A feasible redistribution becomes, in this case, any distribution
among individual players, which maximizes what a partition can generate.

An even older and more general way of extending feasible distributions comes from Bennett
(1983) and Cross (1967) with the concept of aspiration core, or d-core (Albers, 1979): roughly
speaking, a feasible distribution is any distribution among individual players, which maximizes
what a balanced collection (i.e., a generalization of partitions) can achieve. The set of feasible
distributions is, in that case, so large that it becomes possible to preserve coalitional rationality
for every game.

Let us elaborate on balanced collections and their interpretation. It is common in the
literature to see a balancing weight of a coalition in a balanced collection as the fraction of time
this coalition is active (see, e.g., Peleg and Sudhölter (2003)). Then it is usually considered that
a coalition being active during a given fraction of time receives the corresponding fraction of its
worth (Aumann, 1989). With this view in mind, a feasible payoff corresponds to the maximum
income players can generate if each of them devotes one unit of time among the coalitions to
which they belong: This set is equal to the set of aspiration feasible payoffs. Then a simple
use of the theorem of Bondareva-Shapley (Bondareva, 1963; Shapley, 1967) ensures that there
exists a way to share time among coalitions, which builds payoff satisfying coalitional rationality.
Thus, the aspiration core seems to be a suitable way to describe how coalitions must form if
each player has one unit of time, and how long each coalition must be active.

However, a closer analysis reveals that the d-core does not fully take into account all the
facets of our problem. First of all, the d-core proposes a set of payoff vectors but does not
describe what are the coalitions who are able to achieve these payoffs. In his article about the
d-core, Cross (1967) described informally his solution as a set of stable coalitions with their
associated payoffs. The B-core and the M-core proposed by Cesco (2012) are closely related
to or constitute a continuation of the paper of Cross, by considering the set of coalitions which
lead to a payoff into the d-core. Under this view, a cooperative TU-game solution should be
not only composed of the payoffs given to each player but should also comprise the time alloted
to each coalition which permits to achieve these payoffs.

A second concern is the utility of players faced to the total time which is necessary for
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achieving a payoff given by the d-core: Imagine a situation with three players where reaching
the payoff given by the d-core needs an allocation equals to one half unit of time for every pair
of players1. With the reasonable assumption that a player cannot be in two coalitions at the
same time, it follows that any implementation of this situation needs a minimum of 1.5 units
of time. Hence, if the aspiration core (or d-core) gives a coalitional rational payoff per ”active”
unit of time, utility of players differ if we consider the payoff per ”total” unit of time. Again,
the solution provided by the d-core is not enough precise, in the sense that it does not take into
account whether agents are concerned with the total duration of the process, or by their hourly
income.

A third criticism is that each player who is active in a given coalition has the arbitrary
imposition of spending the same proportion of his total time in this coalition: It is difficult to
understand why an agent i who works half of his time with j requires that j works half of his
time with i, even if it is not rational for one of these agents to work the same amount of time
than the other one.

In order to overcome these drawbacks, we propose a completely different approach to the
problem, having its root in noncooperative game theory: We suppose that each player proposes
the formation of a coalition for a chosen amount of time and claims a payoff for his participation
in each coalition which is formed2, each of these proposals being seen as a strategy. The notion
of Strong Nash equilibrium (Aumann, 1959) seems to be the adequate notion here, since it
ensures stability of any coalition by preventing any coalitional deviation. Then, a solution
in our framework is precisely the set of undominated strategies (in the sense of strong Nash
equilibrium). We emphasize the fact that, in our framework, each element of the solution is
a pair (x, α), where x is a payoff vector, and α is a time allocation for every coalition. This
constitutes to our opinion an innovation since, up to our knowledge, no former work explicitely
proposes a solution under this form. We call multicoalitional solution such kind of solution.

We propose two different types of utility functions, leading to two kinds of strong Nash
equilibria. The first one is the utility per active unit of time, and leads to the maximization of
the hourly wage. We call d-multicoalitional core the set of such equilibria, and we show that
this set is never empty (Theorem 3), and that its elements satisfy nonnegativity, coalitional
rationality and a notion of efficiency close to the one of the d-core (Theorem 4). We show the
exact relation between the d-core and the d-multicoalitional core: in short, vectors of utility of
strategies in the d-multicoalitional core are elements of the d-core (Proposition 6). The second
type of utility function is the utility per total unit of time, and leads to the maximization of
the total income. We prove that any strong Nash equilibrium of this type can be turned into
a strategy which is also a strong Nash equilibrium of the first type (Proposition 8). Therefore,
we define the c-multicoalitional core as the set of strategies which are strong Nash equilibria for
both problems. They exist as soon as the c-core is not empty, moreover, a relation between the
c-core and the c-multicoalitional core is established (Theorem 5).

The paper is organized as follows. Section 1 introduces the basic definitions and notation.
Section 2 introduces time allocations for coalitions and timetables, that is, how to organize
coalition formation so that no conflict occur, as well as the notion of minimal duration for
timetables. Section 3 presents the model with the two types of utility functions, and studies
the existence of strong Nash equilibria for each type, and introduces the d-multicoalitional and
c-multicoalitional cores. Section 4 concludes the paper.

1Such a situation is described with the island desert story in the introduction of Garratt and Qin (2000)
2A similar game is proposed by Bejan and Gómez (2012a). In their paper, agents have to share one unit of

time among the set of coalitions to which they belong. The game leads to a strong Nash implementation of the
d-core (see Proposition 6).
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1 Notation and basic concepts

Let N denote a fixed finite nonempty set with n members, who will be called agents or players.
Coalitions of players are nonempty subsets of N , denoted by capital letters S, T , and so on.
Whenever possible, we will omit braces for singletons and pairs, denoting {i}, {i, j} by i, ij

respectively, in order to avoid a heavy notation. A transferable utility (TU) game on N is a
pair (N, v) where v is a mapping v : 2N → R satisfying v(∅) = 0. We will denote by G(N) the
set of mappings over N such that (N, v) is a TU game. For any coalition S, v(S) represents the
worth of S, i.e., what coalition S could earn regardless of other players. A payoff vector is a
vector x ∈ R

n that assigns to agent i the payoff xi. For any coalition T ⊂ N , we denote by vT

the restriction of v to 2T . Given x ∈ R
n, and S ⊆ N , denote by x(S) the sum

∑

i∈S

xi with the

convention that x(∅) = 0. A nonempty collection B ⊆ 2N is called balanced (over N) if positive
numbers δS , S ∈ B, exist such that :

∑

S∈B

δSχS = χN ,

where χS is the characteristic vector of S given by χS
i = 1 if i ∈ S and 0 otherwise. The collection

(δS)S∈B is called a system of balancing weights. We say that (B, (δS)S∈B) is a balanced system if
B is balanced and (δS)S∈B is a corresponding system of balancing weights. A balanced collection
is minimal if no subcollection of it is balanced. It is well known that a balanced collection is
minimal if and only if there is a unique system of balancing weights.

Definition 1. For a game v ∈ G(N) we define

(i) The set of preimputations of v as:

PI(v) := {x ∈ R
n | x(N) = v(N)}.

(ii) The set of c-preimputations of v as:

c-PI(v) := {x ∈ R
n | x(N) = max

π∈Π(N)

∑

S∈π

v(S)}

where Π(N) is the set of partitions of N .

(iii) The set of d-preimputations of v as:

d-PI(v) := {x ∈ R
n | x(N) = max

(B,(δS)S∈B) balanced

∑

S∈B

δSv(S)}.

In the classical view of preimputations, it is supposed that the grand coalition will form,
and its worth is shared among the players. With a c-preimputation, the best partition of the
players is sought, in order to maximize the total worth. Now, d-preimputations generalize
c-preimputations since partitions are particular balanced collections. More importantly, d-
preimputations have an interesting interpretation if one considers δS for S ∈ B as an amount of
time3 allocated to S. Assuming that v(S) represents the worth or the production per unit
of time, δSv(S) is the total worth/production achieved by S. Under this viewpoint, a d-
preimputation is a sharing among the players of the total worth which can be achieved by
the best arrangement of the players in time.

3Although usually it is interpreted as an amount of resources (Kannai, 1992).
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Given a game (N, v) and t ∈ R, define its t-expansion vt by vt(S) = v(S) for all S ⊂ N , and
vt(N) = v(N) + t. Now, to any game (N, v) we assign

t̄(v) := sup
(B,λ) balanced system

∑

S∈B

(λSv(S)) − v(N).

It is quite easy to prove that t̄(v) = min{t ≥ 0 | C(v) 6= ∅}, that is, t̄(v) is the minimum amount
to be given to the grand coalition in order to ensure balancedness

A game v is totally balanced if, for any ∅ 6= S ⊆ N , vS is balanced. The totally balanced
cover of v denoted by vtb is given by:

vtb(S) = max{
∑

(B,(δT )T ∈B)

δT v(T ) | (B, (δT )T ∈B) balanced system of S}

Definition 2. For any game v ∈ G(N) we define

(i) The core (Gillies, 1953) of v as:

C(v) := {x ∈ PI(v) | x(S) ≥ v(S), ∀S ∈ 2N }.

(ii) The c-core (Guesnerie and Oddou, 1979) of v as:

c-C(v) := {x ∈ c-PI(v) | x(S) ≥ v(S), ∀S ∈ 2N }.

(iii) The d-core4 (Albers, 1979) of v or aspiration core (Bennett, 1983) of v as:

d-C(v) := {x ∈ d-PI(v) | x(S) ≥ v(S), ∀S ∈ 2N }.

We say that a game v is balanced if C(v) is nonempty, and c-balanced if c-C(v) is nonempty.
It is known and easy to prove that d-C(v) = C(vtb) = C(vt̄(v)) is never empty, furthermore, for
any game v in G(N), we have:

C(v) ⊆ c-C(v) ⊆ d-C(v),

and equality holds everywhere if and only if v is balanced. 5

2 Time allocation and optimal timetable

Let N be a set of players, that we suppose to be finite. A time allocation for coalitions in N is
a function α : 2N → [0, ∞[. The collection A = {S ∈ 2N | α(S) > 0} is the collection of active
coalitions under α. The time allocation is in standard form if (A, (α(S))S∈A) is a balanced
system. α(S) can be interpreted as the initial endowment of unit of time for coalition S ∈ A.
We denote by T (N) the set of time allocations in N .

Definition 3. A multicoalitional payoff vector is a pair (x, α), where x ∈ R
N is a payoff vector,

and α ∈ T (N) is a time allocation. A multicoalitional solution is a mapping which assigns to
every game (N, v) a set of multicoalitional payoff vectors.

Given a time allocation α, it remains to specify how each active coalition under α will spend
its allocated time, by means of a “timetable”: at each time t, the timetable indicates which
coalitions are active under α. This timetable should satisfy two consistency requirements:

4See also Albers (1974) and Turbay (1977).
5The inclusions where shown by, e.g., Bejan and Gómez (2012b), and the last equality by Cross (1967) and

Bennett (1983).
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(i) locational consistency: A player cannot be in two different coalitions at the same time.

(ii) time consistency: the total amount of time spent by coalition S should be equal to its
time allocation α(S).

We also add two requirements in order to avoid bizarre or obviously inefficient timetables. The
first is that for each coalition, its active period should be a union of intervals of positive duration
(isolated instants are not allowed). The second is that the timetable should not contain “holes”,
that is, periods during which no coalition is active. These considerations lead to the following
formal definition.

Definition 4. Let α be a time allocation, and A its collection of active coalitions. We call
coalition timetable a function fα : [0, +∞[ → 2A which satisfies the following properties:

(i) ∀t ∈ [0, +∞[, ∀S, T ∈ fα(t) such that S 6= T , we have S ∩ T = ∅;

(ii) For any coalition S in A, τ(S) = {t ∈ [0, +∞[ | fα(t) ∋ S} is a union of disjoint intervals
of positive Lebesgue measure, and in addition, l(τ(S)) = α(S), where l is the Lebesgue
measure on R;

(iii) If fα(t) = ∅ for some t ∈ [0, +∞[, then fα(t′) = ∅ for all t′ > t.

Note that because of (iii), every timetable starts at t = 0. We denote by F(α) the set of all
timetables for time allocation α. Note that this set is in general not denumerable. Indeed, take
n = 3 and coalitions 12, 23 with alloted time 1 to each of them. Then f(t) = 12 for t ∈ [a, a + 1]
and f(t) = 23 for t ∈ [0, a[ ∪ ]a + 1, 2] is a possible timetable for any a ∈]0, 1[.

The duration of a timetable fα is defined as

dmax(fα) = sup{t ∈ [0, +∞[ | fα(t) 6= ∅}.

Due to conditions (ii) and (iii) in Definition 4, dmax(fα) is bounded above by
∑

S∈A α(S) < ∞,
therefore dmax(fα) is finite. For a time allocation α, the minimal duration of α is

d(α) = inf{dmax(fα), fα ∈ F(α)}.

Remark 1. It is left to the reader to prove the homogeneity of d, that is, ∀r ≥ 0, d(rα) = rd(α).
Hence, results does not change when we change the time measurement units.

Note that d(α) is finite since each duration is a positive finite number,

Theorem 1. There always exists a timetable with duration d(α).

Proof. We denote by F(α) the set of coalition timetables associated with time allocation α. Let
T be the product topology on F(α). We know by Tychonoff theorem that F(α) is compact
with the topology T . Let (fn)n∈N in F(α)N be a sequence which converges to some f ∈ F(α).
Since F(α) is equipped with the product topology, we have:

∀t ∈ [0, +∞[, lim
n→+∞

fn(t) = f(t).

Since F(α) is a space of functions valued in a finite set, we have:

∀t ∈ [0, +∞[, ∃Nt ∈ N, ∀n ≥ Nt, fn(t) = f(t).

Hence,
∃Ndmax(f) ∈ N, ∀n ≥ Ndmax(f), fn(dmax(f)) = f(dmax(f)) 6= ∅,
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and we deduce that:
inf

k≥Ndmax(f)

dmax(fk) ≥ dmax(f).

Therefore,
dmax(f) ≤ lim inf

n→+∞
dmax(fn). (1)

On the other hand, the definition of inf implies that for all j ∈ N, there exists fj ∈ F(α) such
that dmax(fj)−d(α) ≤ 1

j
. Hence, limj→+∞ dmax(fj) → d(α) ∈ [0, +∞[. Since F(α) is compact,

there exists a subsequence (fjk
)k∈N of (fj)j∈N and some f ∈ F(α) so that lim

k→+∞
fjk

= f . Since

the limit lim
j→+∞

dmax(fj) exists and is equal to d(α), it follows that lim
k→+∞

dmax(fjk
) exists and

is equal to d(α)
Therefore, by (1),

dmax(f) ≤ lim inf
k→+∞

dmax(fjk
) = lim

k→+∞
dmax(fjk

) = d(α) = inf{dmax(fα), fα ∈ F(α)}

Hence
dmax(f) = d(α)

Any timetable with duration d(α) is called an optimal timetable of α.

Example 1. Let N = {1, 2, 3, 4, 5} and consider the following collection A with its time allo-
cation:

S 12 23 34 45 15

α(S) 1/2 1/2 1/2 1/2 1/2

Note that this is a minimal balanced system. We give two examples of timetable in Figure 1.

t

0 1

2
1 3

2

12 23 15

34 45

t

0 1

2
1 5

4

12 23 34

34 45 45 15 15

Figure 1: Time allocation for a 5-player game: Two examples of timetable

The problem of computing the minimal duration in general seems to be extremely complex.
We give hereafter a lower and an upper bound of it. We recall that in a graph G = (V, E) with
set of vertices V and set of edges E, a clique is a subset of vertices which are pairwise connected
(by an edge) in G. An independent set is a subset of vertices I such that no pair of vertices is
connected in G. A partition K = {I1, . . . , Im} of V in independent sets is called a coloring of G.
Given a time allocation α in N , we construct the graph G = (A, E), where the set of vertices
is the set of active coalitions under α, and there is an edge (S, T ) if and only if S ∩ T 6= ∅.

Theorem 2. For any time allocation α in N , the minimal duration satisfies

max
C:clique of G

α(C) ≤ d(α) ≤ min
K:coloring of G

α(K),

with α(C) =
∑

S∈C α(S), and α(K) =
∑

I∈K maxS∈I α(S).
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Proof. By condition (i) in Definition 4, the subsets in a clique C must have disjoint time slots
in a timetable. This being true for any clique leads to the lower bound.

Now, observe that if no splitting of time slots is allowed, (i.e., if τ(S) is a single interval
for all S ∈ C), a feasible timetable amounts to find a coloring of the graph, and its duration
is the sum of maximal (in term of α(S)) coalitions in each independent set. Taking a coloring
minimizing this duration gives the upper bound, since splitting of time slots can only improve
this solution.

The next result concerns time allocations in standard form.

Proposition 1. Let α be a time allocation in standard form. Then d(α) ≥ 1, and a timetable
fα satisfies dmax(fα) = 1 if and only if for each t ∈ [0, 1], fα(t) is a partition of N , and is ∅
otherwise.

Proof. For each i ∈ N , the collection A(i) = {S ∈ A | S ∋ i} is a clique of G, and α(A(i)) = 1
since A is a balanced collection. It follows from Theorem 2 that d(α) ≥ 1.

Take fα such that dmax(fα) = 1, and suppose that there exists a nonnull (in the sense of
Lebesgue measure) time interval in [0, 1] on which fα is not a partition of N . This would mean
that there exists some i ∈ N such that on a nonnull time interval ∆ ⊆ [0, 1],

⋃

S∈fα(t) S does not
contain i for all t ∈ ∆. However, since α is in standard form, we have α(A(i)) = 1, which would
imply that for some nonnull interval ∆′ ⊆ ]1, ∞[, fα(t) ∋ S ∋ i for all t ∈ ∆′, a contradiction
with dmax(α) = 1. The converse is obvious.

Note that if fα has the above property, it does not necessarily imply that the set of active
coalitions under α is a collection of partitions, as the next example shows: Consider N =
{1, 2, 3}, and a timetable fα defined on [0, 1] as follows: fα(t) = {12, 3} for t ∈ [0, 1

3 ], fα(t) =

{1, 2, 3} for t ∈
]

1
3 , 2

3

]

, and fα(t) = {13, 2} for t ∈
]

2
3 , 1
]

. Then A = {1, 2, 3, 12, 13}, which is

not a collection of partitions.
We say that a timetable fα has m full rows of identical length if for every t such that

fα(t) 6= ∅, |fα(t)| = m. A simple sufficient condition for optimality is the following.

Proposition 2. Let α be a time allocation, A its collection of active coalitions, and m be
the size of a greatest independent set (i.e., one can find at most m disjoint subsets in A). A
timetable fα is optimal if it has m full rows of identical length. Consequently, a lower bound
for d(α) is

d(α) ≥
1

m

∑

S∈A

α(S).

Proof. If fα were not optimal, it would be possible to shorten its duration by taking the sets
being active on some interval [t0, t1] and dispatching them on other time intervals. However, for
every t in the domain of f , it is not possible to add a set to fα(t) because there is no independent
set of size greater than m. The statement on the lower bound directly follows.

Coming back to Example 1, the corresponding graph is a cycle of length 5, therefore, maximal
cliques are for example {12, 23}, which gives a lower bound of 1. On Figure 1, the left timetable
implements the upper bound solution (no splitting), while the right figure is the optimal solution.
Indeed, it has two full rows of identical length, and there is at most two disjoint sets in A.
Therefore the optimal duration d(α) is 5

4 . This shows that time allocation in standard form
does not have necessarily an optimal duration equal to 1 (see Proposition 1).
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3 Strategic coalition formation

3.1 The model

We denote by v a function that associates with each subset S of N , a real number, v(S) which
represents the payoff that the coalition S could create alone during one unit of time. We assume
that a coalition S which is active during α(S) unit of time produces a payoff equals to α(S)v(S).
Then to each time allocation α, we can associate the total payoff G(v, α) produced during at
least d(α) units of time and defined by:

G(v, α) :=
∑

S⊆N

α(S)v(S).

We say that a payoff vector z is (v, α)-feasible if it satisfies z(N) ≤ G(v, α). We assume that

each player i ∈ N chooses a strategic time allocation αi ∈ R
2N

that associates with each subset
S of N a positive real number αi(S) which represents the amount of unit of time that the player
i wants to spend in coalition S. We suppose that αi(S) = 0 if S 6∋ i, that is, i cannot devote
any time in a coalition to which he does not belong. We denote by Ti(N) ⊆ T (N) the set of
strategic time allocations of the player i ∈ N . We assume that the length of activity period
ᾱ(S) of a coalition S is equal to the minimum amount of time that each member wants to spend
inside: The first who wants to leave a coalition decides the lifetime of this coalition. Hence,
for a vector (αi)i∈N ∈

∏

i∈N Ti of strategic time allocations, we can associate a time allocation
called lifetime and denoted by ᾱ defined by:

ᾱ(S) = min
i∈S

αi(S).

We say that a coalition is active if it is active under ᾱ.

A strategy of a player i ∈ N is a pair (xi, αi) ∈ R × Ti(N), where xi represents the payoff
that the player i wants to have for his participation, and αi is a strategic time allocation of
the player i. We consider two kinds of utilities: The first one puts to the fore the desire for
each agent to maximize his payoff with regard to the length of his active participation, that is,
the desire to have the best ”hourly wage”, while the second utility gives emphasis to the desire
of agent for maximising his payoff at the end of the timetable or equivalently to maximize his
”compensation per hour lived”. Moreover, we suppose that players who propose an allocation
which is not ”feasible” receive a punishment equals to -1. We denote by ui and we call utility
per active unit of time of the player i the function defined over R

N ×
∏

j∈N

Tj by:

ui(x, (αj)j∈N ) :=



















0 if
∑

S∋i

αi(S) = 0

xi
∑

S∋i

αi(S)
if x is (v, ᾱ)-feasible and

∑

S∋i

αi(S) 6= 0

−1 otherwise.

On the other hand, we denote by ũi and we call utility per total unit of time of the player i

the function defined over R
N ×

∏

j∈N

Tj by:

ũi(x, (αj)j∈N ) :=











0 if d(ᾱ) = 0
xi

d(ᾱ) if x is (v, ᾱ)-feasible and d(ᾱ) 6= 0

−1 otherwise.

Let G = (N, Σ1, · · · , Σn; g1, · · · , gn) be a n-player strategic game, where Σi is the set of
strategies of the player i, and the mapping gi :

∏

j∈N

Σj 7→ R represents the utility of i. For
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S ⊆ N , we denote by ΣS the set ΣS :=
∏

i∈S

Σi, and for σ ∈ ΣN , we denote by σS the projection

of σ on ΣS .
We say that σ∗ ∈ ΣN is a strong Nash equilibrium of G, (Aumann, 1959) or strong equilib-

rium of G if one has :

∀S ⊆ N, ∀σS ∈ ΣS, ∃i ∈ S, gi(σ
∗) ≥ gi(σS , σ∗

N\S).

In the following two subsections, we define and study the strong Nash equilibria of (N,RN ×
∏

j∈N

Tj, (ui)i∈N ) and (N,RN ×
∏

j∈N

Tj, (ũi)i∈N )

3.2 Strong Nash equilibria of (N,RN ×
∏

j∈N

Tj , (ui)i∈N)

Let v be a TU-game, we denote by d-MC(v) and we call d-multicoalitional core of v the set of
strong Nash equilibria of (N,RN ×

∏

j∈N

Tj, (ui)i∈N ).

We show that the d-multicoalitional core is never empty, and that it has properties close to
the ones of the classical core, which justify its name.

Theorem 3. For any game v in G(N), the set d-MC(v) is nonempty, and, for any (x, (αi)i∈N ) ∈
d-MC(v), we have:

(i) ∀i ∈ N , ui(x, (αi)i∈N ) ≥ 0

(ii) ∀S ⊆ N ,
∑

i∈S

ui(x, (αi)i∈N ) ≥ v(S) (coalitional rationality)

(iii) x(N) = G(v, ᾱ) ((v, ᾱ)-efficiency)

Proof. Let v be a game in G(N). First, we prove the nonemptiness property. Let I be the
subset of N defined by I := {i ∈ N, v(i) < 0}. We define the game ṽ by ṽ(i) = 0 if i ∈ I and
ṽ(S) = v(S) otherwise. Let x ∈ d-C(ṽ). There exists a balanced system (A, (λS)S⊆N ) such that

x(N) =
∑

S⊆N

λS ṽ(S).

We put αi(i) = 0 if i ∈ I and αi(S) = λS otherwise. Hence:
∑

S⊆N

λS ṽ(S) =
∑

S⊆N

ᾱ(S)v(S) = x(N).

We want to prove that the strategy (x, (αi)i∈N ) belongs to the d-multicoalitional core. Suppose
there exists for a coalition S ⊆ N a coalitional deviation ((x′

i)i∈S , (α′
i)i∈S) such that ∀i ∈ S,

ui(x, (αi)i∈N ) < ui((xi)i∈N\S , (x′
i)i∈S , (αi)i∈N\S , (α′

i)i∈S). Since ∀i ∈ N , 0 ≤ ui(x, (αi)i∈N ),
the strict inequality ∀i ∈ S, ui(x, (αi)i∈N ) < ui((xi)i∈N\S , (x′

i)i∈S , (αi)i∈N\S , (α′
i)i∈S) and the

definition of ui ensure that the (v, ((αi)i∈N\S , (α′
i)i∈S))-efficiency is satisfied. We denote by ᾱ′

the lifetime which corresponds to ((αi)i∈N\S , (α′
i)i∈S) and we adopt the convention 0

0 = 0. We
have:

ui((xi)i∈N\S , (x′
i)i∈S , (αi)i∈N\S , (α′

i)i∈S) =
x′

i
∑

S∋i

α′
i(S)

if i ∈ S and

ui((xi)i∈N\S , (x′
i)i∈S , (αi)i∈N\S , (α′

i)i∈S) =
xi

∑

S∋i

αi(S)
= ui(x, (αi)i∈N )

10
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if i ∈ N \ S. The (v, ((αi)i∈N\S , (α′
i)i∈S))-efficiency ensures that

x′(S) + x(N \ S) ≤
∑

T ⊆N

ᾱ′(T )v(T ). (2)

Furthermore, (A, (λS)S⊆N ) is a balanced system, then, ∀i ∈ N ,
∑

S∋i αi(S) ≤
∑

S∋i λS = 1,
therefore, ∀i ∈ N , ui(x, (αi)i∈N ) = xi

∑

S∋i

αi(S)
≥ xi. Since x ∈ d-C(ṽ), we deduce that:

∑

T ⊆N

ᾱ′(T )v(T ) ≤
∑

T ⊆N

α′(T )x(T ) ≤
∑

T ⊆N

ᾱ′(T )
∑

i∈T

ui(x, (αi)i∈N ). (3)

Then, we know that, ∀i ∈ N , ui(x, (αi)i∈N ) ≤ ui((xi)i∈N\S , (x′
i)i∈S , (αi)i∈N\S , (α′

i)i∈S) with
equality for i ∈ N \ S and strict inequality for i ∈ S. Hence,

∑

T ⊆N

ᾱ′(T )
∑

i∈T

ui(x, (αi)i∈N ) <
∑

T ⊆N

ᾱ′(T )
∑

i∈T

ui((xi)i∈N\T , (x′
i)i∈T , (αi)i∈N\T , (α′

i)i∈T ). (4)

A simple rewriting gives:

∑

T ⊆N

ᾱ′(T )
∑

i∈T

ui((xi)i∈N\T , (x′
i)i∈T , (αi)i∈N\T , (α′

i)i∈T ) =

∑

i∈N

∑

T ∋i

ᾱ′(T )ui((xi)i∈N\T , (x′
i)i∈T , (αi)i∈N\T , (α′

i)i∈T ). (5)

The definition of ᾱ′ ensures that ∀T ⊆ N , and ∀i ∈ N , ᾱ′(T ) ≤ αi(T ). Hence,

∑

i∈N

∑

T ∋i

ᾱ′(T )ui((xi)i∈N\T , (x′
i)i∈T , (αi)i∈N\T , (α′

i)i∈T ) ≤

∑

i∈S

(

x′
i

∑

T ∋i ᾱ′(T )

∑

T ∋i

ᾱ′(T )

)

+
∑

i∈N\S

(

xi
∑

T ∋i ᾱ′(T )

∑

T ∋i

ᾱ′(T )

)

, (6)

and, finally,

∑

i∈S

(

x′
i

∑

T ∋i ᾱ′(T )

∑

T ∋i

ᾱ′(T )

)

+
∑

i∈N\S

(

xi
∑

T ∋i ᾱ′(T )

∑

T ∋i

ᾱ′(T )

)

= x′(S) + x(N \ S). (7)

The inequalities (2) to (7) leads to the contradiction x′(S) + x(N \ S) < x′(S) + x(N \ S).
We prove now the other statements of the theorem.

(i) If ∃i ∈ N , such that ui(x, (αj)j∈N ) < 0 then the strategy (xi, αi) is strictly dominated
by the strategy which consists in claiming a payoff x′

i = 0 for a strategic time allocation
equals to 0 for every coalition.

(ii) We want to prove that ∀S ⊆ N,
∑

i∈S

ui(x, α) ≥ v(S). Suppose there exists S ⊆ N such that
∑

i∈S

ui(x, (αi)i∈N ) < v(S).

(a) If there exists i ∈ N such that ui(x, (αi)i∈N ) = −1 then it is clear that (x, (αi)i∈N )
is not a strong Nash equilibrium.

(b) If ∀i ∈ S, ui(x, (αi)i∈N ) 6= −1, the strategy of the players belonging to S are strictly
dominated by α′

i(S) = αi(S) + 1, α′
i(T ) = αi(T ) if T 6= S, ∀i ∈ S and x′

i = xi +
v(S)−

∑

i∈S
ui(x,(αi)i∈N )

|S| .
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(iii) If x(N) < G(v, ᾱ) then there exists a deviation of the coalition N which consists in

claiming x′
i = xi + G(v,ᾱ)−x(N)

|N | .

Observe that, unlike the d-core, the d-multicoalitional core has only nonnegative payoff
vectors. We show now the converse result: the d-multicoalitional core is precisely the set of
strategies satisfying requirements (i) to (iii) in Theorem 3.

Theorem 4. For any game v ∈ G(N) the d-multicoalitional core of v is the set of (x, (αi)i∈N ) ∈
R

N × T (N) such that:

(i) ui(x, (αi)i∈N ) ≥ 0.

(ii) ∀S ⊆ N,
∑

i∈S ui(x, (αi)i∈N ) ≥ v(S).

(iii) x(N) =
∑

S⊆N ᾱ(S)v(S).

Proof. Let (x, (αi)i∈N ) be a couple satisfying (i), (ii) and (iii). We want to prove that the
strategy (x, (αi)i∈N ) belongs to the d-multicoalitional core. The proof is very similar to the
proof of the nonemptiness of the d-multicoalitional core in Theorem 3. Suppose there exists for
a coalition S ⊆ N a coalitional deviation ((x′

i)i∈S , (α′
i)i∈S) such that ∀i ∈ S, ui(x, (αi)i∈N ) <

ui((xi)i∈N\S , (x′
i)i∈S , (αi)i∈N\S , (α′

i)i∈S). Since ∀i ∈ N , 0 ≤ ui(x, (αi)i∈N ), the strict inequality
∀i ∈ S, ui(x, (αi)i∈N ) < ui((xi)i∈N\S , (x′

i)i∈S , (αi)i∈N\S , (α′
i)i∈S) and the definition of ui ensure

that the (v, ((αi)i∈N\S , (α′
i)i∈S))-efficiency is satisfied. We denote by ᾱ′ the lifetime which

corresponds to ((αi)i∈N\S , (α′
i)i∈S) and we adopt the convention 0

0 = 0. Since ui(x, (αi)i∈N ) ≥ 0,
we have:

ui((xi)i∈N\S , (x′
i)i∈S , (αi)i∈N\S , (α′

i)i∈S) =
x′

i
∑

S∋i

α′
i(S)

if i ∈ S and

ui((xi)i∈N\S , (x′
i)i∈S , (αi)i∈N\S , (α′

i)i∈S) =
xi

∑

S∋i

αi(S)
= ui(x, (αi)i∈N )

if i ∈ N \ S. The (v, ((αi)i∈N\S , (α′
i)i∈S))-efficiency ensures that

x′(S) + x(N \ S) ≤
∑

T ⊆N

ᾱ′(T )v(T ).

Furthermore, by hypothesis,

∑

T ⊆N

ᾱ′(T )v(T ) ≤
∑

T ⊆N

ᾱ′(T )
∑

i∈T

ui(x, (αi)i∈N ).

Then, by following the proof of nonemptiness of the d-multicoalitional core in Theorem 3, we
deduce

∑

T ⊆N

ᾱ′(T )
∑

i∈T

ui(x, (αi)i∈N ) < x′(S) + x(N \ S),

a contradiction.

Proposition 3. Let (x, (αi)i∈N ) be an element of the d-multicoalitional core, and i ∈ N such
that ui(x, (αi)i∈N ) 6= 0. Then for all S ∋ i, we have αi(S) = ᾱ(S).

12

 
Documents de Travail du Centre d'Economie de la Sorbonne - 2013.62



Proof. By definition of ui, we have ui = xi
∑

S∋i
αi(S)

. Since
∑

S∋i αi(S) ≥
∑

S∋i ᾱ(S), choosing

αi 6= ᾱ would make the strategy (x, (αi)i∈N ) dominated.

Essentially, the proposition says that in an equilibrium, all players ask for the same time
allocation ᾱ. The important consequence of this is, if all players can reach a positive income,
then the d-multicoalitional core is a multicoalitional solution in the sense of Definition 3.

Proposition 4. Let (x, (αi)i∈N ) an element of the d-multicoalitional core of a game v. Let S

be a coalition such that ᾱ(S) > 0. Then
∑

i∈S ui(x, (αi)i∈N ) = v(S).

Proof. Let S be a coalition such that ᾱ(S) > 0. Then if
∑

i∈S
x(i)

∑

S∋i
αi(S)

> v(S), we have by

Theorem 3

x(N) =
∑

T ⊆N

ᾱ(T )v(T ) <
∑

T ⊆N

ᾱ(T )
∑

i∈T

ui(x, (αi)i∈N ) =
∑

i∈N

∑

T ∋i

ᾱ(T )
xi

∑

T ∋i ᾱ(T )
= x(N),

a contradiction.
Then α(S) > 0 implies

∑

i∈S ui(x, (αi)i∈S) = v(S).

Proposition 5. If there exists (x, (αi)i∈N ) such that (ui(x, (αi)i∈N )))i∈N ∈ d-C(v) and ui(x, (αi)i∈N ) ≥
0 ∀i ∈ N , then (x, (αi)i∈N ) ∈ d-MC(v).

Proof. The proof is similar to that of Theorem 3.

Remark 2. As we can see from the following example, unlike the d-core or the B-core (Cesco,
2012) it is not necessary to require that each player is active during exactly one unit of
time. Moreover, (x, (αi)i∈N ) in the d-multicoalitional core does not necessarily imply that
(ui(x, (αi)i∈N ))) is in the d-core.

Consider the game v defined over the subset of N = {1, 2, 3} by:

S 1 2 3 12 13 23 123

v(S) 1 1 1 3 3 3 4

and the strategy (x, (αi)i∈N ) defined by: x(1) = 3, x(2) = x(3) = 2 and α1(1) = α1(12) =
α1(13) = 1, α2(12) = α3(13) = 1, and αi(S) = 0 otherwise. This yields

x(N) = 7 =
∑

S⊆N

ᾱ(S)v(S), u1(x, (αi)i∈N ) = 1, u2(x, (αi)i∈N ) = u3(x, (αi)i∈N ) = 2.

Then (x, (αi)i∈N ) ∈ d-MC(v) but (ui(x, (αi)i∈N ))i∈N 6∈ d-C(v), because
∑

i∈N ui(x, (αi)i∈N ) =
5 > 4.5 = v(N) + t̄(v).

The following proposition gives a result very close to the one of (Bejan and Gómez, 2012a).

Proposition 6. If (x, (αi)i∈N ) ∈ R
N ×

∏

j∈N

Tj is such that ᾱ is in standard form, and xi ≥ 0

for all i ∈ N , then the following equivalence is satisfied:

(x, (αi)i∈N ) ∈ d-MC(v) ⇔ (ui(x, (αi)i∈N ))i∈N ∈ d-C(v)

Proof. By Proposition 5, it suffices to prove the right implication. Let (x, (αi)i∈N ) ∈ d-MC(v),
we have

∑

i∈S ui(x, (αi)i∈N ) ≥ v(S) for every S ⊆ N . Hence,

v(N) + t̄(v) ≤
∑

i∈N

ui(x, (αi)i∈N ). (8)
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Furthermore, by Proposition 4, we have equality if ᾱ(S) > 0. Hence, since ᾱ is in standard
form, there exists (δS)S∈{T ⊆N,ᾱ(T )>0} such that

∑

i∈N

ui(x, (αi)i∈N ) =
∑

S∈{T ⊆N,ᾱ(T )>0}

δS

∑

i∈S

ui(x, (αi)i∈N ) =
∑

S∈{T ⊆N,ᾱ(T )>0}

δSv(S) ≤ v(N)+t̄(v).

By combining with (8), equality holds throughout, and (ui(x, (αi)i∈N ))i∈N ∈ d-C(v).

3.3 The c-multicoalitional core

Let v be a TU-game, we denote by SNũ(v) the set of strong Nash equilibria of (N,RN ×
∏

j∈N

Tj, (ũi)i∈N ). The next proposition shows that these strong Nash equilibria have properties

similar to elements of the d-multicoalitional core.

Proposition 7. For any (x, (αi)i∈N ) ∈ SNũ(v), we have:

(i) ∀i ∈ N , ũi(x, (αi)i∈N ) ≥ 0

(ii) ∀S ⊆ N ,
∑

i∈S

ũi(x, (αi)i∈N ) ≥ v(S) (coalitional rationality)

(iii) x(N) = G(v, ᾱ) ((v, ᾱ)-efficiency)

Proof. The proof is similar to the corresponding points of Theorem 3.

The next proposition investigates the existence of such equilibria.

Proposition 8. SNũ(v) 6= ∅ if and only if SNũ(v) ∩ d-MC(v) 6= ∅.

Proof. (i) Suppose SNũ(v) 6= ∅, and let (x, (αi)i∈N ) be an element of SNũ(v). By using
Theorem 2, we know that:

max
C:clique of G

α(C) ≤ d(α).

Hence, by using the convention 0
0 = 0 and since ∀i ∈ N , xi ≥ 0, and {S ∋ i, ᾱ(S) > 0} is

a clique, we have:
xi

d(ᾱ)
≤

xi
∑

S∋i ᾱ(S)
.

We put ᾱi(S) = ᾱ(S) for all i ∈ N and S ⊆ N . We deduce that:

ũi(x, (αi)i∈N ) ≤ ui(x, (ᾱi)i∈N ).

Hence, if xi = 0, we have ũi(x, (αi)i∈N ) = ui(x, (ᾱi)i∈N ) and if xi > 0, there exists an
active coalition S under ᾱ which contains i, and by using Propositions 3 and 7,

v(S) ≤
∑

i∈S

ũi(x, (αi)i∈N ) ≤
∑

i∈S

ui(x, (ᾱi)i∈N ) = v(S)

from which we deduce the equality

ũi(x, (αi)i∈N ) = ui(x, (ᾱi)i∈N ) ∀i ∈ N.

It is clear that:
ũi(x, (αi)i∈N ) = ũi(x, (ᾱi)i∈N ) ∀i ∈ N.

Therefore (x, (ᾱi)i∈N ) ∈ SNũ(v) and furthermore, we have by Proposition 7:
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(a) ui(x, (ᾱi)i∈N ) ≥ 0.

(b) ∀S ⊆ N,
∑

i∈S ui(x, (ᾱi)i∈N ) ≥ v(S).

(c) x(N) =
∑

S⊆N ᾱ(S)v(S).

Therefore (x, (ᾱi)i∈N ) ∈ SNũ(v) ∩ d-MC(v)

(ii) The converse is obvious.

Unlike the case where the utility is defined per active unit of time, it could be the case that
no strong equilibrium exists when utility per total unit of time is used instead. The foregoing
proposition has shown that if a strong Nash equilibrium exists, it can be turned into a strong
equilibrium of both problems, i.e., with the two types of utility. The following definition is a
natural consequence of this fact.

Definition 5. Let v be a TU-game, we denote by c-MC(v) and we call c-multicoalitional core
of v the set

c-MC(v) := SNũ(v) ∩ d-MC(v)

Elements of the c-multicoalitional core have the remarkable property to be undominated
strategies both for utility per active unit of time and total unit of time. Since the c-multicoalitional
core is a subset of the d-multicoalitional core, it follows that it is also a multicoalitional solution
in the sense of Definition 3. The next theorem gives a necessary and sufficient condition for the
nonemptiness of the c-multicoalitional core. It turns out that this condition is equivalent to the
nonemptiness of the c-core of a related game.

Theorem 5. Let v ∈ G(N) be a game, and denote by ṽ the game defined by ṽ(i) = 0 if v(i) < 0
and ṽ(S) = v(S) otherwise. Then c-MC(v) 6= ∅ if and only if ṽ is c-balanced, and moreover

c-C(ṽ) = {(ũi(x, (αi)i∈N ))i∈N | (x, (αi)i∈N ) ∈ c-MC(v)}.

Proof. (i) Let us prove that if the c-multicoalitional core is nonempty, then so is the c-core.
Let us take (x, (αi)i∈N ) ∈ c-MC(v) and prove that (ũi(x, (αi)i∈N ))i∈N ∈ c-C(ṽ). Firstly,
we have

x(N) =
∑

S⊆N

ᾱ(S)v(S) ≤
∑

S⊆N

ᾱ(S)ṽ(S).

Moreover, since ũi(x, (αi)i∈N ) ≥ 0 and
∑

i∈S ũi(x, (αi)i∈N ) ≥ v(S), we deduce easily that
∑

i∈S ũi(x, (αi)i∈N ) ≥ ṽ(S). This establishes coalitional rationality. In addition, we can
deduce that

∑

S⊆N

ᾱ(S)ṽ(S) ≤
∑

S⊆N

ᾱ(S)
∑

i∈S

ũi(x, (αi)i∈N ) ≤
∑

i∈N

xi

∑

S∋i

ᾱ(S)

d(ᾱ)
.

According to Theorem 2,
∑

S∋i ᾱ(S) ≤ d(ᾱ), therefore

∑

i∈N

xi

∑

S∋i

ᾱ(S)

d(ᾱ)
≤ x(N).

Hence, equality holds throughout and for i ∈ N , if xi > 0 then
∑

S∋i ᾱ(S) = d(ᾱ), while
if xi = 0 then ṽ(i) = 0 and

∑

S∋i ᾱ(S) ≤ d(ᾱ).

We put:
α′

i(i) = αi(i) + (d(ᾱ) −
∑

S∋i

ᾱ(S)), if xi = 0
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and
α′

i(S) = αi(S), otherwise.

Then we have d(ᾱ′) = d(ᾱ) =
∑

S∋i ᾱ′
i(S). Let fᾱ′ be an optimal timetable of ᾱ′. It is

clear that ∀t ∈ [0, d(ᾱ′)], fᾱ′(t) ∈ Π(N).

Since Π(N) is a finite set, we deduce that there exists π1, . . . , πk ∈ Π(N) and p1, . . . , pk ∈
[0, d(ᾱ′)] such that

∀j ∈ {1, . . . , k}, λ({t ∈ [0, d(ᾱ′)], fᾱ′(t) = πj}) = pj ,

where λ is the Lebesgue measure, and
∑k

j=1 pj = d(ᾱ′). The time consistency given by the
definition of the timetable implies λ({t ∈ [0, d(ᾱ′)], S ∈ fᾱ′(t)}) = ᾱ′(S) for every S ⊆ N ,
we have

∑

j|πj∋S pj = ᾱ′(S) for every S ⊆ N , hence

k
∑

j=1

pj

(

∑

S∈πj

ṽ(S)
)

=
∑

S⊆N

ᾱ′(S)ṽ(S).

Furthermore

k
∑

j=1

pj

(

∑

S∈πj

ṽ(S)
)

≤ d(ᾱ)( max
π∈Π(N)

∑

S∈π

v(S)) ≤ d(ᾱ)(ṽ(N) + t̄(ṽ)).

Therefore, we deduce that x(N) ≤ d(ᾱ)(ṽ(N) + t̄(ṽ)). Since, ũi(x, (αi)i∈N ) ≥ 0 ∀i ∈ N

and
∑

i∈S ũi(x, (αi)i∈N ) ≥ ṽ(S) ∀S ⊆ N , the definition of ũi and t̄(ṽ) gives x(N) ≥
d(ᾱ)(ṽ(N) + t̄(ṽ)).

and finally,
x(N) = d(ᾱ)( max

π∈Π(N)

∑

S∈π

ṽ(S)) = d(ᾱ)(ṽ(N) + t̄(ṽ)).

Hence, ( xi

d(ᾱ))i∈N = (ũi(x, (αi)i∈N ))i∈N ∈ c-C(ṽ).

(ii) We prove the converse implication. If ṽ is c-balanced, then there exists a partition π ∈
Π(N) such that

∑

S∈π ṽ(S) = ṽ(N) + t̄(v). Let x ∈ c-C(ṽ). It is easy to verify that
(x, (αi)i∈N ), with αi(S) = 1 if (i ∈ S and S ∈ π) and αi(S) = 0 otherwise, belongs to the
c-multicoalitional core.

Remark 3. There exist games which are not c-balanced, but with a nonempty c-multicoalitional
core. For example, the game v defined on N = {1, 2, 3} by

S 1 2 3 12 13 23 123

v(S) 0 0 −100 10 0 0 0

is not c-balanced. However, it can be checked that (x, (αi)i∈N ) with x = (5, 5, 0) and α1(12) =
α2(12) = 1, αi(S) = 0 otherwise, is an element of c-MC(v)6.

6We observe, in particular, that it is more rational in our framework that any agent with a nonpositive
productivity does not work, while most of classical models require that this kind of agents work during exactly
one unit of time.
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4 Concluding remarks

We summarize the main achievements of the paper:

(i) We have provided a new type of solution, called multicoalitional solution, in the context of
production games, which is innovative in the following aspect: An element of the solution
is not limited to a payoff vector x, it also explicitely gives together a time allocation α to
each coalition, which permits to realize the payoff vector x;

(ii) We have proposed two examples of multicoalitional solutions, namely, the d-multicoalitional
core and the c-multicoalitional core. They are strong Nash equilibria, which respectively
maximize the utility per active unit of time, and the utility per total unit of time;

(iii) These solutions can be seen as an implementation in a noncooperative framework of some
generalization of the d-core (aspiration core) and the c-core.

We believe that this work opens new horizons in game theory, in particular at the intersection
of cooperative and noncooperative game theories.
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C. Bejan and J. C. Gómez. Axiomatizing core extensions. International Journal of Game
Theory, 2012b.

E. Bennett. The aspiration approach to predicting coalition formation and payoff distribution
in sidepayment games. Int. J. of Game Theory, 12(1):1–28, 1983.

O. Bondareva. Some applications of linear programming methods to the therory of cooperative
games. Problemy Kibernetiki, 10:119–139, 1963.

J. C. Cesco. Nonempty core-type solutions over balanced coalitions in tu-games. International
Game Theory Review, 14(03), 2012.

J. Cross. Some economic characteristics of economic and political coalitions. Journal of Conflict
Resolution, 11:184–195, 1967.

S.D. Flam and L. Koutsougeras. Private information, transferable utility, and the core. Eco-
nomic Theory, 42:591–609, 2010.

17

 
Documents de Travail du Centre d'Economie de la Sorbonne - 2013.62



R. Garratt and C. Z Qin. On market games when agents cannot be in two places at once.
Games and Economic Behavior, 31(2):165–173, 2000.

D. Gillies. Some theorems on n-person games. PhD thesis, Princeton, New Jersey, 1953.

D. Gillies. Solutions to general non-zero-sum games. Contributions to the Theory of Games, 4:
47–85, 1959.

S. Gonzalez and M. Grabisch. Preserving coalitional rationality for non-balanced games. Doc-
uments de travail du Centre d’Economie de la Sorbonne, 2012.

M. Grabisch and P. Miranda. On the vertices of the k-additive core. Discrete Mathematics,
308:5204–5217, 2008.

R. Guesnerie and C. Oddou. On economic games which are not necessarily superaddi-
tive:solution concept and application to a local public good problem with few a agents.
Economics Letters, 3:301–306, 1979.

Y. Kannai. The core and balancedness. In R. J Aumann and S. Hart, editors, Handbook of
Game Theory with Economic Applications. North-Holland, Amsterdam, 1992.

B. Peleg and P. Sudhölter. Introduction to the theory of cooperative games. Kluwer Academic
Publisher, 2003.

L. S. Shapley. On balanced sets and cores. Naval Research Logistics Quaterly, 14:453–460, 1967.

B. Shitovitz. A comparison between the core and the monopoly solutions in a mixed exchange
economy. Economic Theory, 10:559–563, 1997.

N. Sun, W. Trockel, and Z. Yang. Competitive outcomes and endogenous coalition formation
in an n-person game. Journal of Mathematical Economics, 44:853–860, 2008.

W. Trockel. Core-equivalence for the nash bargaining solution. Economic Theory, 25:255–263,
2005.

G. Turbay. On value theorems for n-person cooperative games. PhD thesis, Rice univ, Houston
Tx, 1977.

18

 
Documents de Travail du Centre d'Economie de la Sorbonne - 2013.62




