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Abstract

This paper proposes conditions for the existence and uniqueness of solutions to
systems of linear differential or algebraic equations with delays or advances, in
which some variables may be non predetermined. The obtained conditions rep-
resent the counterpart of the Blanchard and Kahn conditions for the considered
functional equations.
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1 Introduction

A common feature in many dynamic models in economics hinges on the fact
that the initial value of some variables is unknown. Moreover, certain asymp-
totic properties, and notably the convergence toward a steady state, should be
taken into account. Mathematically, these are boundary value problems. The
analytical resolution method consists in projecting the trajectory onto the sta-
ble eigenspace of the dynamic system. By comparing the dimensions of the
space of the non-predetermined variables and those of the unstable eigenspace,
one can deduce the properties for the existence and determinacy of a solu-
tion to the system being considered (Blanchard and Khan, 1980, Buiter, 1984).
Equilibrium is said to be indeterminate when there is more than one solution,
and sunspot fluctuations may appear (Azariadis, 1981, Benhabib and Farmer,
1999). However, the mathematical theorems that characterize these proper-
ties were only established for systems of finite dimensions comprising ordinary
differential equations (ODEs) or difference equations. In this paper, we gener-
alize these theorems to include some systems of delay or advanced differential
equations (DDEs or ADEs).

As Burger (1956) has pointed out, many dynamic systems in economics can
be written in the form of DDE. Since then, DDEs have been used in economic
demography, vintage capital, time-to-build and monetary policy literatures (see,
Boucekkine et al. 2004, for an excellent survey of the use of DDEs in economics).
However, for want of a theorem, up until now, authors have had to confine their
work to very specific cases where the stability properties of the dynamics may be
proven!. Alternatively, they could use numerical methods or other mathemati-

cal tools, and most notably optimal control with the Hamilton-Jacobi-Bellman

!See, among others, Gray and Turnovsky (1979), Benhabib (2004), Boucekkine et al.
(2005), Bambi (2008), Augeraud-Véron and Bambi (2011), d’Albis et al. (2012).
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equation?.

DDE systems, which are characterized by a stable manifold of infinite di-
mensions, have generated an abundance of mathematical literature (see the
textbooks by Bellman and Cooke, 1963, and Diekmann et al. 1995). However,
the existing theorems are only valid for systems where all the variables are pre-
determined and defined as continuous function. We extend these theorems to
cases where some variables are non-predetermined — their past values are given
but their value when the system is initiated is unknown — and to cases where
some predetermined variables are discontinuous. To do so, we have studied in
a previous paper (d’Albis, Augeraud-Véron and Hupkes, 2012) the properties
of an operator that acts on a multivalued space. In the present paper, we use
the results we obtained to rewrite the spectral projection formula according to
the initial conditions and the jump made by non-predetermined variables. We
set the projection on the unstable manifold to zero and deduce the magnitude
of the jump that nullifies the projection on the unstable manifold. The spectral
projection formula then enables us to establish the conditions for the existence
and uniqueness of a solution. Most notably, we prove that it is possible to come
to a conclusion by comparing the dimensions of the space of the unknown ini-
tial conditions and those of the unstable eigenspace. Our results also apply to
systems of algebraic equations with delays, if their nth derivative is a DDE. In
this case, the constraints imposed by such equations must be taken into account
in the conditions for existence and uniqueness.

Our conditions can be extended to differential equation with advances. Sys-
tems of ADEs are more similar to ODE systems as they have a stable eigenspace
of finite dimensions. We demonstrate that the solution is generated by a fi-

nite number of eigenvalues simply by projecting the trajectory onto the stable

2See Fabbri and Gozzi (2008), Freni et al. (2008), Boucekkine et al. (2010), Federico et al.
(2010), Bambi et al. (2012)
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eigenspace. Conditions for existence and determinacy are obtained by compar-
ing the number of roots with negative real parts and the number of initial con-
ditions. We will also study the case of systems that include algebraic equations
and define the additional constraints that must be taken into consideration.

In Section 2, we present the kind of dynamics we are interested in. The
conditions for the existence and uniqueness of solutions to systems of DDEs
are proposed in Section 3, whereas those of systems of ADEs are proposed in

Section 4. The conclusion is presented in Section 5.
2 Presentation of the problem

In order to fix matters, let us consider a delay differential equation (DDE,
hereafter). Letting ¢ € Ry denote time, the dynamic problem can be written as

follows:

o ()= [} du(u—t)z(u),

z(0) =z (6) given for § € [-1,0],

(1)

where z is a variable of which initial value is given by a continuous function
over the interval [—1,0], where 2’ denotes its derivative with respect to time
and p is a measure on [—1,0]. The equation in (1) features a dynamics that
depends on past variables, named as the delays, on the interval [t — 1,#]*. In
economics, the Johansen (1959) and Solow (1960) vintage capital models are
well know examples of dynamic problem described by (1). Classical results for
such dynamics are presented in Diekmann et al. (1995).

In economic models, other kind of systems may appear. We will consider
three dynamics that differ from (1). First, we study algebraic equations with de-

lay that reduce to DDEs upon (a finite number of) differentiations with respect

3Note that the largest delay is normalized to one even though it could be any positive
real number. However, we do not consider systems with infinite delays, as their characteristic
roots may not be isolated.
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to time. The dynamic problem now writes:
t
x(t) = [, dp(u—t)x(u),

z(0) =z (0) given for 6 € [—1,0].

(2)

The main difference with the DDE presented above comes from a discontinuity
that is allowed at time ¢t = 0: x (0T) is given but may be different from z (07).
Indeed, x (0%) is given through the algebraic equation:
0
o0%) = [ du@aw), Q
To summarize, the initial value is thus given by a continuous function over the in-
terval [—1,0) where x (07) exists, and a given value z (07). In both problems (1)
and (2), the variable is predetermined, and is usually called backward-looking,.
An example of such dynamics is given in de la Croix and Licandro (1999) and
Boucekkine et al. (2002) for vintage human capital issues. We will study the
latter as an illustrative example in Section 3.
The second kind of dynamics we consider allows for non predetermined vari-
ables, or equivalently forward-looking variables, of which initial value at time
t = 0 is not given. The dynamic problem can be written in the case of a DDE

as follows: .
2(t) = f{y dys(u— 1) ().

x (0) =z () given for § € [-1,0).

(4)

The initial is now given by a function that is continuous on [—1,0) and bounded
in 0. An example of such dynamics is given in d’Albis, Augeraud-Véron and
Venditti (2012) or Jovanovic and Yatsenko (2012).

Finally, the third dynamics aim at considering equations with advances
rather than delays. For instance, a differential equation with advances (ADE,

hereafter) can be written as:
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ADE appears as the Euler equation of some vintage capital model studied using
optimal control (Boucekkine et al. 2005) or dynamic programming (Boucekkine
et al. 2010).

Depending on whether z (0) is given or not, the dynamics characterize a
backward-looking or a forward-looking variable. Below, we study first functional

differential-algebraic systems with delays, and then those with advances.
3 Functional systems with delays

Let us consider a linear system that writes as:
x)(8) = iy djin (w— ) W (),
x1(8) = iy dfia (w— ) W (u),
Y/(t) = [y iy (u =)W (w), (6)

x; (0) = %; (0) given for 6 € [-1,0] and 7 = {0,1},

y(0) =5 (0) given for 6 € [-1,0).

The details of the system list as follows: xg € R"" is a vector of n® backward
variables of which dynamics are characterized by DDEs and x{, denotes its gra-
dient; x; € R™ is a vector of n% backward variables characterized by a algebraic
equation with delays; y € R is a vector of nf forward variables characterized
by DDE and y’ denotes its gradient. X; are continuous on [—1,0] and ¥ (6)
are continuous on [—1,0) and bounded in 0. Moreover, W = (xq,%1,Yy) is a
vectorial function.

We assume there exists a steady-state normalized to zero and define a so-
lution to system (6) as a function W (t) of which restriction for positive time
belongs to C ([0, +00)), satisfies (6) and is such that lim;—, 4., W (¢) = 0.

Let us notice that all the results we present below can be easily extended
to study solutions that converge to a Balanced Growth Path (BGP) where

all variables grow asymptotically at a given growth rate by considering the
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detrended variables.

Let n™ denote the number of eigenvalues with positive real parts of the
characteristic function of system (6) and s the number of independent adjoint
eigenvectors of the characteristic function generated by the nt eigenvalues. By

definition, s < n® + n? + nf. Further:

Assumption H1. There are no eigenvalues with real parts equal to zero and

eigenvalues are simple.

These restrictions are often assumed for ordinary differential equations: the
absence of pure imaginary roots excludes a central manifold, simple roots imply
a one dimensional Jordan block. The system (6) displays a configuration with
a stable manifold of infinite dimension and an unstable manifold of dimension
s. Hence, provided that s > 1, the configuration is saddle point but multiple
solutions may emerge. By multiple solutions, we implicitly mean an infinity of
solutions since it features a continuum of initial values for forward variables that
initiate a trajectory satisfying system (6) and converging to the steady-state.

Further:

Assumption H2. The stable manifold is not transverse to the (zg, 1) coor-

dinates.

This second assumption implies that the projection of initial conditions on
the unstable manifold encounters the stable manifold. Using it, we conclude

that s < min {n"‘, nt } Then, we obtain the following result.

Theorem 1. Let H1 and H2 prevail. There exists a solution to system (6) if
n™ = s and there may be no solution if n™ > s. Upon existence, a solution is

unique if and only if nf = s.
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Proof. Since it has been assumed that algebraic equations reduce to DDEs when

differentiated a finite number of times, system (6) can be rewritten as:
t
X(t) = [i_y dp (= u)V (u),

Y () = Jyduy (=) V (u),

x (0) =x(6) given for 6§ € [-1,0],

v (0) =¥ () given for 6 € [-1,0),
where x € R"" is a vector of backward variables (with n = n® +n% +n/) and
y € R™ is a vector of forward variables, and where V' = (x,y). Let us first

rewrite system (7) in a compact way using the linear operator L_, acting on

C([-1,0],R™) and defined as follows:

L (V(t)):/o i () V (£ — ).

To be able to study a system like (7) that incorporates forward variables,
d’Albis, Augeraud-Véron and Hupkes (2012) suggest to extend the set of initial
conditions to C([-1,0],R™) x R™. A solution to (7) is defined as a function

V (t) € T where:
T=C(-1,0],R") x {V e C([0,00),R") : |V, < o0},

with initial conditions (X (0),¥ (0)) defined on C' ([—1,0] ,R™) by ¥ (0) =y (07)
and such that V (¢) satisfies (7). Let us note that the solution may be mul-
tivalued at ¢ = 0, which is due to the fact that y (0%) may be different from
¥(07). In order to deal with a possible jump at time ¢t = 0 and to be able
to computed it, we modify the definition of L_ in such a way that L_ is now

acting on C([—1,0],R™) x R™ and is defined as follows:

1
L_(V(t),v) /0 dp(u)V (¢t —u)+ (n(0F) —p(07))v.

Moreover, the initial conditions X = (X (6),¥ (9), (x(0%),y (0%))) now belong

to C([~1,0],R") x R".
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Informations concerning the local existence and multiplicity of solutions are
contained in the characteristic function. Let us denote by Ar_ (A) = Al —
f21 dp (u) e, the characteristic function of (7). It can be computed as follows:

Ny

Ar. (N =]]=a)dr_ (N,

i=1
where Jz,_ (A) is the characteristic function of system (6) and where (c;); ;< NP
denote the N} roots that appear as a consequence of the differentiation of the
algebraic equations of system (6). If algebraic equations reduce to differential
equation when differentiated once with respect to time, N? = n%. If this reduc-
tion needs more than one differentiation, N¥ > n} but N? conditions are now
provided at time ¢t = 0.

Let us denote by Qn,; (X) the spectral projection on the vector space spanned

by e*it. We have: Q,,(X) = e*'H,,R,, (X), where:

3 0 0
Roo () = (00).500) + 3 [ diy e [ eosd, () (2(:).5(9)

and where H,, is a matrix such that: Ap_ (o) Hy, = Ho, AL_ (o) = 0. The
computation of H,, Ry, (X) (see Theorem 3.16 in d’Albis, Augeraud-Véron and

Hupkes, 2011) permits to see that it is proportional to

x1(0) - / iy () W (1)

-1
which implies that: H,, Rq, (X) = 0.

Let us assume in the following that Ay_ (A) = 0 has no roots with real part
equal to 0 and let us denote by n™ the number of roots with positive real parts
and which are distinct to any a.

If nt = 0, there is no unstable manifold, which implies that the set of initial
conditions leading to a solution is C'([—1,0], R™) x R™. For any initial condition
(x(0),y () € C([~1,0],R") with y (0) = y (07), and any (x(07),y (07)), a

continuous and bounded solution can be found.
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If n™ > 0, there exists an unstable manifold and one need to use the spectral

projection formula to describe the solutions to system (7). Let (A;) be the

1<j<n®
characteristic roots with positive real part of §_ (A) = 0. The spectral projec-
tion @, (X) on the vector space spanned by e*' is Qy,(X) = e'H,, Ry, (X)
where:
2,0 0
R, () = (<0307 + 32 [ diny e [ e odyy o) (1(5).9(5)
i=1 u
and where Hy; is such that: Ar_ (A\;) Hx, = Hy;Ar_ (Aj) = 0. As the dynamics

belong to the stable manifold, the projection on the unstable manifold should

be null, which formally writes:
oy (X) =0. (8)

We thus obtain a system of nt equations with n/ unknowns, which are given
by y(0T). Since eigenvectors may be linearly dependent, system (8) can be
decomposed in two parts: a system of s equations with n/ unknowns, and
(nT — s) conditions on the initial known conditions (X (.),¥ (.)), which are such
that X (07),% (0%) and ¥ (07) are given. As the adjoint eigenvectors, denoted

(W), <i<s are linearly independent, we can write this formally as follows:
W0,y (07) =5 (07)) = M; (x(.),¥ () for 1 <i<s,

and

0=M x(),y()) fors+1<i<nh,

where M; (X(.),¥(.)) is an operator acting on the initial conditions, which is
defined using the fact that the spectral projection on the unstable manifold
has to be null. We notice that the first equation implies that W* should not

(3

be colinear to the z axis if we want to avoid degeneracies. As the W} are

orthogonal to the stable manifold, the stable manifold should not be orthogonal

to the = axis. If s < nf, there are multiple solutions: some components of
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y(0T) can be freely chosen to have a solution. If n™ > s, there is no solution
generically: whatever y(01), the system of nt equations with n/ unknowns
cannot be solved unless the initial condition happens to satisfy the conditions,
which is not guaranteed. If s = n/, the system for y (0*) — ¥ (07) has the
same number of equations and unknowns, which implies, as the W;* are linearly

independent, that upon existence the solution is unique. [J

Corollary 1. Prouvided that adjoint eigenvectors are linearly independent, the
system (6) may have no solution if n' < n't, always has a unique solution if

nf =nt, and always has multiple solutions if nf > n™.

To establish a rule for existence and uniqueness, the proof of Theorem 1
aims at finding initial conditions for forward variables, i.e. for y (07), such that
the projection of the dynamics on the unstable manifold is the null vector. In
our case, the number of unknowns has the same dimension as y. The number
of forward variables is hence compared with the number of conditions obtained
by setting the considered projection to zero; those conditions are linked to the
number of eigenvalues with positive real parts. Conversely, as the dimensions of
the stable manifold and the set of initial conditions are infinite, the information
on the number of backward variables is not involved in the argument. As in
finite dimentional system, multiple solutions implies indeterminacy.

Let us consider an illustrative example. Boucekkine et al. (2002) consider
the dynamics of human capital, denoted H (t), that is given by the following

algebraic equation with delay:
t—T
H(t):A/ m(t—2) H (=) dz, )
t

where A > 0, P > T > 0, and m (¢t — 2) is a positive survival function. H ()
is a backward variable and its initial condition can be written as H (0) = H (6)

where 0 € [-P,0) and H (.) € C*([-P,0)). Moreover, H (07) is allowed to be

10
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different from H (0), which is given by:

H(0) = A/_; m (—2) H (2) da. (10)

Following Theorem 1, in order to study the existence and uniqueness properties
of H (t) for t > 0, we consider the characteristic equation § (\) = 0, where § ()
is defined by

SO =1- A/P m (2) e dz. (11)

The study of real roots is immediate, and there exists! a unique real real root
v, which is positive if and only if 1 < A f; m (z) dz. This root represents the
growth rate of the BGP. Existence and uniqueness of trajectories that converge
to the BGP depends on the number of complex roots with real parts greater
than 7. It can be shown that all complex roots, denoted A = p + iq, satisfy

p < 7. Suppose the contrary: as Re (§ (p +iq)) = 0, we would have:

P P
1=A / m (z) e P% cos (qz) dz| < A/ m(z) e P?dz
T T

which is impossible as § > 0 for v < p. There exists a unique trajectory that

converges to the BGP.
4 Functional systems with advances

Let us now study a linear system that writes:

(1) = [} dpy (=) W (u),

yo(t) = [/ dy (u—t) W (u),
(12)
yi(t) = [ dig (u—t) W (u),

x (0) =% (0) given.
where x € R™ is a vector of n’ backward variables of which dynamics are

characterized by ADEs and where x’ denotes its gradient; where yo € R

4Indeed, 6’ > 0, limy—, — 0o § (A) = —00 and limy_, o0 6 (A) = 1.

11
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and y; € R™ are vectors of n/ and n{ forward variables characterized, re-
spectively, by differential and algebraic equations with advances. Moreover,
W = (x0,¥0,y1) is a vectorial function. A solution is defined as in the previous
subsection.

Let n~ denote the number of eigenvalues with negative real parts of the char-
acteristic function of system (12) and s the number of independent eigenvectors
of the characteristic function generated by the n~ eigenvalues. Assuming H1
and provided that s > 1, the system (12) displays a saddle point configura-
tion with an unstable manifold of infinite dimension and a stable manifold of

dimension s. Further:

Assumption H3. The unstable manifold is not transverse to the (yo,y1) co-

ordinates.
We obtain the following result.

Theorem 2. Let HI1 and H3 prevail. There exists a solution to system (12) if
n? = s and there may be no solution if n® > s. Upon existence, a solution is
unique if and only if n~ = s.

Proof. Since algebraic equations reduce to ADE when differentiated a finite

number of time, system (12) can be rewritten as:
X (1) = [y (=) V (),
Y = [ dpy (= ) V (),
x(0) =z (0) given.
where x € R™" is a vector of backward variables and y € R a vector of

forward variables (with n = n®+nf +n/), and where V = (x,y). Let n- be the

number of eigenvalues with negative real parts, and s be the number of linearly

12
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independent eigenvectors. Any element of the stable space can be written as:

n
V()= Zozjvje)‘jt, (13)
=0

where the (A;), ;- are the eigenvalues with negative real parts, the (v;)

1<j<n—
are the eigenvectors, and the (o), <j<n- are the residues.

Evaluating the system (13) implies to solve a system with n— unknowns and
n® equations. Since the eigenvectors (vj), <j<n- MAy be linearly dependant, the

system splits in two parts. Let us denote with (w;), . j<s the family of linearly

independent eigenvectors. The first subsystem we obtain rewrites:

j=0

which gives a system of s unknown (;)1<;j<s and n® constraints. And, when

the (3,)1<j<s are defined, we obtain a second system that rewrites:

n- s
> =) 6w,
Jj=0 Jj=0
which leads to a system of s equations and n~ unknowns, namely the (a;)1<j<p--

O

Corollary 2. Provided that eigenvectors are linearly independent, the system
(12) may have no solution if n~ < n®, always has a unique solution if n~ = n®,

and always has multiple solutions if n~ > nP.

We see that the rule that permits to establish the existence and uniqueness
of solutions is different from the one presented in Theorem 1. With advances,
as the dimension of the unstable manifold is infinite, the idea is to find initial
conditions for forward variables that permit to write the dynamics on the stable
manifold. This is why we use the number of eigenvalues with negative real parts
to state whether the solution exists and is unique. Since we rewrite the system
as a finite dimensional system, the proof of Theorem 2 is similar to what can

be found for ordinary differential equations.

13
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5 Conclusion

This paper proposes theorems for the existence and uniqueness of solutions to
systems of differential or algebraic equations with delays or advances. These
theorems propose conditions that link the space of unknown initial conditions
to the sign of the roots of the characteristic equation, just like the well-known
Blanchard-Kahn conditions. They could therefore contribute to the develop-
ment of the use of DDEs and ADEs in economics, which would enable the
analytical study of many phenomena. Sometimes, certain economic dynamics
are characterized by differential equations that have both delays and advances.
In such cases, both the stable and unstable manifolds are of infinite dimensions.
Therefore, the existence and uniqueness of their solution cannot be analyzed
using the theorems developed in this paper. This problem has been noted for

further study.

14

Documents de Travail du Centre d'Economie de la Sorbonne - 2



References

1]

H. d’Albis, E. Augeraud-Véron and H. J. Hupkes (2012), Discontinuous
Initial Value Problems for Functional Differential-Algebraic Equations of
Mixed Type. Journal of Differential Equations 253, 1959-2024

H. d’Albis, E. Augeraud-Véron and A. Venditti (2012), Business Cycle
Fluctuations and Learning-by-doing Externalities in a One-sector Model.
Journal of Mathematical Economics 48, 295-308

E. Augeraud-Véron and M. Bambi (2011), Endogenous Growth and En-
dogenous Fluctuations in External Habit Formation Models. Mimeo

C. Azariadis (1981), Self-fulfilling Prophecies. Journal of Economic Theory
25, 380-396

M. Bambi (2008), Endogenous Growth and Time-to-build: The AK Case,
Journal of Economic Dynamics and Control 32, 1015-1040

M. Bambi, G. Fabbri, and F. Gozzi (2012), Optimal Policy and Consump-
tion Smoothing Effects in the Time-to-build AK Model. Economic Theory
50, 635-669

R. Bellman and K. L. Cooke (1963), Differential-Difference Equations. New
York: Academic Press

J. Benhabib (2004), Interest Rate Policy in Continuous Time with Discrete
Delays. Journal of Money, Credit, and Banking 36, 1-15

J. Benhabib and R. E. A. Farmer (1999), Indeterminacy and Sunspots in
Macroeconomics, In: J. B. Taylor and M. Woodford (Eds.), Handbook of
Macroeconomics 1A, 387-448, Elsevier

O. J. Blanchard and C. M. Kahn (1980), The Solution of Linear Difference
Model under Rational Expectations. Econometrica 48, 1305-1312

R. Boucekkine, D. de la Croix and O. Licandro (2002), Vintage Human
Capital, Demographic Trends, and Endogenous Growth. Journal of Eco-
nomic Theory 104, 340-375

R. Boucekkine, D. de la Croix and O. Licandro (2004), Modelling Vintage
Structures with DDEs: Principles and Applications. Mathematical Popu-
lation Studies 11, 151-179.

R. Boucekkine, G. Fabbri and F. Gozzi (2010), Maintenance and Invest-
ment: Complements or Substitutes? A Reappraisal. Journal of Economic
Dynamics and Control 34, 2420-2439

R. Boucekkine, O. Licandro, L. A. Puch and F. del Rio (2005), Vintage
Capital and the Dynamics of the AK Model. Journal of Economic Theory
120, 39-72.

W. H. Buiter (1984), Saddlepoint Problems in Continuous Time Ratio-
nal Expectations Models: A General Method and Some Macroeconomic
Examples. Econometrica 52, 665-680

15

Documents de Travail du Centre d'Economie de la Sorbonne - 2



[16]

[17]

[18]

[19]

E. Burger (1956), On the Stability of Certain Economic Systems. Econo-
metrica 24, 488-493

D. de la Croix and O. Licandro (1999), Life Expectancy and Endogenous
Growth 65, 255-263

O. Diekmann, S. A. van Gils, S. M. Verduyn-Lunel and H. O. Walther
(1995), Delay Equations. Springer-Verlag, New York

G. Fabbri and F. Gozzi (2008), Solving Optimal Growth Models with Vin-
tage Capital: The Dynamic Programming Approach. Journal of Economic
Theory 143, 331-373

S. Federico, B. Goldys and F. Gozzi (2010), HJB Equations for the Optimal
Control of DDEs with State Constraints: Regularity of Viscosity Solutions.
Siam Journal on Control and Optimization 48, 4910-4937

G. Freni, F. Gozzi and C. Pignotti (2008), A Multisector AK Model with
Endogenous Growth: Value Function and Optimality Conditions. Journal
of Mathematical Economics 44, 55-86

M. R. Gray and S. J. Turnovsky (1979), Expectational Consistency, Infor-
mational Lags, and the Formulation of Expectations in Continuous Time
Models. Econometrica 47, 1457-1474

L. Johansen (1959), Substitution versus Fixed Production Coefficients in
the Theory of Economic Growth: A Synthesis. Econometrica 27, 157-176

B. Jovanovic and Y. Yatsenko (2012), Investment in Vintage Capital. Jour-
nal of Economic Theory 147, 551-569

R. M. Solow (1960), Investment and Technical Progress, in Arrow, K., Kar-
lin, S. and R. Suppes (eds) Mathematical Methods in the Social Sciences,
19.59, Stanford, California, Stanford University Press.

16

Documents de Travail du Centre d'Economie de la Sorbonne - 2



