N

N

Evolutionary Beliefs and Financial Markets
Elyes Jouini, Clotilde Napp, Yannick Viossat

» To cite this version:

Elyes Jouini, Clotilde Napp, Yannick Viossat. Evolutionary Beliefs and Financial Markets. Review of
Finance, 2012, pp.en ligne. halshs-00778537

HAL Id: halshs-00778537
https://shs.hal.science/halshs-00778537

Submitted on 23 Jan 2014

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://shs.hal.science/halshs-00778537
https://hal.archives-ouvertes.fr
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Abstract

Why do investors keep different opinions even though they learn from their
own failures and successes? Why do investors keep different opinions even though
they observe each other and learn from their relative failures and successes? We
analyze beliefs dynamics when beliefs result from a very general learning process
that favors beliefs leading to higher absolute or relative utility levels. We show
that such a process converges to the Nash equilibrium in a game of strategic belief
choices. The asymptotic beliefs are subjective and heterogeneous across the agents.
Optimism (resp. overconfidence) as well as pessimism (resp. doubt) both emerge
from the learning process. Furthermore, we obtain a positive correlation between
pessimism (resp. doubt) and risk-tolerance. Under reasonable assumptions, beliefs
exhibit a pessimistic bias and, as a consequence, the risk premium is higher than
in a standard setting.

Keywords: belief formation, heterogeneous beliefs, evolutionary game theory,

pessimism, risk premium
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1 Introduction

In the classical financial economics theory, decision makers are assumed to have homoge-
nous and rational expectations. This assumption has been the basis for many develop-
ments in finance like the portfolio selection model (Markowitz, 1952) and the CAPM
(Sharpe 1964 and Lintner 1965). Homogeneous expectations might be justified through a
learning argument: agents should see that other people are being more or less successful
and they should adopt the same beliefs as the most successful ones. Rational expec-
tations have been often justified through an evolutionary argument: agents who make
inaccurate predictions are driven out of the market by those who are more accurate! (see
e.g. Sandroni, 2000).

However, it suffices to observe the heterogeneity of analysts or professional forecasters
forecasts or more generally of experts opinions to realize that the both assumptions of
homogeneous beliefs and rational beliefs are not realistic.

A question that naturally arises is then the following: Why do investors keep different
opinions even though they learn from their own failures and successes?” Why do investors
keep different opinions even though they observe each other and learn from their relative
failures and successes? We analyze beliefs dynamics when beliefs result from a very
general learning process that favors beliefs leading to higher absolute or relative utility
levels. We consider both the situation where learning favors beliefs leading to higher
utility levels than other beliefs and the situation where learning favors beliefs leading to
higher utility levels that the other agents. Surprisingly, we show through arguments from
evolutionary game theory? that interactions and learning do not lead to homogeneous
beliefs among the agents. They rather lead to heterogeneous and subjective beliefs.

Our model is embedded in a simple, standard Walrasian equilibrium problem with
risky assets and beliefs are about the risk distribution. Our learning process is not

based on statistical inference but on the analysis of relative successes and failures: each

!This argument is in the same vein as the arguments of Alchian (1950) and Friedman (1953) applied
to the profit maximization assumption in a competitive market.

2The evolutionary paradigm is applied to the population of possible beliefs and not to the initial
population of agents.



agent has an initial distribution of possible beliefs and randomly tries different beliefs
according to this distribution. She/he dynamically adjusts her/his beliefs distribution
by increasing (decreasing) the frequency of the beliefs that lead to higher (lower) utility
levels at the Walrasian equilibrium. Beliefs that lead to high utility levels spread within
the population of beliefs. Our agents gradually learn that a certain way of forming beliefs
is more rewarding than others. They select the beliefs that are more beneficial for them
in the spirit of the pragmatic beliefs concept of Hvide? (2002). We characterize the types
of beliefs that survive especially in terms of optimism/overconfidence and we analyze the
implications in terms of equilibrium characteristics.

We show that the asymptotical behaviour of our agents corresponds to the behaviour
that they would adopt in a static game that is naturally associated to our learning
process. This fictitious game corresponds to a situation where each agent adopts a belief
to maximize her/his utility from trade, taking into account the effect her /his choice has
on price and taking as given the strategy of the other agents®.

Our findings are the following. First, we show that a learning process, which favours
beliefs leading to higher utility levels at the Walrasian equilibrium leads to belief subjec-
tivity and heterogeneity. The objective belief is not optimal, and agents differ in their
beliefs. Indeed, optimism (resp. overconfidence) as well as pessimism (resp. doubt) both
survive in the long run. Furthermore, we find a positive correlation between pessimism
(resp. doubt) and risk-tolerance. The intuition is as follows. For a very risk-tolerant
agent, his demand in the risky asset is positive, so that his expected utility from trade
is decreasing in the price of the risky asset. A pessimistic belief is associated to a lower
demand, hence to a lower price, and balances this benefit of pessimism against the costs
of worse decision making. We obtain exactly the same conclusions when agents do not
favor the beliefs leading to higher utility levels in absolute terms but rather favor the

beliefs leading to higher utility levels than the other agents.

3The framework of Hvide (2002) is very different from ours (principal-agent approach in a job market
model).

4This asymptotic behaviour corresponds then to a Nash equilibrium in demands, as presented in Kyle
(1989), “perhaps the most obvious modification of the conventional competitive rational expectations
concept. It preserves market clearing through a Walrasian mechanism and keeps the Nash flavour of a
competitive equilibrium.”



Our results explain why agents differ in their beliefs and why this divergence persists.

In an exponential utility and normal distribution setting, our learning process leads to
a pessimistic bias in individual beliefs. Such a pessimistic bias has been observed in empir-
ical studies in a purely behavioural setting (Ben Mansour et al., 2006), in a decision theory
framework (Wakker, 2001) or in a market framework (Giordani and Séderlind, 2006). In
particular, as underlined by Shefrin (2005) based on Wall $treet Week data “between
1983 and 2002, professional investors were unduly pessimistic, underestimating market
returns”. As a consequence of the pessimistic bias, our evolutionary approach leads to
a risk premium that is greater than in the standard rational expectations equilibrium?®.
We provide numerical simulations that show that the risk premium can be multiplied by
3 along the learning process and that the asymptotic beliefs and risk premium can be
reached in a few months.

After focusing on such an exponential utility and normal distribution setting, we
show that the main properties (beliefs heterogeneity, positive correlation between pes-
simism and risk tolerance) carry over to more general specifications of preferences and
uncertainty. The positive correlation between pessimism and risk tolerance leads to a
pessimistic bias. We also show that some of the properties are retained when allow-
ing agents to differ by their level of doubt/overconfidence instead of their level of pes-
simism/optimism.

Our evolutionary explanation of beliefs should be contrasted with approaches in which
forward-looking agents optimally distort beliefs and in which beliefs are of intrinsic value
to agents, as with wishful thinking, self-esteem or fear of disappointment (Akerlof and
Dickens, 1982, Benabou and Tirole, 2002, Brunnermeier and Parker, 2005, Gollier and
Muermann, 2010). In these models, beliefs result from an individual optimization problem
while our beliefs result from interaction. Our results differ from those obtained in such

an optimal beliefs/illusions setting, in which in most cases there is no belief heterogeneity

5 Abel (1989), Detemple-Murthy (1994), Gollier (2007) and Jouini-Napp (2006) have already under-
lined that pessimism and a positive correlation between risk tolerance and pessimism lead to an increase
of the risk premium; in this paper we construct a model in which pessimism and the positive correlation
endogeneously emerge at the equilibrium.



and an optimistic bias®. This bias results from the specific mental process they consider:
since agents have a higher current felicity if they are optimistic, the optimal beliefs balance
this benefit of optimism against the costs of worse decision making.

The paper is organized as follows. Section 2 introduces the concept of evolutionary
beliefs and details the dynamics of beliefs formation when agents favor the beliefs that
are more beneficial for them in absolute terms. We also explain the link between the
evolutionary framework and a static concept of Nash equilibrium in demand schedules.
In Section 3, explicit computations are provided in a setting with exponential utility
functions and normal distributions in which the evolutionary variable is the expected
payoft of the risky asset. In Section 4, we compare our results with those obtained in an
optimal beliefs setting. In Section 5, qualitative results are provided in a setting with
more general utility functions and distributions. Section 6 considers extensions of the
model of Section 3 in essentially three directions; a model in which the agents compare
their respective utility levels and favor the beliefs that permits to outperform the other
agents, a model in which the evolutionary variable is the variance of the payoff of the

risky asset and a model with multiple sources of risk. Section 7 concludes.

2 A model of evolutionary beliefs

We consider a standard equilibrium model, except that we allow for subjective beliefs
and a possible evolution of beliefs through market interaction and learning. We start by
describing the Walrasian equilibrium. We then introduce the learning procedure as well

as the underlying 2-player game.

2.1 The Walrasian equilibrium

The economy is composed of two agents called Ann and Bob with real valued, increas-

ing and strictly concave utility functions us and up defined on R, . The uncertainty is

6Gollier-Muermann (2010) consider a model of optimal beliefs with ex-ante savoring and ex-post
disappointment. Depending upon the intensity of anticipatory feelings and disappointment they might
also obtain a systematic pessimistic bias.



described by a probability space (92, F), P) where 2 is the set of states of nature, F' is
the o—field of observable events and P is a probability measure giving the likelihood of
occurrence of the different events in F. There is a single consumption good as well as
a single risky asset in the economy, whose payoff at the end of the period is described
by a random variable . We let p denote the unit price of the risky asset in terms of
consumption good, which means that both agents can sell their property rights on the
risky asset against the delivery of the sure quantity p at the end of the period. We assume
that the agents have the same endowment, which consists of a half unit of the risky asset.
The difference with the standard model stems from the fact that agents have possibly
incorrect beliefs. We assume that the set of possible beliefs for Ann (Bob) is parametrized
by 7 (by 6) in a given set B. Our agents then have different probability measures over
(Q, F) respectively denoted by Q. and Q. We denote by E7 and E’ the expectation
operators respectively associated to @), and Q)y. For a given random consumption ¢, the
subjective expected utility of Ann (Bob) is then given by E [us(¢)] (by E? [ug(¢)]). As
in the standard portfolio problem, agents determine the optimal composition of their

portfolio, in other words their optimal exposure to the risk.

Definition 1 A Walrasian equilibrium” (p; (%, %)) is defined by a price p and quanti-
ties (ay, ay) of risky asset for each agent such that the quantity o is optimal for agent

i, i€ {A, B}, under her/his budget constraint, i.e.

1 ~
afy = argmngV [uA(§p+oz(a:—p))]

1 ~
ap = argmnge {UB(ip—i-a(x—p))]

and such that markets clear, i.e. oy +ap = 1.

The structure of the underlying Walrasian equilibrium problem is quite general and
may be applied to several equilibrium problems in which heterogeneous risk-averse agents

have to choose their optimal exposure to a given risk. For instance, when an insurance

"Walrasian equilibrium models with heterogeneous beliefs have been studied, among others, by
Williams (1977), Abel (1989), Detemple-Murthy (1994), Calvet et al. (2002) and Jouini-Napp (2006,
2007).



company and a reinsurance company have to determine an optimal retention rate or when

entrepreneurs have to fix the optimal proportion of equity to retain for a given project.
In the next, we denote by ua(7y,0,2) = ua(3p+a’ (x — p)) and up(y,0,2) = up(ip+

o’ (z — p)) the equilibrium ex-post utility levels of Ann and Bob when their beliefs are

given by 7 and € and for a given realization z of .

2.2 The evolutionary framework

The situation can be characterized in terms of game theory with 2 players: Ann and Bob
playing against each other and playing against Nature. Ann chooses a belief + in B, Bob
chooses a belief § in B then Nature chooses a realization = in Q2. We denote by ua(7, 6, z)
and ug(7, 0, x) the utility levels of Ann and Bob at the Walrasian equilibrium.

For a given pair of beliefs (v, #) for Ann and Bob, the average utility level of Ann over
the different states of Nature is given by Ua (7,60) = [wa(v,0,7)dP and the average
utility level of Bob is given by Ug (v,0) = [up (7,0,%) dP.

Let us first assume that Bob has a constant belief 8* and that Ann randomly tries
different beliefs v, each of them with a given frequency. Let us denote by T the distrib-
ution over B associated to those frequencies. In classical game theory, it is assumed that
each agent knows all the game parameters (in particular, the objective probability P, the
payoff function of the other agents) and that she/he may observe the strategies of the
other agents. At this stage, we do not need to assume that the agents have access to such
information: they might observe the other agents actions or not®. We simply assume that
they use the following rule of thumb: they increase the frequency of the more rewarding
beliefs and they decrease the frequency of the less rewarding beliefs. If Bob maintains his
belief #*, Ann will increase (decrease) the frequency of the ~s that lead to higher (lower)
values for Uy (7,0%) . It is easy to see that such a dynamics converges in the set of best
replies to 0%, BRA(0") = argmax Uy (7,0") .

However, there is no reason for Bob to maintain his belief fixed. If Bob also plays

different strategies with different frequencies described by a distribution © over B, the

8In Section 6.1, we will explicitly consider the case where the agents compare their utility level to the
utility level of the other agents selecting the beliefs that permit to them to outperform the other agents.



average utility level of Ann (over the states of nature and over the different strategies
played by Bob) when she plays ~ is given by [ u4 (7,0, ¥) d© ® dP. Since Nature chooses
the state of the world after the choices of Ann and Bob and independently of them, the
average utility level of Ann (over the states of nature and over the different strategies
played by Bob) when she plays v is equal to [ Ua (7, 6) d©. Symmetrically, the average
utility level of Bob when he plays 6 is given by [ Ug (7,0)dY. Each of them modifies
her/his frequencies (i.e. modifies T and ©) according to the rule of thumb described
above leading to a dynamical system that we now describe rigorously.

Let us denote by Yy the initial distribution (over B) of Ann and by O, the initial
distribution (over B) of Bob. Both distributions are assumed to have full support over
B and to belong to the set A(B) of Borel probability distributions over B. Similarly, we
denote by T; and O, their respective distributions at date t > 0. At date ¢ and for a given
belief v, Ann’s average utility level is given by [ Uy (7, 6) d©;. At date t and for a given
belief 6, Bob’s average utility level is given by [ Ug (v,6)dY;.

The frequency at which a given belief is chosen by Ann is modified according to the
average utility level provided by this belief: the frequency of high utility level beliefs is
increased and the frequency of low utility level beliefs is decreased. The simplest way to
do so is to assume that, for a given Borel measurable set A C B, the weight of A increases
proportionally to the quantity foB Us(7,0)dY; @ dO; — [z Ua(7,0)dY; @ dO; that
measures how much the beliefs in 4 outperform in average the average belief in B.
Since Ann and Bob select their beliefs independently of each other (even if their beliefs
distribution depends upon past beliefs of both agents) this last quantity is equal to
J4dYe [Us(7,0)dO;— [ [ Ua(7,6)dY:dO,. A symmetric reasoning on Bob leads to the

following global dynamics

%MA) = )\(/Ath/U 7,6) dO; — //UA v,0)dY d®t>, (1)
- /

Us (7,0)dY, — / / Us (v, )thd@t) (2)



where A and )\ are given positive real numbers. Note that this leads to %Tt(B) =
£0,(B) = 0 which is natural since T,(B) = 6,(B) = 1, for all ¢.

This dynamics is well known in evolutionary game theory and called the replicator
dynamics (see e.g. Cressman et al., 2006). As underlined above, it favors the most
rewarding beliefs. The most general formulation for a dynamics satisfying such a property
has been introduced in Heifetz et al. (2007a,b). In the next, we adopt this general

formulation by assuming that the distributions evolve as follows:

%Tt(./l) = /VA(% ©,)dY:, A C B, Borel measurable, (3)
A

%@t(fl) = /VB(Tt,H)d@t, A C B, Borel measurable, (4)
A

where V4 and Vjp are continuous’ growth-rate functions that satisfy

Va8 > Va(3.0) = [Ua(no)de,> [Uaii.b)de. (5)
V(Y 0) > VB(Tt,é) <:>/UB (v,0)dY; > /UB (v,0)dYy, (6)

as well as
/VA(% ©:)dY; =0 and /VB(Tt, 0)de, =0 for each t, (7)

in order to ensure that T; and ©; remain probability measures for each ¢. This dynamics
is similar to the dynamics considered in Heifetz et al. (2007a,b) and corresponds to the
most general way to represent the fact that agents increase the frequency of the most
rewarding beliefs at the expense of the beliefs that lead to lower average utility levels.
In this sense, each agent constructs her/his beliefs pragmatically. We refer to Heifetz et
al. (2007a,b) and Oechssler and Riedel (2001) for the technical conditions that guarantee
that the system of Equations (3)-(4) has a well defined solution.

The function V' plays the same role as the adjustment function used in the Walras

9V4 and Vp are respectively defined over B x A(B) and A(B) x B. The continuity property is meant
here in the sense of the product of the topology of B and of the weak-topology of A(B).

10



tatonnement mechanism, reducing the price when the excess demand is positive and
increasing it when the excess demand is negative. In our framework, an agent increases
the frequency of a given belief when the utility provided by this belief exceeds the average
utility over all possible beliefs. The replicator dynamics defined by Equations (1) and (2)
is the simplest form for such a behavior and corresponds to a linearization of the function
V.

We are interested in the asymptotic characteristics of the beliefs in this dynamic
problem. More precisely, we are interested in the following questions. Does this model
of evolutionary beliefs lead to subjectivity in beliefs? Does it generate heterogeneous
beliefs? Is there a link between risk-tolerance and beliefs and what is the nature of this
link? Is there a pessimistic/optimistic bias at the equilibrium at the individual as well
as at the collective level? What are the consequences on the equilibrium characteristics

and in particular on the risk premium?

2.3 The underlying 2-player game

When Bob keeps his belief fixed and when Ann follows a dynamics that favors the beliefs
leading to high utility levels like the dynamics governed by Equation (1) or Equation (3)
then the beliefs of Ann will converge in the set of best replies to Bob’s strategy. When
both agents adjust their beliefs, the replicator dynamics governed by Equations (1) and
(2) is very close to the best reply dynamics. As underlined by Hofbauer et al. (2009), both
dynamics have the same asymptotic behavior but contrarily to the best reply dynamics,
the replicator dynamics does not need to assume that all agents are highly rational.
Our dynamics is then expected to converge towards the Nash equilibrium of the game
where each agent chooses her /his belief strategically in order to maximize her/his payoff
function. This close connection between the asymptotic behavior of evolutionary games
and Nash equilibria is well established in the case of the replicator dynamics and in the
framework of symmetric games with finite strategic sets. This is a classical result in
evolutionary game theory, often called "the Folk Theorem of evolutionary games" and

we refer to Hofbauer and Sigmund (2003) for a survey.

11



In this section we will show that this connection holds in our non symmetric and non
finite framework and when beliefs are governed by the more general dynamics described
by Equations (3) and (4). This means that whatever the precise rule of beliefs revision is,
beliefs converge to the Nash equilibrium beliefs as long as the revision process increases
the frequency of the beliefs that lead to high utility levels at the expense of the beliefs
that lead to low utility levels.

This result is very useful since it characterizes the asymptotic behavior of our evo-
lutionary beliefs in terms of Nash equilibria of simple games. This permits to explicitly
compute the asymptotic beliefs for some specifications of the agents utility functions and
of the risky asset payoff distribution. This also permits to derive qualitative properties
of the solution in the case of general utility functions and general payoff distributions.

Let us first rigorously describe the 2-player (fictitious) game under consideration. It
is denoted by I' = (B, B,Ua, Up) where B is the common strategic set of the agents and
where U4 and Up are their payoff functions. The game I' corresponds to a game in which
each agent chooses her/his belief in order to maximize her/his utility taking into account
her /his own impact on equilibrium prices (and therefore on equilibrium utility levels).

Even though it could seem puzzling to maximize utility functions the agents do not re-
ally know (the expectations are taken under the objective probability) this maximization

is only done in the fictitious game and is not assumed at Ann and Bob’s level.

Definition 2 A Nash equilibrium of the game T" is defined as a pair of beliefs (v*,0%) €
B x B such that

Uas(v5,0%) = Ua(v,0%) forally € B,

Ug(v*,0%) > Ug(y",0) foralld € B.

The Nash equilibrium in the game I is the analogue of the notion of Nash equilibrium

in demand schedules'’ (introduced by Kyle, 1989) restricted to demand schedules of a

10As underlined by Kyle (1989) this is “perhaps the most obvious modification of the conventional
competitive rational expectations concept. It preserves market clearing through a Walrasian mechanism
and keeps the Nash flavour of a competitive equilibrium.”

12



specific form (namely, demand schedules that are parametrized by underlying beliefs and
that correspond to the optimal demands of agents endowed with those beliefs).

Let us assume that the game I" admits a Nash equilibrium (v*,0%); by definition we
have Ua (7*,0%) > Ua (7,0") for all v € B and then V4 (v*,d¢<) > V4 (7, 0¢=) where 0=
is the Dirac measure at §*. The average value of Vj (7, d¢+) over {7*} is then higher
than the average value of V4 (y,d¢+) over any set A C B. This means that when ©, is
kept constant equal to dg+ then the selection dynamics described by (3) will favor the
strategy v*. Similarly, when Y, is kept constant equal to .+ then the selection dynamics
described by (4) will favor the strategy #*. The Nash equilibria of the game T" are then
good candidates for the asymptotic behaviour of the selection dynamics described by (3)

and (4).

3 Exponential utility and normal distributions set-
ting

For analytical tractability, we first consider exponential utility functions with normal

distributions and provide explicit results.

3.1 The results

Agents have utility functions for consumption of the form wuy (¢) = —exp (—é) and
up (c) = —exp (—i) , where 6; > 0 denotes the degree of (absolute) risk-tolerance of
agent i. Moreover, we assume that r is normally distributed, with mean ; and variance
o

Let us first determine the Walrasian equilibrium characteristics when Ann believes
that 7 is normal with mean p, and variance o2 and Bob believes that 7 is normal with
mean /.5 and variance o2. The parameters 1, and p15 play then the role of the parameters
~v and 6 of the previous section and are assumed to be drawn from a set B = [/_L, E] of

possible beliefs that contains the objective value .

In such a setting and for a given p, the optimal demand «; (p) of agent i is given by

13



a; (p) = 6;%z%. The market clearing condition a4 (p) + o (p) = 1 then imposes that the

equilibrium price p (py, 11p) of the risky asset is given by

o QA QB 0'2
p(luAHuB) - 9A+QB/"LA+ 9A+QB'LLB 0A+QB’ (8)

which is the equilibrium price in an economy in which agents share the same expectations

Oapatfsrp

7 7o. - In the next we will call this average belief, the consensus belief. It

given by
corresponds to the belief that if held by both agents would lead to the same equilibrium
prices. Replacing p by the expression of the equilibrium price, we obtain that the optimal

demand o of agent 7 at the equilibrium is given by

)

’ |:1+(9j

(9)

" My — s
o (1 1) = s (p (ias i) s 115) = ]

o2

S|

and the part of the risk borne by agent ¢ depends upon both her /his level of risk-tolerance
and her /his belief.

The resulting average ex-post utility levels are then given by

1 ~ X .
Ui (NA; :uB) =F |:ul {§p (/l’znu]) + {SC -p (/l’znu])} Q; (:uza /’Lj) }:| ) L E {A7 B} :
Letting RP (resp. RP*?) denote the risk premium u — p in this setting (resp. in the

standard setting) we obtain

o? 9ANA+GBNB> Oaptg +O0pu
RP =% — ACATOBIE ) _ ppstdd ( — =4 =B B>. 10
9*(“ 04t 05 T\ T, 10, (10)

As underlined by e.g. Jouini and Napp (2007), this means that the risk premium in
an economy with heterogeneous subjective beliefs is higher than in the standard rational
expectations setting if and only if the consensus belief, which is the risk tolerance weighted
average of the individual beliefs, is pessimistic, where pessimistic is meant in the sense
that the mean of the risky asset’s payoff is underestimated. It is therefore particularly
interesting to explore when and why individuals are pessimistic, as well as the nature

of the link between risk tolerance and pessimism. In the present paper, the individual

14



beliefs are determined endogenously and we analyze their properties, especially in terms
of pessimism, correlation between pessimism and risk tolerance and impact on the risk
premium.

With these specifications and for given initial distributions T and ©g with full support
over B, the selection dynamics given by (3) and (4) is fully described. The game I' =
(B, B,U,4,Ug) is also fully described.

Proposition 3 Let us consider a model with two agents, exponential utility functions
and a risky asset T ~ N (11, 0?) and let us assume that the possible beliefs are of the form

T~ N (i, 0%) with ' € B= [p, 1] . We have

1. For given initial distributions Yo and Oy in A(B) with full support over B, any
dynamics that favors beliefs with high utility levels at the expense of beliefs of low
utility levels (i.e. that satisfies Equations 3 to 6) converges to a pair of Dirac
distributions ((5,1 N 5/13) where ([, 1ig) s the unique Nash equilibrium of the game

['=(B,B,Ua, Up).
2. The surviving beliefs (i , fig) are given by

. o? N o2

=pu—— (04— 0 =p——————(0g—04). (11

Asymptotically, the more risk-tolerant agent is pessimistic, in the sense that she/he
behaves as if the mean of T lied below its true value, and the less risk-tolerant agent
18 optimistic. Moreover, the more risk-tolerant agent is more pessimistic than the
less risk-tolerant agent is optimistic and the unweighted average of the beliefs is
pessimistic:

Ia t+Iip _E(HA—QB)2U2

_ Ya—Y8) 0 12
2 NS 0.0,0 (12)

3. Asymptotically, the consensus belief is pessimistic, i.e. the average of the individual

beliefs weighted by the risk-tolerance is pessimistic. More precisely,

Oalis + O5lip _ M_} (04— 0p)"o*
04+ 0p 460405 (QA—FQB)'

(13)

15



4. Asymptotically, the risk premium RP (resp. the price) is higher (resp. lower) than

in the standard rational expectations equilibrium. More precisely

0a7i, + 0500 1 (04— 05)° 02
RP = RP" + ( - A ——F B) = RP™ 4 = . 14
0,10, 10405 (04 + 05) (14)

5. Asymptotically, the optimal demands are given by

04 n (0 —0a) o 0B n (04 —03)
04+ 05 4(9,44—03)’ B 04+ 0p 4((914—1-93).

oy =

which means that the volumes of trade (and the risk sharing) are reduced compared
to the standard setting. The more risk tolerant (resp. risk averse) agent selects a

less (resp. more) risky portfolio.

Evolution selects only one belief for each agent and the pair of asymptotic beliefs
corresponds to the unique Nash equilibrium of the game I'. Therefore, the surviving
belief for a given agent corresponds to the belief that would be chosen by the agent under
consideration in a model where such an agent would take into account her/his impact on
equilibrium prices (and therefore on equilibrium utility levels) and would choose her/his
beliefs accordingly.

Note that our construction of evolutionary beliefs leads to subjective and heteroge-
neous beliefs. Indeed, evolutionary beliefs differ from the objective belief, Ann and Bob
differ in their beliefs and, as expressed in Equations (11), belief heterogeneity takes its
roots in the difference in risk-aversion levels. Besides, more than just being "hetero-
geneous", evolutionary beliefs are "antagonistic" in the sense that one of the agents is
optimistic (1; > p) and the other one is pessimistic (1; < p).

With the 2-player game interpretation, the different qualitative results are easy to
interpret.

The pessimism of the more risk-tolerant agent can be interpreted as follows. Suppose
that Ann is more risk-tolerant. When agents only differ in their level of risk-aversion, the
risky asset’s demand for Ann is positive at the equilibrium. Her expected utility from

trade is then decreasing in the price of the risky asset. The choice of a pessimistic belief
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is associated to a lower demand, hence to a lower price and a higher expected utility. The
evolutionary belief balances this benefit of pessimism against the costs of worse decision
making. The converse reasoning applies to Bob, who, at the equilibrium, has a negative
demand in the risky asset and benefits from optimism. In this illustration, the more risk
tolerant agent (Ann) has a positive demand while the more risk averse one (Bob) has a
negative demand. This is due to the fact that both agents are assumed to have the same
initial endowment. When this is not the case, it may occur that the more risk tolerant
(more risk averse) agent has a negative (positive) demand. In fact, the optimal demands
and beliefs appear as linear in the initial endowment and the case with equal endowment
corresponds to the average situation. For instance, in a financial dynamic setting, the
respective levels of wealth of the agents evolve through time and states of the world but
the more risk tolerant agent will be, on average through time and states of the world,
more pessimistic and the more risk averse agent will be, on average, more optimistic.

The positive correlation between pessimism and risk-tolerance might seem counterin-
tuitive because the two concepts (pessimism and risk-aversion) appear at first sight as
closely related. Investing a large amount in a risky asset may result indifferently from
optimism or risk-tolerance. Similarly an entrepreneurial behavior may be explained by
either concepts. However, this does not provide any hint about the complementarity or
the substituability of these two concepts.

As a consequence of this positive correlation between pessimism (optimism) and risk-
tolerance (risk-aversion), the more risk-tolerant will insure the less risk-tolerant less than
in the standard setting, which induces less risk-sharing.

The consensus belief, which is given by the average of the individual beliefs weighted
by the risk-tolerance, is pessimistic. Intuitively, the more risk-tolerant agents make the
market, and the consensus belief reflects the characteristics of the more risk-tolerant.
Since we have just seen that the more risk-tolerant is pessimistic, it is consistent to
obtain a pessimistic consensus belief.

The risk premium is greater than in the standard rational expectations equilibrium,

which is interesting in light of the risk premium puzzle. This is easily understandable,
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since, as we have seen, in equilibrium models with heterogeneous beliefs the risk premium
is higher than in the standard setting if and only if the consensus belief is pessimistic.
The reason why pessimism increases the risk premium is not that a pessimistic agent
requires a higher risk premium. She/He requires the same risk premium but her/his
pessimism leads her/him to underestimate the average rate of return of the risky asset.
Thus the objective expectation of the equilibrium risk premium is greater than the agent’s
subjective expectation, hence is greater than the standard risk premium (see Abel, 2002,
and Jouini and Napp, 2006).

To sum up, our construction of endogenous beliefs through an evolutionary approach
leads to beliefs that are different from the objective belief, heterogeneous, and antagonistic
(one is optimistic and the other is pessimistic). There is a positive correlation between
risk-tolerance (resp. risk-aversion) and pessimism (resp. optimism), which leads to less
risk-sharing and to a higher risk premium.

Our results are robust to variations in the total endowment. At first sight, a negative
supply in the risky asset seems to lead to an optimistic bias. Indeed, in that case, our
evolution process induces an upward bias on the mean of the risky asset distribution but
this corresponds to a pessimistic bias on the total wealth of the economy. The unique
situation where all the effects we exhibited disappear corresponds to the case where there
is no aggregate risk (i.e. when the total supply in risky assets is equal to zero). Indeed,
in such a framework, there is no trade at the Walrasian equilibrium and there is then no

price effect and no utility gain associated to a deviation from the objective belief.

3.2 Numerical illustration

In this section, we provide a simple numerical illustration of how the individual beliefs

converge towards the Nash equilibrium beliefs. Recall that the strategic set of each agent

is the set of measures over B. In order to make things tractable, we consider the case

where B is reduced to 2 points. Since we want to characterize the convergence towards
ey e . ~ o~ 1~ o2

the Nash equilibrium beliefs, we take B = {Ji , fig} with fiy = p — W50 T05) (04— 0p)

~ 0.2
and Jip = 1 — g (0 — 04).-
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We assume that the initial strategy of Ann consists in a weight 74(0) on 7, and
(1 —74(0)) on fig and that the initial strategy of Bob consists in a weight 75(0) on i,
and (1—mp(0)) on fig. Our goal is to characterize the evolution of the pair (w4 (t), m5(t))
and, in particular, to analyze the speed of convergence towards (1, 0) that corresponds to
the Nash equilibrium, i.e. the situation where Ann only plays i, and Bob only plays jig.

If we further assume that m4(0) = 75(0) = (GAGJr—BGB) then the initial average belief of
Ann (Bob) corresponds to the objectif belief 1 and the evolutionary process will lead
them to diverge from the objective belief to their respective Nash equilibrium beliefs.

When Ann choses p, € B and Bob choses uz € B, the average ex-post utility levels

are given by

—50(tas ip) + aalpas ip) (0= p(pas 15)) = 357 @4 (tas )0
Ua(pa, pp) = —exp 9
A
—50(tas ip) + an(pa, i) (1 = P(pas ip)) = 55505 (1A, 1ip)0”
Up(pas ig) = —exp 5

: _ _0a 3] o? _ Ha—P
where, as previously, p(pa, 1ig) = g5 Ha + 705,18 — 555, Qallia ) = 043

and ap(jy, ip) = 0p"Ez". We introduce the following log transformations of U4 and Up

respectively denoted by UY® and U8

1 1
lo
Ui(asip) = —5p(tas ip) + aalpia ip) (1 = plpeas ip)) = Eai(m, 15)o°,
1 1
lo
Up®(ttas i) = —5p(pas tip) + anlteas tip) (1 = plpias ip)) = @a%(m, [ip)o°.

We now extend the domain of U}fg (resp. Ugg) in order to take into account the fact
that Bob (resp. Ann) may play a mixed strategy described by a distribution (75,1 — 7p)
(resp. (ma,1 —m4)) over B. We then have the following natural extended definitions for

log log
U,® and Ug

Uiaog(MA, (5,1 —mp)) = WBUEg(MAﬂA) +(1— WB)U,IL;)g(:uAvﬁB)?

Ugg((ﬂ—A’ - ﬂ—A) 7#’3) = 7TAUgg(ﬁA> [LB) + (1 - WA)UJIE?g(ﬁBv :uB)'
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Let us now introduce the functions V4 and Vp that correspond to the replicator
dynamics (Equations 1 and 2) or, in other words, to the linearization of Equations 3 and

4, for the utility functions UY% and U2, We have

VA(MA»(WBal_WB)) = U}é;)g(:uAa(WB71_7TB>>
— (RAUREGias (75,1 = 7)) + (1 = ma) URE (i, (w5, 1 — 7)) )
Ve((ma, 1 —ma),pup) = Ug¥((ma,1—ma),pp)

- (WBUgg((Wm 1—7a),fig) + (1 —7p) UB(ma, 1 — ma) ,ﬁg)) :

Our evolution equations are then given by

dm ~

—2 = Mu(fig (7p, 1 —7p))dt,
TA

d

5 NVy((ra, 1 —7a), fig)dt.
TR

These equations reflect the fact that the weight on i, increases proportionally to the
difference between the "utility" resulting from playing i, and the average "utility",
where the utility is measured through a mean-variance criterium.

We show in the Appendix that (74, 7p) converges to (1,0) and that the convergence
is exponential.

Let us now calibrate this example. The speed of convergence is directly governed by A
and \'. Multiplying both parameters by 2 permits to converge twice as fast. At this stage
we take A = ) = 1. We discuss at the end of this section how A and A’ could be calibrated
through experimental procedures. Let us assume that the initial wealth of each agent is
$10,000 and that the standard deviation of their gains or losses after 1 year is equal to
$200 (2% of their wealth). We have then u = 0 and o = 200. If the relative risk aversion
is, as usually assumed, between 1 and 10, we obtain that the levels of absolute risk
aversion should be between 1,000 and 10,000. Let us take 4 = 1,000 and ¢ = 10, 000.

The standard risk premium as expressed above is then given by ﬁ = 3.6 which means
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Figure 1: This Figure represents the evolution of 74 and mg when 64 = 1,000, g =
10,000 and o = 200. The starting point (t=0) corresponds to an average belief for each
agent that coincides with the objective belief. The x-axis scale is in months.

that the agents are willing to pay $3.6, at the equilibrium and in the standard setting,
in order to insure themselves against a gain or a loss whose standard deviation is $200.
Numerical simulations give that after 46 months, we have 74(t) > 0.99 and 75(t) < 0.01.
The risk premium is at ¢ = 46 increased by }1% = 7.34 which means that the
risk premium is multiplied by 3. We can check that the risk premium is multiplied by 2
after only 17 months. Figures 1 to 3 respectively represent the evolution of 74 and mp,
of Ann’s and Bob’s beliefs and of the risk premium.

As underlined above, the speed of convergence is proportional to A and \'. Calibrating
these parameters can be done through the following simple experiment. Two agents
(a real one, referred to as the agent, and a computer simulated one) face a market
with one asset whose total supply is 1 and whose final payoff is governed by a normal
distribution N (1*,1). We assume that the risk tolerance level 6 of the agent has already
been estimated and we know that his/her demand function is of the form a(p) = 6 (1 — p)
where 1 corresponds to his/her subjective belief. The agent is asked for his/her demand
if the asset price is equal to p; (let us say p; = 0.3) and for his/her demand if the

asset price is equal to py (let us say ps = 0.7). His/her demand function is then linearly

interpolated from these answers. The intercept of this function with the y-axis reveals the
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Figure 2: This Figure represents the evolution of Ann’s and Bob’s beliefs when 64
1,000, 85 = 10,000 and o = 200. The starting point (t=0) corresponds to an average
belief for each agent that coincides with the objective belief (0 average gain or loss). The
x-axis scale is in months. Bob is more risk tolerant and becomes pessimistic while Ann

becomes optimistic. It is easy to see that the average belief is pessimistic.
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Figure 3: This Figure represents the risk premium evolution when 6,4 = 1,000, 65 =
10,000 and o = 200. The starting point (t=0) corresponds to an average belief for each
agent that coincides with the objective belief. The x-axis scale is in months. The risk
premium is multiplied by 2 after 17 months and multiplied by 3 after 46 months.
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agent’s subjective belief i. The equilibrium price is computed assuming that the demand
function for the simulated agent is d(p) = 6 (i — p) which corresponds to a subjective
belief i and to a risk tolerance level f. The equilibrium price and the asset’s payoff are
then revealed and payments take place. If this sequence is played repeatedly, it is then

possible to observe the evolution of agent’s beliefs and to analyze its speed of convergence.

4 Evolutionary vs "optimal" beliefs

The construction of endogenous subjective beliefs that are solutions of a given utility max-
imization problem has been considered in recent literature by Brunnermeier and Parker
(2005), Gollier (2005), Gollier and Muermann (2010), Brunnermeier et al. (2007). In our
framework, the subjective beliefs are not optimal but evolutionary and asymptotically
strategic. Indeed, they do not result from an individual utility maximization problem but
from an evolutionary process and asymptotically from a Nash equilibrium in which each
agent takes into account the impact of her/his choices on the equilibrium price and allo-
cations. In a non-strategic setting where agents choose their belief in order to maximize
a criterion related to their well-being, we show that the optimal belief must be optimistic
for all agents and that all agents select a riskier portfolio. This result is intuitive whereas
there is no immediate intuition for a given systematic bias in our evolutionary setting.
Let us compare our results with those that are obtained in an optimal framework.
More precisely, adopting the same framework and notations as above, we consider the
following concept of optimal beliefs, which corresponds to a simplified version of Brun-

nermeier and Parker (2005), Gollier (2005) and Brunnermeier et al. (2007).

Definition 4 For a given price p, an optimal belief [1;(p) for agent i is defined as the

solution of

arg o 5, [ (Go-+ st (5 )|

where E; is the expectation operator associated! to the belief yu;.

'More precisely, E; is the expectation operator associated to a probability P; that represents agent
i's belief and under which 7 ~ N (y;,0?).
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The belief ji,(p) is optimal in the sense that it maximizes over the set [H? ﬁ] the
well-being of agent .

The original definition of optimal beliefs introduced by Brunnermeier and Parker
(2005) and further studied by Brunnermeier et al. (2007) and Gollier (2005) considers
a weighted average of the objectively expected utility and of the subjectively expected
utility. Our definition is more simple but it is easy to check that the results obtained
below, under Definition 4, remain valid under the original definition. This will be further
discussed at the end of this section.

We can now define an associated equilibrium concept as follows.

Definition 5 An equilibrium price with optimal beliefs is defined as a price p such that

agents have optimal demands and optimal beliefs and such that markets clear, i.e.

OZA(p, :uA(ﬁ)) + OéB(f)a [LB(?)) =L

Proposition 6 In the setting of the previous section (exponential utility and normal

distributions), we have

1. For a given price p, the optimal belief [1,(p) for agent i solves

max (p—p)°.

ME{gﬁ}

2. If 0,41293 > ﬁ;f, then the equilibrium is characterized by p = i — ﬁ and fi,(p) =

fp(p) = . The agents share the same optimistic belief and the risk premium is

lower than in the standard setting.

O0ap+0pn 2 +
3' If ARTUBH o Hrp

04105  0at05 2

where 64 < Og, then the equilibrium is characterized by

p= MTE, fia(p) = p and fig(p) = 7. The more risk-tolerant agent is the more opti-

Oapt0pn
0A+0p

mistic and the consensus belief 15 more optimistic than the equally weighted

belief 3.

We have then two possible situations but both of them induce an optimistic bias

at the aggregate level. Furthermore, unless baptboli o2 _ utE

170, 2000 =5—, there is no belief
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Aptopp 52 pAR
0a+0p 0a+0p 2

heterogeneity and both agents are optimistic. In fact, even when ’
the more risk averse agent is not truly pessimistic. Indeed, it is easy to check that this
agent is short in the risky asset and is then optimistic with respect to his own allocation,
i.e. overestimates the return of his own portfolio.

. o2 a—p o2 ptp Oap+0pn . .
Notice that for 57— < == and 7%~ # = 7,70, Where Ann is less risk-

tolerant than Bob, there is no equilibrium. A natural extension of the model would
consist in allowing for mixed strategies or for a continuum of agents. We retrieve then an
equilibrium in which a proportion 71 of the agents choose the belief 1 and a proportion
(1 —n) choose the belief fi. For instance, if we assume that the distribution of beliefs is

independent of the distribution of risk-tolerances, the market clearing condition leads to

_ o p+n
e+ (L=n)p - = =5

The proportion 7 is then perfectly determined if f‘;—;i < ﬁ%ﬁ The solution 7 is always
lower than % which means that the consensus belief is always optimistic. This equilibrium
in which each agent is indifferent between two possible beliefs and in which the market
clearing condition imposes the proportions of agents choosing each belief resembles the
equilibrium obtained in Brunnermeier and Parker (2005).

These results are analogous to those of Brunnermeier and Parker (2005) even if in
their case there is no aggregate risk!'2.

We would obtain the same kind of results if we considered a weighted average of the
objectively expected utility and the subjectively expected utility as in the original model

of Brunnermeier and Parker (2005)

e {98 [ (o + o) G =) | + 0= 98 [us (o + o G- ) |}

H €K

For ( large enough, in other words when the weight on the objective expectation

12In this case, there is no absolute concept of optimism or pessimism and both agents are optimistic
with respect to their own equilibrium allocation.
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is beyond a given threshold, then the agents share the same belief and this belief is
optimistic. Otherwise, there is not a unique optimal belief, agents have extreme beliefs
(i.e. p or fz), but the possible equilibria still lead to an optimistic average belief'?. In
all cases, the average optimal belief is optimistic leading to a lower risk premium. These
results are similar to those obtained by Gollier (2005) in a general discrete distributions
setting.

To conclude, in the optimal setting, agents’ beliefs are always optimistic (with respect
to their own allocations) and the risk premium is always lower than in the rational
expectations setting. Furthermore, except for specific degenerate situations (see Equation
15), the agents share the same belief. The difference between optimal and evolutionary
beliefs is now clear, since in the latter setting, there is belief heterogeneity, one agent is

optimistic while the other is pessimistic and the risk premium is higher.

5 The general case

The purpose of this section is to analyze the robustness of the results of Section 3 to more
general utility functions and distributions. In particular, we show that even with more
general assumptions, the game I' associated to our evolutionary process admits Nash
equilibria that have the same qualitative properties as those exhibited in the exponen-
tial /normal framework.

For this purpose, we consider a family of beliefs (PZ) corresponding to the

ue[g,ﬁ] ’
possible subjective distributions for z. We may assume without any loss of generality
that the objective distribution corresponds to ;= 0. We further assume that 0 € [H? ﬁ] ,
i.e. the objective distribution lies in the set of possible/plausible beliefs for the agents.
In the next, we also assume that all the considered expectations exist and are finite.

For n € M, ﬁ] , we let f(.,p) denote the density function of P with respect to the

Lebesgue measure on R, and we let E* denote the expectation operator under the density

13More precisely, for 8 < %, the agents have extreme beliefs, p or 7i, as above and there might exist
equilibria with heterogeneous optimal beliefs if the model parameters satisfy a condition like Equation
(15). For 8 > %7 i.e. when there is more weight on the objective expectation, and if z is sufficiently large
(z > 1* for some ") the agents share the same belief and this belief is an interior point of M, ﬁ] . For
b= % or for T < * the agents share the same belief 7.
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f(, ), ie. E*[g = [ g(s)f(s, p)dz. We will simply denote by E (instead of E?) the
expectation operator associated to P2.

As in Section 3, our economy is composed of two agents, initially endowed with a half
unit of the risky asset £ and we consider the game in which these agents can manipulate
their beliefs and choose an optimal composition of their portfolio, taking into account the
effect their trading has on price.

We make the following assumption.

Assumption (A)

e The utility functions us and up are increasing, strictly concave and twice continu-

ously differentiable on R,
e Inada conditions: u}(0) = 400 and lim,_, u}(z) = 0,

e The family (P7) is increasing in the sense of the first-order stochastic domi-

1€ ]

nance, i.e. for all z > 0 we have [ f(s, u)ds > [ f(s,p/)ds for p/ > pin [p, 1] .
e The functions s — su.(s), ¢ € {A, B}, are increasing.

The first condition is standard. The second one guarantees interior solutions to the
individual portfolio choice problem. The third condition ensures an order on the set of
admissible beliefs. The setting of Section 3 satisfies this condition. More generally, any
family of beliefs (P% )u6R+ such that f(s,u) = g(s— p) for a given distribution function g
on R, satisfies this monotonicity condition. Another example is provided by a family of
log-normal distributions, (InN(u,0?)) . The fourth condition guarantees that a first-
order stochastic dominance shift in the risky asset’s payoffs increases the demand for the
risky asset (see Gollier, 2001). The same portfolio property can be obtained without this
condition if we replace the first-order stochastic dominance of the third condition by the
monotone likelihood ratio order (Landsberger and Meilijson, 1990).

Let us first determine the Walrasian equilibrium characteristics. For a given belief PZ

and for a given price p, the demand function of agent ¢ for i € {A, B}, is given by

1
ai(p, p) = argmax B |u;(3p + (¥ — p))
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For a pair of beliefs (4, p5), the equilibrium price p(py, it5) is determined by the
market-clearing condition ca(p(pa, pp), 1a) + aB(P(1a; 1p), 1) = 1 and the associated
optimal demand for agent 7 is defined by o (14, tg) = i (p (pa, i), p;).- The Walrasian

equilibrium utility level for agent 7 is then given by

Uilpas 1) = B |y (o) + 03 s i) & = p ()| - (16)

Proposition 7 Under Assumption (A),

1. The functions a;(p, 1), p(uA,uB) and (4, pig) are well defined and satisfy 80‘1( ) <

0

o 0
L% (p, ) >0, 22 >0, Gk ,aﬂ

L <0,i€{A B}, j#i.

2. If the game T' = (B,B,U4,Ug), with B = [H’ ﬁ] , admits an interior Nash equi-
librium (fiy, fig), i.e. a Nash equilibrium such that fi; € (ﬁ, ), then one of the

agents (agent i) is pessimistic and the other one (agent j) is optimistic and we

have o (fi4, fip) < < aj(fig: fip)-

3. If one of the agents (say Ann) is more risk-averse than the other one in the sense
of Arrow-Pratt, then o (fiy, i) < , and there is a positive correlation between

pessimism and risk-tolerance.

4. If the game T = (B, B,Ux,Ug) admits a unique interior Nash equilibrium (fi4, [ip)
and if the functions Uy and Up have increasing differences, i.e. U; (py, py) —

Ui (pas tg) > Ui (i p1p) = Ui (tra, pig) Jor all gy > puy and pig > i, then the evo-
lutionary process defined by (3) and (4) converges to the pair of Dirac distributions

((511,4 ) 6113) :

As far as the Walrasian equilibrium is concerned, we obtain first that the optimal de-
mand of the agents (as a function of the price and the belief) increases with the belief and
decreases with the price, which are natural properties. As a consequence, the equilibrium
price increases with the beliefs, which is also natural; if the asset is more “desirable”, its
equilibrium price increases. An increase in the belief of agent ¢ has then two effects on

her/his demand o] at the equilibrium, a direct positive effect and an indirect negative
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effect due to the price increase. The global effect is positive. The effect of an increase of
the belief of agent 7 on the equilibrium demand o of the other agent is negative because
there is only one effect, namely the price effect.

We obtain that the heterogeneity of is robust to the choice of more general utility
functions and distributions. Moreover, as in Section 3, one agent is optimistic and the
other agent is pessimistic. The pessimistic agent is the one for which the net demand is
positive. This result can be explained as before. For the agent who expresses a positive
net demand for the risky asset, a pessimistic belief is associated to a lower price and a
higher expected utility; the evolutionary belief balances this benefit of pessimism against
the costs of worse decision making. The converse reasoning applies to the other agent,
who, at the equilibrium, has a negative net demand in the risky asset and benefits from
optimism.

The positive correlation between pessimism and risk-tolerance is also robust to this
more general setting. When one of the agents is more risk-tolerant, her/his net demand is
necessarily positive. Otherwise, she/he would have a negative demand which would lead
to an optimistic belief while the other agent would be pessimistic, more risk-averse with
a positive net demand. This is obviously impossible. The positive correlation follows.

These properties are then satisfied at any interior Nash equilibrium of the game
I' = (B,B,U4,Up) and, in particular, at any Nash equilibrium of the game I'* =
(R,R, Uy, Up).

Additional assumptions about the structure of the game are needed in order to char-
acterize the asymptotic behaviour of the evolutionary process. Exploring the conditions
under which the game I'" admits a unique Nash equilibrium or the conditions under which
U; has increasing differences goes beyond the scope of this paper. However, if such con-
ditions are satisfied then the evolutionary process converges to a pair of heterogeneous
and antagonistic beliefs that are positively correlated with the level of risk aversion when

the utility functions are well ordered with respect to this criterion.
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6 Extensions of the model

In this section, we analyze the robustness of our results (heterogeneity of beliefs, pos-
itive correlation between pessimism and risk-tolerance in the game I', convergence of
the evolutionary process to the Nash equilibrium of the game I' and, in the exponen-
tial utility /normal distributions setting, aggregate pessimism and higher risk premia) to
other specifications of the model. In previous sections, agents modified their beliefs in
order to favor the most rewarding beliefs in absolute terms. We may also consider the
situation where the agents favor the more rewarding beliefs in relative terms, that is to
say those beliefs that permit to perform better than the other agents. Until now, we
have analyzed beliefs evolution when the set of possible beliefs is ordered for first-order
stochastic dominance shifts. Such shifts correspond to changes on the mean for normal
distributions and more generally can be interpreted in terms of optimism and pessimism.
We can also be interested in beliefs evolution when the set of possible beliefs is ordered
for mean preserving spreads. Such spreads correspond to changes on the variance for
normal distributions and more generally can be interpreted in terms of overconfidence
and doubt/underconfidence. For tractability reasons, we will analyze this impact in an
exponential utility and normal distributions framework (as in Section 3). We will also an-
alyze, in an analogous framework, if our results are robust to the introduction of multiple

sources of risk.

6.1 Comparing with the other agents

Let us consider the situation where the agents watch each other and compare their utility
level with the utility level of the other agent. We analyze the asymptotic behavior of a
beliefs dynamics based on the rule of thumb that consists in favoring those beliefs that
permit to reach a utility level that is higher than the utility level of the other agent at
the expense of those beliefs that lead to a utility level that is lower than the utility level
of the other agent.

In fact, it suffices to consider, as previously, dynamics that favor high utility level
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beliefs at the expense of low utility level beliefs when the utility functions Uyx(vy,6) =
Jua(v,0,%)dP and Ug(v,0) = [ugp (v,0,T)dP are replaced by the comparative utility

Ua (770

functions U (v, 0, z) = m and Ug(r, 0, z) = L200)

Ua ('770) ’

The same reasoning as above permits to show that such a dynamics converges to
the Nash equilibrium of the game where Ann and Bob are endowed with the functions
U (7,0) and Up (7, 0). Under the specifications of Section 3 about the distribution of @

and about u4 and up, we obtain

Proposition 8 Let us consider a model with two agents, exponential utility functions
and a risky asset T ~ N (u1,0?) and let us assume that the possible beliefs are of the form

T~ N (i, 0%) with (' € B= [p, 1] . We have

1. For given initial distributions Ty and ©¢ in A(B) with full support over B, any
dynamics that favors, for each agent, beliefs that lead to higher utility levels with
respect to the other agent converges to a pair of Dirac distributions ((5,7 K (5,73) where

(Jig, Jig) is the unique Nash equilibrium of the game I = (B, B,U4,Up).
2. The surviving beliefs (i, fig) are given by

1

~ 1,4,
0503 (0n —04) 0%, iy =p— 0505 (0 —00)0®  (17)

fa=p+
Asymptotically, the more risk-tolerant agent is pessimistic, in the sense that she/he

behaves as if the mean of T lied below its true value, and the less risk-tolerant agent

18 optimistic.

3. Asymptotically, the consensus belief is pessimistic, i.e. the average of the individual

beliefs weighted by the risk-tolerance is pessimistic. More precisely,

Oapis+0plig I (04— 93)2 2
s S = S . 18
0.+ 0p N 10405 (041 05)° (18)

4. Asymptotically, the risk premium RP (resp. the price) is higher (resp. lower) than
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in the standard rational expectations equilibrium. More precisely

Oafin + OBJi 1 (64 —0p)° 02
RP = RPstdd < _ VAMA B) _ RPstdd - ] 19
T e, 0, T 10a05 Oar0p) Y

Remark that the average belief % is now equal to u; however the consensus belief
remains unchanged with respect to the situation where each agent favors those beliefs
that lead to higher utility levels in absolute terms (Equations 13 and 18). For the same

reasons, the impact on the risk premium is also unchanged (Equations 14 and 19).

6.2 Disagreement on the variance

The model is the same as in Section 3 except that the beliefs are now about the variance
of . Our aim is to analyze how these distributions evolve through interactions between
the 2 groups and through the evolutionary Equations (3) and (4) introduced above. The
payoff of the risky asset 7 is still normally distributed with mean p and variance o2 and
the set of beliefs is parametrized by o € B = [0, 7] . With this parametrization, an agent
who has a belief o; € B believes that z is normally distributed with mean ;1 and variance
o2

The Walrasian equilibrium characteristics are determined as follows. If Ann has a
belief 04 and Bob has a belief op, then the optimal demand of agent ¢ is given by
a; (p,o;) = (91-“0—?’ and the market clearing price is given by p (04,05) = p— (i—% + ﬁ—g;) B )
The bias with respect to the objective belief can here be interpreted as a form of
doubt /underconfidence (o; > ) or overconfidence (¢; < o) instead of the pessimism/optimism
biases'* of Section 3. Note that the obtained equilibrium price corresponds to the equi-
librium price in an economy in which agents share the same belief, namely an harmonic
average of the initial beliefs, weighted by the risk-tolerance!®. In this setting, the equi-

9A

—1
librium risk premium is given by y — p(ca,05) = (9—9 + Z—?) , which means that the
B

14See Abel (2002) for concepts of pessimism and doubt related to first and second order stochastic
dominance.

15Walrasian equilibrium models in which agents have heterogeneous beliefs on the variance of the
asset under consideration have been studied by, among others, Abel (1989, 2002), Duchin-Levy (2010),
Fama-French (2007), Jouini-Napp (2006) and Yan (2010).
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risk premium in an economy with heterogeneous subjective beliefs is higher than in the

standard rational expectations setting if and only if the consensus belief exhibits doubt

(i.e., (% + i—‘i)’l > 9;:93 ). The Walrasian utility levels are then given by

1

U(oa,0p) = E {Uz {§p(UA,UB> +{Z—ploa, o)} a; (UAaUB)H ’

where o (04,05) = a; (p(0a,08),0;).

With these specifications and for given initial distributions Ty and ©g with full support
over B, the selection dynamics given by (3) and (4) is fully described. The game I' =
(B,B,Uy4,Ug) is also fully described.

Proposition 9 1. For any initial distributions Yo and ©¢ in A(B) with full support
over B, the evolutionary process converges to a pair of Dirac distributions (05 ,,0z)

where (04,05) is the unique Nash equilibrium of the game I' = (B, B,Ux, Up).

2. The asymptotic beliefs (0 4,08) are given by

0, —0 05— 0
52 —g2 (142478 62 =2 (142274, 2
oy=0 ( + 10, , op =0 + 10, (20)

The more risk-tolerant agent exhibits doubt, in the sense that she/he overestimates

the variance of x, and the less risk-tolerant agent is overconfident. Moreover, the
more risk-tolerant agent exhibits more doubt than the less risk-tolerant agent exhibits

overconfidence, and the unweighted (harmonic) average of the beliefs exhibits doubt:

1 1\ 04— 0p)
2(34‘3) 20'2 1+ 2(A2 B) . (21)

3. The consensus belief exhibits doubt, i.e. the harmonic average of the individual

beliefs weighted by the risk-tolerance exhibits doubt. More precisely,

0 05\ " 3(04—0g)*
(9A+HB)(§+§) :02<1+M>.

oy 0p 1604605
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4. The risk premium (resp. the price) is higher (resp. lower) than in the standard

rational expectations equilibrium. More precisely

00 05\ " o? 3(0a— 93)2
RP — RPstdd A b5 o — RPstdd 2.
- ((ag * 023) 0.+ 05 T 160,05 04 +05)°

We then retrieve the same properties as in Section 3 except that pessimism is replaced
by doubt. Note that behavioural studies in a non strategic and non market context
generally exhibit overconfidence instead of doubt (Shiller, 2000, p.142). The evolutionary
framework induces then an effect in the opposite direction and this might explain that
Giordani and Soderlind (2006) “find little evidence of either overconfidence or doubt” in

the survey of professional forecasters.

6.3 The model with two sources of risk

The model is essentially the same as in Section 3 except that we now suppose that there
are two sources of risk in the economy, whose associated payoffs at the end of the period
are respectively denoted by = and y. We let p (resp. ¢) denote the price of = (resp. ¥)
and we assume that 7 and ¢ are normally distributed, more precisely & ~ N (i, 0?) and
7y ~ N (v,@?). We let p denote the correlation between T and 7, i.e., p = % Each
agent is initially endowed with one half unit of each risky asset.

We assume that the set of possible beliefs is given by B = M, ﬁ} X [v,7]. For a given
belief (;, ;) for agent ¢ and for a given price system (p, q), it is immediate to show that

the demand functions a; and 3, respectively in the first and the second asset are given

by
. Ly = g timp Wi a)p
C(’L(p7 (:uz? 1)) 91 0_2 (1 . p2> ezo_w (1 . )02)’ (22)
W o o vi—a o (—p)p
/Bl(p7 (:uzu V”L)) - 01@2 (1 _ p2> elo_w (1 _ p2) . (23)

The Walrasian equilibrium price system (p((14, v4) s (1 V), 4((14s V) » (1355 v5))) s

determined by the market-clearing conditions aa(p, (f14,v4)) + as(p, (tg,vE)) = 1 and
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Balp, (a,va)) + Bg(p, (g, v5)) = 1, which leads to an equilibrium price for the first

(second) asset that only depends on agents’ beliefs about that asset

Oapis +0ppup 0> +owp

, = — , 24

p(as 1) 7 7 (24)
Oava + Opr w? + ow

Q(VA7VB) _ Vava - BVB - P. (25)

From Equations (22) to (25), we derive easily o, af, 5% and 5% the optimal quantities
of assets at the equilibrium.

The Walrasian equilibrium utility level for agent ¢ is then given by

Ui((pa,va), (pp,vB)) = B ui(%p (f1a, ip) + 1q (va,vB) +ai(T —p(pa, pp)) + B; (¥ —q(va,vp)))

2
(26)

Proposition 10 1. For any initial distributions Yo and ©y in A(B) with full sup-
port over B, the evolutionary process converges to a pair of Dirac distributions
(6, 54), Opis)) where (Tin,Va), (Hip,Vp)) is the unique Nash equilibrium of the

game I' = (B, B, Ua, Up).

2. The beliefs (1i;,Vi);_ 5 p are given by

Q= — (0; —Hj)(JQ_Jr O'WP>7 5= v (0; — 65) (wf—l—o'wp)'
40,0 40,0

3. The risk premia (resp. the prices) are given by

1(04—05)° (0® + owp)
4 04050
1 (04 — 05)* (= + o)
4 0.050

p—p = RPM(T)+

v—q = RPStdd(m—f-

where RP$"4(Z) and RP*'%(3) denote the standard risk-premium for T and y in
an homogenous beliefs setting. The risk premium on T (resp. y) is higher than in

the standard setting if and only if cov(Z,T 4+ y) > 0 (resp. cov(y, = +7y) > 0).
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As far as the market portfolio (T + ¥) is concerned, the market risk-premium RPY

and the beliefs ¢€M on the average market return are given by

: 10,0

~ 1<9A—93)20'2
RPM — Rpstdd 74 4+ = ) M
( v 4 04050

where ¢ = 1+ v and 03, = @w? + 2pow + o

correspond respectively to the objective
market portfolio return and variance. These formulas are exactly the same as in the one
asset framework which means that the more risk tolerant (risk averse) agent is pessimistic
(optimistic) at the aggregate level and the consensus belief is pessimistic at the aggregate
level. The formulas for individual assets that are provided in the proposition are similar
to those obtained in the one asset framework. However, for each asset, the variance term
in the one-asset formula is replaced by the covariance of the considered asset payoffs with
the market portfolio payoffs. Recall that in the CAPM setting, the equilibrium price
for a given asset depends on the covariance of the payoffs of this asset with the payoffs
of the market portfolio and not on the total variance of the asset payoffs. Since beliefs
evolution is directly related to price formation, it is natural to obtain optimal beliefs that
depend on the covariance with the market portfolio and not on the total variance. The
aggregate level properties (pessimism, correlation between pessimism and risk tolerance,
higher risk premium) are then retrieved at the individual assets level as far as these assets
are positively correlated with the market portfolio.

It is interesting to note that these effects are more pronounced for the riskier asset.

Intuitively, the evolutionary behaviour leads to more beliefs dispersion for the riskier asset

and hence to a more pronounced impact on the market for the riskier asset.

7 Conclusion

The introduction of an evolutionary framework for belief formation provides a rationale

for belief heterogeneity; an evolution process that favors the most rewarding beliefs leads
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to beliefs that are subjective, heterogeneous and antagonistic. The selection of evolution-
ary beliefs is governed by very precise rules. These beliefs must be related to the individ-
ual level of risk-aversion: the beliefs of more risk-averse agents exhibit optimism and/or
overconfidence and the beliefs of more risk-tolerant agents exhibit pessimism and/or
doubt. As a consequence, there is a positive correlation between pessimism/doubt and
risk-tolerance. In a setting with exponential utility and normal distributions, the average
belief exhibits pessimism and/or doubt as well as the consensus belief. This is compatible
with the observation that subjects in experimental and empirical studies exhibit a dose
of pessimism (Wakker, 2001, Ben Mansour et al., 2006, Giordani and Séderlind, 2006).
This induced pessimism/doubt of investors leads to higher risk premia, which is interest-
ing in light of the equity premium puzzle (Mehra and Prescott, 1985). In the insurance
industry, our results lead to a situation where the more risk-averse agent (the insured) is
optimistic and the less risk-averse agent (the insurer) is pessimistic. The average belief
is pessimistic leading to a higher insurance premium, which might help to explain the
purchase of vastly overpriced insurance in a range of situations (Cutler and Zeckhauser,
2004). In corporate finance, IPOs can be modeled as a decision for a risk-averse entre-
preneur to sell shares of her /his firm to more risk-tolerant investors. The application of
our results to such a setting leads to a pessimistic consensus belief. As a result, the firm
is underpriced and the short run return is large, which is consistent with the empirical
literature on IPOs (Ibbotson and Ritter, 1995).

Obviously, we do not pretend that evolutionary features, such as in our simple model,
are the unique explanation for these puzzles, however, it is interesting to remark that our
approach helps to explain these puzzles as well as belief heterogeneity without introducing
any information asymmetry nor principal-agent features.

This work suggests further investigation in two main directions. First, in this paper
we have let aside information asymmetry and heterogeneity in order to focus on the im-
pact of market interactions on individual beliefs and from there on equilibrium prices and
allocations. It would be useful to consider a more general model including a strategic

use of private information combined with an evolutionary framework for belief formation.
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Second, we have only considered totally ordered families of possible subjective distribu-
tions for the risky asset payoffs. In particular, all beliefs deformations can be interpreted
in terms of pessimism/optimism or in terms of doubt/overconfidence. It would be in-
teresting to consider more general possible deformations of the objective distribution in
particular in terms of higher order moments (as skewness and kurtosis).
Appendix
Proof of Proposition 3

2. Let us first analyze the game I'. The expected utility of agent ¢ at the Walrasian

equilibrium, given the belief y; of agent j, j # 4, can be written

Usir i) — E{_exp (_%p(quB)+ai(uAéiuB)(5—17(#/4,#3)))]
(s ) + i (i) (=D (pas i) 1 (i (pas i)\ s
el () )

where «; (4, fig) = in. We now have an explicit expression for the utility level
functions of both agents. The problem of agent i is then to maximize this utility level
with respect to j;, the strategy ju; of the other player being given.

Maximizing U; (4, ptp) with respect to p; amounts to maximizing

1 11 9

WiGpras 1) = 50 (1as ) + 0 (s o) (0 = 0 Gias 1)) = 5 5= (@ (s 1))” 0™
This program is concave and the maximum is reached for p,; such that % (u;) = 0.
This corresponds to the best response BR; (uj) of agent < when agent j plays p; and we

have
200; (04 +0p) + 20,01, + o2 (6, —6;)
BR: (k) = 40,0, + 207 :
iYi i

(27)

We then solve for (fi4, ji5) such that BR4 (fig) = iy and BRp (ji4) = lig. We obtain
Equations (11).
1. Let us now prove that this unique Nash equilibrium characterizes the limit of our

evolutionary process. First, let us show that the set of strategies surviving iterated strict
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dominance in the game I' is reduced to the unique Nash equilibrium exhibited above. It
is equivalent to prove this result for the game I' or for the game T defined by the same
strategic sets as I' but with functionals W, and Wg instead of U, and Ug. It suffices
then to show that I' is a supermodular game (see e.g. Milgrom and Roberts, 1990, or
Fudenberg and Tirole, 1991). Since our strategic sets are compact and our functions are
continuous, it suffices to check that W;(p 4, 115) has increasing differences in (1 4, pg), for

i € {A, B} or equivalently that (f4, tg) > 0. This is immediate.

au au

Let us show now that any strictly dominated strategy is eliminated by the evolution
process.

Let us consider uy that is stricly dominated by x4 from Ann’s point of view. This
means that Uy (py, pg) < Ua(py, ug) for all pg. We have then for every distribution ©
over B, [Ua(pip, pig)d® < [Ua(pty, ip)d© and then Vy(uy, ©) < Va(py, ©). Since B is
compact, A(B) is compact with respect to the weak-topology. We have then V(1 4, ©) +
k < Va(p'y, ©) for some k > 0. Let us now consider some open subset A (resp. A’) of B

containing /i, (resp. p/y) such that Vi(u, ©) + 5 < Va(i/,©) for all (u, ') € B x B and
all © € A(B). We have

gln (Tt(A)) _ JaVa(y,©)dYs [y Valy, ©)dY, 3 k
dt T, (A) T (A) T (A) 5

which gives that (( T 0 and then Y;(A) — 0. For each strictly dominated strategy

[y, there exists then an open set A such that u, € A C B and such that T;(A) — 0.
Adapting the proof of Theorem 1 in Heifetz et al. (2007b) to non-symmetric functions, we
obtain that the asymptotic distribution concentrates all the mass on the unique strategy
that is not eliminated by iterated strict dominance, that is to say i4.

3. and 4. Straightforward using Equations (11). B

Proof of the results of Section 3.2
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The evolution can be rewritten as follows

d’/TA
7TA(1—7TA)
dﬂ'B

71'3(1—7'('3)

= (Walia, (75,1 = 7)) = Wallip, (75,1 = 735))) dt

(Wp((ma, 1 —ma),1ig) — Wa((ma,1 —7a) , 1ig)) dt

and after computations

dma _ 1 (204+0p+2mp04) (O — 0.4)% o2dt
7TA(1—7TA) 32 (9A+QB)2‘9A9B b 4 7
drp _ 1 (2map — 405 — 04) (05 — 0.4)2 %t
TR (1—71'3) 32 (QA—{—QB)z@AQB b 4 '

Remark that if we introduce 7% = 1 — mp, the system (w4, 7};) satisfies

dma 1 (404 +0p —217304) (O — 0,)° ot
_— = — B — )
(1—ma)7a 32 (Aa+605)° 0405
dr, 1 (40p+04—2mab5) (O — 0.4)% o2t
T _\% — =29 B '
(I=mp) s 32 (0a+05)" 0405
Since 74, mp and 7} are in [0, 1], the growth rate of 722 that is given by % In 72 =
i , - (204465) 2 N,
g 15 bounded below by K = g5 2028l (05 — 04)° 0* > 0. A similar bound

is obtained for 77;. Both lfA(t) and fz’ft) are then increasing and converge to oo which
wA(t) 1-m5(t)
gives that (w4, 7p) converges to (1,0).

Furthermore, we have

Al o mal0)
1—71',4(75) 1—7TA(0)
which gives
1= mat) < — A0 K.
- 1- WA(O)

The convergence of 7 4(t) towards 1 is then exponential and so is the convergence of 7% (t)
towards 1 or equivalently the convergence of mp(t) towards 0. B

Proof of Proposition 6

The utility level of agent ¢ is given by E; [u; (p + au(p, 1) (T — p)))] with oy (p, p1;) =
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2
=P (i —p)
07 0.

= the agent maximizes

When p > Egi, all the agents have the same belief y and the equilibrium price, if it

exists, must satisfy p = p — 9,4% which is not compatible with the condition p > =~ ”W
When p < H%ﬁ, all the agents have the same belief 7 and the equilibrium price if it
exists, must satisfy p = — OA +9 which is compatible with the condition p < ££ only
if 5 > —=. When p = =~ both agents may choose the same belief 1z leading to an
equlhbrlum only if ; +9 = % They may also choose different beliefs. If Ann (Bob)

chooses p (resp. 71), the market clearing condition leads to

Oap+ O0ppt 2 +n
ApTUBH T _ K lﬁ. (28)
0a+0p 04+ 0 2

Ifu—* and9A<GB,the 92&12§ﬂ>u.l

Proof of Proposition 7
1. It is well known that due to Inada conditions, the demand function is characterized

by the following first order condition

B | (&~ p)ul(ou(p, m)( ~p) + 5p)| =0

and the partial derivatives of a;(p, 1) with respect to p and u are given by

ou )y = B [(5 — ailp, ) (@ = p)ui(elp, 1) — uilelp, )]
op Er[(T — p)ui(c(p, 1)) ’
Ju; %E“ [(x - p)u (c(p, 'u))]‘(u,pvai(nu))
WM = TR G- R

with ¢(p, 1) = a;(p, 1) (& — p) + 3p. Letting ¢ denote ¢(p, p), remark that

”{@—%@Mﬂ@—@M@—%@}ﬂWLM®—aﬁa+§w@

8011

Hence, 74 (p, p) is negative. Furthermore, (& — p)uj(c) = (pu cu'(¢) — 2a u'(¢) and

is then increasing. By the first-stochastic dominance property, we have %O” (p, u) > 0.
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We have then )
op g (P, 1)

O 85—,54(]97 fha) + %X_f(pa 1g)

hence 88—7’ >0,i1=A,B.
i
s da;
For i : h Oai(pakp) _ dai(pysy) | Oai(ppy) Op %(p’“i)aipj(p’“j)
or i # j, we have o = o op B — Paa dag >
i i g “on (Ppa)+ =5, (P1p)

2. If the game I has an interior Nash equilibrium (/i 4, ji5), the first-order condition

for agent i at (fi4, /1) gives

B|GEG -+ (5-at) fonitai -+ o] =0
If % — aj(fta, ftp) < 0O then (% - O‘f(ﬂA,ﬂB)) % < 0, hence E[(Z —p(fig, fip))ui] >
0. As previously, by the first-order stochastic dominance property we obtain f; < 0.
Analogously % —af(fuy, 1) > 0 leads to i; > 0. We have then proved that the agent for
which o (fiy, fig) > 5 (vesp. o (jiy, fip) < 3) is pessimistic (resp. optimistic).

3. If one of the utility functions (let us say u4) is more risk-averse than the other one
in the sense of Arrow-Pratt, let us prove that o (fis, fig) < 3. If this is not the case, we

have o (fiy, fig) < % and Bob is optimistic while Ann is pessimistic. We have then

1 S . R .
5 < aa(p(fia,itg),ita) < ap(p(ita,itg) ;ita)

because Ann is more risk-averse. Furthermore we have ag(p (fi4, fig),fia) < ap(p (fig, ig), fig)
because i is larger than ji,. We would have then af(jiy, fig) > % which contradicts our
assumption.

4. See Proof of Proposition 3 (point 1). B
Proof of Proposition 8

Let us consider the game where Ann and Bob are endowed with U 4 and U . We have

UA(MAaMB) = eXp(WB(IMAaﬂ'B)_WA(/J’AnuB))

UB(MA:MB) = eXP(WAWAyMB)_WB(MAaMB))
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where W, and Wp have been introduced in the proof of Proposition 3.

If we solve for Wa — Wn —

s s 0, we obtain i, = u + 56;9;1 (0p —04)0? and fig =

p— 30505 (05 —04) 0% M
Proof of Proposition 9

2. Let us first characterize the Nash equilibrium in the game I'. Agent ¢ maximizes

1 11
Wi(oa,08) = =p+a; (n—p) — =7 (@)’ 0”
2 20,
~1
with respect to o; where p and «; both depend on o; and are given by p = p— (ﬁ—g‘ + 3—‘3)
A B
and Q,; = 91 ,uo-;p'
! -1
This problem is concave in (g—é + §—§> . Setting Ccll‘g/? (G4,08) =0 leads to
A B g
2 1 /06,
~2 2 i~2
2 - — | =257 ). 29
o; 30 + 5 (Qjaj> (29)

The resulting beliefs are then given by Equations (20). Equation (21) follows.

0a—05\ [ 494 \| 0a
493 93—0A B HB

the more risk-tolerant agent exhibits more doubt than the less risk-tolerant agent exhibits

Since

overfidence.

1. In the "disagreement on the variance" case, the game is not supermodular. How-
ever, as in Section 3, the set of strategies surviving iterated strict dominance is reduced
to the unique Nash equilibrium exhibited above. Indeed, let us denote by [o%*, 54| the
set of strategies surviving after n rounds of strict dominance (these sets are constructed
by induction and the construction will be clearer at the end of the argument) and let us

denote by

2 170
Q2Bn+1 = argmaXAQ (gin,O'B) = \/50-2 + § <£ (ggn)2

2 170
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It is immediate that 05" < &5 "', Let us show that when o4 € [0c%,5%"] any strat-
egy for Bob that lies outside [J2B"+1 E%"H] is stricly dominated by a strategy inside
this interval. For a given o4 € [0%",5%"], the function Wg(04,05) is increasing until
\/§02 + 3 (z—’j (O’A)z) and then decreasing. Since \/302 + 3 (g—ﬁ (O’A)2) € [o opt

2n+1

2n+1)

this means that, for any op < g%, we have Wg(o4,05) < Wg(oa, and op is

2n+1

then strictly dominated by g% ™. Similarly, any op > 75" is dominated by a5 . The

set [ 22 E?A””] is constructed similarly switching the roles between Ann and Bob. We
have then decreasing sets of surviving strategies and it is easy to show that, at the limit,
we must have ¢ = \/ o2+ 1 ( (O'A)2> and 0% = \/ o2+ 3 ( (c%) ) We know

from 2. that these equations in (¢, ¢%) admit a unique solution (4,0 ) and we have

then 0% = 04 and ¢ = op. The same argument gives us 7y = g4 and 7y = op and
the set of surviving strategies is reduced to (G 4,05) -

3. and 4. Straightforward using Equations (20). B
Proof of Proposition 10

2. In the setting of the proposition, agent ¢ maximizes

1 1 11
Wi (ba,va, g, vB) = =p+ai (u—p)+ 5q+8; (v — ¢) — = (alo? + Bi@® + 20,8,0w0p)

2 2 20,
with respect to (p;,v;) taking (,uj,yj) = (ﬁj,ﬁj) , j # 1, as given. The maximization
programs under consideration are concave. Setting ‘fm = CQ/VV =0, for s = A, B, leads to
2= (6; —0;) (02_—1- awp)’ 5=y (0; — 0,) (= + owp)

46,0 40,0

which is the unique Nash equilibrium. We then conclude as in the proof of Proposition
3.

3. Straightforward using 2.

1. Let us show that the game I' where Ann chooses her strategy b* = (114, 74) in her
strategic set B = m, ﬁ] [v,7] and Bob chooses his strategy b® = (ug,vp) in the same
strategic set, is a supermodulat game when B is endowed with the natural partial order

= defined for b = (u,v) and O’ = (¢/, ') by b < ¥ if u < y/ and v < /. For this purpose,
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it suffices to check that W;(b*,b?) has increasing differences, i.e. for all ¥, > b, and

by > bp we have W;(by, b)) — Wi(ba,by) > W;(by,bg) — Wi(ba, bg). Easy computations

: 2w, 2w, 2w, 2w, sl :
give us -5 > 0, Bvon; > 0, 0w, and i > 0 which is sufficient to prove that

W; has increasing differences. The rest of the proof is similar to the proof of Proposition

3.
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