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1 Introduction

This paper seeks to assess the quantitative impact of ambiguity on financial asset returns

and prices, in particular, their dynamic paths as observed in history. Ambiguity refers to

uncertainty about the "true" probability distribution governing future consumption and

dividend outcomes. The decision maker’s ambiguity attitude determines how and to what

extent such uncertainty affects her choices (e.g., whether she is averse to such uncertainty

and if so, the level of aversion). Our goal is two fold: to connect the (macroeconomic)

uncertainty as it obtained on the path of history to the movements in asset returns and

prices along that path and to assess, quantitatively, the role of ambiguity sensitivity in that

connection. To serve these goals we incorporate two components in our analysis. One,

the (dynamic) ambiguity variable we construct as the key explanatory input is explicable

in terms of the conditional uncertainty obtained at information sets along the path of

observations of historical macroeconomic growth rates, as opposed to counterfactual,

simulated sample paths. Two, our model of agent’s preferences departs from standard

expected utility by simply allowing for ambiguity sensitivity; take that away, you get back

to expected utility. These two components, together with the demonstration that they

alone are sufficient to explain asset return dynamics very substantially, distinguish the

contribution in this paper.

Ambiguity and its possible relevance to economics were discussed intuitively by Knight

(1921) and Ellsberg (1961). Decision theoretic formulations by Schmeidler (1989) and

Gilboa and Schmeidler (1989) presented a first set of tools to incorporate the idea into

formal economic analysis. Introspection and experimental evidence, typified by the Ells-

berg examples, suggest that agents commonly adjust their behavior in response to such

uncertainty (see, e.g., Camerer and Weber (1992)). Agents are typically posited as am-

biguity averse, inclined to choose actions whose consequences are more robust to the

perceived ambiguity, e.g., a portfolio position whose (ex ante) value is relatively less af-

fected by the uncertainty about probability distribution governing the future payoffs.1 An

important reason why we think ambiguity is pervasive in economic decision making is

model uncertainty; robustness concerns in the face of such uncertainty may give rise to

ambiguity averse behavior. For example, a typical professional investor may have dif-

ferent forecasting models for the same variable, or different parameter estimates for the

1See Dow and Werlang (1992), Epstein and Wang (1994), Mukerji and Tallon (2001), Caballero and Kr-
ishnamurthy (2008), Chen, Ju, and Miao (2009), Gollier (2011), Boyle, Garlappi, Uppal, and Wang (2010),
Hansen and Sargent (2010), Maccheroni, Marinacci, and Ruffino (2010) and Uhlig (2010), inter alia.
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same model, all of which are plausible on the basis of historical data. If the models make

distinct (probabilistic) forecasts about key variables of interest, it is natural to seek a port-

folio that is robust across the range of forecasts rather than optimizing exclusively to the

forecast from a single model as argued, e.g., in Hansen (2007). The formal model of am-

biguity averse preferences we apply in this paper articulates one precise sense in which a

decision maker may express her concern over robustness.

This paper considers a single agent, Lucas-tree, pure-exchange economy with two in-

novations. First, the agent’s belief about the consumption and dividend process is am-

biguous, i.e., in each period she is uncertain about the exact probability distribution gov-

erning the realization of consumption and dividends in the following period; the uncer-

tainty is dynamic, evolving, as the agent learns from history. Second, the agent’s prefer-

ences are sensitive to this ambiguity. Let’s take these two ingredients in turn.

We assume the agent believes the economy evolves according to (a modified version

of) the hidden state model analyzed in Bansal and Yaron (2004). In that model, a hidden

(latent) state variable describes the evolving economic potential of the economy by deter-

mining the extent of the temporary departure of the mean of the consumption (and div-

idend) growth distribution from the trend and thus, in this sense, the transient business

cycle component. The latent state is not directly observable2 and is assumed to evolve

according to an AR(1) process. Inference can be made on its current value although it

can never be fully pinned down through inference based on observation of growth out-

comes. The growth distribution is assumed to be Gaussian with a given (time invariant)

volatility parameter; the mean completely characterizes the distribution but is subject to

innovation in every period, and never completely known, since it is partly determined by

the latent state variable. The ambiguity in the agent’s belief is her conditional uncertainty

about the mean of the probability distribution on dividend and consumption growth next

period.3 This kind of uncertainty about the data generating process is an example of “sta-

tistical ambiguity”, a term coined in Hansen (2007); here, it is the uncertainty (at date t )

about the probability distribution over future growth outcomes given the best statistical

(rational, Bayesian) inference from history of observations on growth outcomes up until

time t .

2If it were known to the agent, then the mean rate of growth of both consumption and dividends would
be known.

3While ambiguity about higher order moments is plausible, we focus on mean uncertainty for parsimony
and for the simplicity of the connection to data. Even this minimal ambiguity is enough to ensure time-
varying heteroskedasticity in beliefs about growth rates and generate counter cyclical conditional volatility
of returns.
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The updated belief, the Bayes posterior, on the date t hidden state, is a key ingredient

of the agent’s decision model, the smooth ambiguity model (Klibanoff, Marinacci, and

Mukerji (2005, 2009); henceforth KMM2005, KMM2009). In this model, the agent evalu-

ates a contingent consumption plan in the following way: for each possible realization of

the latent state variable, compute the expected utility of the contingent plan with respect

to the corresponding (first order) probability distribution on growth. Then, aggregate a

transformation of these expected utilities with respect to the second order prior, i.e., the

updated belief over the latent state. The transformation of the expected utilities captures

the agent’s ambiguity attitude; in particular, if the transformation is concave then the

agent is ambiguity averse while if it is affine then the agent is ambiguity neutral and sim-

ply maximizes a subjective expected utility. In the case of the specification of the transfor-

mation used in this paper, given a consumption plan its evaluation is an expected utility

calculated using an "as if" second order probability. The "as if" distribution is derived by

redistributing probability weights in the original towards those first order distributions for

which the expected (continuation) utility of the consumption plan is lower, the extent of

distortion increasing with ambiguity aversion. Since it adjusts the evaluating probability

measure in a way that depends on the plan being evaluated, this evaluation procedure is

different from expected utility but this is precisely what builds in the robustness concern

into the evaluation.

The agent chooses a portfolio of two assets every period, one risk free another risky.

Ambiguity aversion is calibrated to match only the first moment of the risk free rate in

data. The magnitudes of ambiguity aversion so invoked, we argue, are plausible by show-

ing that they imply levels of ambiguity premium that are similar in magnitude to levels of

risk premium implied by levels of risk aversion parameters widely regarded as plausible.

Constant relative risk aversion is restricted to lie between 1 and 3. This yields equilibrium

rates of return and asset prices implied by the (amended) Lucas-tree model at each in-

formation set following a history of macroeconomic growth outcomes. While we provide

some analytical approximations to help fix intuition, our results are obtained by numer-

ical solution of the model which involves two key computational challenges: the dimen-

sion of the state space is large – four state variables – and the integral involves 4 nested

integrals.

In our main model, dubbed the "two-ρ model", the value of the persistence parame-

ter (ρ) of the AR(1) process driving latent states is not completely known to the agent: she

believes ρ may take one of two values, moderate or high, and updates her beliefs about

3
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this by Bayes rule following observation of growth outcomes. This is motivated, in part,

by the difficulty in determining, through observation, whether the true growth process is

highly persistent with the persistent component having a small variance or, moderately

persistent with greater variance of the persistent component. Like the location of the

hidden state the value of ρ is not observable directly; but unlike the latent state, in prin-

ciple, it is (eventually) learnable from growth observations. However, in practice, it has

proved difficult to do so, and even after several decades of data, its estimates remain frag-

ile. The uncertainty about ρ affects and is in turn affected by the uncertainty about the

latent variable. These seem good reasons to model an ambiguity sensitive agent as treat-

ing both uncertainties as ambiguous, in a consistent, unified fashion and that is what we

do.

A second motivation for modeling the persistence as something not known from the

outset, but learned over time, is that then the learning causes the uncertainty about the

latent states, the ambiguity in our model, to vary endogenously over time in an intuitive

way. Learning about the true persistence induces heteroskedasticity (of beliefs) since

forecasts about near future growth prospects, predicated on the two possible levels of

persistence, may credibly disagree, making the agent’s belief about these prospects more

uncertain from time to time, depending on history. Following a period of stable growth,

uncertainty about the conditional mean diminishes since forecasts based on alternative

conjectures about the persistence will (endogenously) tend to agree. On the other hand,

in the aftermath of a significant shock alternative conjectures may disagree considerably

about growth prospects, causing uncertainty about the conditional mean to increase tem-

porarily.4

In the two-ρmodel, the posterior on the latent states is a weighted mixture of the pos-

teriors obtained by assuming each possible value ofρ. Analogously, given an equilibrium

consumption plan, the corresponding "as if" posterior (what matters for the ambiguity

averse agent’s evaluation) on latent states is a weighted average of the two "as if" posteri-

ors corresponding to each value of ρ. As explained in Section 3.2.2 after a positive shock

the two "as if" (component) posteriors sit closer together compared to the two Bayesian

posteriors, while they move further apart following a negative shock. Consequently, the

variance of the (mixed) "as if" posterior moves counter cyclically in a more pronounced

fashion than the Bayes posterior. It is as if the ambiguity averse agent reacts asymmet-

rically to the uncertainties following positive and negative shocks; she under plays and

4Two kinds of uncertainties follow an adverse shock, expressed by the following questions: “Are we in a
recession? If so, how long will it last?” Questions, with some resonance in recent times.
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under reacts to the former and exaggerates the latter, compared to an expected utility

agent. This quantitative model of ambiguity about macroeconomic risk, where the am-

biguity waxes and wanes endogenously as a function of the publicly observed history of

aggregate consumption and dividend, is a key part of the paper and underpins its mea-

surement of the impact of the dynamics of ambiguity on the movements of asset returns

and prices, as they actually obtain in history. 5

Our main results not only include statistics such as average conditional moments of

the model implied returns and price-dividend ratio (Tables 3, 3.2.3 and 5) but also, going

beyond the usual practice in the literature, plots of the model implied time series of re-

turns and price-dividend ratio, all based on conditional uncertainty at information sets

reconcilable with historical growth data (Figures 3 and 7). We compare the level, volatility

and dynamics of the model implied rates of return and price-dividend ratio to their coun-

terparts in U.S. data and show that the match is quite good. The implied (conditional) eq-

uity premium is high enough to match the data primarily because while ambiguity aver-

sion does not affect the return on the risky asset (the dividend claim) significantly, it low-

ers the risk free rate substantially as robustness concerns drive up the equilibrium price

of the risk free asset. These concerns show up in the model as endogenously generated

doubt and pessimism, to use the language of Abel (2002). In a standard rational expec-

tations framework, the agent behaves as if she "knows" the true growth distribution; she

will evaluate consumption plans putting probability one on the filtered state. Here, the

agent maintains a non-degenerate posterior over the (latent) states, and the distribution

over the growth rates is a mixture distribution. Hence, the (endogenously evolving) doubt.

The pessimism derives from ambiguity aversion, the concern for robustness, and is em-

bodied by the distortion in the "as if", distorted, posterior. The volatility and dynamics

of the model implied returns, prices and especially the equity premium are determined

very largely by the variance of the (mixed) "as if" posterior which, as explained above, is

endogenously countercyclical.

1.1 Related literature

We describe next how the analysis here relates to other explanations in the literature (of

the observed behavior of equity premium) based on aggregate uncertainty in representa-

5That learning may actually increase ambiguity is not a novel observation; see e.g., Epstein and Schnei-
der (2008). However, in the present paper a signal does not cause ambiguity to increase because it is (exoge-
nously) assumed to be of dubious quality. The model of beliefs here includes a theory that shows how the
news of a growth outcome may or may not increase uncertainty depending on the run of history it follows.
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tive agent frameworks. Three papers closest to ours are Bansal and Yaron (2004), Hansen

and Sargent (2010) and Ju and Miao (2012).

Bansal and Yaron (2004) (henceforth BY) pioneered the use of the (basic) model of be-

liefs we apply to show how long run risk (LRR) and aversion to such risk (while allowing a

Kreps and Porteus (1978)/Epstein and Zin (1989)/Weil (1989) like separation of elasticity

of intertemporal substitution (EIS) from risk aversion) could explain aspects of the ob-

served equity premium. The new perspective developed in our paper is that the same

stochastic model with minimal changes can serve as a tractable and interesting model of

ambiguity about macroeconomic risk with beliefs substantially tied to data. The changes

we introduce are: (1) letting the belief about the latent state be the full Bayes posterior,

instead of degenerate, probability-one-belief on the filtered state; (2) letting the agent

face uncertainty about the level of the persistence parameter, instead of assuming that

the agent believes with probability one that the persistence parameter has a high value.

We also assume that the volatility of innovations to consumption is constant (as in BY’s

CASE I model). They show that including (an exogenous) stochastic volatility to the inno-

vation in consumption growth, the defining difference in BY’s CASE II model, is essential

to adequately match the second moment of returns . We show, (1) and (2) are sufficient

to yield a model of beliefs where the uncertainty and ambiguity vary endogenously over

time and enough to match return volatility. In this way, we believe, the analysis in the

paper demonstrates a broader scope of application of the LRR framework. Furthermore,

they focus on drawing out model implications for unconditional returns whereas here the

focus is on dynamics of conditional returns.

Hansen and Sargent (2010) study the effect of model uncertainty and robustness con-

cerns on the price of macroeconomic risk. The single agent believes the economy evolves

according to a BY CASE I model but is uncertain whether the persistence is moderate or

high, like the agent in our two-ρmodel. However, their agent processes belief by applying

two “risk-sensitivity operators”, unlike in our model. The first operator, which may be in-

terpreted in terms of an enhanced risk aversion obtained via a Kreps and Porteus (1978)

style preference for earlier resolution of risk, applies to the evaluation (of the consump-

tion plan) conditional on each of the two values of ρ. The other operator may be inter-

preted as a KMM2005/KMM2009 style smooth ambiguity aversion transformation where

the agent’s second order uncertainty is a two point (Bernoulli) belief, where each point in

the support is the conditional evaluation given a ρ. Hence, while uncertainty about the

two possible evaluations is treated as ambiguity, the uncertainty conditional on a value of

6
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ρ is not processed as ambiguity, unlike in our model.6 Following a negative shock, pref-

erence for early resolution combined with high persistence ensures that the evaluation

conditional on high persistence is very low; this pessimism implies that the price of risk

associated with the high persistence is greater. The lower evaluation causes the smooth

ambiguity aversion operator to distort the Bernoulli belief to increase the (“as if”) poste-

rior on the high persistence model. In other words, a negative shock generates an increase

in price of risk, i.e., move countercyclically. In contrast, in our model, the countercyclical-

ity is generated by the changes in the riskiness in the agent’s (“as if”) second order belief,

a mixture distribution of two component non-degenerate (“as if”) posteriors on latent

states. These component “as if” posteriors do not have a role in Hansen and Sargent’s

model since there conditional on a value of ρ the uncertainty is not processed as ambi-

guity. Their paper gives results on what they call, “uncertainty price.” It does not derive

results and (statistics on) model implied rates of return and price-dividend ratio with evi-

dent counterparts in data, so we do not know how much better their model would match

the data compared to ours. Note though, even if such results and statistics were derived

they would give a far more limited account of the impact of ambiguity than our results

since their model does not treat the uncertainty about latent states as ambiguous and in-

cludes effects of departures from expected utility quite separate from (non-neutrality to)

ambiguity.

Ju and Miao (2012) use a modified smooth ambiguity framework to assess the effect of

ambiguity on dynamics of asset prices. The model of beliefs there is different in that the

hidden/latent state variable driving the (mean) growth rate in the economy may take only

two possible values (while it may take a continuum of values in our model). On the other

hand, the preference model is richer in that it incorporates an Epstein and Zin (1989) type

EIS parameter in addition to ambiguity aversion. With the EIS parameter set at 1.5, they

simulate different sample paths (of growth outcomes) and generate model implied re-

turns and prices on these paths. They produce statistics on unconditional moments of

returns and prices, by averaging across the counter-factual paths, which match the corre-

sponding statistics in data very well. They also report, using graphs, model implied con-

ditional returns and prices along the observed, historical sample path; here, their model

is evidently less successful. As panel B in their Figure 3 shows, throughout the post-war

6As we have argued, the location of the latent state variable, being subject to an innovation every period,
is hard to learn. The innovation element, in particular, makes a compelling case to treat this uncertainty
like the uncertainty about ρ, as ambiguity. That we treat both uncertainties as ambiguous, in a consistent,
unified fashion implies our model has one less parameter, one less degree of freedom, than the case where
one has two different risk-sensitivity operators for the two uncertainties.
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period the (second-order) belief has been almost completely stuck (almost Dirac) on the

same latent (high-growth) state. As they explain with their Figure 2, movements in re-

turns/prices take place in their model when beliefs move around between the two states.

Hence, a model of just two latent states seems too coarse to bring out the implications of

ambiguity when restricted to observed history. Relatedly, in an earlier working paper ver-

sion they had showed, without the separate EIS effect added in their model implied (un-

conditional) equity premium matched data in terms of level but not volatility. By allow-

ing for a richer specification of belief our model complements their findings by showing,

using a preference model which does not depart from expected utility except in regard

to ambiguity attitude, that it is possible to explain observed movements in returns and

prices with conditional beliefs based on observed history.7

Veronesi (1999) constructs and theoretically analyzes a dynamic, rational expecta-

tions, expected utility representative agent model of asset pricing where beliefs are based

on two hidden states (each specifying a mean growth rate) and shows that it implies

time-varying expected returns and prices. However, it is a theoretical exercise and does

not show what actual values and magnitudes are implied along information paths based

on observed history. Gollier (2011) shows analytically, using a (static) smooth ambigu-

ity model, that an increase in ambiguity aversion may not, in general, increase the eq-

uity premium, thereby making a good case for empirical investigation of the question.

Abel (2002), Cecchetti, Lam, and Nelson (2000), Giordani and Soderlind (2006), Jouini

and Napp (2006), show that exogenously introducing pessimism and doubt in beliefs can

generate a realistic equity premium and risk-free rate. Our results are driven by similar

elements of pessimism and doubt, but in our framework these arise endogenously. Barro

(2006), and Weitzman (2007) show that rare risks and/or heavy tails may contribute to

the large equity premium and low risk-free rate observed in the data. Our contribution

focuses on “common” uncertainty near the current growth rate rather than on “rare” un-

certainty, and so is easier to relate to observed consumption data. Constantinides (1990)

and Campbell and Cochrane (1999) study models with habits in consumption which can

match the level, variation and countercyclicality of the equity premia. Habits effectively

allow the risk aversion to vary endogenously over the business cycle. The crucial differ-

ence to our paper is that we have constant aversion (to ambiguity and risk) but our agent

7Recently, Strzalecki (2012) has argued that it is theoretically possible that recursive ambiguity frame-
works have some preference for early resolution inseparably mixed in with ambiguity aversion. Compared
to the model in the present paper what is different about the preferences in Ju and Miao (2012) and Hansen
and Sargent (2010) is that they include separate components explicitly adding preference for early resolu-
tion above and beyond what may be already mixed in with ambiguity aversion.
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faces time-varying uncertainty and it is variation in that uncertainty, rather than variation

in the aversion to it, which causes the returns and premia to vary.

The rest of the paper is organized as follows. Section 2 introduces the relevant de-

tails of smooth ambiguity preferences, describes and analyzes the amended Lucas tree

economy. In particular, we show how the presence of ambiguity aversion affects the Eu-

ler equations assuming a fairly general form of beliefs. Section 3, the heart of the paper,

develops the specifics of our quantitative model of ambiguous beliefs and derives and ex-

plains the quantitative implications of such beliefs on level and time variation of rates of

returns and prices. Section 4 addresses the question whether the magnitude of ambiguity

aversion we invoke is reasonable. A last section concludes.

2 Smooth ambiguity and the Lucas tree

2.1 Agent’s preferences: the smooth ambiguity model and its recursive
formulation

We follow KMM2009, which develops a dynamic, recursive version of the smooth am-

biguity model in KMM2005. In KMM2009 the basis of the dynamic model is the state

space S, the set of all observation paths generated by an event tree, a graph of deci-

sion/observation nodes. The root node of the tree, s 0, branches out into a set of imme-

diate successor nodes, S1 3 s 1 ≡ (s 0, s1) where s1 ∈ S1, the set of possible observations at

time t = 1; and, so on. The decision maker chooses between (consumption) plans f , each

of which associates a payoff to a node s t in the event tree. The decision maker is uncertain

about which stochastic process governs the probabilities on the event tree. The domain

of this uncertainty is given by a parameter spaceΘ, the set of (unobservable) parameters,

over which the decision maker makes inference at each s t . We denote by πθ (s t+1 | s t ) the

probability under distribution πθ that the next observation will be s t+1, given that node

s t is reached. The decisions maker’s prior on the parameter space Θ is denoted by µ.

KMM2009 give assumptions such that recursive smooth ambiguity preferences over plans

f at a node s t are updated and represented as:

Vs t
�

f
�

= u
�

f
�

s t ��+βφ−1

�ˆ
Θ
φ

�ˆ
St+1

V(s t ,st+1)
�

f
�

dπθ
�

s t+1|s t �
�

dµ
�

θ | s t �
�

, (1)

where Vs t
�

f
�

is a recursively defined (direct) value function, u is a vN-M utility index,

β is a discount factor and φ a function whose shape characterizes the decision maker’s

ambiguity attitude, while µ (· | s t ), denotes the Bayesian posterior, describing the decision
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maker’s updated belief onΘ at s t . In particular, a concaveφ characterizes ambiguity aver-

sion, which is defined to be an aversion to mean preserving spreads in the distribution

over expected utility values. Intuitively, ambiguity averse agents prefer acts whose evalu-

ation is more robust to the possible variation in probabilities. This preference model does

not, in general, impose reduction between µ and the πθ ’s in the support of µ; reduction

only occurs whenφ is linear, a situation identified with ambiguity neutrality and wherein

the preferences are observationally equivalent to that of a Bayesian expected utility max-

imizer with a subjective prior µ (over parameters).

2.2 A Lucas-tree economy and Euler equations

There is an infinitely-lived agent, with recursive smooth ambiguity preferences, consum-

ing a single good. She can trade in a risk-free asset, whose holding and price at time t are

denoted b t and P f
t respectively. There is also an asset (whose quantity is normalized to 1

unit) that yields a stochastic dividend at each period, Dt . The asset with uncertain divi-

dend (usually dubbed, the “risky” asset) has a price Pt at time t , and its holding is denoted

e t . Consumption at time t is denoted C t .

As in Bansal and Yaron (2004) and Campbell (1996) we will assume that dividend and

consumption follow different stochastic processes, thus departing from the original Lucas

tree economy. The gap between consumption and dividend is due to some (exogenously

given) labor income l t . Equilibrium will require that at each time C t = l t +Dt . It is thus

equivalent to derive the stochastic process followed by C t from the assumed processes

for Dt and l t as we do in this section or to assume directly a stochastic process for C t and

Dt , leaving the process for l t implicit. Thus, we can indifferently view a node s t in the

tree describing the economy as an observed history of realizations given either by the list

{(Dτ, lτ)}tτ=0 or by {(Cτ, Dτ)}tτ=0.

Next, we derive Euler equations that (implicitly) define equilibrium prices in this econ-

omy. At each node, let µt denote the (second order) belief on parameters in Θ defining

(first order) probability distributions on immediate successors (C t+1, Dt+1). Beliefs are up-

dated as a function of the observed realizations of the consumption and dividend signals

according to Bayes law. Wealth at time t + 1 is Wt+1 = (Pt+1+Dt+1)e t +b t + l t+1, and the

budget constraint in period t is given by C t =Wt −Pt e t −P f
t b t . The agent’s maximization

problem may be described in terms of a recursive Bellman equation given by:

J (Wt ,µt ) = max
Ct ,bt ,et

u (C t )+βφ−1[Eµt (φ(Eπθ (J (Wt+1,µt+1))))], (2)
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subject to the budget constraint and the law of motion of the two “state” variables (wealth

and beliefs), where J (Wt ,µt ) denotes a recursively defined indirect value function (as op-

posed to the direct value function in eq. (1)). An equilibrium of this economy is given by
n

(Pτ, P f
τ , eτ,bτ,Cτ)

o∞

τ=1
such that the consumption and asset holding processes solve the

maximization program and furthermore the market clears, i.e., e t = 1, b t = 0, C t =Dt + l t

for any t .

First order conditions are given by:

βΥt Eµt

�

ξt (θ )Eπθ
�

u ′(C t+1)
��

= P f
t u ′(C t ) (3)

βΥt Eµt

�

ξt (θ )Eπθ
�

(Pt+1+Dt+1)u ′(C t+1)
��

= Pt u ′(C t ) (4)

where Υt = Eµt

�

φ′(Eπθ (J (Wt+1,µt+1)))
�

× (φ−1)′
�

Eµt

�

φ(Eπθ (J (Wt+1,µt+1)))
�

�

and

ξt (θ ) =
φ′(Eπθ (J (Wt+1,µt+1)))

Eµt

�

φ′(Eπθ (J (Wt+1,µt+1)))
� . (5)

The expressions are thus similar to those in an economy where the agent is an expected

utility maximizer, but for the terms Υt and ξt . Both Υt and ξt depend on the ambigu-

ity attitude, φ, and beliefs. The function ξt is a Radon–Nikodym derivative, effecting a

node specific change of measure, or “distortion”, on the posterior µt . The distortion is a

function of the continuation values that are obtained at successor nodes. In this paper we

assume an exponential ambiguity attitude, φ(x ) =−exp(−αx )/α, where the parameter α

represents ambiguity attitude. This specification allows us to simplify these expressions

significantly, since we now have Υt = 1, and the change of measure takes the form,

ξt (θ ;α)≡
exp

�

−α(Eπθ (J (Wt+1,µt+1)))
�

Eµt

�

exp
�

−α(Eπθ (J (Wt+1,µt+1)))
�� . (6)

Further, assume the vN-M utility u takes the power form u (x ) = x 1−γ

1−γ . With these specifi-

cations, Euler equation determining the risk-free rate is:

βEµtξt (θ ;α)Eπθ

�

�

C t+1

C t

�−γ�

= P f
t ⇔ (7)

βR f
t Eµt

�

ξt (θ ;α)Eπθ
�

exp
�

−γg t+1
���

= 1 (8)

and, the equation for price of the risky asset simplifies to:

βEµt

�

ξt (θ ;α)Eπθ

�

Pt+1+Dt+1

Pt

�

C t+1

C t

�−γ��

= 1⇔ (9)

βEµt

�

ξt (θ ;α)Eπθ

��

exp (z t+1)+1

exp (z t )

�

exp
�

d t+1−γg t+1
�

��

= 1⇔ (10)

βEµt

�

ξt (θ ;α)Eπθ
�

Rt+1 exp
�

−γg t+1
���

= 1 (11)
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where z t = ln
�

Pt

Dt

�

, g t+1 = ln
�

Ct+1

Ct

�

, d t+1 = ln
�

Dt+1

Dt

�

, the logarithm of price-dividend

ratio, rates of growth of consumption and dividend, respectively, while R f
t =

1

P
f

t

, Rt+1 =
Pt+1+Dt+1

Pt
denote the risk-free and risky rates of return.

Remark 1 These Euler equations seem identical to ones obtained in a standard Bayesian

model except for the inclusion of the distortion function, ξt . The distortion, in the case

of ambiguity aversion, increases the (posterior) weight on one-period ahead probability

distributions πθ with lower expected continuation values, Eπθ (J (Wt+1,µt+1). Hence, when

considered as a one-step ahead problem, the marginal trade-offs encapsulated in the Euler

equations are those of a Bayesian using a different, distorted, posterior. However, the distor-

tion is generally distinct at each node and so it is not possible to ascribe an “as if”equivalent

Bayesian prior for the entire event tree, and hence the full set of Euler equations (i.e., across

all nodes in the tree) cannot be interpreted as arising from a Bayesian model.

3 Asset prices with unobserved, persistent shocks

This section applies the asset pricing model developed in the previous section to two re-

lated specifications of the agent’s belief about the stochastic evolution of the economy.

The specifications share a key feature: the ambiguity in the agent’s belief about growth

realizations arises purely from her uncertainty about expected growth and the expected

growth is uncertain because it is subject to periodic shocks. The dynamics of the shocks

are believed to follow an autoregressive process, and though expected growth is uncer-

tain, the agent may make inferences about the current state on the basis of observed his-

tory of growth realizations. We proceed with the analysis in two parts, each based on a

particular belief specification. In the first, the agent knows the persistence parameters

while in the second it is assumed the agent is uncertain about this value. As will be seen,

the second assumption yields a richer, more realistic dynamic picture and is our main

model of beliefs. The first, however, is useful in setting ideas and building intuition.

3.1 When there is certainty about the persistence: the single-ρmodel

3.1.1 A simple model of beliefs

Here we assume the agent believes the growth rate of consumption and dividends are

driven by a common, latent state, x t , which evolves according to an AR(1) with known
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persistence. This is the CASE I model in BY.

g t+1 = ḡ +x t+1+σg εg ,t+1

d t+1 = d̄ +ψx t+1+σd εd ,t+1

x t+1 =ρx t +σxεx ,t+1

(12)

where (εg ,t+1,εd ,t+1,εx ,t+1)′ ∼ N (0, I ). The long-run growth rate of consumption and div-

idend are shown by ḡ and, d̄ , respectively. The shock x is the temporary deviation from

trend due to the effect of the business cycle, which we model as an autoregressive pro-

cess with a persistence factor denoted by ρ. The factor ψ accounts for the empirically

observed greater volatility of dividend relative to that of consumption. This modeling

device was introduced in Abel (1999) and is followed widely in the finance literature, in-

cluding in BY, and may be interpreted as the “leverage ratio” on (expected) consump-

tion growth. The agent observes, contemporaneously, the realizations of g t and d t but

never observes the realization of x or ε. It is assumed that the values of parameters
�

ḡ , d̄ ,σg ,σd ,σx ,ψ,ρ
�

are known to the agent. The x0 is believed to have a Gaussian

distribution with mean x̄0 and variance σ2
0, fixing thereby the agent’s prior belief µ0. We

call this the single-ρ model; its defining property being that the agent knows the value of

ρ.

Given a current node {(Cτ, Dτ)}tτ=0, the immediate successor node is completely iden-

tified by the pair of growth realizations
�

g t+1, d t+1
�

. Given x t , the probability distribution

over the immediate successor nodes is the product of two (conditionally independent,

given x t ) Normal distributions, g t+1 ∼N
�

ḡ +ρx t ,σ2
g +σ

2
x

�

and d t+1 ∼N
�

d̄ +ψρx t ,σ2
d +σ

2
x

�

.

This product distribution is the typical first order distribution, the object πθ (· | s t ) in

the abstract KMM formulation, with the variable x t playing the role of the unobserved

parameter “θ ”. Knowing x t pins down the mean of the distribution over the successor

nodes; this mean parameter is all that is needed to fix the distribution. The agent is un-

certain about the mean parameter and has a (second order) belief µt over this parameter,

the current x t . The belief µt describes, exhaustively, her ambiguity about the probabil-

ity distribution on the successor nodes. The agent updates µt using Bayes rule condi-

tional on the history of realizations of g t and d t given the Gaussian prior g 0 ∼N
�

x̄0,σ2
0

�

.

Updated beliefs are also Gaussian with mean x̂ t+1 and a (steady state) variance Ω, i.e.,

x t+1 ∼N (x̂ t+1,Ω), where Ω is defined in eq. (14). Hence, the evolution of µt may be sum-

marized by a single parameter, its conditional mean x̂ t , the filtered value of x at time t .

The filtered value is updated, via a Kalman filter as follows:

x̂ t+1 =ρx̂ t +K νt+1. (13)
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The coefficient K is the Kalman gain, defined as follows:

K =ρΩ
�

1ψ
�

F−1 where F =

�

Ω+σ2
g ψΩ

ψΩ ψ2Ω+σ2
d

�

The surprise or innovation to growth is given by

νt+1 =

�

g t+1− ḡ −ρx̂ t

d t+1− d̄ −ψρx̂ t

�

.

Finally, the steady state variance, Ω, is defined as the solution to

Ω=ρ2Ω−ρ2Ω2 �1ψ
�

F−1 �1ψ
�′+σ2

x . (14)

3.1.2 Computing the rates of return

Given this specification of beliefs, the continuation value of holding a Lucas tree at time

t is completely determined by the consumption and the parameter value describing the

second order belief at t , i.e., the pair (C t ; bx t ). The direct value function, adapted to the

given specification, is:

V (C t ; bx t ) = u (C t )+βφ−1 �E
bxtφ

�

Ext V
�

C t exp
�

g t+1
�

; bx t+1
���

(15)

where the operator E
bxt takes expectations over x t with respect to the measure N (x̂ t ,Ω)

and Ext takes expectations over g t+1 and d t+1, with respect to the bivariate normal,

N

��

ḡ +ρx t

d̄ +ψρx t

�

,

�

σ2
g +σ

2
x σ2

x

σ2
x σ2

d +σ
2
x

��

, (16)

and bx t+1 is related to bx t as in eq. (13). The Euler equations are:

βR f
t E

bxtξt (x t |C t , bx t ;α)

�

Ext

�

�

C t+1

C t

�−γ��

=1 (17)

βE
bxtξt (x t |C t , bx t ;α)

�

Ext

�

Rt+1

�

C t+1

C t

�−γ��

=1 (18)

with the distortion function8 given as,

ξt (x t |C t , bx t ;α)≡
exp

�

−α(Ext (V (C t+1; bx t+1)))
�

E
bxt

�

exp
�

−α(Ext (V (C t+1; bx t+1)))
�� . (19)

8Henceforth, we shall write ξt as a function of direct continuation value V (C t+1; bx t+1) instead of the
indirect value, J (Wt+1,µt+1). In a single agent economy consumption equals the endowment and is thus,
exogenously determined, and so it is possible to solve for the (continuation) value at any node on the event
tree without solving for the equilibrium prices first.
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The first step toward solving the model is to compute the direct value function. To that

end, we assume that the direct value function can be approximated by

V (C t ; bx t )÷Φv (X t ) = exp

 

∑

i c ,i x∈I

θ v
i c ,i x

Hi c (ϕc (C t ))Hi x (ϕx (bx t ))

!

(20)

where X t ≡ (C t , bx t ) denotes the vector of “state variables” of the single–ρmodel. The set of

indices, I = {i z = 1, . . . , n z ; z ∈ {C ,x }|i c + i x ¶max(n c , nx )}, was chosen to ensure that we

consider a complete basis of polynomials. The function Hι(·) is a Hermite polynomial of

order ι andϕz (·) , a strictly increasing function that mapsR intoR, is used to map Hermi-

tian nodes into values for the vector of state variables. The vector of parameters θ v is then

determined by a minimum weighted residuals method, using a Gauss Hermitian quadra-

ture to approximate integrals involved in the computation of the expectations. Once a

solution to the value function is found, we may compute an approximate solution for the

rates of returns. The risk-free and risky rates, R f
t (C t , bx t ;α,γ) and Rt (C t , bx t ;α,γ), are com-

puted numerically by solving eqs. (17) and (18), after substituting the value function (in

the expression for ξt (x t |C t , bx t ;α)) by its approximate solution. Full details of the compu-

tation method may be found in Appendix D, which also gives details on accuracy checks,

showing that the numerical solution is highly accurate. Separate from the numerical so-

lution to rates of return we also obtain analytical approximations, discussed in Section

3.1.6.

3.1.3 Data and parameter values

The time-series parameters of the model (except for the persistence parameter ρ and the

leverage-ratio parameter ψ) were estimated using maximum likelihood on annual U.S.

data from 1930 to 1977 (see Appendix C for details). By 1977 the parameter estimates had

stabilized and the remaining years in the data set, 1978-2011, were used in the evaluation

of the models. Hence, we have some justification in assuming that the agent behaves

as if she knows the parameter values of the model from 1977 onwards. For our baseline

calibration, we set ρ = 0.85 (for the single-ρ case), which is the annualized equivalent

of the value used in BY and supported by the estimate obtained in Bansal, Gallant, and

Tauchen (2007). The other value we apply in the single-ρmodel, ρ = 0.9, is used to check

for robustness and is approximately the annualized equivalent to the calibration used by

Hansen and Sargent (2010). The dividend leverage parameter, ψ, was set to 3 as in BY,

although Constantinides and Ghosh (2010) estimated it to be slightly lower, close to the

value we use for robustness checks (ψ= 2.5).
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Equity returns are computed using the CRSP value-weighted index. Dividend growth

is imputed using the difference in the returns on the value-weighted index with and with-

out dividends multiplied by the market value. The risk-free rate was taken from Ken

French’s data library. Consumption is defined as the sum of services and non-durable

consumption and was taken from BEA Table 1.1. Population was taken from BEA Table

2.2. Both per-capita consumption growth and dividend growth were converted to real

terms using the average CPI for the year taken from the BLS. Annual data was available

from 1930 until 2011, a total of 82 observations.

Turning to preference parameters, in all cases the ambiguity aversion parameterαwas

calibrated to produce a real risk-free rate of 1.5%, averaged over t = 1978, ..., 2011, which

is the average observed rate in that period. No other moments were used in the choice

of α. The relative risk aversion parameter γ was allowed to range between 1 (log utility)

and 3, regarded as plausible in macroeconomic models (Ljungqvist and Sargent, 2004,

pg. 426); the “baseline” calibration set γ = 2.5.9 The discount factor β was set to 0.975,

which corresponds to the discount rate used in BY. To check for robustness we varied a

number of the key non-estimated parameters, including ρ = 0.9, β ∈ {.965, .97, .98} and

ψ= 2.5.

3.1.4 Results

We use annual data on real per-capita consumption C t and estimates of bx t correspond-

ing to the filtration imposed by the observed history of growth of real consumption and

of real dividends to obtain a time series of average conditional moments of the rates of

return using our numerical solution technique. Our model produces a time series of the

conditional first and second moments of the random variables, rt ≡ Rt − 1 and rt − r f
t ,

predicted along the sample path, conditional on the observed history at each time t, with

t = 1 corresponding to 1978. This is different from what is commonly presented where

unconditional moments are instead given. This is important in our model for two rea-

sons. First, our agent learns and so averages would make use of beliefs that could not

be reconciled with historical growth. Second, when consumption growth has a highly

persistent component, unconditional moments may be heavily influenced by economic

conditions not experienced by the agent. The top panel of Table 1 reports the average

of these conditional moments over the period 1978-2011. The bottom panel of Table 1

9If the two smooth ambiguity preferences do not share the same risk attitude it is not necessarily true
that a more concave φ means more ambiguity aversion. Hence α is meaningfully calibrated given a value
of γ; not independent of γ.
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Returns and Volatility
γ α E (r ) E (r − r f ) σ(r f ) σ(r ) σ(r − r f )

Data 8.08 6.68 2.20 16.5 16.1
Baseline 2.5 7.24 5.87 4.37 2.42 8.80 8.45
Bayesian 2.5 ≈ 0 5.45 -1.52 2.47 8.78 8.43

Price-Dividend Ratio
γ α E (P/D) σ(P/D) E (p −d ) σ(p −d ) AC1 AC2

Data 45.5 20.0 3.72 0.45 0.80 0.76
Baseline 2.5 7.24 25.4 3.30 3.23 0.13 0.37 0.38
Bayesian 2.5 ≈ 0 22.6 3.65 3.10 0.17 0.60 0.59

Table 1: Results (single-ρ): Average of the predicted conditional moments of rates of re-
turn (on dividend claim) in the single–ρmodel over the period 1978–2011. The data based
moments are averages of returns (r ) or excess returns (r − r f ), or sample standard devia-
tions of the same quantities. The corresponding model-implied moments are averages of
the conditional expected market return and the conditional equity premium. The lower
panel shows data based and model implied average and std. dev. of the price-dividend
ratio in the single–ρ model over the period 1978–2011. AC1 and AC2 denote the first and
second order autocorrelation of p −d , the log price-dividend ratio.

reports moments of the price-dividend series (P/D) of the market claims and of the log

price-dividend series (p −d ) implied by the model predicted market returns (eqs. 9 – 11).

We compute the price-dividend ratio applying the relationship

Rt+1 =
exp

�

p t+1−d t+1
�

+1

exp
�

p t −d t
� exp (d t+1) (21)

where d t is taken from the historical data, Rt+1 and p t+1 are computed from the model,

and the recursion is started from the actual price-dividend ratio in 1977 (t = 0).

3.1.5 The mechanism of ambiguity aversion: endogenous pessimism and doubt

The intuition behind the mechanism of ambiguity and ambiguity aversion driving the

results can be understood through the distortion function, ξt (x t | C t , bx t ;α). Given the

posterior N (x̂ t ,Ω) on x t the effect of ξt is “as if” there is a new distorted posterior, µ̃t ≡
ξt (x t )⊗N (x̂ t ,Ω), with density given by

f̃ (x t ) = ξt (x t |C t , bx t ;α)
1

p
2πΩ

exp

�

−
(x t − x̂ t )2

2Ω

�

. (22)

In the case of ambiguity aversion, i.e., α > 0, it is evident from eq. (19) that µ̃t puts rel-

atively greater probability mass (compared to µt ) on x t ’s that generate probability distri-

butions associated with lower expected continuation values, Ext (V (C t+1; bx t+1)). The dis-
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torted posterior gives rise to a conditional one-step-ahead distribution on growth which

we call the twisted (predictive) distribution

g t+1 ∼ ξt (x t )⊗N (x̂ t ,Ω)⊗N
�

ρx t + ḡ ,σ2
x +σ

2
g

�

. (23)

Whenξt (x t ) = 1 the formula (23) describes the belief of a Savage-Bayes rational (or, equiv-

alently, ambiguity neutral) agent, a useful benchmark. Such an agent, whom we dub

“Bayesian,” is uncertain about x t with beliefs about growth which are described by a mix-

ture of normals, with the weights of the mixture given by another normal. We may think of

this distribution as a “best estimate” distribution. The twisted distribution, on the other

hand, describes the “as if” belief of an ambiguity sensitive agent; she uses this distribu-

tion, instead of the best estimate distribution, to evaluate the equilibrium portfolio. An

ambiguity averse agent is wary of the uncertainty about the growth distribution and sus-

picious how good an estimate the posterior is. To ensure a more robust choice, the agent

evaluates a prospect by testing it against a distribution which is somewhat less favorable

to the prospect than the Bayesian posterior. The “as if” belief is the belief used to make

the robustness check.10

Another useful benchmark is the belief of an agent with rational expectations, nar-

rowly defined. This distribution is N
�

ρx̂ t + ḡ ,σ2
x +σ

2
g

�

. It arises from a posterior that

is degenerate on x̂ t , displaying full/firm belief about the latent state. Figure 1 shows the

average one-step-ahead distributions (on growth) corresponding to these three cases of

beliefs in the single-ρ model. Compared to the rational expectations distribution, the

twisted distribution (under ambiguity aversion) has a lower mean and a larger spread.

Abel (2002) argues that one can account for the observed equity premium and the risk-

free rate by invoking pessimism and doubt in an otherwise standard asset pricing (Lucas

tree) model. Pessimism is deemed, by Abel, as a subjective distribution (on growth) that

is first order stochastically dominated by the “objective” distribution; doubt, corresponds

to a subjective distribution that is a mean preserving spread of the objective distribution.

Evidently, an ambiguity averse agent’s conditional (“as if”) beliefs, in effect, incorporate

endogenously both these elements, pessimism and doubt, while the Bayesian agent only

incorporates the doubt. This is the key to understanding the mechanism through which

ambiguity aversion affects asset returns and prices.

10Different portfolios will be evaluated against, in general, different “as if” beliefs, since as the portfolio
considered varies the continuation values vary too, thereby affecting the distortion. The twisted distribution
associated with the Euler equation is the “as if” belief used to evaluate the equilibrium portfolio.
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Single–ρ Model
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Figure 1: Beliefs and “as-if” beliefs: The agent’s “as-if” belief about the conditional dis-
tribution of consumption growth with no uncertainty about the latent state (R.E.), with
uncertainty about the latent state but without ambiguity aversion (Bayesian) and with
ambiguity aversion about the uncertainty of the latent state (Twisted) from the single–ρ
model. The distributions were computed using the baseline specification and the level of
consumption and the hidden state variables set to their averages over the period 1978–
2011.

3.1.6 Explaining the results: analytical approximation and comparative statics

The results compiled in Table 1 and Figures 1 and 2 are based on numerical solutions.

However, in the case of the single-ρ model we can also find an analytical approximate

solution (see Appendix A for details of the derivation) which is useful in understanding the

qualitative effects of the elements of the tuple (C t , bx t ;α,γ) on the rates of return. The key

assumption used to derive the analytical approximation is that the density of the distorted

posterior, described in eq. (22), is well approximated by a Normal density, whose mean

and variance are denoted by ex t and ßV a r t (x t ), respectively. 11

The left panel in Figure 2 depicts the comparative statics of ambiguity aversion and

risk aversion on the rates of return. The risk-free rate is approximated as:

r f
t =− lnβ +γg +γρex t −

γ2

2

�

σ2
x +σ

2
g +ρ

2
ßV a r t (x t )

�

. (24)

Absent ambiguity aversion, an increase in γ has, principally, two countervailing effects.

The first effect shows up in the term γg . Here an increase in γ makes the agent want

to smooth consumption between the present and future states more; since g > 0, the

11As may perhaps be intuited from Figure 1 and seen more precisely from skewness and excess kurtosis
numbers in Table 7 (in Appendix A) this is a particularly good approximation in the case of the single-
ρmodel. Indeed, as the table shows, in the case of the single-ρ model the variance is virtually unaffected
by ambiguity aversion, and so ßV a r t (x t )≈Ω (defined as in eq. (14)).
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Figure 2: Comparative statics (single-ρ): In the left panel, α varies with γ fixed at 2.5.
In the right panel, α was fixed at 7.24 and γ varies. The average comparative statics are
constructed by first computing the comparative statics for each year using the filtered
values x̂ t and then averaging across t = 1978, . . . 2011.

agent expects to consume more in the future and thus the agent wants the risk-free asset

less. The second effect appears in the term −γ
2

2

�

σ2
x +σ

2
g

�

reflecting the agent’s desire to

smooth risk across the future states. This need can be met (in part) by holding more of the

risk-free asset. It turns out for γ< 5 the first effect dominates and in that range an increase

in γ increases the risk-free rate. (Note, the comparative statics of risk aversion shown in

Figure 2 correspond to α ≈ 7, i.e., in presence of ambiguity aversion.) This explains the

(evidently) high risk free rate obtained in the Bayesian case. An increase in ambiguity

aversion, α, decreases ex t (see Figure 8), inducing a more pessimistic “as if” distribution

(see Figure 8 in Appendix A) and making the agent behave as if she were expecting a lower

endowment income in future (states); a largerρ prolongs the expected effect of the shock

to ex t . Buying more of the risk-free asset allows the agent to shift consumption from today

to those future states. If EIS is low, as it is when γ > 1, there will be increased emphasis

on offsetting the greater future consumption. All this is encapsulated in the γρex t term

in (24) which shows an increase in ambiguity aversion implies a rise in demand for the

risk-free asset. The agent desires a portfolio more robust to the uncertainty/ambiguity,

precipitating a “flight to quality”, driving up its equilibrium price and lowering the risk-

free rate. This is a key effect of ambiguity aversion, as has been widely emphasized in the

literature, e.g., in Caballero and Krishnamurthy (2008).

The first moment of the (predicted) risky rate is approximated as

E t rt =Const1+ρ
�

γ−ψ
�

x̃ t +ψρx̂ t −
ρ2

2

�

(γ−ψ)2Const2

�

ßV a r t (x t ) (25)

where E t ≡ E x̂t Ext and the operators E
bxt and Ext take expectations with respect to the
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measure N (x̂ t ,Ω) and the bivariate normal shown in (16), respectively. Const1 and Const2

collect terms which are both constant across time and not affected by ambiguity aversion.

To see why these moments represent model predictions, suppose the model were correct.

That is, the asset prices at a time t obtain per the Euler eqs. (17) and (18). Then (25)

describes the conditional expectation of a Savage-Bayes rational observer/analyst who

observes these prices and uses the same information as the agent to predict dividend

at t + 1. The expression (25) can be seen to imply that the (first moment of) risky rate

will rise with ambiguity aversion in the relevant range of parameter values. An increase

in α has two countervailing effects. The first effect, shows up in the term ργex t , which

was also present in the expression for the risk-free rate. The intuition here is analogous.

The second effect is evident from the term −ρψex t : as α increases ex t decreases, hence

decreasing the (“as if”) expected future dividend payoff from the asset causing the agent

to want to pay less for the asset. Taking out the common factor, ρ, the strength of the

first effect depends on γ while the second effect is exacerbated by leverage,ψ. With γ≤ 3

andψ= 3, as we have here, the second effect dominates and equilibrium risky rate varies

positively (but quite minimally) with ambiguity aversion. Since ßV a r t (x t ) is essentially

constant in the single-ρ model ambiguity aversion does not affect risky rate through this

route.

To get a first intuition for the results on returns volatilities, observe when α≈ 0 while

ψ drops out as a coefficient of (x̂ )2 in the expression for (E r )2 it is present in that form

in E r 2 and hence plays the more significant role in fixing the (average) volatility of the

risky rate for the Bayesian and ambiguity averse case alike. The risk free rate is, of course,

not affected by the volatility of the dividend claim, which explains its comparatively lower

volatility.

Finally, the approximation for the equity premium may be written as

E t rt − r f
t =Const3+ψρ (x̂ t − x̃ t )+

ρ2

2

�

γ2− (ψ−γ)2Const2

�

ßV a r t (x t ). (26)

where we have explicitly left the two terms which are affected by ambiguity aversion,

(x̂ t − x̃ t ) and ßV a r t (x t ). The first term shows that the premium increases with ambigu-

ity aversion (the difference (bx t − ex t ) increases when α is increased) and the magnitude of

this effect is accentuated by persistence and leverage. A doubt factor also comes into play

since the premium is increasing in the (distorted) variance of the latent variable but only

significantly when compared to the rational expectations case where the second-order

belief is degenerate. Since conditionally the risk free rate is not random, the (conditional)

volatility of equity premium is determined by that of the risky rate, discussed earlier. How-
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Data Model

Single-ρ Two-ρ
Excess Return -0.10 0.56 -0.21
Equity Premium – 0.07 -0.61
HP filtered p −d 0.03 0.06 0.04

V a r (x t ) – – -0.69
ßV a r (x t ) – 0.43 -0.83

Table 2: Countercyclicality of returns and pro-cyclicality of price-dividend ratio: Cor-
relation of data and model-implied excess returns, equity premium and price-dividend
ratio with bx t . (In the two–ρ case, the correlation can be assumed to be with the filtered
value coming from either the high- or the low-persistence model since the correlations
are identical up to 2 decimal places.)

ever, as Table 1 shows, while the predicted second moment of the risk-free rate matches

data very well, the single-ρ model fails to predict about 50% of the volatility of the risky

rate (and that of the equity premium).

The (log of) price dividend ratio, z , is approximated as shown in (27) below. The for-

mulas for A0, A1 are given by eqs. (40) and (39) in the Appendix. Notably, given our pa-

rameter values, A1 is positive and proportional to ρ(ψ−γ).

z t+1 = A0+A1x̃ t+1 (27)

Table 2 shows the correlation between the filtered state, x̂ t , and three series: the excess

return, the equity premium and HP filtered p−d (where the filter parameterλ is set to 6.25

following the recommendation by Ravn and Uhlig (2002)). The excess return – the differ-

ence between the market return and the risk free rate – in the single-ρ model is strongly

pro-cyclical and differs substantially from the data, where it is weakly counter-cyclical.

The equity premium, which is the conditional expected value of the excess returns, is also

weakly pro-cyclical. Being an expectation, it is not directly observable in data, hence the

missing entry; we only give the correlations for the equity premium implied/predicted by

our model(s). The lack of cyclicality (and near constancy) is primarily driven by the con-

stancy of the conditional variance of the “as-if” belief, as shown in the top panel of Figure

3. We interpret the lack of countercyclicality in the returns as a clear indication that the

single-ρ specification is inadequate as a model of (ambiguous) beliefs.
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3.2 Uncertain persistence: the two-ρmodel

Now we present and discuss our main model, what we think best captures the ambiguity

in beliefs and its effect on levels and movements in asset returns and prices.

3.2.1 Beliefs with time-varying ambiguity

Now we extend the single-ρmodel to allow for uncertainty about the persistence of growth

shocks. This extension of the model reflects the difficulty in determining, on the basis of

observations of growth realizations, whether the true growth process is a very persistent

process where the persistent component has a small variance or a moderately persistent

process where the variance of the persistent component is larger (Shephard and Harvey,

1990). We assume the agent believes that the stochastic evolution of the economy follows

a persistent latent state process given by a BY CASE I type specification with either a low

persistence (ρl ) or a high persistence (ρh ) with probabilityηt and 1−ηt , respectively. The

two processes are:

Low Persistence (ρ =ρl , Pr =ηt )
x l ,t+1 = ρl x l ,t +σx l εx l ,t+1

d l ,t+1 = d̄ +ψx l ,t+1+σd l εd l ,t+1 = d̄ +ψ
�

ρl x l ,t +σx l εx l ,t+1
�

+σd l εd l ,t+1

g l ,t+1 = ḡ +x l ,t+1+σg l εg l ,t+1 = ḡ +ρl x l ,t +σx l εx l ,t+1+σg l εg l ,t+1

High Persistence (ρ =ρh , Pr = 1−ηt )
xh,t+1 = ρhxh,t +σxhεxh ,t+1

d h,t+1 = d̄ +ψxh,t+1+σd hεd h ,t+1 = d̄ +ψ
�

ρhxh,t +σxhεxh ,t+1
�

+σd hεd h ,t+1

g h,t+1 = ḡ +xh,t+1+σg hεg h ,t+1 = ḡ +ρhxh,t +σxhεxh ,t+1+σg hεg h ,t+1

(28)

We call this the two-ρmodel. The value function here depends on four state variables: the

current consumption, the filtered state variables from each model (low and high persis-

tence), and ηt , the posterior probability that the low persistence model is the “true” data

generating process (DGP), and takes the form:

V (C t ; x̂ l ,t , x̂h,t ,ηt ) = u (C t )+βφ−1(Vt+1), (29)

where

Vt+1 ≡ηt E x̂ l ,t

�

φ

�

Ex l ,t

�

V
�

C t exp
�

g l ,t+1
�

, x̂ (l )h,t+1, x̂ (l )l ,t+1,η(l )t+1

��

��

+(1−ηt )E x̂h,t

�

φ

�

Exh,t

�

V
�

C t exp
�

g h,t+1
�

, x̂ (h)h,t+1, x̂ (h)l ,t+1,η(h)t+1

��

��

.

The filtered variable bx (i )j ,t+1, i = l , h, j = l , h is the agent’s update to her belief next pe-

riod if the growth outcome next period were interpreted by the Kalman filter that assumes
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(a) Variance and the Equity Premium (Single-ρ)
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(b) Variance and the Equity Premium (Two-ρ)
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Figure 3: Movements in variance and model implied equity premium: The top panel
shows the model-implied conditional equity premium and the conditional variance of
the “as-if” posterior from the single–ρ model. The bottom panel shows the conditional
equity premium, as well as the variance of the posterior and “as-if” posterior from the
two–ρ model.

ρ = ρj , when the data is actually generated by the model with persistence parameter

ρ =ρi . For example, x̂ (l )h,t+1 is the value of the filtered latent state variable at t +1 if the data

were filtered usingρ =ρh when in fact the data is generated by the low persistence model.

Analogously, η(l )t+1 (η(h)t+1) is the Bayes update to the agent’s posterior probability that the

low persistence model is the correct model when the low (respectively, high) persistence

model is the data generating process. See Appendix B for further details, including the

formulas for rates of return.

The value of ρh was chosen to be the same as in the single-ρ model, which is 0.85

in the usual case (0.90 is used as a robustness check), based on the empirical arguments

given in the LRR literature. The value of ρl was motivated by Beeler and Campbell (2009)

and Constantinides and Ghosh (2010) who argue that the value of the persistence param-

eter, when estimated on the basis of the time series properties of the growth data (i.e.,

without considering model specific pricing implications) is not as high as in the BY cali-

bration. Constantinides and Ghosh (2010) provide a GMM estimate (based on the years

1931-2006) of ρ = 0.32 (see their Table 4). We set ρl = 0.30, although (we found) values
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between 0.25 and 0.40 have virtually identical posteriors (and implications for rates of re-

turns). Using this value for ρl , the posterior probability against the model with ρh = 0.85

is approximately 50% in 1977, the beginning of the model evaluation period, and the pos-

terior probability ηt is consistently in the interval [0.3, 0.7] throughout the period 1978-

2011, demonstrating how difficult it is to separate the two models on the basis of growth

data.12 To summarize, one substantial strand of literature (following on from BY) argues

there is strong empirical justification for assuming a high value of ρ in beliefs of repre-

sentative agents in asset pricing models, while another points out that pure consumption

growth data suggests a more moderate value, and it is generally agreed the estimates are

quite fragile. As just noted, theρ = 0.30 model has about as much support as theρ = 0.85

model in the (growth) data, and hence it seems only appropriate that an agent who is un-

certain about the latent state, an uncertainty whose evolution depends significantly on

the belief about the value of persistence, treats beliefs about the correct ρ as ambiguous

subject to updating. This is one sense (as also argued by Hansen and Sargent (2010)) in

which the two-ρ model, with the parameter values we adopt, is empirically more com-

pelling than the assumption of a dogmatic belief in some value of ρ. All parameter esti-

mates are presented in Appendix C.

There is another way in which the two-ρ model improves, empirically, on the single-

ρ model: by introducing endogenously varying uncertainty of beliefs. Uncertainty about

persistence leads to time-varying mixing of the two models (of persistence) through ηt , a

belief that varies over time as the agent learns from successive growth shocks. This pro-

duces a posterior predictive distribution for consumption growth which is heteroskedas-

tic even though in each model, when considered independently of the mixture, it is ho-

moskedastic. The heteroskedasticity is influenced by two components – the spread in the

filtered state from each model, and the mixing probability.

12Choosingρl to be very small (≈ 0) so that the low persistence model is virtually i.i.d. produces posterior
estimates of ηt near zero, i.e., the two-ρ model behaves almost as the single-ρ model.
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Figure 4: Explaining time-varying ambiguity:The upper panel shows the filtered latent
variables assuming that the high (x̂h,t ) and low (x̂ l ,t ) persistence states were the DGP. In
the lower panel, the dashed line graphs the conditional variance of the latent state vari-
able (V a rt (x t )) and the solid line the “as-if” conditional variance (àV a rt (x t )). In both pan-
els the gray line shows the HP–filtered consumption growth.

The beliefs about the latent state, conditional on the low and high persistence models

being true, are N (x̂ l ,t ,Ωl ) and N (x̂h,t ,Ωh), respectively, and the variance of the mixture

distribution of the latent state is,

ηtΩl +(1−ηt )Ωh +ηt (1−ηt )(x̂h,t − x̂ l ,t )2. (30)

It is as if the agent has two forecasting models, and when the history is such that both

models explain that history just as well (i.e., ηt is close to 0.5) and yet their core fore-

casts markedly disagree (i.e.,
�

x̂h,t − x̂ l ,t
�2 is large) the uncertainty about the mean of the

growth distribution rises. In essence, learning about the true persistence model induces

heteroskedasticity since from time-to-time the models disagree, credibly, about near fu-

ture growth prospects, making the prospects appear more uncertain. The divergence of

beliefs has been strongest in the larger downturns, which also happened to be the larger

shocks, and so historically, the time-variation of uncertainty has been countercyclical.

Thus, the two-ρ model of beliefs embodies a theory of why and how ambiguity about

growth prospects may vary over time. 13

13The case for introducing time-varying volatility of macroeconomic variables has been argued strongly
in the recent literature, e.g. Fernandez-Villaverde and Rubio-Ramírez (2010). Much of this literature, in-
cluding Bansal and Yaron (2004) (see their main, CASE II, model) models this by positing an exogenously
specified stochastic volatility. Beeler and Campbell (2009)and Constantinides and Ghosh (2010) argue that
the assumption of highly persistent stochastic volatility of innovations to consumption (key factor under-
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Figure 5: Time-varying distortion: These four panels contain plot beliefs about the latent
state without ambiguity aversion (Bayesian) and with ambiguity aversion (both from the
two-ρ model). The left panels picture “bad” years where x̂h,t < x̂ l ,t , and the two right
panels show “good” years.

3.2.2 The asymmetric effect of ambiguity aversion over the business cycle

Ambiguity aversion exacerbates the time-variation of the uncertainty. The Bayesian mix-

ture is a distribution with excess kurtosis relative to a normal but the change of measure,

the “twist”, transforms the small increase in kurtosis into substantial negative skewness,

while increasing the variance. Table 7 in the Appendix A shows the magnitudes of these

moments, averaged across the model evaluation period. The averages, however, do not

reveal the more intriguing dynamic story: the significant changes and movement in the

variance of the as if (distorted) posterior along the time-path of information sets in the

sample period. This variation was almost completely absent in the single-ρ case, as is

evident in Figure 3.

Figure 4 contains two panels. The top panel shows how x̂h,t and x̂ l ,t have moved with

time and business cycle (proxied by HP filtered log consumption) over the period 1978–

pinning the exogenous specification of stochastic volatility) is not well supported empirically. In contrast,
the time-varying heteroskedasticity generated endogenously in the two-ρ model is a forecast uncertainty,
of beliefs, empirically driven by the history of growth outcomes and consistent with a stationary volatility
of consumption shocks.
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2011. It is movements in these state variables, especially their disagreement, which is the

source of variation in uncertainty. The lower panel depicts time-series of the variance of

the posterior (eq. (30)) and the variance of the distorted posterior. The latter, evidently,

greatly amplifies movements in the former, especially at downturns: instances of greater

volatility in the distorted posterior arise when
�

x̂h,t − x̂ l ,t
�2 rises and x̂h,t falls below x̂ l ,t , as

it does following a negative shock. To see why, consider the following. Loosely speaking,

we can think of the overall distorted posterior as a weighted mixture of two component

distorted posteriors, ξi
t ⊗N

�

x̂ i ,t ,Ωi
�

for i = h, l , where ξi
t is as in eq. (19) with x̂ i ,t+1 re-

placing x̂ t+1 on the right hand side of the equation. Let x̃ i ,t denote the mean of a distorted

component posterior. Due to the greater persistence, the aggregate uncertainty around

x̂h – captured by Ωh – is larger than that around x̂ l . As a result, the magnitude of distor-

tion is greater in the high persistence model, i.e., x̂h − x̃h > x̂ l − x̃ l . Which means that
�

x̂h,t − x̂ l ,t
�2 is smaller when x̂h > x̂ l than when x̂h < x̂ l , and the squared difference be-

tween the means of the distorted distribution is an important component in the variance

of a mixed “as-if” posterior (see eq. 30). This asymmetry also makes the skewness of the

mixed “as-if” posterior more negative since the two components are closer to each other

in good times and further apart in bad times. Hence, the “as if” posterior of the ambigu-

ity averse agent exaggerates the volatility in the Bayesian posterior in a way that makes it

more pronouncedly countercyclical (Table 2).

Figure 4 shows that in both 1982 and 1992 the distance between the two latent states

is high and x̂h,t < x̂ l ,t , while in 1999 and 2005 x̂h,t > x̂ l ,t . In all four years the absolute

difference between x̂h and x̂ l was similar. However, it is only in 1982 and 1992 that x̂h,t <

x̂ l ,t . Though facing approximately the same forecast uncertainty in all four years, the

ambiguity averse agent is more apprehensive about the uncertainty in 1982 and 1992.

This leads to a larger twist over probabilities in the left tail, yielding a higher variance,

a prominent left skew and excess kurtosis; compare the Bayesian and twisted predictive

distributions in Figure 5.

3.2.3 Results

The top panel of Table 3 reports the two-ρ model implied conditional moments. The

level of ambiguity aversion was again calibrated so that the risk-free rate was 1.5%. Com-

pared with the single-ρmodel (Table 1), we see the model’s match of the first moments

is now quite perfect and there is a substantial increase in the magnitude of the predicted

second moments. The table also shows results of robustness checks where assumed val-
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ues of persistence, leverage and discount rate were varied (separately). A Bayesian agent

also sees the increase in the volatility of the risky rate and equity premium in the two-ρ

specification, but the equity premium is tiny.

Results on price-dividend ratio in the two-ρmodel, in the bottom panel, show an im-

provement over the single-ρ model, similar to that seen in the case of returns. This adds

to the findings in Table 2, which show that the weak pro-cyclicality of p − d in data is

closely replicated in the model implied series in the two-ρ case. A common observation

concerning excess returns is that they tend to mean revert over long horizons. Applying a

statistic used in the literature (see, e.g. Guvenen (2009)) that aggregates consecutive auto-

correlation coefficients of excess returns from the U.S. data in our 1978-2011 sample, we

find a strong pattern of mean reversion, shown in the second row in Table 5. The third row

displays the model counterparts of this measure of mean reversion, which are consistent

with the signs and rough magnitudes of these statistics in the data. Such mean reversion

is a clear departure from the martingale hypothesis of returns and is sometimes linked to

the predictability of returns. However, both in the data (in our 1978-2011 sample) and in

the model implied time series, we found returns are only very weakly predicted by price-

dividend ratio (though, as is evident in the final two columns in the bottom panel of Table

3, the persistence of p −d found in the data is very well predicted by the model). Figure 6

confirms the comparative statics of returns are all qualitatively very similar to those from

the single-ρ model.
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Figure 6: Comparative statics (two-ρ): In the left panel, α varies with γ fixed at 2.5. In
the right panel, α was calibrated at 11.3 and γ varies. The average comparative statics
are constructed by first computing the comparative statics for each year using the filtered
values x̂ t and then averaging across t = 1978, . . . 2011.

What accounts for the significant improvement in the match with data compared to
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Returns and Volatility
γ α E (r ) E (r − r f ) σ(r f ) σ(r ) σ(r − r f )

Data 8.08 6.68 2.20 16.5 16.1
1.0 31.5 6.61 5.08 1.20 22.2 22.2
2.0 17.8 7.36 5.85 2.58 23.0 23.0
2.5 11.3 7.97 6.46 3.29 23.55 23.6
3.0 6.65 8.66 7.14 3.96 24.17 24.2

Robustness Checks
ρh = 0.90 2.5 7.30 7.88 6.36 3.83 23.5 23.6
ρl = 0.25 2.5 11.1 7.98 6.48 3.05 23.7 23.7
ψ= 2.50 2.5 11.3 7.58 6.07 3.15 23.6 23.5
β = 0.965 2.5 13.0 9.15 7.62 3.44 23.8 23.8
β = 0.97 2.5 12.2 8.56 7.05 3.36 23.7 23.7
Bayesian 2.5 ≈ 0 7.62 0.62 1.70 23.1 23.2

Price-Dividend Ratio
γ α E(P/D) σ(P/D) E(p −d ) σ(p −d ) AC1 AC2

Data 45.513 19.954 3.724 0.445 0.803 0.759
1.0 31.5 29.3 4.34 3.37 0.15 0.51 0.48
2.0 17.8 32.3 5.92 3.46 0.19 0.65 0.60
2.5 11.3 44.0 14.5 3.73 0.34 0.85 0.78
3.0 6.65 52.9 22.2 3.88 0.43 0.88 0.81

Robustness Checks
ρh = 0.90 2.5 7.30 42.9 13.7 3.71 0.33 0.84 0.78
ρl = 0.25 2.5 11.1 44.3 14.8 3.74 0.35 0.85 0.78
ψ= 2.5 2.5 11.3 39.6 11.1 3.64 0.29 0.82 0.75
β = 0.965 2.5 13.0 59.9 28.1 3.98 0.49 0.89 0.82
β = 0.97 2.5 12.2 51.3 20.6 3.86 0.42 0.88 0.81
Bayesian 2.5 ≈ 0 40.0 11.5 3.65 0.30 0.82 0.75
Bayesian, β = .97 2.5 ≈ 0 46.3 16.5 3.77 0.37 0.86 0.79

Table 3: Results (two-ρ): The top panel contains the average of the predicted conditional
moments of rates of return (on dividend claim) in the two–ρmodel for different values of
γ and calibrated α. Immediately below is a series of robustness checks where the param-
eter in the left-most column was changed from the basic specification (ρh = 0.85,ρl = 0.3
ψ = 3, β = 0.975). The bottom panel contains the average of the price/dividend ratio in
the two–ρ model over the period 1978–2011. AC1 and AC2 denote the first and second
order autocorrelation of p −d .
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the single-ρ case? The single-ρ approximations in eqs. (24), (25), (26) give important

clues when taken together with some observations. The first observation is that in the

two-ρ model, the filtered latent state x̂ is less pessimistic, overall, since the exaggerated

downward plunges in its value when assuming high persistence is moderated by the more

modest swings obtained by assuming lower persistence, as may be seen in (top panel of)

Figure 4. The second observation is the increase in the “as if” volatility,ßV a r t (x t ), which

is evident in Figure 3 (discussed in subsection 3.2.2). Finally, for purposes of fixing in-

tuition, it is helpful to note that the rates of risk free and risky returns in this model are

close to being a weighted average of the corresponding rates from a high and a low per-

sistence model (see Appendix B2). Because the (average) x̂ is less pessimistic, the two-ρ

case requires a comparatively greater calibrated value of α to ensure that x̃ is low enough

to generate a risk free rate of 1.5%. However, to make the calibration, x̃ is not required

to be as low as it had to be in the single-ρ case, since the higher ßV a r t (x t ) helps to keep

the risk free rate down. Ambiguity aversion does not significantly affect the risky rate due

to the two countervailing effects mentioned in the discussion following eq. (25); notice

the moments of the risky rate for the Bayesian case. The fact that the implied risky rate

is greater (than in the single-ρ case) is primarily due to the fact that x̂ l is less pessimistic

and correspondingly, the risky rate in the low persistence model is a lot larger. As is ev-

ident from the result in the Bayesian case, the increase in volatility of the risky rate has

far more to do with the move from single to two-ρ than ambiguity aversion per se. In-

deed, putting together the discussion of volatility following eq. (25), and formula in (30)

we see the variance of the risky rate in this model would be significantly determined by

the termψ2(x̂h,t−x̂ l ,t )2. However, compared toψ2(x̂h,t−x̂ l ,t )2,ψ2(x̃h,t−x̃ l ,t )2 will exagger-

ate the counter-cyclical variation, for reasons explained in the previous sub-section. So,

even though ambiguity aversion may not affect the volatility of risky rate very much on

average, it does shape its time-profile. The average level of the equity premium is largely

determined by the term (x̂ − x̃ ), which is now greater since the calibrated value of α has

risen.14

What is most dramatically different from the single-ρ model is the time variation of

expected returns as may be seen in Figure 3. The bottom panel in the figure demon-

strates that the dynamics of equity premium predicted by the two-ρ model are strongly

influenced by movements inßV a r t (x t ). In the case of the single-ρmodel, shown in the top

14However, this discussion based on the approximation equations does not give the complete explanation
since, as was noted, in the two-ρ case moments higher than the second order come into play which are not
taken into account in the approximations.
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γ α C D

Data 0.74 0.39
1.00 31.5 0.55 0.08
2.00 17.8 0.87 0.54
2.50 11.4 0.93 0.65
3.00 6.7 0.95 0.72

Table 4: Price-dividend ratio correlations (two–ρ): Average correlation of the
price/dividend ratio with consumption and dividends (in logarithms) in the two–ρmodel
over the period 1978–2011.

Cumulative Autocorrelation

Lag, in years 1 2 3 4 5

Data -0.16 -0.30 -0.32 -0.79 -0.33
Model implied returns -0.54 -0.35 -0.58 -0.76 -0.52

Table 5: Mean reversion of returns:Autocorrelation structure of excess returns in the data
and as implied by the two-ρ model (baseline specification). The cumulative autocorrela-

tion is defined as
�

∑j
i=1 Cor r l ((Rt −R f

t ), (Rt−i −R f
t−i ))

�

.

panel, there is virtually no time-variation, neither in the equity premium nor inßV a r t (x t ).

The price-dividend ratio carries essentially the same information as the return on the

dividend claim. As we noted in the case of risky return, here too the degree of ambigu-

ity aversion has minimal effect (because of the two offsetting effects): it is driven very

substantially by the filtered value of the hidden state, which causes it to be pro-cyclical.

The lower pessimism of x̂ here too acts to lift the price-dividend ratio, while the larger

ßV a r t (x t ) lifts its second moment, while the AC1 and AC2 match reflects the persistence

of beliefs about the filtered state.

While the time variation of the conditional equity premium shown in Figure 3 may

be impressive, we do not have a comparable time series in data since equity premium

is not directly observed. However, we do observe the realized risky rate, risk free rate,

the realized excess return (the difference between the two) and the price-dividend ra-

tio. Figure 7 plots these and the corresponding series implied by the model (each point

shows the value of the variable forecast by the model at a date given the information set

at that date). This sets out a stark, stiff test for the model. We are not aware of compara-

ble graphs in the literature, possibly because most model predictions are not derived as
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Figure 7: Returns and Price–Dividend Ratio: Panel (a) contains a plot of the model-
implied excess return along with the actual excess return. Panel (b) shows the model-
implied risk-free rate along with the actual real risk-free rate. Panel (c) contains the actual
and model implied price-dividend ratios. Panel (d) plots the variance of the mixture and
the “as-if” variance of the mixture. Panel (e) graphs the (two-ρ) model implied times se-

ries of
p

E t (Rt+1−E Rt+1)2.
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conditional expectations at information sets on the observed history.15 Panel (c) of Fig-

ure 7 reproduces the ßV a r t (x t ) graph shown earlier, just to see in a single glance the role

this variable, embodying the as if (conditional) uncertainty of the ambiguity averse agent,

plays in the model predictions. The predictions are evidently good, especially for returns

but reasonably good too for the price-dividend ratio. Indeed, the correlation of the lin-

early detrended (in logs), HP-filtered (in logs) and “raw” (i.e., unfiltered) predicted ratio

and the correspondingly treated price-dividend observed in data are 0.67, 0.77 and 0.83,

respectively. However, we cannot match the period between 1995 and 2000 which cor-

responds to the dot-com bubble (see, e.g., Kraay and Ventura (2007)). This is only to be

expected; ours is a simple Lucas tree exchange economy, with prices determined in gen-

eral equilibrium entirely based on the stochastic evolution of real output. In this respect,

it is significant that the actual price-dividend returns to the predicted path following the

collapse of the bubble. The effects of the recent recession are captured too, though not as

well as in the returns predictions. The performance of the model seems remarkable given

the simplicity of input; annual, aggregate, output realizations. This a very coarse and dis-

crete model of evolution of signals compared to what is evident in the real world. 16 These

results show that observed movements in asset returns and prices can be substantively

explained simply on the basis of aggregate macroeconomic risk, conditional on aggregate

uncertainty grounded in actual historically observed public signals.

A fact of significant interest to financial economics is that stock return volatility varies

quite a lot over time. A related, intriguing, stylized fact is the countercyclicality of the

return volatility; that, it tends to be higher in recessions. Our model predicts this coun-

tercyclicality. Panel (e) of Figure 7 plots the model implied times series of the (square root

of) conditional expectation of the deviation of the rate of return from its unconditional17

mean, with the conditional expectation taken at information sets along the observed his-

tory. This prediction is testable; but, testing it would require higher frequency data (e.g.,

monthly, see Figure 1 in Veronesi (1999)). Veronesi’s model gives a qualitative prediction

of conditional volatility of returns turning on the idea that investors tend to be more un-

certain about the future growth rate of the economy during recessions. While the expla-

15Figures in section 7 in Hansen and Sargent (2010) show time series of conditional expectations of several
variables in their theory but not rates of returns and price-dividend ratio and nor any comparisons with
observed time series in data; Figure 3 in Ju and Miao (2012) shows the conditional returns but does not
compare with data.

16The fact that we use annual data inevitably makes the time alignment across variables rather imperfect,
which needs to be taken into account when reading the graphs.

17More precisely, the unconditional mean E Rt+1 ≡ T−1
∑T

t=1 Rt , where Rt is as implied by the model given
the observed history growth outcomes up to t .
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nation in our model is in similar spirit, it is different in that it applies ambiguity aversion

and ambiguity about the persistence and extent of the (hidden) temporary shocks to fun-

damentals explicable on the basis of observed history to make a quantitative prediction

(note the closeness of this plot to the plot of ßV a r t (x t )).

4 Interpreting the magnitude of the ambiguity aversion

Here we discuss some ways of understanding whether the calibrated levels of ambiguity

aversion that may be regarded as plausible in terms of implied individual (as opposed

to market) behavior. Specifically, we consider two thought experiments in a model of an

agent with preferences as in this paper. In each experiment the agent evaluates an un-

certain consumption prospect and identify part of that evaluation as the risk premium

and part as the ambiguity premium. We then compare the two premia across pairs of val-

ues of
�

γ,α
�

. Years of conceptual familiarity, application in economic modeling, reams of

empirical studies and casual introspection informs us what extent of risk aversion is plau-

sible and typically acceptable in applied economic models. Given an uncertain prospect,

we compare ambiguity premia with α set in the range considered in our calibrations with

risk premia obtained for values of γ thought to be plausible. If the ambiguity premia were

of an order similar to the risk premia we think there is basis to argue that our calibrated

values were plausible. To simulate the domain modeled in this paper, each thought ex-

periment considers circumstances which involve uncertainty similar to that faced by the

agent in our asset pricing model. In the first experiment the agent faces an uncertain

consumption one period ahead but not in subsequent periods. In the second, the agent

evaluates an entire Lucas tree, involving dynamic uncertainty, precisely like the agent in

our model.

In the first thought experiment, an agent at time t faces an uncertain consumption

prospect with a one-off risk: C t+1 = C̄ exp
�

g
�

, where g ∼ F
�

g |x
�

and x ∼ F (x ), with

C t+n = C̄ , n = 2, 3, . For instance, in the case of the single-ρ model, we have

F
�

g |x
�

≡N
�

ρx + ḡ ,σ2
x +σ

2
g

�

, F (x )≡N (x̂ ,Ω) , (31)

and in the case of the two-ρ we have,

F
�

g |x i
�

≡N
�

ρx i + ḡ ,σ2
x i
+σ2

g i

�

, i = h, l , F (x )≡
¨

N (x̂ l ,Ωl ) with probability η
N (x̂h ,Ωh) with probability 1−η .

(32)
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Following eqs. (15), (29), utility from this prospect with one-off uncertainty is:

V A ≡ β
�

φ−1
�´
φ
�´

u (C t+1)d F
�

g | x
�

�

d F (x )
�

+ β ū
1−β

�

(33)

where, u
�

C̄
�

≡ ū . The consumption (certainty) equivalent is then given byC A = u−1
�

V A

β

�

.

Analogously, letting φ be the identity function in eq. (33), we define V B , the value to a

Bayesian agent and define the corresponding certainty equivalent, C B , by substituting

V B in place of V A . Finally, letting φ and u be identities in eq. (33) we define V C , the value

to a risk and ambiguity neutral agent and thus define C C , the discounted expected sum.

The risk premium isR =C C −C B , and the ambiguity premium isA =C B −C A .

For the second thought experiment consider the full Lucas tree, the uncertain prospect

actually considered by our agents and evaluated per eqs. (15) and (29), for the single-ρ

and two-ρmodels, respectively. The consumption certainty equivalents and risk and am-

biguity premium are then defined in directly analogous fashion.18

Table 6 reports the relative premium for each of the two prospects, the ratio A /R ,

corresponding to beliefs in the two-ρ model, averaged over the set of x̂ obtained on the

actual sample path. The γ= 2, 2.5, 3 and α accordingly calibrated to obtain a risk free rate

of 1.5, per our usual practice. So, as the γ increases, the ratio falls since the calibrated α

decreases. For each prospect, we see the ambiguity premium is about the same, mostly

less, than the risk premium, when using levels of relative risk aversion that are widely

regarded as plausible. This gives us a good idea of what the magnitude of α implies be-

haviorally in the context of our model. Cubitt, van de Kuilen, and Mukerji (2012) report

measurements with Ellsberg style experiments assuming smooth ambiguity preferences,

and estimate the average magnitude of ambiguity premium to be similar to that of risk

premium (for the same uncertain prospect).19

Table 6 also shows the relative premia for different values of the discount factor, β . In

the case of the prospect in the first experiment, we see the relative premia remain similar

18In the case of this Lucas tree prospect, the value maybe equivalently computed without involving the
φ directly by applying a distorted posterior, with precisely the same distortion that was obtained in our
model(s). However, the same distortion would not work when we evaluate the one-off stochastic prospect,
since the as if belief that applies depends on the act being evaluated; the distortion depends on the con-
sumption plan being considered, in particular, the associated continuation utility (see, e.g., eq. (19)). And,
for the one-off prospect the continuation value is not the same as that for the full tree.

19Epstein (2010) suggests two Ellsberg (1961)-style thought experiments and argues that they pose dif-
ficulties for the smooth ambiguity model. In particular, he claims that efforts to calibrate an individual’s
φ in a context of interest (e.g., financial markets), by examining the behavior of that individual in another
environment (e.g., real or hypothetical Ellsberg experiments), have no justification. Klibanoff, Marinacci,
and Mukerji (2012) revisit these thought experiments and show that Epstein’s conclusions arise because his
analysis does not use a state space complete enough to allow the formal incorporation of the key informa-
tion defining the experiments.
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One-off increase in C t Full tree
γ α A /R A /R

β = 0.975
2.0 17.8 0.85 –
2.5 11.3 0.28 –
3.0 6.65 0.09 –
β = 0.965
2.0 20.5 0.99 0.69
2.5 13.0 0.32 0.66
3.0 7.6 0.10 0.62

β = 0.96 13.9 0.35 0.87
β = 0.95 15.4 0.38 1.18

Table 6: Risk and ambiguity premia in thought experiments: Values ofA /R in the two
experiments with two-ρ beliefs, averaged over the sample path. For β = 0.95, 0.96 the
γ= 2.5.

as the discount factor is varied. The same is true for the Lucas tree prospect, though for

this prospect we are unable to report the value for β = 0.975. The reason for this is that

the discounted expected value of the tree (i.e., valuation by an agent who is both risk and

ambiguity neutral) does not exist (though it does for risk averse agents with γ≥ 0.16) and

hence, neither does C C , so it is not possible to computeR . The discount rate applied as

the baseline parametrization in our models is β = 0.975, since this is standard practice

in the finance literature, e.g., Bansal and Yaron (2004) and Hansen and Sargent (2010).20

However, as noted in the robustness checks in Table 3, the results we obtain withβ = 0.965

are very similar.

5 Concluding remarks

We have found conditional (macroeconomic) uncertainty can explain levels, volatility

and dynamics of asset returns and prices very substantially. Our model applied three links

to establish this connection: Uncertainty and learning (in the sense of having an evolv-

ing, non-degenerate belief) about persistent hidden states describing temporary shocks

to fundamentals; uncertainty and learning about the level of persistence; treating both

these uncertainties as ambiguous and incorporating a plausible level of aversion to am-

20Note, in these papers, with expected value preferences, the models are identical to our single-ρ and
two-ρcases, respectively, and the same remark with regard to non-existence of value applies.
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biguity. The first two elements, compatible with a Bayesian agent (but not with rational

expectations), were enough to explain quite substantially the average volatility of returns

and prices, and also the level of risky rate. Ambiguity aversion was important in explain-

ing the levels of risk free rate and equity premium, and for shaping the time profile, the

dynamics, of all the variables, especially the equity premium, on the basis of an endoge-

nously varying conditional uncertainty. What was perhaps more striking was the sim-

plicity of the framework and minimality of the departure from expected utility that was

sufficient to capture so many aspects of returns data. That suggests the approach in this

paper may be fruitfully applied to other domains of macro-finance research where effects

of endogenously time-varying uncertainty are of interest.
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Appendix

A An analytical approximation for rates of return in the single-
ρmodel

This section develops an analytical approximation to the equilibrium rates of return in the

single-ρ model. The crucial assumption on which the following second order approxi-

mation analysis depends is that E
eµt operates with respect to some normal distribution

N
�

ex t , Ω̃
�

. As the numbers (reporting skewness and excess kurtosis) in Table 7 generated

using the accurate numerical approximation demonstrate, Normality is a fairly accurate

description in the case of the single-ρ model.

Single–ρ Model
x t g c ,t

E σ E σ

Rat. Exp. – – 0.018 0.028
Bayesian -0.002 0.023 0.018 0.032
Twisted -0.023 0.024 -0.003 0.032

s k κ s k κ

Rat. Exp. – – 0.000 0.000
Bayesian 0.000 -0.000 0.000 -0.000
Twisted 0.000 -0.000 0.000 0.000

Two–ρ Model
x t g c ,t

E σ E σ

Bayesian -0.001 0.024 0.019 0.034
Twisted -0.022 0.028 -0.002 0.037

s k κ s k κ

Bayesian -0.003 0.013 -0.003 0.017
Twisted -0.005 -0.053 -0.038 -0.029

Table 7: Conditional moments of distributions. In each case, γ= 2.5 and α was set such
that the model generates an average risk-free rate of 1.5%. C t , bx`,t , bxh,t and ηt are set
equal to their mean in the data. s k and κ denote skewness and excess kurtosis (relative
to a Gaussian distribution), respectively. The latent state variable is known to a rational
expectations agent and so the conditional distribution is degenerate.
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Assumption 1 (Approximating assumption 1) eµt =N (ex t ,Ω) .

This is equivalent to assuming that eq. (22) is exactly a normal density with the same

variance as the Bayesian posterior Ω but with a different mean (ex t instead of x̂ t ). Let

E t ≡ E x̂t Ext ; eE t ≡ E
eµt Ext ≡ E

ext Ext . It is useful to recall, if x t is normally distributed, then

for any k ∈R,

E t
�

exp (k x t )
�

= exp

�

k E t x t +
k 2

2
V a rt (x t )

�

Also, ßV a r t (x t )≡ V a r
eµt (x t ) = Ω and V a rt (x t ) = V a rµt (x t ) = Ω and all ε terms have expec-

tation zero under both eE t and E t since the terms have expectation zero conditional on

x t .

The first Euler equation relating to the risk-free asset may be rewritten as follows:

1=βR f
t
eE t

�

exp
�

−γg −γρx t −γσxεx ,t+1−γσg εg ,t+1

��

=βR f
t exp

�

−γg −γρex t +
γ2

2

�

σ2
x +σ

2
g

�

+
γ2ρ2

2
ßV a r t (x t )

�

.

Taking logs and rearranging terms we obtain an approximate solution for the risk-free rate

of return:

r f
t =− lnβ +γg +γρex t −

γ2

2

�

σ2
x +σ

2
g +ρ

2
ßV a r t (x t )

�

. (34)

The second Euler equation relating to the risky asset may then be written as:

eE t exp

�

lnβ + ln

�

Pt+1+Dt+1

Pt

�

−γ ln

�

C t+1

C t

��

= 1 (35)

We adopt the following approximation (to the risky rate of return), proposed in Campbell

and Shiller (1988).

Assumption 2 (Approximating assumption 2) :

rt ≡ ln

�

Pt+1+Dt+1

Pt

�

' κ0+κ1z t+1− z t +d t+1 (36)

where z t = ln
�

Pt

Dt

�

and κ0 and κ1 are approximating constants.

Next, we conjecture that the log price-dividend ratio is given by

z t = A0+A1x̃ t . (37)

Our final assumption is that the mean of the distorted conditional distribution is an

affine function of the mean of the (contemporaneous) undistorted, Bayesian conditional

distribution, which holds well in our data, see Figure 8.
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Figure 8: x̃ t = E
eµt (x t ) plotted against bx t . The level of consumption is set to the average

value between 1978 and 2011. In each case, γ= 2.50.

Assumption 3 (Approximating assumption 3) x̃ t =δ0+δ1x̂ t for t = 1, 2,... , δ1 6= 0.

Note this assumption implies trivially that x̂ t = (x̃ t−δ0)/δ1. Hence, we obtain a second

order approximation of the second Euler equation as follows:

1= eE t exp

�

ln(β )+κ0+κ1z t+1− z t +d t+1−γg t+1

�

Plugging the guess for z t and using the processes of growth rates, and using Assumptions

1 and 3, we obtain

1= eE t exp

�

ln(β )+d −γg +κ0+(κ1−1)A0+κ1A1(δ0+δ1x̂ t+1)−A1x̃ t +(ψ−γ)ρx t

+(ψ−γ)σxεx ,t+1+σd εd ,t+1−γσg εg ,t+1

�

. (38)

In the expression for x̂ t+1 from the Kalman filter, let K = [K g , Kd ]. Then, we have now

an expression for x̂ t+1 which is equal to (substituting d t+1 and g t+1 using their dynamics

in the model):

x̂ t+1 =ρx̂ t (1−K g −ψKd )+(K g +ψKd )ρx t +(K g +ψKd )σxεx ,t+1+K gσg εg ,t+1+Kdσd εd ,t+1

Taking the log of eq. 38 and using x̂ t = x̃t−δ0

δ1
. Hence,

0= ln(β )+d −γg +κ0+(κ1−1)A0+κ1A1δ0−δ0(κ1A1ρ(1−K g −ψKd ))

+ [κ1A1ρ(1−K g −ψKd )+ρκ1A1δ1(K g +ψKd )+ (ψ−γ)ρ−A1]x̃ t

+ρ2(κ1A1δ1(K g +ψKd )+ψ−γ)2ßV a r t (x t )/2

+(ψ−γ+κ1A1δ1(K g +ψKd ))2σ2
x/2

+(κ1A1δ1Kd +1)2σ2
d /2+(κ1A1δ1K g −γ)2σ2

g /2
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Since this approximation must be valid for any x̃ t , we collect the x̃ t terms, set the expres-

sion equal to zero and we have

κ1A1ρ(1−K g −ψKd )+ρκ1A1δ1(K g +ψKd )+ (ψ−γ)ρ−A1 = 0

which must hold for all x̃ t . Hence,

A1 =
ρ(ψ−γ)

1−ρκ1(1− (1−δ1)(K g +ψKd ))
(39)

Doing the same for the constant terms, we have

(1−κ1)A0 = ln(β )+d −γg +κ0+κ1A1δ0−δ0(κ1A1ρ(1−K g −ψKd ))

+ ρ2(κ1A1δ1(K g +ψKd )+ψ−γ)2ßV a r t (x t )/2

+ (ψ−γ+κ1A1δ1(K g +ψKd ))2σ2
x/2

+ (κ1A1δ1Kd +1)2σ2
d /2+(κ1A1δ1K g −γ)2σ2

g /2 (40)

Using eq. 37 and that E t x̃ t+1 =δ0+δ1E t x̂ t+1 where E t x̂ t+1 =ρx̂ t (1−K g −ψKd )+(K g +

ψKd )ρE t x t =ρx̂ t , we obtain

E t rt = κ0+A0 (κ1−1)+κ1A1δ0(1−ρ)+d +A1(κ1ρ−1)x̃ t +ψρx̂ t (41)

and so the Equity premium is then

E t rt − r f
t =κ0+A0 (κ1−1)+κ1A1δ0(1−ρ)+d +A1(κ1ρ−1)x̃ t +ψρx̂ t (42)

+ ln(β )−γg −γρex t +
γ2

2

�

σ2
x +σ

2
g +ρ

2
ßV a r t (x t )

�

Note that when δ1 = 1, as is is true in our data (see Figure 8), A1 simplifies to −ρ(ψ−
γ)/
�

κ1ρ−1
�

.

We need values of the approximating constants, κ0 and κ1, to compute the log price-

dividend ratio. Beeler and Campbell (2009) obtain the constants as follows

z̄ =

∑

z t

N

κ1 =
exp z̄

1+exp z̄
κ0 = ln

�

1+exp z̄
�

−κ1z̄ .
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B Details of the model where agents beliefs are given by the
two-ρ specification

B.1 Beliefs and the direct value function:

The agent believes that the stochastic evolution of the economy follows a persistent latent

state process given by a BY type specification with either a low persistence (ρl ) or a high

persistence (ρh ), but does not know for sure which. That is, she believes either of the

models described in equation (28) represent the true data generating process. Define

bx i ,t ≡ E [x i ,t |g i ,1, . . . , g i ,t , d i ,1, . . . , d i ,t ], i = l , h, to denote the filtered x at time t conditional

on the observed history of growth rates (of consumption and dividend), if the history

were interpreted and beliefs updated using a Kalman filter which takes the model with

ρ = ρi as the data generating process. At any node on the growth path, at a time t , the

agent’s beliefs may be summarized by the tuple
�

bx l ,t , bxh,t ,ηt
�

, where the first two elements

show the beliefs about the latent state variable conditional on alternative assumptions

about the true data generating process (low or high persistence, respectively) while the

last element shows the posterior belief that the true data generating process is the low

persistence model. We denote by bx (i )j ,t+1, i = l , h, j = l , h, the agent’s forecast for the (one

period ahead) update to her belief about the filtered x if the growth outcome next period

(along with the previous history) were interpreted using a Kalman filter which takes the

model with ρ =ρj as the data generating process, when the data is actually generated by

the i persistence model. The direct value function obtains as follows:21

V (C t , bx l ,t , bxh,t ,ηt ) = (1−β )
C 1−γ

t

1−γ
(43)

−
β

α
ln

�

ηt

�ˆ ∞

−∞
exp

�

−α
˚ ∞

−∞
V
�

C t exp(g l ,t+1), bx
(l )
l ,t+1(~εl ,t+1),

bx (l )h,t+1(~εl ,t+1),η
(l )
t+1(~εl ,t+1)

�

d F (~εl ,t+1)
�

d F (x l ,t )
�

+
�

1−ηt
�

�ˆ ∞

−∞
exp

�

−α
˚ ∞

−∞
V
�

C t exp(g h,t+1), bx
(h)
l ,t+1(~εh,t+1),

bx (h)h,t+1(~εh,t+1),η
(h)
t+1(~εh,t+1)

�

d F (~εh,t+1)
�

d F (xh,t )
��

where ~εl ,t+1 =
�

εx l ,t+1εd l ,t+1εg l ,t+1

�

is a 3 by 1 vector of standard normal shocks (and so is

~εh,t+1) and ηt is the posterior probability at time t that the model with ρl is the data gen-

erating process. F (~εl ,t+1) and F (~εl ,t+1) are both trivariate independent standard normal

21Note that the utility function is pre-multiplied by 1−β in order to avoid the value function takes on very
high values that would prevent numerical stability of the algorithm.
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distributions. The updates for bx (i )j ,t+1 are obtained as follows:

bx (l )l ,t+1(~εl ,t+1) = ρl x̂ l ,t +K l ν
(l )
l ,t+1

bx (l )h,t+1(~εl ,t+1) = ρh x̂h,t +Khν
(l )
h,t+1

bx (h)l ,t+1(~εh,t+1) = ρl x̂ l ,t +K l ν
(h)
l ,t+1

bx (h)h,t+1(~εh,t+1) = ρh x̂h,t +Khν
(h)
h,t+1

where ν (i )j ,t+1, (i ) = (l ) or (i ) = (h) and j = l , h, denote the “surprises”. For example, when

the DGP is (i ) = (l ) and the filter uses ρj , j = h, the surprise is defined

ν (l )h,t+1 =

�

g l ,t+1− ḡ −ρh x̂h,t

d l ,t+1− d̄ −ψρh x̂h,t

�

=

�

ḡ − ḡ +ρl x l ,t −ρh x̂h,t +σx l εx l ,t+1+σg l εg l ,t+1

d̄ − d̄ +ψρl x l ,t −ψρh x̂h,t +ψσx l εx l ,t+1+σd l εd l ,t+1

�

.

The Kalman gain parameters, K i , i = l , h, depending on whether low or high persistence

model is assumed to be the true model, respectively, are

K i =ρiΩi
�

1ψ
�

F̂−1
i , where F̂i =

�

Ωi +σ2
g i

ψΩi

ψΩi ψΩi +σ2
d i

�

Finally, Ωi , i = l , h, is defined as the solution to

Ωi =ρ2
i Ωi −ρ2

i Ω
2
i

�

1ψ
�

F̂−1
i

�

1ψ
�′+σ2

x i

The Bayes update of ηt is obtained as follows :

η(l )t+1(~εl ,t+1) =
ηt L

�

ν (l )l ,t+1, F̂l

�

ηt L
�

ν (l )l ,t+1, F̂l

�

+
�

1−ηt
�

L
�

ν (l )h,t+1, F̂h

�

η(h)t+1(~εh,t+1) =
ηt L

�

ν (h)l ,t+1, F̂l

�

ηt L
�

ν (h)l ,t+1, F̂l

�

+
�

1−ηt
�

L
�

ν (h)h,t+1, F̂h

�

where the likelihood is

L
�

ν (i )j ,t+1, F̂j

�

=
1

2π|F̂j |
exp






−

�

ν (i )j ,t+1

�′
F̂−1

j ν
(i )
j ,t+1

2






where i = l , h and j = l , h.

B.2 The rates of return

In the two-ρmodel the risky rate of return is a function of four state variables, C t , bx l ,t , bxh,t ,ηt ,

just like V and ξt . In the sequel, it should be clear that variables in t +1 are evaluated us-

ing the relevant stochastic components. Let C i ,t+1 = C t exp(g i ,t+1), i = l , h. The risk rate,
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Rt , will satisfy:

βηt

ˆ ∞

−∞
ξ(l )t (C t , bx l ,t , bxh,t ,ηt )

�˚ ∞

−∞
Rt
�

C l ,t+1, bx (l )l ,t+1, bx (l )h,t+1,η(l )t+1

�

×

�

u ′
�

exp(g l ,t+1)
��

d F (~εl ,t+1)
�

d F (x l ,t )

+β
�

1−ηt
�

ˆ ∞

−∞
ξ(h)t (C t , bx l ,t , bxh,t ,ηt )

�˚ ∞

−∞
Rt
�

Ch,t+1, bx (h)l ,t+1, bx (h)h,t+1,η(h)t+1

�

×

�

u ′
�

exp(g h,t+1)
��

d F (~εh,t+1)
�

d F (xh,t ) = 1

where,

ξ(l )t (C t , bx l ,t , bxh,t ,ηt ) =
φ′
�˝ ∞

−∞V
�

C l ,t+1, bx (l )l ,t+1, bx (l )h,t+1,η(l )t+1

�

d F (~εl ,t+1)
�

Ψ

and

ξ(h)t (C t , bx l ,t , bxh,t ,ηt ) =
φ′
�˝ ∞

−∞V
�

Ch,t+1, bx (h)l ,t+1, bx (h)h,t+1,η(h)t+1

�

d F (~εh,t+1)
�

Ψ
with

Ψ=ηt

ˆ ∞

−∞
φ′
�˚ ∞

−∞
V
�

C l ,t+1, bx (l )l ,t+1, bx (l )h,t+1,η(l )t+1

�

d F (~εl ,t+1)
�

d F (x l ,t )

+ (1−ηt )
ˆ ∞

−∞
φ′
�˚ ∞

−∞
V
�

Ch,t+1, bx (h)l ,t+1, bx (h)h,t+1,η(h)t+1

�

d F (~εh,t+1)
�

d F (xh,t )

Then, we have

E t Rt =ηt

˘ ∞

−∞
Rt
�

C l ,t+1, bx (l )l ,t+1, bx (l )h,t+1,η(l )t+1

�

d F (~εl ,t+1)d F (x l ,t )

+
�

1−ηt
�

˘ ∞

−∞
Rt
�

Ch,t+1, bx (h)l ,t+1, bx (h)h,t+1,η(h)t+1

�

d F (~εh,t+1)d F (xh,t )

and the risk-free rate is

R f
t =

�

βηt

ˆ ∞

−∞
ξ(l )t (C t , bx l ,t , bxh,t ,ηt )

�˚ ∞

−∞

�

u ′
�

exp(g l ,t+1)
��

d F (~εl ,t+1)
�

d F (x l ,t )

+β
�

1−ηt
�

ˆ ∞

−∞
ξ(h)t (C t , bx l ,t , bxh,t ,ηt )

�˚ ∞

−∞

�

u ′
�

exp(g h,t+1)
��

d F (~εh,t+1)
�

d F (xh,t )

�−1

and so the equity premium is E t Rp
t = E t Rt −R f

t . The variance of equity premium is com-

puted as

σ2
�

Rp
t

�

= E t R2
t − (E t Rt )2
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where

E t R2
t =ηt

˘ ∞

−∞

�

Rt
�

C l ,t+1, bx (l )l ,t+1, bx (l )h,t+1,η(l )t+1

�

�2
d F (~εl ,t+1)d F (x l ,t )

+
�

1−ηt
�

˘ ∞

−∞

�

Rt
�

Ch,t+1, bx (h)l ,t+1, bx (h)h,t+1,η(h)t+1

�

�2
d F (~εh,t+1)d F (xh,t )
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C Data and estimation of parameters of the stochastic mod-
els

The long-run risk model was fit to annual data using maximum likelihood. Parameter

estimates are shown in Table 8. All parameters, except ρ and ψ were estimated using

data 1930–1977. The mean of consumption and dividends, ḡ and d̄ , respectively were

set to their values in the period 1930 – 1977. The variances of the latent state process,

consumption growth and dividend growth were estimated using the Kalman Filter. The

dividend leverage, ψ, was set to either 3 or 2.5, which is slightly lower than values which

maximize the likelihood.

Parameter Estimates

ψ= 3 ψ= 2.5
Parameter ρ = .25 ρ = .3 ρ = .85 ρ = .9 ρ = .3 ρ = .85

ḡ 1.92
(0.302)

1.92
(0.302)

1.92
(0.302)

1.92
(0.302)

1.92
(0.302)

1.92
(0.302)

d̄ 2.31
(2.21)

2.31
(2.21)

2.31
(2.21)

2.31
(2.21)

2.02
(2.21)

2.02
(2.21)

σg 0.048
(0.016)

0.046
(0.016)

0.25
(0.010)

0.20
(0.007)

0.47
(0.017)

0.20
(0.008)

σd 4.49
(0.893)

4.51
(0.892)

4.75
(0.909)

4.73
(0.902)

4.64
(0.914)

4.77
(0.918)

σx 0.054
(0.013)

0.54
(0.013)

0.051
(0.019)

0.059
(0.021)

0.054
(0.013)

0.059
(0.021)

Table 8: Parameter estimates (standard errors below in parentheses) using annual data
and the long-run risk model, shown above, using data from 1930 until 1977. All standard
deviation estimates and their standard errors have been multiplied by 100.

D Details of the numerical solution procedure

D.1 Solution Method: two–ρmodel

This section describes the minimum weighted residuals method we use to obtain an ap-

proximate solution for the value function and the risky rate. We then explain how we

assess the accuracy of the method.

Both the value function and the risky rate are approximated by a parametric function

of the form

Φy (X t ) = exp







∑

i c ,i h ,i `,iη∈I

θ
y
i c ,i h ,i `,iη

Hi c (ϕc (C t ))Hi h (ϕh(bxh,t ))Hi `(ϕ`(bx`,t ))Hiη(ϕη(ηt ))






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where X t ≡ (C t , bxh,t , bx`,t ,ηt ) denotes the vector of state variables of our two–ρ case22 and

y ∈ {V, R}. The set of indices I is defined by

I = {i z = 1, . . . , n z ; z ∈ {C , h,`,η}|i c + i h + i `+ iη ¶max(n c , n h , n `, nη)}

Implicit in the definition of this set is that we are considering a complete basis of polyno-

mials.23 Hι(·) is a Hermite polynomial of order ι and ϕz (·) is a strictly increasing function

that maps R into R. This function is used to maps Hermitian nodes into values for the

vector of state variables, X t ≡ (C t , bxh,t , bx`,t ,ηt ),24 The parameters θ y , y ∈ {V, R}, are then

determined by a minimum weighted residuals method. More precisely, we define the

residuals associated to both the direct Value function equation,RV (θ V ; X t ), and the Euler

equations for risky assets (consumption claims and dividend claims),RR (θ V ; X t ), as

RV (θ V ; X t )≡ΦV (C t , bx h
t , bx `t ,ηt )− (1−β )u (C t )−

β

α
ln(Vt+1)

where

Vt+1 ≡ηt

ˆ ∞

−∞
exp

�

−α
˚ ∞

−∞
ΦV

�

C (`)t+1, bx (`)h,t+1, bx (`)`,t+1,η(`)t+1

�

dF (~ε`,t+1)
�

dF (x`,t )+

(1−ηt )
ˆ ∞

−∞
exp

�

−α
˚ ∞

−∞
ΦV

�

C (h)t+1, bx (h)h,t+1, bx (h)`,t+1,η(h)t+1

�

dF (~εh,t+1)
�

dF (xh,t )

and

RR (θ R ,θ V ; X t )≡ u ′(C t )−βEt+1

where

Et+1 ≡ηt

ˆ ∞

−∞

�

ξ`,t

˚ ∞

−∞
u ′
�

C (`)t+1

�

ΦR

�

C (`)t+1, bx (`)h,t+1, bx (`)`,t+1,η(`)t+1

�D (`)t+1

Dt
︸︷︷︸

(i )

dF (~ε`,t+1)
�

dF (x`,t )

+ (1−ηt )
ˆ ∞

−∞

�

ξh,t

˚ ∞

−∞
u ′
�

C (h)t+1

�

ΦR

�

C (h)t+1, bx (h)h,t+1, bx (h)`,t+1,η(h)t+1

�D (h)t+1

Dt
︸︷︷︸

(i i )

dF (~εh,t+1)
�

dF (xh,t )

where ~εν ,t+1 = {εxν ,t+1,εd ν ,t+1,εg ν ,t+1}, with ν ∈ {h,`} is a vector of standard normal shocks

with distribution F (~εν ,t+1). (i ) and (i i ) are only present in the dividend claim case. We

22In the single ρ case, the vector of state variables reduces to X t = (C t ,x t ) and the approximant takes the
simpler form Φy (X t ) = exp

�
∑

i c ,i x∈I θ
y
i c ,i x

Hi c (ϕc (C t ))Hi x (ϕx (bx t ))
�

.
23See Judd (1998), Chapter 7.
24We use this function in order to be able to narrow down the range of values taken by the state variables,

such that the approximation performs better when evaluated on the data.
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also define

ξν ,t ≡
φ′
�˝ ∞

−∞ΦV

�

C (ν )t+1, bx (ν )h,t+1, bx (ν )`,t+1,η(ν )t+1

�

dF (~εν ,t+1)
�

Ψt
for ν ∈ {h,`}

with

Ψt ≡ηt

ˆ ∞

−∞
φ′
�˚ ∞

−∞
ΦV

�

C (`)t+1, bx (`)h,t+1, bx (`)`,t+1,η(`)t+1

�

dF (~ε`,t+1)
�

dF (x`,t )

+ (1−ηt )
ˆ ∞

−∞
φ′
�˚ ∞

−∞
ΦV

�

C (h)t+1, bx (h)h,t+1, bx (h)`,t+1,η(h)t+1

�

dF (~εh,t+1)
�

dF (xh,t )

In both cases, C (ν )t+1, bx (ν )h,t+1, bx (ν )`,t+1, η(h)t+1, ν ∈ {h,`}, are obtained using the dynamic equa-

tions described in Section 3.2. These expression are simplified in the single-ρ model as

the agent is certain about the persistence. This case amounts to setting ηt = 0 for all t in

the preceding expressions and consider only one process for bx t .

The vector of parameters θ V and θ R are then determined by projecting the residuals

on Hermite polynomials. This then defines a system of orthogonality conditions which is

solved for θ V and θ R . More precisely, we solve25

〈RV (θ V ; X t )|H (X t )〉=
ˆ
RV (θ V ; X t )H (X t )Ω(X t )dX t = 0

〈RR (θ R ,θ V ; X t )|H (X t )〉=
ˆ
RR (θ R ,θ V ; X t )H (X t )Ω(X t )dX t = 0

where

H (X t )≡Hi c (ϕh(C t ))Hi h (ϕh(bx h
t ))H j (ϕ`(bx `t ))Hk (ϕη(ηt ))with i c+i h+i `+iη ¶max(n c , n h , n `, nη)

and

Ω(X t )≡ω(ϕh(C t ))ω(ϕh(x h
t ))ω(ϕ`(x

`
t ))ω(ϕη(ηt ))

where ω(x ) = exp(−x 2) is the appropriate weighting function for Hermite polynomials.

Note that since the knowledge of the risky interest rate is not needed to evaluate the direct

value function in equilibrium, the system can be solved recursively. We therefore first

solve the value function approximation problem, and use the result vector of parameters

θ V to solve for the risky rate problem.

Integrals are approximated using a monomial approach whenever we face a mul-

tidimensional integration problem (inner integrals in the computation of expectations

25It should be clear to the reader that the integral refers to a multidimensional integration problem, as we
integrate over C , x h , x ` and η.
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and projections) and a Gauss Hermitian quadrature approach when dealing with uni-

dimensional integrals (outer integrals in the computation of expectations).26

The algorithm imposes that several important choices be made for the algorithm pa-

rameters. The first one corresponds to the degree of polynomials we use for the approxi-

mation. The results for the 2–ρ model are obtained with polynomials of order

• (n c , nxh , nx` , nη) = (5, 2, 2, 2) for the value function whenρh = 0.85, and (n c , nxh , nx` , nη) =

(4, 2, 2, 2) for the value function when ρh = 0.90

• (n c , nxh , nx` , nη) = (3, 3, 3, 3) for the interest rate,

• (n c , nxh , nx` , nη) = (2, 4, 4, 1) for the asset prices.

The second choice pertains to the number of nodes. We use 8 nodes in each dimension

(4096 nodes). The transform functions ϕ(·) are assumed to be linear ϕz (x ) = κz x where

κz , z ∈ {c , h,`,η} is a constant chosen such that the focus of the approximation is put on

values of state variables taken in the data. More precisely, we set κc = 2.0817, κh = 40,

κ` = 350 and κη = 1.

The number of nodes used in the uni-dimensional quadrature method used in the

outer integral involved in the computation of expectations is set to 12. In the case of the

multidimensional integrals, we use a degree 5 rule for an integrand on an unbounded

range weighted by a standard normal.27 Finally, the stopping criterion is set to 1e-6.

Given these parameters, the algorithm associated to each problem works as follows

1. Choose two candidate vectors of parameters θ V and θ R

2. Find the nodes, rjz , jz = 1, . . . , mz , at which the residuals are evaluated. These nodes

corresponds to the roots of the different Hermite polynomials involved in the ap-

proximation, then compute the values of the state variables as

C jc =ϕ
−1
c (rjc ), x h

jh
=ϕ−1

h (rjh ), x `j` =ϕ
−1
` (rj`), ηjη =ϕ

−1
η (rjη)

26See Judd (1998), chapter 7.
27More precisely, we approximate

ˆ
Rk

F (x )exp(
k
∑

i=1

x 2
i )dx 'a 0F (0)+a 1

k
∑

i=1

(F (r e i )+ F (−r e i ))+

+a 2

k−1
∑

i=1

k
∑

j=i+1

�

F (s e i + s e j )+ F (s e i − s e j )+ F (−s e i + s e j )+ F (−s e i − s e j )
�

where e i denotes the i t h column vector of the identity matrix of order k . r =
Æ

1+ k
2

, s =
p

2r
2

, a 0 = 2π
k
2

k+2
,

a 1 = 4−k
4(k+2)a 0 and a 2 = a 0

2(k+2) . See Judd (1998) for greater details.
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3. Evaluate the residualsRV (θ V ; X t ) andRR (θ R ,θ V ; X t ) and compute the orthogonal-

ity conditions

<RV (θ V ; X t )|H (X t )> and <RR (θ R ,θ V ; X t )|H (X t )> .

4. If the orthogonality conditions are satisfied, in the sense the residuals are lower than

the stopping criterion ε, then the vector of parameters are given by θ V and θ R . Else

update θ V and θ R using a Gauss Newton algorithm and go back to step 1.

D.2 Computation of Returns

Given an approximate solution for the value function and the risky return, and given a

sequence {X t }t=t2

t=t1
=
�

C t , bxh,t , bx`,t ,ηt
	t=tN

t=t1
of annual observations of aggregate per-capita

consumption, beliefs and prior probabilities in the time periods t = t1 through t = tN we

compute the conditional nth order moment of the risky rate in period t as

E n
t Rt+1 =

˘ ∞

−∞
Φ(X t+1)n d F (−→ε t+1)d F (x t ) (44)

The model average n–th order moment is then computed as

E Rn =
1

t2− t1





t=t2
∑

t=t1

E n
t Rt+1−

�

E 1
t Rt+1

�n



 (45)

Similarly, given a sequence
�

C t , bxh,t , bx`,t ,ηt
	t=tN

t=t1
, the risk-free rate can be directly com-

puted

R f
t =

�

βηt

ˆ ∞

−∞
ξ(l )t (C t , bx l ,t , bxh,t ,ηt )

�˚ ∞

−∞

�

U ′ �exp(g l ,t+1)
��

d F (~εl ,t+1)
�

d F (x l ,t )

+β
�

1−ηt
�

ˆ ∞

−∞
ξ(h)t (C t , bx l ,t , bxh,t ,ηt )

�˚ ∞

−∞

�

U ′ �exp(g h,t+1)
��

d F (~εh,t+1)
�

d F (xh,t )

�−1

Just as in the preceding section, integrals are approximated using a monomial approach

whenever we face a multidimensional integration problem (inner integrals in the com-

putation of expectations and projections) and a Gauss Hermitian quadrature approach

when dealing with uni-dimensional integrals (outer integrals in the computation of ex-

pectations). The n–order moments are then obtained in a similar fashion as for the risky

rate.

The (conditional) equity premium at time t , is the random variable denoted Rp
t ≡

E 1
t Rt+1−R f

t . Therefore, the n–order order moments of the equity premium can be com-

puted as in eq. (45).
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D.3 Accuracy

Our measure of accuracy of the risky rate builds heavily on previous work by Judd (1992).

Since we are mostly interested in the empirical properties of the model, we mainly eval-

uate the accuracy of the solution for the data. Accuracy is assessed by considering the

following rearrangement of the Euler equation error (both in the case of the consumption

claim based approach and the dividend claim based approach)

E (X t ) =
u ′−1(βEt+1)

C t
−1

This measure then gives us the error an agent would make by using the approximate so-

lution for the risky rate as a rule of thumb for deciding investing one additional dollar as

asset holding. This quantity is computed for each value of the state variables in the data.

Then three measures, formerly proposed by Judd (1992) are considered

E1 = log10(E (|E (X t )|)), E2 = log10(E (E (X t )2)), and E∞ = log10(sup |E (X t )|)

The first measure corresponds to the average absolute error, the second one corresponds

to the quadratic average of the error, while the last one reports the maximal error an agent

would make using the rule of thumb. All measures are expressed in log10 terms, which

furnishes a natural way of interpreting the accuracy measure. For instance, a value of E1

equal to -4 indicates that an agent who uses the approximated decision rule would make

–on average– a mistake of 1 dollar for each 10000 dollars invested in the risky asset. These

measures are evaluated outside the grid points that are used to compute the approxima-

tion. Since our ultimate goal is to assess the quantitative relevance of the model, we need

to make sure that our approximation performs well for the data we use. Hence, the mea-

sures are evaluated using the data. Results for both models are reported in Table 9 and

show that the approximation is accurate.

Single–ρ Model Two–ρ Model
γ α E1 E2 E∞ α E1 E2 E∞

2.0 11.51 -4.98 -8.18 -4.52 17.75 -3.63 -5.63 -3.34
2.5 7.24 -5.54 -9.29 -5.09 11.35 -4.07 -6.50 -3.77
3.0 4.21 -8.66 -15.59 -8.05 6.65 -5.78 -9.93 -5.48

Table 9: Accuracy of the Numerical Solution: This table reports the measure of accuracy
for the Euler equation. In each case, α was set such that the model generates a risk–free
rate of 1.5%.

For example, let us consider the single ρ case with γ = 2, an agent who uses the ap-

proximate solution based on consumption claims would make, on average, a 1 dollar mis-
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take for every 95,500 dollars invested in the assets, while the maximal error would be of

the same order. Good performances are valid for the two values of persistence (ρ) we

consider. In the two-ρ case, the performances of the approximation slightly deteriorate.

This accuracy loss is essentially due to the structure of the problem. In the single ρ case,

the model is almost log–linear, such that our approximation performs remarkably well. In

the two ρ case, the quasi log–linearity is lost as we have to compose probabilities of each

model. Increasing the degree of the polynomials yields some (marginal) improvements

but (i) leave the results almost unchanged and (ii) comes at a substantial computational

cost. We therefore kept the degrees of the polynomials as they are. The accuracy prop-

erties of the approximate solution are very similar for the parametrization we consider in

the robustness check exercise.28

28Accuracy is actually improved by increasing persistence, lowering the leverage and the discount factor.
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