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Abstract

The joint assumptions of quasi-hyperbolic discounting and imperfect cap-
ital market lead to non-convexities in selves’ objective functions that may
imply discontinuous equilibrium strategies. If this property was early recog-
nized, authors generally take assumptions on parameters that allow to avoid
the problem. In contrast to the literature, I choose to give a full character-
ization of these strategies in a simple model that allows a complete deter-
mination of savings behavior. Savings function undergoes jumps and non-
monotonicities when the incomes or the interest rates reach threshold values.
These "anomalies" may exist even for "reasonable" parameters values.
JEL classification: D03, D91
Keywords: quasi-hyperbolic discounting, no-borrowing constraint, dis-

continuous strategies.
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1 Introduction

When the assumption of hyperbolic discounting is associated with imperfect
capital markets, it is possible that selves face a non-convex problem that may
generate discontinuous equilibrium strategies (see Laibson (1997)). There-
fore, authors generally adopt some restrictions on parameters that allow to
eliminate this problem. Only Harris and Laibson (2002) deal with this ques-
tion. They present numerical simulations that show that irregularities in the
consumption function tend to disappear if the bias for the present is weak
and the intertemporal elasticity of substitution is low.
The aim of this paper is to challenge Harris and Laibson’s conclusions,

Firstly, their results were obtained by numerical simulations. One aim is
to go beyond these results, by a detailed study of consumption and savings
behaviors in a simple framework that allows a complete characterization of
strategies. Secondly, hasty conclusions should not be taken from Harris and
Laibson’s results. If the bias for the present is weak and the intertemporal
elasticity of substitution is low, the behavior with hyperbolic discounting is
very close to the behavior with exponential discounting. When hyperbolic
discounting does not matter, it is not surprising to find that discontinu-
ities vanish. On the other hand, if hyperbolic discounting actually modifies
agents’ behaviors, it is also associated with discontinuous equilibrium strate-
gies. Thirdly, discontinuous equilibrium strategies can be interesting, as they
provide an example of a behavior that qualitatively differs from the standard
model. In the model with exponential discounting, consumption behaviors
are continuous functions of the different parameters: interest rates, labor
incomes, etc. With hyperbolic discounting, a continuous change of one pa-
rameter can induce a jump in consumption and savings. Therefore, the two
models of consumption and savings are not observationally equivalent.
Section 2 presents the model. Section 3 gives a formal characterization

of all possible solutions. Section 4 gives an overall picture of the results and
points out some consequences on savings functions. Section 5 concludes.

2 The model

2.1 Basic assumptions

The framework is a three-period quasi-hyperbolic discounting model. In
period 1, self 1 preferences are given by the utility function:

U(c, d, e) = u (c) + βδu (d) + βδ2u (e) , with u(x) =
x1−

1
σ

1− 1
σ

(1)
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and σ > 0. c, d and e are respectively the consumption levels in period 1, 2
and 3.
In period 2, self 2’s preferences are given by the utility function:

u (d) + βδu (e)

The budget constraints are:

c+ x = A

d+ y = B +Rx

e = C +Ry

A, B and C are respectively the income amounts earned in period 1, 2 and
3. x and y are first and second period savings. R is the factor of interest. β
and δ are two positive coefficients not greater than 1. δ is the usual discount
parameter and β is the bias for the present. A self-control problem exists for
β < 1.
Capital markets are imperfect: x ≥ 0 and y ≥ 0. These constraints mean

that the agent cannot be indebted. x is the decision variable of self 1 and
y the decision variable of self 2. The sequence of decisions results from the
equilibrium of the game between selves 1 and 2, in which self 1 plays first
(sophisticated behavior). Self 2 chooses y, in taking x as given. Self 1 chooses
x, taking into account the best response function of self 2.

2.2 Self 2’s behavior

The program of self 2 is:(
max
(y)

u (B +Rx− y) + βδu (C +Ry)

s. t. y ≥ 0
Defining the threshold

x̃ ≡ 1

R

·
C

(Rβδ)σ
−B

¸
(2)

the best response function of self 2 is:

Y (x) =


(Rβδ)σ(B+Rx)−C

R+(Rβδ)σ

0

if x ≥ x̃

if x ≤ x̃
(3)

In the case C ≤ B (Rβδ)σ , y is always non-negative, even if x = 0. The
optimal choice of y is not constrained by the constraint y ≥ 0. In the opposite
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case C > B (Rβδ)σ , it is possible that the constraint is binding for self 2:
y = 0. As a consequence, the choice of x by self 1 can determine if self 2 is
constrained or not.

2.3 The case C ≤ B (Rβδ)σ

In this case, y is non-negative whatever the choice of x. The optimal behavior
of self 1 derives from:(

max
(x)

u (A− x) + βδu (B +Rx− Y (x)) + βδu (C +RY (x))

s. t. x ≥ 0
(4)

Defining

Z ≡ βδ

£
1 + δσ (Rβ)σ−1

¤
[1 +Rσ−1 (βδ)σ]1−1/σ

(5)

x̂ ≡ RσZσA−B − C
R

R+RσZσ
(6)

The solution is: If RσZσA > B+C/R, x = x̂; if RσZσA ≤ B+C/R, x = 0.
Using the optimal value of x (either x̂ given by (6) or 0), it is possible to

find the equilibrium value of y given by Y (x) (cf. equation (3)).

3 Resolution in the case C > B (Rβδ)σ

3.1 The non-concavity of self 1’s objective function

The case C > B (Rβδ)σ is more interesting as it is possible that the optimal
choice of y is positive or 0, depending on the choice of x. The problem of the
non-concavity of the objective function of self 1 may occur. This function
depends on the variable x according to

φ(x) ≡ u (A− x) + βδu (B +Rx− Y (x)) + βδ2u (C +RY (x))

Taking the derivative with respect to x (with x 6= x̃),

φ0(x) = u0(c) +Rβδu0(d) + Y 0(x)βδ [−u0(d) +Rδu0(e)] (7)

If the consumer had no problem of self control (β = 1), the expression
[−u0(d) +Rδu0(e)] would correspond to the derivative of self 2’s objective
function. This term cancels out (−u0(d) + Rδu0(e) = 0) along the best
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response function of self 2. This is a simple consequence of the envelope the-
orem. The derivative of self 1’s objective function (7) remains continuous.
In the case β < 1, there is a discrepancy between the objective functions of

self 1 and self 2. From the first order condition of self 2, −u0(d)+βRδu0(e) =
0, which implies −u0(d) +Rδu0(e) > 0. Moreover, for x = x̃, Y 0(x) is discon-
tinuous: Y 0(x) = 0 to the left of x̃, and Y 0(x) > 0 to the right.
The consequence of this analysis is that φ0(x) is discontinuous at the

point x̃, with a higher value to the right of x̃. It is then possible that φ
admits two local maxima. φ is concave on each interval (0, x̃) and (x̃,+∞)
and continuous, but the derivative is discontinuous in x̃. In the case of two
local maxima, the two values of φ must be compared.

3.2 Self 1’s objective function

φ is studied on the interval (x̃,+∞) for which Y (x) is positive, and on (0, x̃)
for which Y (x) cancels out. The parameters K, L and x̌ are defined as:

K ≡ C

RσZσ (Rβδ)σ
£
1 +Rσ−1Zσ +Rσ−1 (βδ)σ

¤
(8)

L ≡ C

(Rβδ)2σ
£
1 +Rσ−1 (βδ)σ

¤
(9)

x̌ ≡ (Rβδ)σ A−B

R+ (Rβδ)σ
(10)

Lemma 1 (φ on (x̃,+∞)) If A + B
R

> K, φ has a local maximum x̂ ∈
(x̃,+∞) given by (6), with Y (x̂) > 0. If A + B

R
≤ K, φ is decreasing on

(x̃,+∞).
Lemma 2 (φ on (0, x̃)) If (Rβδ)σ A ≥ B, two cases exist: if A+ B

R
< L, φ

has a local maximum x̌ ∈ (0, x̃) given by (10), with Y (x̌) = 0; If A+ B
R
≥ L,

φ is increasing on (0, x̃). If (Rβδ)σ A < B, φ is decreasing on the interval
(0, x̃).

3.3 The solution of the game

From (8) and (9), it follows that K < L as β < 1. Therefore, three cases
must be studied separately.

3.3.1 Case A+B/R ≤ K

The intertemporal wealth of the agent on the two first periods is weak
(A + B/R ≤ K), and the third period income is high (C > B (Rβδ)σ).
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The solution is always associated with y = 0. x can be null or equal to x̆,
depending on the two first period incomes. The absence of concavity has
no consequence, and the optimal solution for self 1 is always reached on the
interval (0, x̃).

Proposition 1 If A+B/R ≤ K, the solution of the game between selves 1
and 2 is:

• if (Rβδ)σ A ≥ B, x = x̌ given by (10) and y = 0;

• if (Rβδ)σ A < B, x = 0 and y = 0.

3.3.2 Case A+B/R ≥ L

The intertemporal wealth on the two first periods is high (A+B/R ≥ L). The
optimal solution of self 1 leads to the interior solution x = x̂ and y = Y (x̂).
The absence of concavity has no consequence, and the optimal solution for
self 1 is always reached on the interval (x̃,+∞).

Proposition 2 If A+B/R ≥ L, the solution is: x = x̂ and y = Y (x̂).

3.3.3 Case K < A+B/R < L

The objective function φ of self 1 has two local maxima, one in each interval
(0, x̃) and (x̃,+∞) . Therefore, it is necessary to compare the utility levels at
these two maxima.

First case: (Rβδ)σ A ≥ B. In this case, x̌ (given by (10)) is a local max-
imum of φ on (0, x̃) , and x̂ (given by (6)) is another one on (x̃,+∞) . The
comparison of the corresponding utility levels allows to obtain the results:

Proposition 3 Assume that K < A+B/R < L and (Rβδ)σ A ≥ B. There
exists M ∈ (K,L) such that,

• if K < A+B/R < M, the solution is x = x̌ and y = 0.

• if M < A+B/R < L, the solution is x = x̂ and y = Y (x̂)

• if A + B/R = M, self 1 is indifferent between x = x̌ and y = 0, or
x = x̂ and y = Y (x̂).
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This proposition shows that for (Rβδ)σ A ≥ B, the line A + B/R = M
is the pertinent frontier that separates the two types of savings behaviors:
x = x̂ and y = Y (x̂) or x = x̌ and y = 0. A consequence of this result is
that, if A + B/R is close to M, a small change in one parameter (A, or B
or R) can have a dramatic effect on savings behavior: y can jump from 0 to
Y (x̂), and x can jump from x̌ to x̂.

Second case: (Rβδ)σ A < B. In this case, x = 0 is a local maximum of φ
on (0, x̃), and x̂ (given by (6)) is another one on (x̃,+∞) . The comparison
of the corresponding utility levels gives the results:

Proposition 4 Assume that (Rβδ)σ A < B.

1. If M ≤ A+B/R < L, the solution is: x = x̂ and y = Y (x̂).

2. If K < A+B/R < M. There exists a decreasing function ∆(A) defined
on [AH , AI ] , with

AH =
C

(RZ)σ (Rβδ)σ
£
1 +Rσ−1 (βδ)σ

¤
, ∆(AH) =

C

(Rβδ)σ

AI =
M

1 +Rσ−1 (βδ)σ
, ∆(AI) =

M (Rβδ)σ

1 +Rσ−1 (βδ)σ

such that,

• if B < ∆(A), the solution is x = 0 and y = 0.

• if B > ∆(A), the solution is x = x̂ and y = Y (x̂).

• if B = ∆(A), self 1 is indifferent between these two solutions.

When the intertemporal wealth of the consumer during the two first pe-
riods is high enough (A + B/R ≥ M) , the optimal choice for self 1 is
x = x̂ (and y = Y (x̂) for self 2). When A + B/R < M, the choice of self 1
remains x = x̂ only if B is high enough with respect to A (B > ∆(A)). In
the converse case, self 1 chooses x = 0 and self 2 y = 0.
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4 Final results and consequences

4.1 An overall picture of the consumer’s choice

In taking the value of C as given, an overall characterization of the consumer’s
savings choices is obtained. Four cases may arise, depending on A and B:

Z1 = {(A,B) s. t. (Rβδ)σ A > B and A+B/R < M}
Z2 =

©
(A,B) s. t. (Rβδ)σ A < B, B < C (Rβδ)−σ ,
A+B/R < M and B < ∆(A) for A ∈ (AH , AI)}

Z3 = {(A,B) s. t. A > AH , (RZ)
σ A > B + C/R, B > ∆(A) for A ∈ (AH , AI) ,

A+B/R > M for A > AI}
Z4 =

©
(A,B) s. t. B > C (Rβδ)−σ and (RZ)σ A > B + C/R

ª
The preceding results give the consumer’s choice in each set1:

• in Z1: x = x̌ given by (10) and y = 0.

• in Z2: x = 0 and y = 0.

• in Z3: x = x̂ given by (6) and y = Y (x̂) given by (3).

• in Z4: x = 0 and y = Y (0) given by (3).

Figure (1) represents the characterization of the different zones of the
plane (A,B). The frontiers are in bold lines. The figure is obtained for
the following parameters values, in line with the calibration of Harris and
Laibson (2002): β = 0.7, δ = 0.9571, R = 1.0375, C = 6 and σ = 0.99. The
value of σ is a controversial question. A value close to one corresponds to the
one retained in calibrated macroeconomic models. Some recent works (see e.
g. Favero 2005) support such an assumption.

4.2 Consequences on savings function

The assumption of quasi-hyperbolic discounting can have strong consequences
on savings behaviors, when self 1’s objective function is not concave. The
optimal strategy of self 1 can be discontinuous with respect to his income.
Different illustrations are provided.
The value of C is fixed to C = 6. The impact of A and B on the amount

of savings x is studied. In Figure (2), x is represented as a function of B

1The frontiers have not been included in the 4 sets as a point on a frontier may make
self 1 indifferent between 2 different strategies.
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for two different values of A : A = 16 and A = 11.13. 2. With A = 16,
starting from B = 0 and increasing B, the incomes {A,B} of the consumer
first belong to zone 1, and successively reach zone 3 and 4 (cf. Figure (1)).
When B reaches the value such that M = A+B/R, x jumps from x = x̌ to
x = x̂ > x̌. The slope of the savings function goes from −0.58 to −0.41.
With A = 11.13, as B increases, the incomes of the consumer belong to

zone 1 at the beginning, and successively reach zone 2, 3 and 4 (cf. Figure
(1)). In zone 1, x = x̌ and decreases with B till 0. In zone 2, x remains equal
to 0.When crossing the frontier ∆(A), x jumps from 0 to a positive value x̂.
In zone 3, x = x̂ and decreases with B till 0. In zone 4, x remains equal to 0.
The effect of A on savings for a given value of B is simulated for B = 4

(cf. Figure (3)). Starting from A = 0 and increasing A, consumer incomes
cross zones 2, 1 and 3 (cf. Figure (1)). In zone 2, x = 0. In zone 1, x = x̌
and increases with A.When A reaches the value such thatM = A+B/R, x
jumps from x = x̌ to x = x̂ > x̌. The slope of the savings function goes from
0.40 to 0.57.
In these simple examples, the evolution of savings x with respect to A and

B has been considered. It is possible to make the same study with the other
parameters. For instance, a jump of savings can also be obtained through a
change in the interest factor R.

2The value 11.13 corresponds to (AH +AI)/2.
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5 Conclusion

Our numerical simulations show that savings functions under quasi hyper-
bolic discounting present significative differences with respect to the standard
case, when discontinuous strategies are taken into account. Firstly, savings
functions may undergo upward jumps, resulting from an increase in incomes.
Secondly, after these jumps, the slope of savings with respect to income
goes up. These theoretical results may have important consequences for the
empirical analysis of savings. If agents behave as predicted by the theory,
savings functions should be estimated through functional forms able to deal
with these jumps and changes in slopes.
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Supplementary data
1. Proof of lemma 1: φ on (x̃,+∞)
First the solution is assumed to be such that y > 0, or (B +Rx) (Rβδ)σ >

C. The value of x chosen by self 1 results from program (4). The solution
x can either be a positive value given by (6), or x = 0. As C > B (Rβδ)σ ,
the solution x = 0 is not compatible with the assumption y > 0, because
x = 0 implies y = 0. Therefore, to obtain the case y > 0 as a solution, it
is necessary that RσZσA > B + C/R, and x = x̂. Moreover, to obtain a
positive value for y = Y (x̂), it is necessary that x̂ > x̃. Using (2) and (6),
the inequality x̂ > x̃ leads to:

A+
B

R
>

C

RσZσ (Rβδ)σ
£
1 +Rσ−1Zσ +Rσ−1 (βδ)σ

¤ ≡ K

When C > B (Rβδ)σ , as x̃ > 0 the inequality x̂ > x̃ is stronger than x̂ > 0.
Therefore, if A+B/R > K, the condition RσZσA > B + C/R holds.
To sum up, if A + B/R > K, self 1’s objective function has a local

maximum x̂ ∈ (x̃,+∞) given by (6), with Y (x̂) > 0. If A + B/R ≤ K,
self 1’s objective function is decreasing on (x̃,+∞) , as the maximum of the
objective function is obtained for a value of x smaller than x̃.

2. Proof of lemma 2: φ on (0, x̃)
This type of solution is such that y = 0. In this case, self 1’s program is

given by:(
max
(x)

1
1−1/σ (A− x)1−1/σ + βδ

1−1/σ (B +Rx)1−1/σ + βδ2

1−1/σ (C)
1−1/σ

s. t. x ≥ 0
The solution is:

• If (Rβδ)σ A ≥ B

x =
(Rβδ)σ A−B

R+ (Rβδ)σ
≡ x̌

• If (Rβδ)σ A < B, x = 0. The objective function is decreasing on the
interval (0, x̃), as the maximum is reached for a negative value of x.

In the case (Rβδ)σ A ≥ B, the value of x given by (10) is admissible only
if it belongs to (0, x̃) . In the converse case, y should be positive. Using (10)
and (2), the inequality x̌ < x̃ leads to

A+
B

R
<

C

(Rβδ)2σ
£
1 +Rσ−1 (βδ)σ

¤ ≡ L

13



To sum up, if (Rβδ)σ A ≥ B and if A + B/R < L, self 1’s objective
function has a local maximum x̌ ∈ (0, x̃) given by (10), with Y (x̌) = 0. If
A+ B/R ≥ L, it means that self 1’s objective function is increasing on the
interval (0, x̃), as the maximum is obtained for a value of x greater than x̃. If
(Rβδ)σ A < B, self 1’s objective function is decreasing on the interval (0, x̃).

3. Proof of proposition 1: solution in the case A+B/R ≤ K
If A + B/R ≤ K, it is clear that A + B/R < L. From lemma (1), self

1’s objective function is decreasing on the interval (x̃,+∞). On the interval
(0, x̃), from lemma (2), two cases may happen: If (Rβδ)σ A ≥ B, φ reaches a
local maximum in x = x̌ > 0 given by (10). If (Rβδ)σ A < B, φ is decreasing
on the interval (0, x̃). From these properties, the result follows.

4. Proof of proposition 2: solution in the case A+B/R ≥ L
If A+B/R ≥ L, it is clear that A+B/R > K. Moreover, combining the

two inequalities

C > B (Rβδ)σ

A+
B

R
≥ C

(Rβδ)2σ
£
1 +Rσ−1 (βδ)σ

¤
one obtains that (Rβδ)σ A > B. Therefore it is possible to deduce in this
case that:

• on the interval (0, x̃), φ is increasing on the interval (0, x̃).
• on the interval (x̃,+∞), φ has a maximum x̂.

Finally, the result is obtained.

5. Proof of proposition 3: solution in the case K < A+B/R < L
and (Rβδ)σ A ≥ B
In this case, lemmas 1 and 2 show that self 1’s objective function has two

local maxima: on (0, x̃) , x̌ given by (10) is a local maximum, and Y (x̌) =
0; on (x̃,+∞) , x̂ given by (6) is another one, with Y (x̂) > 0. To know
what is the final choice of self 1, it is necessary to compare the value of the
objective function at these two points x̌ and x̂. When x = x̌ and y = 0, the
corresponding values for consumption are denoted by č, ď and ě and the utility
level of self 1 is U(č, ď, ě). When x = x̂ and y = Y (x̂), the corresponding
values for consumption are denoted by ĉ, d̂ and ê and the utility level of self
1 is U(ĉ, d̂, ê). The following lemma allows to do the comparison of utility
levels.
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Lemma 3 • The values of U(č, ď, ě) and U(ĉ, d̂, ê) are given by

U(č, ď, ě) =
σ

σ − 1
µ
A+

B

R

¶1− 1
σ £
1 +Rσ−1 (βδ)σ

¤ 1
σ +

σ

σ − 1βδ
2 (C)1−

1
σ

U(ĉ, d̂, ê) =
σ

σ − 1
µ
A+

B

R
+

C

R2

¶1− 1
σ £
1 +Rσ−1Zσ

¤ 1
σ

• Let us define the function F as:

F (ξ) =
σ

σ − 1
µ
ξ +

C

R2

¶1− 1
σ £
1 +Rσ−1Zσ

¤ 1
σ

− σ

σ − 1 (ξ)
1− 1

σ
£
1 +Rσ−1 (βδ)σ

¤ 1
σ − σ

σ − 1βδ
2 (C)1−

1
σ

F is defined in such a way that F (A+B/R) = U(ĉ, d̂, ê)− U(č, ď, ě).

F is strictly increasing on [K,L] , with F (K) < 0 and F (L) > 0.

Proof. The first part of lemma (1) is a straightforward calculation.
The second part is concerned with the study of the function F (ξ) =

U(ĉ, d̂, ê)− U(č, ď, ě) with ξ = A+B/R.
Firstly it is proved that F (K) < 0. The case ξ = K corresponds to the

limit case x̂ = x̃ when self 1’s objective function is studied on (x̃,+∞) . From
Section 3.1, it is known that the derivative of self 1’s objective function is
discontinuous at the point x̃, with a higher value to the right of x̃. When
x̂ = x̃ the value of the derivative on the right is 0. Therefore, the value of
the derivative on the left is negative. This proves that U(ĉ, d̂, ê) < U(č, ď, ě)
or F (K) < 0.
Secondly it is proved that F (L) > 0. The case ξ = L corresponds to the

limit case x̌ = x̃ when self 1’s objective function is studied on (0, x̃) . From
Section 3.1, it is known that the derivative of self 1’s objective function is
discontinuous at the point x̃, with a higher value to the right of x̃. When
x̌ = x̃ the value of the derivative on the left is 0. Therefore, the value of the
derivative on the right is positive. This proves that U(ĉ, d̂, ê) > U(č, ď, ě) or
F (L) > 0.
Finally, it remains to show that F 0(ξ) > 0. The derivative is:

F 0(ξ) =
µ
ξ +

C

R2

¶− 1
σ £
1 +Rσ−1Zσ

¤ 1
σ − (ξ)− 1

σ
£
1 +Rσ−1 (βδ)σ

¤ 1
σ

The condition F 0(ξ) > 0, after some calculations, can be expressed:

ξ > C
1 +Rσ−1 (βδ)σ

Rσ−1 [Zσ − (βδ)σ] (11)
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where it is important to note that Zσ − (βδ)σ > 0. Indeed, from (5), the
condition Zσ > (βδ)σ is equivalent to:

ϑ(β) ≡
£
1 + δσ (Rβ)σ−1

¤σ
[1 +Rσ−1 (βδ)σ]σ−1

> 1

For β = 1, ϑ(1) = 1 + δσRσ−1 > 1. The derivative is

d ln [ϑ(β)]

dβ
=

σ(σ − 1)δσRσ−1βσ−2(1− β)¡
1 + δσβσ−1Rσ−1¢ (1 + δσβσRσ−1)

For σ < 1, ϑ(β) is a decreasing function of β when β < 1 with ϑ(1) > 1.
Therefore, ϑ(β) > 1.
For σ > 1, ϑ(β) is an increasing function of β when β < 1 with ϑ(0) = 1.

Therefore, ϑ(β) > 1. Finally, in any case, ϑ(β) > 1 and Zσ − (βδ)σ > 0.
Coming back to condition (11), it remains to prove that this condition

holds when K < ξ < M. A sufficient condition for that is:

K =
C

RσZσ (Rβδ)σ
£
1 +Rσ−1Zσ +Rσ−1 (βδ)σ

¤
> C

1 +Rσ−1 (βδ)σ

Rσ−1 [Zσ − (βδ)σ]
After some calculations, taking into account the expression of Z given by (5),
this inequality is equivalent to β < 1 which is true by assumption.
This technical lemma allows to conclude on the optimal behavior of self

1.

6. Proof of proposition 4: solution in the case K < A + B/R < L
and (Rβδ)σ A < B.
In this case, it is not possible to reach the solution x = x̌, y = 0 associated

with (č, ď, ě). Therefore, the equilibrium of the game between selves 1 and 2
is obtained by the comparison between U(ĉ, d̂, ê) and U(A,B,C). The last
value of the utility corresponds to the solution x = 0 and y = 0.
Before doing this comparison, it is useful to note that the indirect utility

U(č, ď, ě) =
σ

σ − 1
µ
A+

B

R

¶1− 1
σ £
1 +Rσ−1 (βδ)σ

¤ 1
σ +

σ

σ − 1βδ
2 (C)1−

1
σ

can also be interpreted as the utility that self 1 could get in the absence
of the constraint x ≥ 0 (but with the constraint y ≥ 0 which is binding).
Consequently, a first property is obtained: U(č, ď, ě) > U(A,B,C). With no
constraint on x, it would be optimal to have a negative amount of savings in
period 1 as (Rβδ)σ A < B.
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In the case M ≤ A + B/R < L, it is easy to conclude. Indeed, it is
known that U(ĉ, d̂, ê) ≥ U(č, ď, ě) and U(č, ď, ě) > U(A,B,C). Consequently
U(ĉ, d̂, ê) > U(A,B,C). The game between selves 1 and 2 leads to the deci-
sions x = x̂ and y = Y (x̂). This proves the part 1 of proposition (4).
The case K < A + B/R < M needs a particular study as U(ĉ, d̂, ê) <

U(č, ď, ě) and U(č, ď, ě) > U(A,B,C). Thus, it remains to compare U(ĉ, d̂, ê)
with U(A,B,C). This comparison is made through the following lemma:

Lemma 4 Assume that C > B (Rβδ)σ , (Rβδ)σ A < B and K < A+B/R <
M. Let us consider a given value of C and a given value of ξ = A + B/R
with K < ξ < M. A and B may vary in such a way that ξ = A + B/R,
with a higher bound Ah(ξ) for A such that Ah(ξ) = ξ/ [1 +Rσ−1 (βδ)σ] and
a lower bound Al(ξ) for A such that Al(ξ) = ξ−C/ [R (Rβδ)σ] . There exists
an increasing function α(ξ) that satisfies Al(ξ) < α(ξ) < Ah(ξ) and such that

• for Al(ξ) < A < α(ξ), U(ĉ, d̂, ê) > U(A,B,C) : the game between selves
1 and 2 leads to the decisions x = x̂ and y = Y (x̂).

• for α(ξ) < A < Ah(ξ), U(ĉ, d̂, ê) < U(A,B,C) : the game between
selves 1 and 2 leads to the decisions x = 0 and y = 0.

• for A = α(ξ), self 1 is indifferent between these two solutions.

The function α(ξ) is implicitly defined by:

u(α) + βδu [R (ξ − α)] + βδ2u(C) = U(ĉ, d̂, ê)

Proof. Let us consider a given value of C and a given value of ξ = A+B/R
with K ≤ ξ < M. U(ĉ, d̂, ê) and U(č, ď, ě) only depend on ξ and C and they
are fixed. For this given value of ξ, it is possible to consider different values
for A and B such that ξ = A+B/R. The highest possible value of A is such
that (Rβδ)σ A = B, and it corresponds to the lowest possible value for B.
This gives the values

Ah(ξ) =
ξ

1 +Rσ−1 (βδ)σ

Bl(ξ) =
(Rβδ)σ ξ

1 +Rσ−1 (βδ)σ

For A = Ah(ξ) and B = Bl(ξ), U(č, ď, ě) = U(A,B,C). Indeed the optimal
choice of x without any constraint for x (and y = 0) is such that x = 0. As
U(ĉ, d̂, ê) < U(č, ď, ě) (and ξ < M), it is clear that U(ĉ, d̂, ê) < U(A,B,C).
The game between selves 1 and 2 leads to the decisions x = 0 and y = 0.
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The highest possible value of B is such that C = B (Rβδ)σ , and it cor-
responds to the lowest value of A. This gives the values

Al(ξ) = ξ − C

R (Rβδ)σ

Bh(ξ) =
C

(Rβδ)σ

For B such that C = B (Rβδ)σ , x̃ = 0. The objective function of self one
is concave on (0,+∞) . The optimal choice of x again is given by (6). It is
positive as

RσZσA−B − C

R
> 0

Indeed, for A = Al(ξ) and B = Bh(ξ), this inequality becomes:

ξ >
C

RσZσ (Rβδ)σ
£
1 +Rσ−1Zσ +Rσ−1 (βδ)σ

¤
= K

which is true as ξ > K by assumption. Therefore, in this case, U(ĉ, d̂, ê)
corresponds to the optimal choice of self 1 and U(ĉ, d̂, ê) > U(A,B,C).
Finally, the expression of U(A,B,C) is studied as a function of A and ξ :

G(A, ξ) ≡ u(A) + βδu [R (ξ −A)] + βδ2u(C)

The derivative ∂G(A, ξ)/∂x is positive as it leads to

A−
1
σ −RβδB−

1
σ > 0⇔ (Rβδ)σ A < B

G(A, ξ) is an increasing function of A. G is such that G(Al(ξ), ξ)) < U(ĉ, d̂, ê)
and G(Ah(ξ), ξ) > U(ĉ, d̂, ê). Therefore, the existence and uniqueness of α(ξ)
is proved and

• for Al(ξ) < A < α(ξ), U(ĉ, d̂, ê) > U(A,B,C) : the game between
selves 1 and 2 leads to the decisions x = x̂ and y = Y (x̂).

• for α(ξ) < A < Ah(ξ), U(ĉ, d̂, ê) < U(A,B,C) : the game between
selves 1 and 2 leads to the decisions x = 0 and y = 0.

• for A = α(ξ), U(ĉ, d̂, ê) = U(A,B,C).

It remains to prove that α(ξ) is an increasing function. The function α(ξ)
is implicitly defined by: U(A,R (ξ − α) , C) = U(ĉ, d̂, ê), or

σ

σ − 1
h
(α)1−

1
σ + (R (ξ − α))1−

1
σ + (C)1−

1
σ

i
=

σ

σ − 1
µ
ξ +

C

R2

¶1− 1
σ £
1 +Rσ−1Zσ

¤ 1
σ
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The derivative α0(ξ) is such that:

h
A−

1
σ −RβδB−

1
σ

i
α0(ξ) =

µ
ξ +

C

R2

¶− 1
σ £
1 +Rσ−1Zσ

¤ 1
σ −RβδB−

1
σ

The term A−
1
σ − RβδB−

1
σ is positive as by assumption (Rβδ)σ A < B. It

remains to prove that the right-hand side is positive. To prove that, it is first
proved that µ

ξ +
C

R2

¶− 1
σ £
1 +Rσ−1Zσ

¤ 1
σ > A−

1
σ

this inequality is equivalent to

A
£
1 +Rσ−1Zσ

¤
> A+

B

R
+

C

R2
(12)

which gives ARσ−1Zσ > B + C/R. This last inequality is true. Indeed, the
inequality K < A+B/R leads to

A+
B

R
>

C

RσZσ (Rβδ)σ
£
1 +Rσ−1Zσ +Rσ−1 (βδ)σ

¤
or

ARσZσ > −BR
σZσ

R
+

C

R
+

C

(Rβδ)σ
£
1 +Rσ−1Zσ

¤
By assumption, C > B (Rβδ)σ , which allows us to write:

ARσZσ > −BR
σZσ

R
+

C

R
+B

£
1 +Rσ−1Zσ

¤
that gives ARσ−1Zσ > B + C/R. Finally, it has been proved thatµ

ξ +
C

R2

¶− 1
σ £
1 +Rσ−1Zσ

¤ 1
σ > A−

1
σ

As it is assumed that A−
1
σ > RβδB−

1
σ , it implies thatµ

ξ +
C

R2

¶− 1
σ £
1 +Rσ−1Zσ

¤ 1
σ > RβδB−

1
σ (13)

Finally, α is an increasing function of ξ.
Using lemma (4), it is possible to prove the second part of proposition

(4).
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From the relation A = α(ξ), it is possible to find a relation between A
and B given by: B = R [α−1(A)−A] ≡ ∆(A). It is easy to show that ∆(A)
is a decreasing function. Indeed, ∆(A) is implicitly defined by U(A,B,C) =
U(ĉ, d̂, ê), or

σ

σ − 1
h
(A)1−

1
σ + (B)1−

1
σ + (C)1−

1
σ

i
=

σ

σ − 1
µ
A+

B

R
+

C

R2

¶1− 1
σ £
1 +Rσ−1Zσ

¤ 1
σ

(14)
The derivative ∆0(A) is such that:"

RβδB−
1
σ −

µ
A+

B

R
+

C

R2

¶− 1
σ ¡
1 +Rσ−1Zσ

¢ 1
σ

#
∆0(A)
R

=

µ
A+

B

R
+

C

R2

¶− 1
σ ¡
1 +Rσ−1Zσ

¢ 1
σ −A−

1
σ

From the preceding results (cf. (12) and (13)), it is known thatµ
A+

B

R
+

C

R2

¶− 1
σ ¡
1 +Rσ−1Zσ

¢ 1
σ −A−

1
σ > 0

RβδB−
1
σ −

µ
A+

B

R
+

C

R2

¶− 1
σ ¡
1 +Rσ−1Zσ

¢ 1
σ < 0

Therefore ∆0(A) < 0.
From (14), it is easy to check that

∆(AH) = ∆

µ
C

(RZ)σ (Rβδ)σ
£
1 +Rσ−1 (βδ)σ

¤¶
=

C

(Rβδ)σ

∆(AI) = ∆

µ
M

1 +Rσ−1 (βδ)σ

¶
=

M (Rβδ)σ

1 +Rσ−1 (βδ)σ

¥
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