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Abstract

We provide a discipline for belief formation through a model of subjective beliefs,

in which agents hold strategic beliefs. More precisely, we consider beliefs as a
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strategic variable that agents can choose (consciously or not) in order to maximize
their utility at the equilibrium. These strategic beliefs result from an evolutionary
process. We find that evolutionary strategic behavior leads to belief subjectivity
and heterogeneity. Optimism (resp. overconfidence) as well as pessimism (resp.
doubt) both emerge from the evolution process. Furthermore, we obtain a positive
correlation between pessimism (resp. doubt) and risk-tolerance. We analyze the
equilibrium characteristics. Under reasonable assumptions, the consensus belief is
pessimistic and, as a consequence, the risk premium is higher than in a standard
setting.

Keywords: beliefs formation, strategic beliefs, optimal beliefs, distorded beliefs,
pessimism, risk premium

JEL codes: G12, D03, D53, D81
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We provide a discipline for belief formation through a model of subjective beliefs,
in which agents hold strategic beliefs. More precisely, we consider beliefs as a strategic
variable that agents can choose (consciously or not) in order to maximize their utility
at the equilibrium. These strategic beliefs result from an evolutionary process. We
find that evolutionary strategic behavior leads to belief subjectivity and heterogeneity.
Optimism (resp. overconfidence) as well as pessimism (resp. doubt) both emerge from
the evolution process. Furthermore, we obtain a positive correlation between pessimism
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1 Introduction

In the classical financial economics theory, decision makers are assumed to have homoge-
nous and rational expectations. This assumption has been the basis for many develop-
ments in finance. Among these developments, the portfolio selection model (Markowitz,
1952) and the Capital Asset Pricing Model (CAPM, Sharpe 1964 and Lintner 1965)
play an important role. Given their simplicity and empirical tractability, these models
and their subsequent extensions have become a significant cornerstone of theoretical and
applied economics from insurance and financial theory to the theory of the firm.

However, the last 30 years have seen an accumulation of empirical tests that invalidate
the theoretical conclusions of these models based on the assumption of homogeneous and
objective beliefs. The homogeneous prior beliefs assumption (Harsanyi doctrine) is weaker
than the assumption of rational expectations that all agents’ prior beliefs are equal to the
objective probabilities. But like rational expectations, the common priors assumption
is quite restrictive and does not allow agents to “agree to disagree” (Aumann, 1976).
It suffices to observe the heterogeneity of analysts or professional forecasters forecasts
or more generally of experts opinions to realize that this assumption is not realistic.
Savage (1954) provides axiomatic foundations for a more general theory in which agents
hold arbitrary prior beliefs, so agents can agree to disagree. But the alternative to
rational expectations lacks discipline and if beliefs can be arbitrary, theory provides little
structure or predictive power. Indeed, once the assumption of rational and homogenous
expectations is relaxed, the following questions arise : How do agents form their beliefs?
Do beliefs exhibit optimism? pessimism? overconfidence? doubt (or underconfidence)?
How are these possible biases related to the agents preferences? How are agents’ beliefs
affected by strategic interaction? What is the impact of these beliefs or expectations on
individual decisions and on equilibrium characteristics such as prices, risk premium and
risk-sharing?

Our aim is to provide a rationale for belief heterogeneity that enlightens the reflexion
about the questions above. In our model, the way beliefs are formed is dynamic and obeys
evolutionary rules. Asymptotically, this leads to a situation in which agents hold incorrect
but strategic beliefs in the sense that each agent acts as if her beliefs were a strategic
variable that she can choose (consciously or not) to maximize her utility from trade. Such
strategic beliefs emerge as the result of the selection pressure towards agents that are born
with such beliefs, or by agents gradually learning that a certain way of forming beliefs is
more rewarding than other ways. This is why we call them evolutionary strategic beliefs.

Sandroni (2000) gives a justification for rational expectations equilibria, showing that
a market populated by agents who initially differ in the accuracy of their predictions will
nonetheless converge to a competitive rational expectations equilibrium as those agents

who make inaccurate predictions are driven out of the market by those who are more



accurate. This argument is in the same vein as the arguments of Alchian (1950) and
Friedman (1953) applied to the profit maximization assumption in a competitive market.
In contrast, we show through evolutionary arguments that strategic interaction leads to
heterogeneous and subjective beliefs. More precisely, we analyze the situation where the
agents learn from interaction in the sense that they dynamically modify the frequencies
at which they play the different possible strategies, underweighting the strategies that
lead to low utility levels and overweighting the strategies leading to high utility levels. In
fact, each agent is represented as a population of individuals each programmed to play
a given strategy. We use then concepts from evolutionary game theory where strategies
with high payoff spread within the population, the payoffs depending on the frequencies
of the strategies within the population. We show that the asymptotical behavior of our
agents corresponds to the behaviour that they would adopt in a static game that is
naturally associated to our evolutionary process. This game corresponds to a situation
where each agent adopts a belief to maximize his utility from trade, taking into account
the effect his choice has on price and taking as given the strategy of the other agents. The
asymptotic behaviour of our agents corresponds then to a Nash equilibrium in demands,
as presented in Kyle! (1989). An agent who forms beliefs strategically forms beliefs
that are (the most) useful to him. She takes what pays rather than what is true. The
idea that in strategic situations players may gain from having an objective function
different from actual payoff maximization dates back to Schelling (1960). It has been
more recently developed in a fairly general framework by Heifetz et al. (2007a,b). The
main contribution of our paper is to apply this idea to beliefs formation in a financial
markets framework. We want to characterize the types of beliefs that survive especially in
terms of optimism/overconfidence and to analyze the implications in terms of equilibrium
characteristics.

Our strategic explanation of beliefs should be contrasted with 'rational” approaches to
beliefs where agents try to reflect the 'world as it is” in their beliefs. We also contrast the
strategic explanation of beliefs to approaches in which forward-looking agents optimally
distort beliefs and in which beliefs are of intrinsic value to agents, as with wishful think-
ing, self-esteem or fear of disappointment (Akerlof-Dickens, 1982, Benabou-Tirole, 2002,
Brunnermeier-Parker, 2005, Gollier-Muermann, 2010). In these models, beliefs result
from an individual optimization problem while our model of belief formation is strategic.

Our evolutionary strategic beliefs concept is similar to the pragmatic beliefs concept

! As underlined by Kyle “(this) is perhaps the most obvious modification of the conventional compet-
itive rational expectations concept. It preserves market clearing through a Walrasian mechanism and
keeps the Nash flavour of a competitive equilibrium.” In fact, the concept of Nash equilibrium in demand
schedules is the analogon, from the consumers point of view, of the Cournot-Nash equilibrium in supply

for producers.



of Hvide (2002) in the sense that in both cases, agents select the beliefs that are more ben-
eficial for them. In fact, the notion of pragmatic beliefs refers to the philosophical school
known as Pragmatism. Russell (1945) interprets one of its main ideas as follows: agents
should (or do) hold beliefs that have good consequences. Note that Hvide (2002) uses
this concept in a framework that is very different from ours. More precisely, he considers
a principal-agent model in a job market framework where agents have (pragmatically
built) beliefs about their ability.

Our model is embedded in a simple, standard equilibrium problem with risky assets
and beliefs are about the risk distribution. Its structure may be applied to several prob-
lems in which risk-averse agents have to choose the optimal exposure to a risk. This is the
case, for example, when individuals interact on a financial market or when an insurance
company has to negociate an optimal retention rate with a reinsurance company or when
entrepreneurs have to fix the optimal proportion of equity to retain for a given project.

Our findings are the following. Our evolutionary approach leads to belief subjectivity
and heterogeneity. This means that in a standard portfolio/equilibrium problem in which
beliefs are determined through an evolution process, the objective belief is not optimal,
and agents differ in their beliefs. Indeed, optimism (resp. overconfidence) as well as
pessimism (resp. doubt) both survive in the long run. Furthermore, we find a positive
correlation between pessimism (resp. doubt) and risk-tolerance. The intuition is as
follows. For a relatively risk-tolerant agent, his demand in the risky asset is positive,
so that his expected utility from trade is decreasing in the price of the risky asset. A
pessimistic belief is associated to a lower demand, hence to a lower price, and balances this
benefit of pessimism against the costs of worse decision making. The converse reasoning
applies to a very risk-averse agent, who, at the equilibrium, has a negative demand in the
risky asset and benefits from optimism. Such a positive correlation has been observed in
empirical studies in a purely behavioural setting (Ben Mansour et al., 2008)?.

In an exponential utility and normal distribution setting, the consensus belief (or
the representative agent belief), which is given by the average of the individual beliefs
weighted by the risk-tolerance, is pessimistic (resp. exhibits doubt). Intuitively, the more
risk-tolerant agents make the market, and the consensus belief reflects the characteristics
of the more risk-tolerant. Since we have just seen that the more risk-tolerant agents
are pessimistic, it is consistent to obtain a pessimistic consensus belief. Moreover, the
average (unweighted) belief is also pessimistic, which means that the pessimistic risk-
tolerant agents are more pessimistic than the optimistic are optimistic and there is then

a pessimistic bias in individual beliefs. Such a pessimistic bias has been observed in

2This might seem counterintuitive because the two concepts (pessimism and risk-aversion) appear
at first sight as closely related. Investing a large amount in a risky asset may result indifferently from
optimism or risk-tolerance. Similarly an entrepreneurial behavior may be explained by either concepts.
However, this does not provide any hint about the complementarity or the substituability of these two
concepts.



empirical studies in a purely behavioural setting (Ben Mansour et al., 2006), in a decision
theory framework (Wakker, 2001) or in a market framework (Giordani and Séderlind,
2006). In particular, as underlined by Shefrin (2005) based on Wall $treet Week data
“between 1983 and 2002, professional investors were unduly pessimistic, underestimating
market returns”.

One may argue that various empirical studies of professionals’ economic forecasts
as well as psychological surveys have opposite conclusions: optimism (see e.g. Fried
and Givoly, 1982, O’Brien, 1988, Francis and Philbrick, 1993, Kang et al., 1994 and
Dreman and Berry, 1995) and overconfidence (Rabin, 1998, Hirshleifer, 2001, Giordani
and Soderlind, 2006). However, it has been repeatedly argued in the literature that
professionals’ forecasts may be biased by environmental factors (see e.g. Schipper, 1991,
Mc Nichols and O’Brien, 1997, Darrough and Russell, 2002). Furthermore, these studies
are generally based on self-assessment. For instance, in psychology, personal pessimism
measures how individuals perceive their future while it is clear that individuals have an
influence on this future. When this self assessment dimension disappears, it has been
shown in various studies that the optimistic bias disappears too®. Finally, Ben Mansour
et al. (2006) have shown that the optimistic bias is transformed into a pessimistic bias
when we focus on how individuals perceive the future through items that do have a clear
direct impact on their well-being but on which they have no influence. This is coherent
with the fact that people tend to attribute success to their own actions but failure to
external factors (Zuckerman, 1979, Fiske and Taylor, 1991, Baumeister, 1998, Duval and
Silvia, 2002, Van den Steen, 2004).

It is interesting from this perspective to note that pragmatic beliefs also lead to over-
confidence in Hvide (2002) (while they lead to underconfidence in our framework). Hvide
(2002) focuses on overconfidence in the sense of "hubris" since agents have beliefs about
their own ability while we focus on overconfidence in the sense of excessive confidence in
the statistical sense (as opposed to doubt) since agents have beliefs about external sources
of risk?. The difference between these two forms of overconfidence is of the same nature
as the difference between the two forms of pessimism (with or without self-assessment).

Our results obtained in a strategic interaction framework differ from those obtained in
an optimal beliefs/illusions setting, in which in most cases there is no belief heterogeneity

and an optimistic bias® (Brunnermeier-Parker, 2005, Brunnermeier et al., 2007, Gollier,

3For instance, Wenglert and Rosen (2000) conclude to optimism for items like I will have a happy
life, I will keep my best friends and to neutrality for items like There will be a third world war, The

unemployment rate shall fall, Life expectancy shall increase.
*Hvide (2002) makes such a distinction and refers to these two possible definitions for overconfidence

as overconfidence; and overconfidences; and then adopts overconfidence;.

% Gollier-Muermann (2010) consider a model of optimal beliefs with ex ante savoring and ex post

disappointment. Depending upon the intensity of anticipatory feelings and disappointment they might
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2005). This bias results from the specific mental process they consider. Indeed, in these
models, subjective beliefs maximize the agents’ expected well-being defined as the time
average of expected felicity over all periods. Since agents that care about future utility
flows have a higher current felicity if they are optimistic, the optimal beliefs balance this
benefit of optimism against the costs of worse decision making.

As a consequence of the pessimistic bias at the aggregate level, our evolutionary
approach leads to a the risk premium that is greater than in the standard rational expec-
tations equilibrium. The fact that a pessimistic bias and a positive correlation between
risk tolerance and pessimism lead to an increase of the risk premium has been underlined
by Abel (1989), Calvet et al. (2002), Detemple-Murthy (1994), Gollier (2007) and Jouini-
Napp (2006); in their models, beliefs are exogenously given while one of the main features
of this paper is to construct a model in which beliefs are endogeneous and in which the
pessimistic bias and the positive correlation between risk tolerance and pessimism, both
emerge at the equilibrium.

This increase of the risk premium is interesting in light of the risk premium puzzle
(Mehra and Prescott, 1985). In the insurance industry, our results lead to a situation
where the more risk-averse agent (the insured) is optimistic and the less risk-averse agent
(the insurer) is pessimistic. The average belief is pessimistic leading to a higher insurance
premium, which might help to explain the purchase of vastly overpriced insurance in a
range of situations (Cutler and Zeckhauser, 2004). In corporate finance, IPOs can be
modeled as a decision for a risk-averse entrepreneur to sell shares of his firm to more risk-
tolerant investors. The application of our results to such a setting leads to a pessimistic
consensus belief. As a result, the firm is underpriced and the short run return is large,
which is consistent with the empirical literature on IPOs (Ibbotson and Ritter, 1995).
Obviously, we don’t pretend that strategic interaction, such as in our simple model, is
the unique explanation for these puzzles, however, it is interesting to remark that our
approach helps to explain these puzzles as well as belief heterogeneity without introducing
any information asymmetry nor principal-agent features.

The paper is organized as follows. Section 2 introduces the concept of evolutionary
strategic beliefs and details the dynamics of beliefs formation. We also explain the link
between the evolutionary framework and a static concept of Nash equilibrium in demand
schedules. In Section 3, explicit computations are provided in a setting with exponential
utility functions and normal distributions in which the strategic variable is the expected
payoft of the risky asset. In Section 4, we compare our results with those obtained in an
optimal beliefs setting. In Section 5, qualitative results are provided in a setting with
more general utility functions and distributions. Section 6 considers extensions of the

model of Section 3 in essentially two directions; a model in which the strategic variable

also obtain a systematic pessimistic bias.



is the variance of the payoff of the risky asset and a model with multiple sources of risk.

Section 7 concludes.

2 A model of evolutionary strategic beliefs

We consider a standard equilibrium model, except that we allow for a possible evolution
of individual beliefs through strategic interaction. We start by describing the Walrasian
equilibrium. We then introduce the evolutionary framework as well as the underlying

2-player game.

2.1 The Walrasian equilibrium

The economy is composed of two agents with real valued, increasing and strictly concave
utility functions u; and us defined on R, . The agents live for one period and consumption
takes place at the end of the period. The states of nature are described by a probability
space (€2, F, P) and there is a single consumption good as well as a single risky asset in the
economy, whose payoff at the end of the period is described by a random variable . We
let p denote the unit price of the risky asset in terms of consumption good, which means
that both agents can sell their property rights on the risky asset against the delivery
of the sure quantity p at the end of the period. We assume that the agents have the
same endowment, which consists of a half unit of the risky asset. The difference with
the standard model stems from the fact that agents have possibly incorrect beliefs. We
assume that the set of possible beliefs for agent 1 (agent 2) is parametrized by ~ (by
0) in a given set B. Our agents then have different probability measures over (€2, F')
respectively denoted by ) and (9. We denote by E7 and EY the expectation operators
respectively associated to (), and Q. For a given random consumption ¢, the expected
utility of agent 1 (agent 2) is then given by E” [u1(¢)] (by E? [us(¢)]). As in the standard
portfolio problem, agents determine the optimal composition of their portfolio, in other

words their optimal exposure to the risk.

Definition 1 A Walras equilibrium (p; (a3, %)) is defined by a price p and quantities
(o, ) of risky asset for each agent such that the quantity o is optimal for agent i

under her budget constraint, i.e.
1 -
a] = argmaxE’ [u1(§p +a(T— p))]
* 0 1 ~
ay = argmax F uQ(§p+oz(x —p))

and such that markets clear, i.e. o] + af = 1.



The structure of the underlying Walras equilibrium problem is quite general and may
be applied to several equilibrium problems in which heterogeneous risk-averse agents
have to choose their optimal exposure to a given risk. For instance, when an insurance
company and a reinsurance company have to determine an optimal retention rate.

In the next we will denote by U (v, 6) and U, (v, #) the ex-post utility levels of agent

1 and 2 at the Walras equilibrium, i.e.

0010) = E [us(gp+ai (G- 1)
023:6) = E |ulzp+ a5 - p)]

It may seem puzzling that the expectation is taken under the objective probability while
we are assuming on the other hand that the agents have subjective beliefs. In fact,
agents experience their utility while their beliefs may result from various sources (learning,
strategic interactions, information,...). We could think of U; (v, ) as the outcome of a
process where the agents repeatedly face the same situation and where, each time, a
different value of ¥ is chosen by Nature according to the objective law of x. If the number
of repetitions is large enough, the average utility level obtained by each agent converges to
the expected utility under the objective probability even though the agent is not conscious

of this objective probability.

2.2 The evolutionary framework

Since equilibrium utility levels Uj (v,6) and Us (v, 6) depend upon agents’ beliefs, the
agents may (consciously or not) modify their beliefs to take advantage of this impact.
For example, it may be beneficial for an agent, who is risk-tolerant, hence willing to be
quite highly exposed to the risk, or equivalently interested in buying a high quantity of
the risky asset, to underestimate the asset in order to benefit from a lower price.

To assess the evolutionary viability of the different possible beliefs, our model is
embedded in a continuous time setting with two large populations of individuals, one for
each player, and with a continuum of beliefs for each group. Each individual in the first
(second) population corresponds to a possible belief for agent 1 (agent 2). We denote by
T the initial distribution (over B) of beliefs in group 1 and by ©g the initial distribution
(over B) of beliefs in group 2. In fact, these distributions correspond to the frequencies
at which agent 1 (agent 2) selects the different beliefs. Both distributions are assumed to
have full support over B and to belong to the set A(B) of Borel probability distributions
over B. We may then model agents’ interaction as follows: at each date, an individual vy in
one population is randomly matched with an individual # of the other population leading

to Walras equilibrium utility levels U; (v,60) and U, (v, 60). Since we cast our analysis
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in an evolutionary setting, these equilibrium payoffs will represent fitness in the sense
of evolutionary theory, that is to say the capability of an individual to reproduce. This
formulation leads to a natural selection process among different beliefs in each population.
At each date ¢ > 0, the pair of populations is characterized by a pair of distributions
(T, 0;) € A(B) x A(B) of (v,0). The average fitness levels of the individuals of types v
and 0 are then given by [ U (v,0) d©; and [ Us (v,0) dY,.

We assume that the selection dynamics are monotonically increasing in average fitness.

That is, we assume that the distributions of types evolve as follows:

d

ETt(A) = /Vl(% ©,)d Yy, A C B, Borel measurable, (1)
A

d

EQt(A) = /Vg(Tt,Q)d@t, A C B, Borel measurable, (2)
A

where V; and V5 are continuous® growth-rate functions that satisfy

mm@>>m@@wﬁjhwwma>/m@mmm 3)

%ww>>%wﬁM:/%mep/%mﬁﬂp (4)

To ensure that T; and O, remain probability measures for each ¢, we also assume that V;

and V5 satisfy
/Vl(% ©.)dY; =0 and /VQ(Tt, 0)dO; =0 for each ¢. (5)

Note that (1) and (2) may be rewritten as follows

d . fA Vl(%@t)th d - fA %(Tt,e)d(”)t
% In Tt<A> = Tt(A> y % In @t<A) = @t<A)

which means that the growth rate of T;(A) is given by the average value of Vi (v, ©;) over
the set A.

This dynamics is similar to the dynamics considered in Heifetz et al. (2007a,b) and
generalizes the replicator dynamics (see e.g. Cressman et al., 2006) where the functions

V; are given by

%m@)z/mmﬁmﬁ/wwwawn

%m@)zfmmmﬂﬁ/wmmmmy

6V1 and V; are respectively defined over B x A(B) and A(B) x B. The continuity property is meant
here in the sense of the product of the topology of B and of the weak-topology of A(B).
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Equations (1) to (4) reflect the idea that the proportion of more successful types in the
population increases from one period to another at the expense of less successful types
(in the replicator dynamics, the growth rate of a given type is directly proportional to
its success measured by the difference between its payoff and the average payoff). If the
populations under consideration really correspond to different individuals with different
types, then these equations may reflect the fact that more successful individuals will
proliferate and that their descendants inherit their characteristics either genetically or by
education. An alternative explanation is that more successful individuals are imitated
more often. If the populations under consideration are interpreted as possible beliefs for
agent 1 or agent 2, the distributions we introduced correspond then to mixed strategies
played by each agent. Without specific information about the objective value of v or 6
(the values that correspond to the objective/rational belief), each agent tries different
beliefs following a given distribution. Her distribution evolves then in order to give more
weight to the beliefs that led to higher average payoffs at the expense of the beliefs that
led to lower average payoffs. In this sense, each agent constructs her beliefs pragmatically.
We refer to Heifetz et al. (2007a,b) and Oechssler and Riedel (2001) for the technical
conditions that guarantee that the system of equations (1)-(2) has a well defined solution.

We are interested in the evolutionary characteristics of the beliefs in this dynamic
problem. More precisely, we are interested in the following questions. Does this model of
evolutionary strategic beliefs lead to subjectivity in beliefs? Does it generate heteroge-
neous beliefs? Is there a link between risk-tolerance and beliefs and what is the nature of
this link? Is there a pessimistic/optimistic bias at the equilibrium at the individual as well
as at the collective level? What are the consequences on the equilibrium characteristics

and in particular on the risk premium?

2.3 The underlying 2-player game

Before going further in this direction, let us consider the game I' = (B, B,U;,U,) in
which the strategic set of each agent is given by B and the payoff functions are given by
U, and Us. The game I' corresponds to a game in which each agent chooses her belief in
order to maximize her utility taking into account her own impact on equilibrium prices

(and therefore on equilibrium utility levels).

Definition 2 A Nash equilibrium of the game T' is defined as a pair of beliefs (v*,0%) €
B x B such that

Y

U (v, 07) Uy (7,0%) for ally € B,
Us (7v*,0%) > Us(y*,0) foralld € B.

12



The Nash equilibrium in the game I" is the analogue of the notion of Nash equilibrium
in demand schedules (introduced by Kyle, 1989) restricted to demand schedules of a
specific form (namely, demand schedules that are parametrized by underlying beliefs and
that correspond to the optimal demands of agents endowed with those beliefs).

Let us assume that the game I' admits a Nash equilibrium (v*,0*), by definition we
have U (v*,0%) > U; (v,0") for all v € B and then V; (v*,dp«) > Vi (7, dg+) where dy=
is the Dirac measure at 6*. The average value of V; (v, dp+) over {~*} is then higher
than the average value of Vj (v, d¢+) over any set A C B. This means that when O,
is kept constant equal to dg+ then the selection dynamics described by (1) will favor the
strategy v*. Conversely, when T, is kept constant equal to ¢+ then the selection dynamics
described by (2) will favor the strategy 6#*. The Nash equilibria of the game I' are then
good candidates for the asymptotic behaviour of the selection dynamics described by (1)
and (2).

These links between our evolutionary problem and the game I' will reveal to be useful

in order to analyze the properties of the equilibrium characteristics.

3 Exponential utility and normal distributions set-
ting

For analytical tractability, we first consider exponential utility functions with normal

distributions and provide explicit results.

Agents have utility functions for consumption of the form u; (¢) = —exp (—ﬁ) and

ug (¢) = —exp <—é) , where 6; > 0 denotes the degree of (absolute) risk-tolerance of

agent i. Moreover, we assume that r is normally distributed, with mean ; and variance
o

Let us first determine the Walras equilibrium characteristics” when agent 1 believes
that 7' is normal with mean p, and variance o2 and agent 2 believes that 7 is normal with
mean /1, and variance 0. The parameters p, and y, play then the role of the parameters
~v and 0 of the previous section and are assumed to be drawn from a set B = [H= ﬁ] of
possible beliefs that contains the objective value pu.

In such a setting and for a given p, the optimal demand «; (p) of agent i is given by

a; (p) = ;%5 The market clearing condition a4 (p) + a2 (p) = 1 imposes then that the

equilibrium price p (uq, p5) of the risky asset is given by

( )_ 61 i 92 . O'2
Py, Bo) = 91+02M1 61+921u2 91+927

(6)

"Walrasian equilibrium models with heterogeneous beliefs have been studied, among others, by
Williams (1977), Abel (1989), Detemple-Murthy (1994), Calvet et al. (2002) and Jouini-Napp (2006,
2007).
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which is the equilibrium price in an economy in which agents share the same expectations

O1p1 402119
01402

heterogeneous beliefs is the equilibrium price in an economy in which the belief of the

given by . In other words, the Walrasian equilibrium price in an economy with
representative agent (whose risk-tolerance 6 is given, as in the standard setting, by the
sum of the individual risk-tolerances) is given by the average of the heterogeneous beliefs,
weighted by the risk-tolerance. Moreover, replacing p by the expression of the equilibrium
price, we obtain that the optimal demand a] of agent 7 at the equilibrium is given by

0;
0 () = () ) = 2 [ 14+,

(7)

My — [
o2

and the part of the risk borne by agent ¢ depends upon both his level of risk-tolerance
and his belief.
The resulting utility levels are then given by

Ui (i1, o) = E [u {%p (1is 1) + {7 —p (s 1) } o (ui,uj)H ,i=12

Letting RP (resp. RP*?) denote the risk premium x — p in this setting (resp. in the

standard setting) we obtain

0'2 (91,&1 +92,M2> 91,& +92/L
RP = — I S i RPstdd ( o 1 2) ]
9+(M 01+ 0, G 01 + 0 (®)

which means that the risk premium in an economy with heterogeneous subjective beliefs
is higher than in the standard rational expectations setting if and only if the belief of the
representative agent, which is the risk tolerance weighted average of the individual beliefs,
is pessimistic, where pessimistic is meant in the sense that the mean of the risky asset’s
payoft is underestimated. It is therefore particularly interesting to explore when and
why individuals are pessimistic, as well as the nature of the link between risk tolerance
and pessimism. In the present paper, the individual beliefs are determined endogenously
and we analyze their properties, especially in terms of pessimism, correlation between
pessimism and risk tolerance and impact on the risk premium.

With these specifications and for given initial distributions T and ©4 with full support
over B, the selection dynamics given by (1) and (2) is fully described. The game I' =
(B, B, Uy, Us) is also fully described.

Proposition 3 Let us consider a model with two agents, exponential utility functions
and a risky asset ¥ ~ N (p1,0?) and let us assume that the possible beliefs are of the form
T~ N (W, 0%) with ) € B = [p, ] . We have

1. For given initial distributions Yo and ©g in A(B) with full support over B, the evo-

lutionary process converges to a pair of Dirac distributions (5,11, 5,12) where (1iy, 1ly)
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is the unique Nash equilibrium of the game T' = (B, B, Uy, Us).

. The surviving beliefs (i, 1i5) are given by

. o2 . o?

S — S — Y R S
/’Ll :u 402(01+02)(1 2)7 :u2 /‘L 401(01+62)(2 1) ()

Asymptotically, the more risk-tolerant agent is pessimistic, in the sense that he
behaves as if the mean of T lied below its true value, and the less risk-tolerant agent
18 optimistic. Moreover, the more risk-tolerant agent s more pessimistic than the
less risk-tolerant agent is optimistic and the unweighted average of the beliefs is

pessimistic:

o+ 1(6, — 0,)° 0®

ILL1+IU/2:,U/__(1 220-. (10)
2 8 0,050

. Asymptotically, the representative agent is pessimistic, i.e. the average of the indi-

vidual beliefs weighted by the risk-tolerance is pessimistic. More precisely,

Hlﬁl + 922’;2 — ,U/ _ 1 (91 _ 92)2 0-2 (11)
01+ 0 4010, (01 +65)

. Asymptotically, the risk premium RP (resp. the price) is higher (resp. lower) than

in the standard rational expectations equilibrium. More precisely
0171, + Oafi 1 (0, —6,)° 02

RP:RPStdd—{— < I T 2 :RPstdd+_ )
0 0 10,05 (0, + 02)

. Asymptotically, the optimal demands are given by

91 (02 - 01)

o 0o (01 — 02)
= =+ ,
91 —|—¢92 4((91 +02)

- 91+92+4(91+92)'

*

*
Qq

Qg

which means that the volumes of trade (and the risk sharing) are reduced compared
to the standard setting. The more risk tolerant (resp. risk averse) agent selects a

less (resp. more) risky portfolio.

f %91 <6y < %91, then, at the equilibrium, both agents asymptotically have utility
levels that are lower than in the Walrasian setting. Otherwise, the utility level of
the more risk tolerant agent increases (with respect to the Walrasian setting) while

the utility level of the more risk averse agent decreases.

Evolution selects then only one belief for each group of agents and the pair of as-

ymptotic beliefs corresponds to the unique Nash equilibrium of the game I'. Therefore,

the surviving belief for a given agent corresponds to the belief that would be chosen by

the agent under consideration in a model where such an agent would take into account
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her impact on equilibrium prices (and therefore on equilibrium utility levels) and would
choose her beliefs accordingly. In this sense, our beliefs are strategic ones. They corre-
spond to the optimal strategy for a strategic agent whose strategic variable is given by
her belief.

Note that our construction of evolutionary strategic beliefs leads to subjective and
heterogeneous beliefs. Indeed, evolutionary strategic beliefs differ from the objective
belief, agents 1 and 2 differ in their beliefs and, as expressed in Equations (9), belief
heterogeneity takes its roots in the difference in risk-aversion levels. Besides, more than
just being "heterogeneous", evolutionary strategic beliefs are "antagonistic" in the sense
that one of the agents is optimistic (j; > p) and the other one is pessimistic (11, < p).

With the strategic interpretation, the different qualitative results are easy to interpret.

The pessimism of the more risk-tolerant agent can be interpreted as follows. Suppose
that agent 1 is more risk-tolerant. At the equilibrium, since agents initially only differ in
their level of risk-aversion, the risky asset’s demand for agent 1 is positive. His expected
utility from trade is then decreasing in the price of the risky asset. The choice of a
pessimistic belief is associated to a lower demand, hence to a lower price and a higher
expected utility. The evolutionary strategic belief balances this benefit of pessimism
against the costs of worse decision making. The converse reasoning applies to agent 2,
who, at the equilibrium, has a negative demand in the risky asset and benefits from
optimism. Another way to interpret the pessimism of the more risk-tolerant agent is
to analyze the situation in the neighborhood of the objective belief and the associated
equilibrium, i.e. the Walras equilibrium with objective belief. Indeed, a deviation from
the objective belief has potentially two effects on the utility level: a quantity effect and
a price effect. The quantity effect is equal to zero due to the optimal quantity choice
condition in the Walras equilibrium and the price effect is positive for the less risk-
tolerant agent (i.e. the agent that has a negative net demand) and is negative for the
more risk-tolerant agent.

As a consequence of the positive correlation between pessimism (optimism) and risk-
tolerance (risk-aversion), the more risk-tolerant will insure the less risk-tolerant less than
in the standard setting, which induces less risk-sharing.

The average (unweighted) belief is pessimistic, which means that the risk-tolerant
agent is more pessimistic than the risk-averse is optimistic. This result can be understood
as follows. As we have seen, the evolutionary strategic belief results from an arbitrage
between the benefit of a low price induced by pessimism for the risk-tolerant (resp. the
benefit of a high price induced by optimism for the risk-averse) against the costs of
worse decision making. Let us explore this point further. At the Walras equilibrium, the
marginal utility of the less risk-tolerant agent associated to a marginal increase of p is
positive and equal to the marginal utility of the more risk-tolerant agent associated to a

marginal decrease of y. By definition, the evolutionary strategic beliefs correspond to zero
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marginal utilities. When the more risk-tolerant agent becomes more pessimistic and when
the less risk-tolerant agent becomes more optimistic, their marginal utilities decrease at
different rates. The difference between these two rates originates in the variance terms
in the utility functions and more precisely in the terms (Aay)* and (Aas)®. Due to the
market clearing condition, these two terms are equal; however, by definition of the risk-
tolerance coefficient, they are weighted respectively by % and é in the utility functions.
This leads to a slower decrease of the marginal utility for the more risk-tolerant agent
and then to a more pronounced divergence from the objective belief for that agent.

The consensus belief, which is given by the average of the individual beliefs weighted
by the risk-tolerance, is then obviously pessimistic. Intuitively, the more risk-tolerant
agents make the market, and the consensus belief reflects the characteristics of the more
risk-tolerant. Since we have just seen that the more risk-tolerant is pessimistic, it is
consistent to obtain a pessimistic consensus belief.

The risk premium is greater than in the standard rational expectations equilibrium,
which is interesting in light of the risk premium puzzle. This is easily understandable,
since, as we have seen, in equilibrium models with heterogeneous beliefs the risk premium
is higher than in the standard setting if and only if the consensus belief is pessimistic.
The reason why pessimism increases the risk premium is not that a pessimistic represen-
tative agent requires a higher risk premium. He requires the same risk premium but his
pessimism leads him to underestimate the average rate of return of the risky asset. Thus
the objective expectation of the equilibrium risk premium is greater than the representa-
tive agent’s subjective expectation, hence is greater than the standard risk premium (see
Abel, 2002, and Jouini-Napp, 2006).

To sum up, our construction of endogenous beliefs through an evolutionary strategic
approach leads to beliefs that are different from the objective belief, heterogeneous, and
antagonistic (one is optimistic and the other is pessimistic). There is a positive correlation
between risk-tolerance (resp. risk-aversion) and pessimism (resp. optimism), which leads
to less risk-sharing and to a higher risk premium.

Our results are robust to variations in the initial endowments as long as the more
risk-tolerant agent has a positive net demand, i.e. as long as the more risk-tolerant agent
insures the less risk-tolerant one, which is a natural situation. At first sight, a negative
supply in the risky asset seems to lead to an optimistic bias. Indeed, in that case, the
strategic behaviour induces an upward bias on the mean of the risky asset distribution
but this corresponds to a pessimistic bias on the total wealth of the economy. The unique
situation where all the effects we exhibited disappear corresponds to the case where there
is no aggregate risk (i.e. when the total supply in risky assets is equal to zero). Indeed,
in such a framework, there is no trade at the Walrasian equilibrium and there is then no
price effect and no utility gain associated to a deviation from the objective belief. This

is natural and still in line with our conclusions since, in such a setting without aggregate

17



risk, the concepts of optimism and pessimism do not have any meaning.

4 Strategic vs "optimal" beliefs

The construction of endogenous subjective beliefs that are solutions of a given utility
maximization problem has been considered in recent literature by Brunnermeier-Parker
(2005), Gollier (2005), Gollier-Muermann (2010), Brunnermeier et al. (2007). In our
framework, the subjective beliefs are not only optimal but strategic. Indeed, they do not
result from an individual utility maximization problem but from an evolutionary process
or equivalently from a Nash equilibrium in which each agent takes into account the impact
of his choices on the equilibrium price and allocations. As we shall analyze it in detail, in
a non-strategic setting where agents choose their belief in order to maximize a criterion
related to their well-being, it is immediate that the optimal belief must be optimistic for
all agents and that all agents select a riskier portfolio. In our setting, there is no such
immediate intuition for a given systematic bias.

Let us compare our results with those that are obtained in an optimal non-strategic
framework. More precisely, adopting the same framework and notations as above, we
consider the following concept of optimal beliefs, which corresponds to a simplified version
of Brunnermeier-Parker (2005), Gollier (2005) and Brunnermeier et al. (2007).

Definition 4 For a given price p, an optimal (non-strategic) belief fi;(p) for agent i is
defined as the solution of

g e [ (g + il ) G ) )]

Mie[ﬁvﬁ] 2
where E; is the expectation operator associated® to the belief ;.

The belief ji,(p) is optimal in the sense that it maximizes over the set [H? ﬁ} the
well-being of agent 7.

The original definition of optimal beliefs introduced by Brunnermeier-Parker (2005)
and further studied by Brunnermeier et al. (2007) and Gollier (2005) considers a weighted
average of the objectively expected utility and of the subjectively expected utility. Our
definition is more simple but it is easy to check that the results obtained below, under
Definition 4, remain valid under the original definition. This will be further discussed at
the end of this section.

We can now define an associated equilibrium concept as follows.

8More precisely, E; is the expectation operator associated to a probability P; that represents agents

i's belief and under which & ~ N (u;,0?).
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Definition 5 An equilibrium price with optimal (non-strategic) beliefs is defined as a
price p such that agents have optimal demands and optimal (non-strategic) beliefs and

such that markets clear, i.e.

a1 (p, n(P)) + aa(p, i1z (p)) = 1.

Proposition 6 In the setting of the previous section (exponential utility and normal

distributions), we have

1. For a given price p, the optimal (non-strategic) belief ji;(p) for agent i solves

max (p —p)*.

ME{&E}

2. If elofez > ﬁ%, then the equilibrium is characterized by p = i — 011262 and ji,(p) =

f5(p) = 7. The agents share the same optimistic belief and the risk premium is

lower than in the standard setting.

01pu+021 2 pt
3. Ip o

+791+92 - 01+602 777
EE u(p) = p and iy(p) = fi. The more risk-tolerant agent is the more optimistic
O1pu+020

01+62

where 01 < 04, then the equilibrium is characterized by p =

and the consensus belief is more optimistic than the equally weighted belief

ptf

5 -

We have then two possible situations but both of them induce an optimistic bias

O1pu+021 2 pti . .
at the aggregate level. Furthermore, unless —= — -2 = == there is no belief
? 01462 01+62 2 7 T -

0140211 o? ptp

heterogeneity and both agents are optimistic. In fact, even when . T = 3

the more risk averse agent is not truly pessimistic. Indeed, it is easy to check that this
agent is short in the risky asset and is then optimistic with respect to his own allocation,
i.e. overestimates the return of his own portfolio.
. 2 a— 2 B O1p+021 . .
Notice that for 777 < == and %5 # =5~ — 19: +92 where agent 1 is less risk-
tolerant than agent 2, there is no equilibrium. A natural extension of the model would

consist in allowing for mixed strategies or for a continuum of agents. We retrieve then an
equilibrium in which a proportion a of the agents choose the belief y and a proportion
(1 — a) choose the belief fi. For instance, if we assume that the distribution of beliefs is

independent of the distribution of risk-tolerances, the market clearing condition leads to

o? p+ T
ap+(1—a)u— - = = 12
pt (=)= = (12)
The proportion « is then perfectly determined if f‘;—%di < ﬁ—gﬁ The solution « is always

lower than % which means that the consensus belief is always optimistic. This equilibrium

in which each agent is indifferent between two possible beliefs and in which the market
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clearing condition imposes the proportions of agents choosing each belief resembles the
equilibrium obtained in Brunnermeier-Parker (2005).

These results are analogous to those of Brunnermeier-Parker (2005) even if in their
case there is no aggregate risk’.

We would obtain the same kind of results if we considered a weighted average of the
objectively expected utility and the subjectively expected utility as in the original model

of Brunnermeier-Parker (2005)

pi €K

e {98 [ (o + o) G =) | + 0= 908 [ (o + o G-) |}

For 3 large enough, in other words when the weight on the objective expectation
is beyond a given threshold, then the agents share the same belief and this belief is
optimistic. Otherwise, there is not a unique optimal belief, agents have extreme beliefs
(i.e. p or fz), but the possible equilibria still lead to an optimistic average belief'?. In
all cases, the average optimal belief is optimistic leading to a lower risk premium. These
results are similar to those obtained by Gollier (2005) in a general discrete distributions
setting.

To conclude, in the optimal (non-strategic) setting, agents’ beliefs are always opti-
mistic (with respect to their own allocations) and the risk premium is always lower than
in the rational expectations setting. Furthermore, except for specific degenerate situa-
tions (see equation 12), the agents share the same belief. The difference between optimal
(non strategic) and strategic beliefs is now clear, since in the latter setting, there is belief
heterogeneity, one agent is optimistic while the other is pessimistic and the risk premium

is higher.

5 The general case

The purpose of this section is to analyze the robustness of the results of Section 3 to more
general utility functions and distributions. In particular, we show that even with more

general assumptions, the game I' associated to our evolutionary process admits Nash

9In this case, there is no absolute concept of optimism or pessimism and both agents are optimistic

with respect to their own equilibrium allocation.
10More precisely, for 3 < 1, the agents have extreme beliefs, p or Ji, as above and there might exist
2 poor
equilibria with heterogeneous optimal beliefs if the model parameters satisfy a condition like equation
(12). For 8 > %7 i.e. when there is more weight on the objective expectation, and if z is sufficiently large
(& > @* for some ") the agents share the same belief and this belief is an interior point of m, ﬁ] . For

b= % or for i < 1" the agents share the same belief 7.
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equilibria that have the same qualitative properties as those exhibited in the exponen-
tial /normal framework.

For this purpose, we consider a family of beliefs (P£ )ue[g,ﬁ] , corresponding to the
possible subjective distributions for 2. We may assume without any loss of generality
that the objective distribution corresponds to ;= 0. We further assume that 0 € [H? ﬁ] ,
i.e. the objective distribution lies in the set of possible/plausible beliefs for the agents.
In the next, we also assume that all the considered expectations exist and are finite.
For u € m, ﬁ] , we let f(.,p) denote the density function of P with respect to the
Lebesgue measure on ]R+ and we let £* denote the expectation operator under the density
f(p), ie. EF[g(@)] = [ g(s)f(s, p)dz. We will simply denote by E (instead of E°) the
expectation operator associated to Pg.

As in Section 3, our economy is composed of two agents, initially endowed with a half
unit of the risky asset & and we consider the game in which these agents can manipulate
their beliefs and choose an optimal composition of their portfolio, taking into account the
effect their trading has on price.

We make the following assumptions.

Assumption (A)

e The utility functions u; and usy are increasing, strictly concave and twice continu-

ously differentiable on R, ,
e Inada conditions: u(0) = +o0 and lim, . u;(x) = 0,

e The family (P% ) x Is increasing in the sense of the first-order stochastic dominance,

i.e. for allx>0we have [" f(s,p)ds > [ f(s, pW/)ds for p/ > puin [p, 7] .

e The functions s — suj(s), i = 1,2, are increasing.

The first condition is standard. The second one guarantees interior solutions to the
individual portfolio choice problem. The third condition ensures an order on the set of
admissible beliefs. The setting of Section 3 satisfies this condition. More generally, any
family of beliefs (PY ), e, Such that f (s, ) = g(s—p) for a given distribution function g
on R, satisfies this monotonicity condition. Another example is provided by a family of
log-normal distributions, (In N (u, 0?)) ucr- Lhe fourth condition guarantees that a first-
order stochastic dominance shift in the risky asset’s payoffs increases the demand for the
risky asset (see Gollier, 2001). The same portfolio property can be obtained without this
condition if we replace the first-order stochastic dominance of the third condition by the
monotone likelihood ratio order (Landsberger and Meilijson, 1990).

Let us first determine the Walras equilibrium characteristics. For a given belief PZ

and for a given price p, the demand function of agent ¢ is given by
1 -
ai(p, p) = argmax B uy(5p + oi(T = p))
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For a pair of beliefs (1, ii5), the equilibrium price p(ju,, it5) is determined by the
market-clearing condition aq(p(fi, pt9), pt1) + a(p(t1, 112), ft2) = 1 and the associated
optimal demand for agent i is defined by o (uy, 1y) = ai(p (iy, pis) , i1;). The Walras

equilibrium utility level for agent ¢ is then given by

1
Ui(py, piy) = E ui(ﬁ

P (s o) + 0 (py, 1) (Z = p (111, 112))) | - (13)
Proposition 7 Under Assumption (A),

%4 (p, ) <

1. The functions a;(p, ), p(py, o) and o (g, pg) are well defined and satisfy

do; 9 ooy o} . . .
07 aﬂ(pnu)ZO? 8_51207 A, ZOJ %§072_1727J%Z'

2. If the game T' = (B, B,U;,Us), with B = [H’ ﬁ] , admits an interior Nash equi-
librium (fiy, fi5), i.e. a Nash equilibrium such that [i; € (H’ L), then one of the

agents (agent i) is pessimistic and the other one (agent j) is optimistic and we

have o (fuy, fiy) < % < aj(fuy, fia)-

3. If one of the agents (say agent 1) is more risk-averse than the other one in the sense

of Arrow-Pratt, then oi(jiy,fls) < =

3, and there is a positive correlation between

pessimism and risk-tolerance.

4. If the game T' = (B, B, Uy, Us) admits a unique interior Nash equilibrium (fiy, fi5)
and if the functions Uy and Uy have increasing differences, i.e. U; (i}, 1) —U; (g, 1) >
Ui (1), tte) — U (pq, ptg) for all ph > py and py > py, then the evolutionary process
defined by (1) and (2) converges to the pair of Dirac distributions (6;,,05,) -

As far as the Walrasian equilibrium is concerned, we obtain first that the optimal de-
mand of the agents (as a function of the price and the belief) increases with the belief and
decreases with the price, which are natural properties. As a consequence, the equilibrium
price increases with the beliefs, which is also natural; if the asset is more “desirable”, its
equilibrium price increases. An increase in the belief of agent ¢ has then two effects on his
demand o at the equilibrium, a direct positive effect and an indirect negative effect due
to the price increase. The global effect is positive. The effect of an increase of the belief
of agent ¢ on the equilibrium demand o} of the other agent is negative because there is
only one effect, namely the price effect.

We obtain that the heterogeneity of strategic beliefs is robust to the choice of more
general utility functions and distributions. Moreover, as in Section 3, one agent is op-
timistic and the other agent is pessimistic. The pessimistic agent is the one for which
the net demand is positive. This result can be explained as before. For the agent who
expresses a positive net demand for the risky asset, the choice of a pessimistic belief is

associated to a lower price and a higher expected utility; the strategic belief balances this
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benefit of pessimism against the costs of worse decision making. The converse reasoning
applies to the other agent, who, at the equilibrium, has a negative net demand in the
risky asset and benefits from optimism.

The positive correlation between pessimism and risk-tolerance is also robust to this
more general setting. When one of the agents is more risk-tolerant, his net demand is
necessarily positive. Otherwise, he would have a negative demand which would lead to
an optimistic belief while the other agent would be pessimistic, more risk-averse with a
positive net demand. This is obviously impossible. The positive correlation follows.

These properties are then satisfied at any interior Nash equilibrium of the game I' =
(B, B, Uy, Us) and, in particular, at any Nash equilibrium of the game I'* = (R, R, Uy, Uy).

Additional assumptions about the structure of the game are needed in order to char-
acterize the asymptotic behaviour of the evolutionary process. Exploring the conditions
under which the game I' admits a unique Nash equilibrium or the conditions under which
U; has increasing differences goes beyond the scope of this paper. However, if such con-
ditions are satisfied then the evolutionary process converges to a pair of heterogeneous
and antagonistic beliefs that are positively correlated with the level of risk aversion when

the utility functions are well ordered with respect to this criterion.

6 Extensions of the model

In this section, we analyze the robustness of our results (heterogeneity of beliefs, posi-
tive correlation between pessimism and risk-tolerance in the game I, convergence of the
evolutionary process to the Nash equilibrium of the game I' and, in the exponential util-
ity /normal distributions setting, aggregate pessimism and higher risk premia) to other
specifications of the model. In previous sections we analyzed the impact of strategic
behaviour on beliefs when the set of possible beliefs is ordered for first-order stochastic
dominance shifts. Such shifts correspond to changes on the mean for normal distributions
and more generally can be interpreted in terms of optimism and pessimism. We can also
be interested in the impact of strategic behaviour on beliefs when the set of possible
beliefs is ordered for mean preserving spreads. Such spreads correspond to changes on
the variance for normal distributions and more generally can be interpreted in terms of
overconfidence and doubt /underconfidence. For tractability reasons, we will analyze this
impact in an exponential utility and normal distributions framework (as in Section 3). We
will also analyze, in an analogous framework, if our results are robust to the introduction

of multiple sources of risk.
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6.1 Disagreement on the variance

The model is the same as in Section 3 except that the beliefs are now about the variance
of . Our aim is to analyze how these distributions evolve through interactions between
the 2 groups and through the evolutionary equations (1) and (2) introduced above. The
payoff of the risky asset 7 is still normally distributed with mean p and variance o2 and
the set of beliefs is parametrized by ¢ € B el [0, 7] . With this parametrization, an agent
who has a belief o; € B believes that x is normally distributed with mean p and variance
o2,

The Walras equilibrium characteristics are determined as follows. If agent 1 has a

belief o; and agent 2 has a belief o5, then the optimal demand of agent 7 is given by

a; (p,o;) = 0; “;?p and the market clearing price is given by p (01, 02) = 1 — (g—% + g—%) - )
The bias with respect to the objective belief can here be interpreted as a form of
doubt /underconfidence (o; > o) or overconfidence (o; < o) instead of the pessimism/optimism
biases!! of Section 3. Note that the obtained equilibrium price corresponds to the equi-
librium price in an economy in which agents share the same belief, namely an harmonic
average of the initial beliefs, weighted by the risk-tolerance. In other words, it is the
equilibrium price in an economy in which the belief of the representative agent (whose
risk-tolerance is given by 6, as in the standard setting) is given by the average of the

initial beliefs, weighted by the risk-tolerance'?. In this setting, the equilibrium risk pre-

-1
mium is given by p — p(01,02) = (% + g—%) , which means that the risk premium in

an economy with heterogeneous subjective beliefs is higher than in the standard rational
expectations setting if and only if the belief of the representative agent exhibits doubt
01

(i.e., (E + 3—%)_1 > ﬁ). The Walras utility levels are then given by

Uslor,03) = E [u {%p (01,09) + {7 = p (01, 00)} ! (01,02)}] ,

where o (01,02) = a; (p(01,02) ,0;).

With these specifications and for given initial distributions Ty and Oy with full support
over B, the selection dynamics given by (1) and (2) is fully described. The game I' =
(B, B, Uy, Us) is also fully described.

Proposition 8 1. For any initial distributions Ty and Oy in A(B) with full support

over B, the evolutionary process converges to a pair of Dirac distributions (0z,,z,)

See Abel (2002) for concepts of pessimism and doubt related to first and second order stochastic

dominance.

12Walrasian equilibrium models in which agents have heterogeneous beliefs on the variance of the
asset under consideration have been studied by, among others, Abel (1989, 2002), Duchin-Levy (2010),
Fama-French (2007), Jouini-Napp (2006) and Yan (2010).
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where (01,09) is the unique Nash equilibrium of the game T' = (B, B, Uy, Us).

2. The asymptotic beliefs (1,02) are given by

. 01 — 0, . 02 — 0,
a§=02(1+ 9 ) a§:a2<1+ 10, ) (14)

The more risk-tolerant agent exhibits doubt, in the sense thal she overestimates

the variance of x, and the less risk-tolerant agent is overconfident. Moreover, the
more risk-tolerant agent exhibits more doubt than the less risk-tolerant agent exhibits

overconfidence, and the unweighted (harmonic) average of the beliefs exhibits doubt:

1 1\* (61 — 6,)
2 = + — =d |1+ . 15
(33 33) "( 2 (7 + 62+ 60,05) (15)

3. The representative agent exhibits doubt, i.e. the harmonic average of the individual

beliefs weighted by the risk-tolerance exhibits doubt. More precisely,

0, 0\ " 3(0, — 6,)>
(91—1-@2)(,\—;4-73) :UQ(I—FM).

o] O, 166,06

4. The risk premium (resp. the price) is higher (resp. lower) than in the standard

rational expectations equilibrium. More precisely

0, 0,\" o2 3(0, — 0,)°
RP — RPStdd _1 _2 o — RPStdd 2‘
* ((ﬁ t 2 6, + 65 T 160,05 (0: 1 65)°

We then retrieve the same properties as in Section 3 except that pessimism is replaced
by doubt. Note that behavioral studies in a non strategic and non market context gen-
erally exhibit overconfidence instead of doubt. This bias is largely documented in the
behavioral literature and in particular by Shiller (2000, p.142): “some basic tendency
towards overconfidence appears to be a robust human character trait: the bias is def-
initely toward overconfidence rather than underconfidence”. The strategic framework
induces then an effect in the opposite direction and this might explain that Giordani
and Soderlind (2006) “find little evidence of either overconfidence or doubt” in the sur-
vey of professional forecasters. Indeed, professional forecasters know that their forecasts
have a direct as well as an indirect (their predictions influence the beliefs of many other

investors) impact on prices and it is then natural for them to adopt a strategic behavior.
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6.2 The model with two sources of risk

The model is essentially the same as in Section 3 except that we now suppose that there
are two sources of risk in the economy, whose associated payoffs at the end of the period
are respectively denoted by = and y. We let p (resp. ¢) denote the price of T (resp. 7)
and we assume that ¥ and g are normally distributed, more precisely T ~ N (i, 0?) and
7 ~ N (v,@?). We let p denote the correlation between T and 7, i.e., p = % Each
agent is initially endowed with one half unit of each risky asset.

We assume that the set of possible beliefs is given by B = M, ,U} X [v,7]. For a given
belief (p;,v;) for agent ¢ and for a given price system (p, ¢), it is immediate to show that

the demand functions a; and f3; respectively in the first and the second asset are given
by

' ' IR i S (Vi_(J)p
az(]%(:“iu”z)) — 010_2(1_p2) 620’@(1—p2)

)

vi—q (i =p)p
/Bz(pv (ILLZ’V)) 2 (1_p2> Uw(l_pg)
The Walras equilibrium price system (p((p1,v1) , (ta, v2)), q((p41, 1) 5 (g, v2))) is deter-
mined by the market-clearing conditions a4 (p, (i, v1))+a2(p, (fs, v2)) = L and 4 (p, (, 1))+
Bo(p, (pe, v2)) = 1, which leads to an equilibrium price for the first (second) asset that

only depends on agents’ beliefs about that asset

011 + Oapy  0* + oTp

p(ﬂblh) = 0 5
O1v1 + Ovy @ + owp
q(VhVQ) = 5 - a

and to optimal quantities of assets at the equilibrium given by

¥ . 0; 0;(p; — Mj) 0;(v1 —vs)
Q; ((Mla Vl) ) (NZa VQ)) - 5 |:1 + o2 (1 _ p2) - ow (1 _ p2):|
) (v, — v 9]‘ P = 1y
6:((”layl) ) (/‘LQaVQ)) = % |:1 + 22((:2[ _ pJQ)) - 0-;/21 _/;2)):| ’

The Walras equilibrium utility level for agent ¢ is then given by

1p (f11, o) + 1q (v1,v2) + i (Z = p (1, o)) + B5 (7 — q (v1,v2)))

00 1) = B .
(16

Proposition 9 1. For any initial distributions Yo and Oy in A(B) with full sup-
port over B, the evolutionary process converges to a pair of Dirac distributions

(8a, 51): 0(ipm2)) where ((fiy,71) , (Hy, U2)) is the unique Nash equilibrium of the
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game I' = (B, B, Uy, U,).
2. The beliefs (113 Vi);—, o are given by

- (0i=0;)(0® + owp) - (0; — 0;) (@ + owp)
o=t 40,0 ’ ' 40,0 '

3. The risk premium (resp. the price) is higher (resp. lower) than in the standard

rational expectations equilibrium. More precisely

. 1(0y = 62)? (0% + owp)
o — RPstdd 4= _
p—=p (@) + 7 60,0
1(01 — 05)° (w?® + owp)

. — Rpstdd + _
v—q ¥+ 60,

where RP'4(%) and RP*'%(3) denote the standard risk-premium for T and y in

an homogenous beliefs setting.

As far as the market portfolio (7 + ) is concerned, the market risk-premium RPM

and the beliefs & f” on the average market return are given by

' 40,0

~ 1 (01 - 92)2 0'2
RPY = RPU T +7y)+ =
E+0+ 1 50,8

where ¢ = o+ v and 02, = @w? + 2pow + o

correspond respectively to the objective
market portfolio return and variance. These formulas are exactly the same as in the one
asset framework which means that the more risk tolerant (risk averse) agent is pessimistic
(optimistic) at the aggregate level and the consensus belief is pessimistic at the aggregate
level. The formulas for individual assets that are provided in the proposition are similar
to those obtained in the one asset framework. However, for each asset, the variance term
in the one-asset formula is replaced by the covariance of the considered asset payoffs with
the market portfolio payoffs. Recall that in the Walrasian setting (CAPM setting), the
equilibrium price for a given asset depends on the covariance of the payoffs of this asset
with the payoffs of the market portfolio and not on the total variance of the asset payofts.
Since the agents modify their beliefs in order to manipulate the prices, it is natural to
obtain optimal beliefs that depend on the covariance with the market portfolio and not
on the total variance. The aggregate level properties (pessimism, correlation between
pessimism and risk tolerance,...) are then retrieved at the individual assets level as far
as these assets are positively correlated with the market portfolio.

It is interesting to note that these effects are more pronounced for the riskier asset.
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Intuitively, the strategic behaviour leads to more beliefs dispersion for the riskier asset

and hence to a more pronounced impact on the market for the riskier asset.

7 Conclusion

The introduction of strategic interaction provides a rationale for belief heterogeneity; it
leads to beliefs that are subjective, heterogeneous and antagonistic. The selection of
strategic beliefs is governed by very precise rules. These beliefs must be related to the
individual level of risk-aversion: the beliefs of more risk-averse agents exhibit optimism
and/or overconfidence and the beliefs of more risk-tolerant agents exhibit pessimism
and/or doubt. As a consequence, there is a positive correlation between pessimism/doubt
and risk-tolerance. In a setting with exponential utility and normal distributions, the
average belief exhibits pessimism and/or doubt as well as the consensus belief. This
is compatible with the observation that subjects in experimental and empirical studies
exhibit a dose of pessimism (Wakker, 2001, Ben Mansour et al., 2006, Giordani and
Soderlind, 2006). This induced pessimism/doubt of investors leads to higher risk premia,
which is interesting in light of the equity premium puzzle. It is also helpful to explain the
purchase of vastly overpriced insurance contracts or the large short run returns of IPOs.

This work suggests further investigation in several directions. First, in this paper we
have let aside information asymmetry and heterogeneity in order to focus on the impact
of strategic interactions on individual beliefs and from there on equilibrium prices and al-
locations. It would be useful to consider a more general model including both a strategic
use of private information and a strategic choice of beliefs. Second, we have only consid-
ered totally ordered families of possible subjective distributions for the risky asset payoffs.
In particular, all beliefs deformations can be interpreted in terms of pessimism/optimism
or in terms of doubt/overconfidence. It would be interesting to consider more general
possible deformations of the objective distribution in particular in terms of higher order
moments (as skewness and kurtosis). Finally, it would be interesting to analyze a model
with a large number of players. Since beliefs are built strategically, we may argue that
the impact of the strategic behaviour will vanish when the number of players becomes
large. However, “the real issue is not so much how many (agents) there are, but to what
extent (agents) cluster in their beliefs” [Shefrin, 2005, p216]. Situations with a small
number of clusters would correspond to situations with a small number of leaders (highly
concentrated decision power, presence of gurus...). This should then lead to extend the

model in order to take into account leadership, beliefs contagion and herding behaviour.

Appendix
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Proof of Proposition 3
2. Let us first analyze the game I'. The expected utility of agent ¢ at the Walras

equilibrium, given the belief y; of agent j, j # i, can be written

Ui ) =
(pty, 1) 9,

B [ <§p(u1,u2)+ai (b1, 1) (b = D (p1a5 22))
—exp |— G +

E [_ exp (_ 30 (s p1a) + i (g, p1g) (7 —p(m,ug)))}
1
2

where o (g, pg) = giw

tions of both agents. The problem of agent 7 is then to maximize this payoff with respect

. We now have an explicit expression for the payoff func-

to y;, the strategy fi; of the other player being given.
Maximizing U; (4, p15) with respect to u;, amounts to maximizing

1 11
Ai (py, p) = 3P (11, o) + a1 (pag, o) (1t — p (pay, 112)) — 50 (a1 (g, p15))? 02

20,
This program is concave and the maximum is reached for u; such that dA (uz) = 0.
This corresponds to the best response BR; (,uj) of agent ¢ when agent j plays p; and we

have
200 ; (01+02)+208]uj+0 (9 —6)

40,0, + 207

BR; (1;) = (17)

We then solve for (fiy, i) such that BR; (jiy) = iy and BRy (ji;) = fi,. We obtain
equations (9).

1. Let us now prove that this unique Nash equilibrium characterizes the limit of our
evolutionary process. First, let us show that the set of strategies surviving iterated strict
dominance in the game I' is reduced to the unique Nash equilibrium exhibited above.
It is equivalent to prove this result for the game I' or for the game I' defined by the
same strategic sets as I' but with payoff functionals A; and A, instead of U; and Us,.
It suffices then to show that I is a supermodular game (see e.g. Milgrom and Roberts,
1990, or Fudenberg and Tirole, 1991). Since our strategic sets are compact and our payoff
functions are continuous, it suffices to check that A;(f, i5) has increasing differences in
(tq, o), for i = 1,2 or equivalently that 8u 3u (1, pt5) > 0. This is immediate.

Let us show now that any strictly dominated strategy is eliminated by the evolution
process.

Let us consider p, that is stricly dominated by p) from agent 1 point of view. This
means that Uy (uy, i) < Uy (1], p15) for all p,. We have then for every distribution © over
B, [ Ui, p15)d© < [ Ui(pt}, po)d® and then Vi(py, ©) < Vi(u}, ©). Since B is compact,
A(B) is compact with respect to the weak-topology. We have then Vj(p,,0) + k <
Vi(py, ©) for some k > 0. Let us now consider some open subset A (resp. A’) of B
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containing 1, (resp. j;) such that Vi(u,©) + £ < Vi(y/,0) for all (u, 1) € B x B and
all © € A(B). We have

i In Tt(A) o fA Vl (77 @t)th . fA/ Vl (77 @t)th < _é
dt T, (A)) T, (A) T (A" 2
which gives that gtt((ﬁ)) — 0 and then T;(A) — 0. For each strictly dominated strategy

1, there exists then an open set A such that y; € A C B and such that T,(A4) — 0.
Adapting the proof of Theorem 1 in Heifetz et al. (2007b) to non-symmetric payoffs, we
obtain that the asymptotic distribution concentrates all the mass on the unique strategy
that is not eliminated by iterated strict dominance, that is to say .

3. and 4. Straightforward using Equations (9). B
Proof of Proposition 6

The utility level of agent i is given by E; [u; (p + au(p, 1) (T — p)))] with oy (p, p1;) =

2
(#;—p)
0-2

0;¥5%. Then, for a given p, the agent maximizes 6;

When p > H%ﬁ, all the agents have the same belief y and the equilibrium price, if it

exists, must satisfy p = p — ﬁ which is not compatible with the condition p > %M
When p < H#, all the agents have the same belief 7 and the equilibrium price, if it
exists, must satisfy p = 1z — 911292 which is compatible with the condition p < %“ only

if 91U+292 > ’12;& When p = H%ﬁ, both agents may choose the same belief 7t leading to an

equilibrium only if

0.2
01+02
2) chooses p (resp. i), the market clearing condition leads to

= E;QH They may also choose different beliefs. If agent 1 (resp.

— = 18

O1p + 0201 o? It
R

If w= H%ﬁ and 91 < 82, then ele%iZzﬁ > u. A

Proof of Proposition 7
1. Tt is well known that due to Inada conditions, the demand function is characterized

by the following first order condition

FL@—M%WMqu—M+—m]:o

%(p W = B [(5 — ailp, ) (@ = p)u (c(p, 1) — ui(e(p, )]

op B [(7 — p)?ui(c(p, 1)) ’
LB [(& — p)ul(c(p, )]

% _ O (1,p,cvi (pot))

oy ) B (& — p)u(c(p, 1))
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with ¢(p, ) = o;(p, 1) (Z — p) + 3p. Letting ¢ denote ¢(p, p1), remark that

B |5 - i) (3= @) = @] = B* | -ul® - @@ + Sl @

Bal

Hence, 74 (p, p) is negative. Furthermore, (& — p)uj(c) = (p“ cu/(c) — éa u'(¢) and
is then i 1ncreasmg. By the first-stochastic dominance property, we have aa’ (p, pa) > 0.

We have then

Bal
ap . (p7 uz)
a/jjz 8a1 (pv ILL].) + 8p (pa :u2)
hence 2 a
For i 7&] we have Oy (py,4o) — Ot (pypt;) + Oai(p,1i;) Op. — %(p’#i)aai;(p’uj)
’ i O O O S (ppy)+ B2 (pan) T

2. If the game I" has an interior Nash equilibrium (i, fi,), the first-order condition
for agent i at (fi, i) gives

B|GEG -+ (5-at) fonitai -+ o] =0

o 2 O 2

If % — & (fiy, fi) < 0 then (% - (Mlv:u?)) #2 <0, hence E(@ —p (i, ftp))ui] = 0. As
previously, by the first-order stochastic dommanee property we obtain f; < 0. Analo-
gously 5 — af(fig, [1g) > 0 leads to i, > 0. We have then proved that the agent for which
o (fuy, fig) > 3 (vesp. af(fiy, f1y) < 3) is pessimistic (resp. optimistic).
3. If one of the utility functions (let us say u;) is more risk-averse than the other one
in the sense of Arrow-Pratt, let us prove that aj(fiy, fi,) < 3. If this is not the case, we

have a3 (fiy, f1y) < % and agent 2 is optimistic while agent 1 is pessimistic. We have then

1

5 <P (i, fia) i) < 02(p (i, f1a) s f1r)

because agent 1 is more risk-averse. Furthermore we have ao(p (fiy, fig) , ft1) < ao(p (fiy, fig) , fio)
because fi, is larger than fi;. We would have then o3 (jiy, fi5) > % which contradicts our
assumption.

4. See Proof of Proposition 3 (point 1). B
Proof of Proposition 8

2. Let us first characterize the Nash equilibrium in the game I'. Agent ¢ maximizes

1 11 9
Ai =3 [ 2
(01,02) = 2]0"'04 (n—p)— 20, (i) o
-1
with respect to o; where p and «; both depend on ¢; and are given by p = u— (9—3 + %)
71 2

and o; = 0,55 02

i
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—1
This problem is concave in (% + g%) . Setting 4 (51,5,) = 0 leads to
2 i

=

2 1/0;
~2 2 1 ~2

The resulting beliefs are then given by Equations (14). Equation (15) follows.

610, ( 46, \| 6
492 92 - 91 B 92

the more risk-tolerant agent exhibits more doubt than the less risk-tolerant agent exhibits

Since

overfidence.

1. In the "disagreement on the variance" case, the game is not supermodular. How-
ever, as in Section 3, the set of strategies surviving iterated strict dominance is reduced
to the unique Nash equilibrium exhibited above. Indeed, let us denote by [07",57"] the
set of strategies surviving after n rounds of strict dominance (these sets are constructed
by induction and the construction will be clearer at the end of the argument) and let us

denote by

2 1[0
oy"™ = argmax A (Q%n,ﬁ) = \/502 + 3 <0—2 (Q%n)2>
1

2 1/0
7" = argmax A, (E%”, 02) = \/502 + 3 <9—2 (E%”)2>.
1

It is immediate that o3"t" < 3""'. Let us show that when oy € [¢2",52"] any strat-

egy for agent 2 that lies outside [g%”“,ag”“} is stricly dominated by a strategy inside

this interval. For a given o € [03",53"], the function Ay(oy,03) is increasing until

\/§02 + 3 (z—f (01)2> and then decreasing. Since \/§02 + 3 (g—f (01)2) € o3 o]

this means that, for any o, < 2", we have Ay(01,03) < As(o1,03"™!) and o, is then
strictly dominated by ¢3"*!. Similarly, any o, > 73" "' is dominated by 75" **. The set

[g%””,&%”“} is constructed similarly switching the roles between agent 1 and 2. We

have then decreasing sets of surviving strategies and it is easy to show that, at the limit,

we must have g3° = \/§a2 +3 (g—z (a§°)2> and g$° = \/§02 + 3 (% (g§°)2>. We know

(g
from 2. that these equations in (¢9°,¢5°) admit a unique solution (oy,03) and we have
then 03° = 7, and ¢° = 5. The same argument gives us 75° = 71 and 75° = 05 and the
set of surviving strategy is reduced to (o1, 05) .

3. and 4. Straightforward using equations (14). B

Proof of Proposition 9
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2. In the setting of the proposition, agent ¢ maximizes

1

1 11
Ai (w1, gy v2) = Sp+ 0 (=) + 50+ Bi (v — @) = 5 (af0® + Biw® + 20i8,0p)

with respect to (u,;,v;) taking (,uj,uj) = (ﬁj,ﬁj) , j # 1, as given. The maximization

programs under consideration are concave. Setting Zﬁ?’ = ‘2’3_' =0, for 2 = 1,2, leads to

0= 0) (P omp) (6= 0) (& +owp)

o= 10,0 o 10,0

which is the unique Nash equilibrium. We then conclude as in the proof of Proposition
3.

3. Straightforward using 2.

1. Let us show that the game I" where agent 1 chooses her strategy b' = (u;,v1) in
her strategic set B = [u,7i] x [v,7] and agent 2 chooses her strategy b* = (i, v2) in the
same strategic set, is a supermodulat game when B is endowed with the natural partial
order < defined for b = (p,v) and O’ = (¢/,v') by b < 0" if p < p/ and v < /. For this
purpose, it suffices to check that A;(b', %) has increasing differences, i.e. for all v} > b,
and by, > by we have A;(b], by) — A; (b, by) > A;(b], be) — A;(by, be). Easy computations give

924, 924, %A, 9% A; ich i ; .
Drasdie > 0, Buon, > 0, Do and Bvin > 0 which is sufficient to prove that A; has

us
increasing differences. The rest of the proof is similar to the proof of Proposition 3.
|
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