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Behavioral biases and the representative agent

September 8, 2010

Abstract

In this paper, we show that behavioral features can be obtained at a group level when
the individuals of the group are heterogeneous enough. Starting from a standard model of
Pareto optimal allocations, with expected utility maximizers but allowing for heterogeneity
among individual beliefs, we show that the representative agent has an inverse S-shaped
probability distortion function. As an application of this result, we show that an agent with
a probability weighting function as in Cumulative Prospect Theory may be represented as
a collection of agents with noisy beliefs.

JEL Codes : G11; D81; D84; D87; D03;

Keywords: behavioral agent, probability weighting function, representative agent.

1 Introduction

In this paper, we analyze a model of Pareto optimal allocations with von Neuman Morgenstern
utility maximizing agents. Agents are heterogeneous, in the sense that they might differ in
their beliefs. At the aggregate level, the social welfare function of this economy is characterized
by a social/representative belief. We show that we retrieve, at the aggregate level, behavioral
properties that have been proved to be true at the individual level in recent literature. The
group acts as a behavioral agent and this behavioral property at the aggregate level is generated

by heterogeneity alone.



We start by introducing natural notions of optimism and pessimism and we assume that
beliefs are heterogeneous enough in order to allow for optimistic as well as pessimistic agents
in the initial set of von Neuman Morgenstern utility maximizing agents. In such a setting,
we obtain that the representative agent can neither be everywhere optimistic nor everywhere
pessimistic; she is optimistic for the good states of the world and pessimistic for the bad states
of the world. As in the SP/A Theory of Lopes (1987), the representative agent behaves as if
she had fear (need for security) for very bad events and hope (desire for potential) for very
good events. The representative agent puts more weight on extreme events. We show that the
distribution of outcomes from the representative agent point of view is portfolio dominated by
the objective distribution. This means that heterogeneity generates doubt at the aggregate level.
This effect is reinforced when agents are more risk tolerant or when there is more heterogeneity
among agents.

The representative agent distorts the objective distribution of aggregate endowment. We
analyze this distortion and we show that the distortion function (defined as the transformation
of the objective decumulative distribution function into the decumulative distribution function
of the representative agent) is inverse S-shaped as is the probability weighting function in
Cumulative Prospect Theory. We show that we are able to fit relatively well standard probability
weighting functions of the Cumulative Prospect Theory literature (Tversky and Kahneman,
1992, Tversky and Fox, 1995, Prelec, 1998, among others). We analyze how the distribution of
individual characteristics in the group governs the shape of the resulting representative agent
distortion function. Following Gonzalez and Wu (1999) terminology, we show that attractiveness
at the aggregate level is directly related to the average level of optimism while discriminability is
related to beliefs heterogeneity. The idea that inverse S-shaped probability weighting function
may be the result of aggregation has been put forward by Luce (1996). However, in this last
reference, the aggregation is of statistical nature (the author consider an average of different

subjects) while our aggregation is in terms of representative agent.
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As a main application we obtain that a behavioral individual (i.e. an individual who distorts
the distributions through a probability weighting function) behaves as would a group of stan-
dard heterogeneous vNM individuals. Our results can then be related to Neuroeconomics. As
underlined by Cohen (2005), findings from neuroscience " provide support for a view of the brain
as a confederation of systems and behavior as the outcome of an interaction among these, (...)
when disagreements arise, behavior reflects the outcome of a competition among systems”. We
show that a model of the brain as a central planner who, for the evaluation of a given prospect,
maximizes the social welfare of a collection of competing doers (mental processes with noisy
beliefs about the prospect under consideration) leads to probability weighting functions that
have the same shape as in the Cumulative Prospect Theory (CPT).

Note that we don’t pretend to retrieve all features of CPT on the aggregate belief. We
only retrieve one of the three main features of CPT, namely the inverse S-Shaped probability
distribution weighting function (the other two being the presence of a reference point and the
presence of loss aversion). This comes from the fact that we have introduced heterogeneity on
the beliefs only, hence the behavioral property that we retrieve deals with the belief only.

The paper is organised as follows. Section 2 presents the model. Section 3 analyses the

properties of the belief of the representative agent, while Section 4 provides possible applications.

2 The Setting

We consider an economy with a single consumption good and with agents who have the same
utility function but heterogeneous beliefs. Aggregate endowment in the consumption good is
described by a random variable e* defined on a probability space (€2, F, P). We let I denote
the set of heterogeneous agents. We assume that the common utility function is CRRA with
derivative given by u/(x) = £~ 7. Bach agent has a subjective belief Q; and wants to maximize
her von Neumann Morgenstern utility for consumption of the form U; (¢) = E%i [u(c)]. We

let M denote the density of @Q; with respect %o the probability P, hence agent i’s utility for



consumption can equivalently be written in the form U; (¢) = E [M'u (c)] .
In such an economy, we consider the aggregate utility function U defined as the solution of
the following maximization program

U(e*) =  max Z MNE [M'u(y")]
Zie] yt=e* icl

where ()\;) are given positive weights. The aggregate utility function corresponds to the value
of the social welfare function at the Pareto optimum when agent ¢ is granted a weight A; by a
social planner. The index ¢ may also represent a group of agents with common beliefs M? and
y® then represents the total consumption of the group and ); the sum of the weights granted
by the social planner to the individuals in the group. When the social planner grants the same
weight to all the agents in the economy, the weight \; represents the proportion of agents that
have the same belief M. From a social planner point of view, the aggregate utility function
corresponds to the highest social utility level among all possible endowment distributions across
agents.

The number of agents can be finite or infinite. In the case of an infinite number of agents,

sums are replaced by integrals. We obtain the following representation result.

Proposition 1 Representative Agent

The aggregate utility for consumption is given by
U(e*) = E[Mu(e")]

with

M = (Z i (MZ')”) % (1)

el
L
for v; = X]. The representative agent belief is then given by M = (Ziel Vi (Mz)n) n,

This means that, at the Pareto optimum, Elhe aggregate utility is given by the utility of a



representative agent endowed with an average belief (and the same utility function as each of
the agents). In particular, if all the agents share the same belief, then the representative agent
will share this common belief. If we think of e* as a given prospect for the group I of agents, the
aggregate utility U(e*) corresponds to the social welfare associated with the optimal allocation
of e* across the members of the group and is given by the utility of the representative agent.
In the case where the distribution of e* for agent i admits a density! (for all i € I) denoted
by f* and where the distribution of e* under the probability P also admits a density denoted
by f, the following Corollary characterizes the density of e* with respect to the representative
agent. Since we don’t have F [M] = 1 (except in the specific logarithmic utility setting) we need
first the following technical definition. We say that the distribution of a random variable X
admits a “density fx for the representative agent” if for all function h, we have E [Mh (X)] =
[ h(z) fx (z) dz. Moreover, in order to analyse the relative weights of the different states of
the world from the representative agent point of view, we introduce the probability measure )

defined by Z—g = %

Corollary 2 The distribution of e* admits the following density for the representative agent

= (Z Vi (f’)") "

el

which is a power average of the initial densities. In particular, for n = 1, the distribution of e*

for the representative agent is a mizture of the individual subjective distributions.

As an immediate consequence of Corollary 2, we get that for any measurable real-valued
function ¢, the distribution of ¢ (e*) admits the density f*% = (3,.; v (fi"P)n)l/n for the
representative agent where f“¥ denotes the density of the distribution of ¢ (e*) for agent 7. This
implies in particular that in the case n = 1, if each agent anticipates a normal distribution on

log e*, then the distribution of loge* is a mixture of normal distributions.

'In other words, the distribution of e* under Q; is absglutely continuous with respect to the Lebesgue measure.



3 Behavioral properties of the group

In this Section, the aggregate endowment e* as well as the individual beliefs M* are considered
as given and we analyze the distributional properties of e* from the group point of view. At
this stage, our representative agent is an expected (subjective) utility maximizer as can be seen
through Proposition 1. In particular, we show that this agent distorts the distribution of e* as
would a CPT agent; in Section 4 we will show that more sophisticated constructions would lead

to agents that distort the distribution of any prospect as would a CPT agent.

3.1 Illustrative examples

The next two simple examples illustrate the qualitative properties of the endowment distribution
from the representative agent point of view. The proofs can be found in the Appendix.

Example 1. Let us assume that all utility functions are logarithmic (n = 1). We have

E°[e] = 7B e,
iel

which means that the mean at the aggregate level is given by an arithmetic average of the

individual means. The variance is given by

Var® [e*] = Z%-VarQi [e*] + Var, (EQ" [e*])
i€l
where Var, (E9 [e*]) = Y,c;7: (B9 [e*])z — (e B [e*])2 measures beliefs (on the mean)
heterogeneity. This means that the variance at the aggregate level is given not only by an
arithmetic average of the individual variances, but also by an additional term related to beliefs

dispersion. The variance is

‘increased” at the aggregate level and this increase is proportional
to the level of beliefs heterogeneity: beliefs heterogeneity generates “doubt”.

Example 2. Let us assume that the objective distribution of aggregate endowment is lognormal



with e* ~p InN(p,0?) and that we have two equally weighted groups of agents, both with
lognormal subjective distributions for aggregate endowment, e* ~q, In N (p;,02) for i = 1,2.
The distribution of loge* for the representative agent is not Gaussian and when agents’ beliefs
are heterogeneous enough (|p; — pig| > 2—\/%), the distribution of loge* is bimodal (see Figure 1).
When p = W, the distribution of log e* for the representative agent is Portfolio Dominated?
by the objective distribution. Hence, aggregate endowment e* is considered as more risky by
the representative agent than it actually is. In particular, we have Var® [loge*] > Var® [log e*].
This last property still holds for general (). Figures 1 and 2 illustrate these conclusions in

different settings. Note that Figure 1 is similar to Figure 8.2 in Shefrin (2005). For n > 1’ and

aQn
aQn’

associated representative agent probability measures Q" and Q7 , we have = hy,y(e*) where

Bt Hytpho
2 2 -

hyy is symmetric with respect to , decreasing before % and increasing after
A higher level of risk tolerance induces then a portfolio dominated shift in the representative
agent’s distribution. In particular, Var® [loge*] increases with the level or risk tolerance 1.
The interpretation is the following. When there is heterogeneity, each agent consumes a larger
proportion of aggregate endowment in states of the world that she considers more likely. This
leads to heterogeneous allocations and generates variance at the aggregate level. However, this
effect is counterbalanced by risk aversion. Consequently, the higher the level of risk tolerance,

the more heterogeneous the members of the group are in their optimal allocations. Figure 2

illustrates this result.

3.2 Qualitative properties

For normal distributions A(u;,0?), there is a natural order on the set of possible densities

induced by the natural order on the means (u;). Agents with a larger (resp. smaller) u,; can

Let us recall that a distribution f dominates a distribution g in the sense of Portfolio Dominance (f =pp g)
if we have [u/(z)(z — a)f(z)de =0 = [v/(z)(z — a)g(z)dz = 0 for any real number a and any non-decreasing
concave function u. This concept has been introduced in the context of portfolio problems by Landsberger and
Meilijson (1993) and further studied by Gollier (1997). It characterizes the changes in the distribution of the
returns of the risky asset that lead to an increase in demand for the risky asset irrespective of the risk-free rate.
It is then related to the degree of riskiness. See also Jouini and Napp (2008).
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be referred to as more optimistic (resp. pessimistic). We generalize these notions of relative
pessimism/optimism in the following definition. If we assume that P is the objective probability,

then we are also able to introduce absolute notions of pessimism/optimism.

Definition 1 Fori,j € I, agent i is said to be more optimistic than agent j and we denote it by
fi 7opt f5 if and only if f—; is nondecreasing. The optimism relation =qp: 15 an order on the set
(fi)ier- If P is the objective probability, then agent i is said to be optimistic (resp. pessimistic)

if% is nondecreasing (resp. monincreasing).

Definition 1 can be rephrased in terms of Monotone Likelihood Ratio Dominance (MLR)?
: agent i is more optimistic than agent j if the distribution of e* for agent i (i.e., under Q)
dominates the distribution of e* for agent j (i.e., under ;) in the sense of the MLR. For a
given agent i, if we let g; denote the transformation of the objective decumulative distribution
function F into the agent’s subjective decumulative distribution function Fj, i.e. such that
F;, = g; o F) it is easy to check that % is nondecreasing (resp. nonincreasing) if and only if g; is
convex (resp. concave). This means that our concept of optimism/pessimism is the analog, in
the expected utility framework, of the concept of optimism/pessimism introduced by Diecidue
and Wakker (2001) in a RDEU framework. Other concepts of optimism/pessimism have been
proposed in the literature. In particular, Yaari (1987), Chateauneuf and Cohen (1994) and Abel
(2002) propose a definition based on First Stochastic Dominance *. Note that MLR dominance
is stronger than FSD.

A MLR dominated shift for a given distribution reduces the mean and if f; »=op fj then
we have E9i [e*] > E® [e*]. This last condition characterizes the MLR dominance when we

restrict our attention to a family of lognormal distributions with the same variance parameter

3This concept is widely used in the statistical literature and was first introduced in the context of portfolio
problems by Landsberger and Meilijson (1990). More precisely, Landsberger and Meilijson (1990) showed that in
the standard portfolio problem a MLR shift in the distribution of returns of the risky asset leads to an increase
in demand for the risky asset for all agents with nondecreasing utilities.

“More precisely, in an expected utility framework Abel (2002) defines pessimism by the condition F; > F
(First Stochastic Dominance) that corresponds to the condition g; > Id introduced by Chateauneuf and Cohen
(1994) in a RDEU setting. N



and we then retrieve that agent ¢ is more optimistic than agent j if and only if p; > ;. In that
case, optimistic (resp. pessimistic) agents are then characterized by p; > p (resp. p; < p) as in

Shefrin (2005).

Proposition 3 We suppose that there are at least one optimistic agent denoted by fop: and

one pessimistic agent denoted by fpess in the set I of agents. We also assume that lim f(}”t =
lim_ o, fp;ss = 400 and lim_, f‘;ﬁ’t = lim, o fp;“ =0.

1. The representative agent can neither be optimistic, nor pessimistic, i.e. fTM 18 mon monotone.

2. The representative agent overestimates the weight of the “good states of the world” (high
values of €*) as well as the weight of “bad states of the world” (low values of €*), i.e.
fu(z) > f(z) for x < z and fy(x) > f(z) for £ > T where x and T are given real

numbers.

3. If one of the agents denoted by fy?™ is more optimistic than all the other agents and if

one of the agents denoted by fpess is more pessimistic than all the other agents, then the

representative agent behaves like the most pessimistic individual for low values of €* and

behaves like the most optimistic individual for high values of €*, i.e. far ~too fopi and

max
M ~—oo pess*

By definition, f‘;ﬁ’t (resp. %) is nondecreasing (resp. nonincreasing). In Proposition 3,
we slightly reinforce these conditions by further assuming that the values of ! ‘3%” (resp. %)

range from zero to infinity. Notice that these conditions are satisfied in the case of lognormal
distributions.

It appears from this proposition that as long as there are optimistic as well as pessimistic
agents in the set I of agents, the representative agent behaves like the individual agents consid-
ered in the behavioral economics and/or psychology literature. Indeed, she puts more weight

on small probability events with large consequences as in the Cumulative Prospect Theory of
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Kahneman and Tversky (1992). She has fear (need for security) for very bad events and hope
(desire for potential) for very good events as in the SP/A Theory of Lopes (1987). Everything
works then as if the representative agent distorted the objective distribution of e*. In the next

section, we analyze more precisely how this distortion operates.

3.3 The distortion function

Let us first recall that in the context of Cumulative Prospect Theory, the probability weighting
function is defined as the function that transforms the decumulative objective distribution
function into the decumulative subjective distribution function. This probability weighting
function operates on any prospect. In our framework, we have seen that the representative
agent distorts the objective distribution of e*. In the present section, we will describe this
distortion in terms of a transformation of the decumulative distribution function of e* and we
will see that this distortion function has the same shape as the probability weighting function
of the Cumulative Prospect Theory. We will then use the typology introduced by Gonzalez and
Wu (1999) on the probability weighting functions to describe our distortion function and to
relate its characteristics to the individual beliefs of the agents. In particular, we analyze how
shifts in the distribution of individual beliefs impact the distortion function.

With the same notations as in Section 2, we denote by g the distortion function that trans-
forms the objective decumulative distribution function fxoo f(s)ds into the decumulative distri-
bution function of the group [7° fM(s)ds, i.e. such that g( [ ° f(s)ds) = [° fM(s)ds. The next
proposition assumes that there are at least one optimistic and one pessimistic agent in the set

I and characterizes the shape of g under this assumption.

Proposition 4 1. In the lognormal setting with loge* ~q, N (,ul-, 02) fori=1,...,N and if
the set I is made of both optimistic and pessimistic agents then the function g is inverse

S-shaped: concave then conver.

2. In the general setting, if there are at lea% one optimistic agent fop,; and one pessimistic



fopt

fpess = 400 and hmioo T = hm+oo % =0 and

agent fpess with lim o f"fp" = lim_

if g is continuously twice differentiable on [0,1], then g is concave for small probabilities,

and convex for high probabilities.

The function g then has the same shape as the probability weighting function of the Cumu-
lative Prospect Theory. This is in particular illustrated in Figure 3. A variety of methods have
been used to determine the shape of the probability weighting function. Tversky and Kahne-
man (1992), Fox and Tversky (1995) and Prelec (1998) among others specify parametric forms
(respectively w (p) = WW, w(p) = W and w (p) = exp— (—logp?)) and
estimate them through standard techniques. Figure 4 permits to show that with a well chosen
distribution of agents’ characteristics we obtain a distortion function that perfectly fits Prelec
(1998)’s function. Wu and Gonzalez (1996, 1998) and Abdellaoui (2000) avoid the potential
problems of parametric estimation and directly derive from experimental studies the shape of
the probability weighting function at the aggregate or individual level. The results of all these
studies are (mostly) consistent with an inverse S-shaped weighting function, concave for small

probabilities, and convex for moderate and high probabilities.

In the lognormal setting, if we denote by d; the quantity §; =

BiF it is interesting to
ag
remark that the distortion function ¢ only depends on the d;s and on the relative proportions

v,s and is independent of ;1 and o. In other words, the distortion function only depends on how

much the agents deviate from the objective mean in terms of standard deviation.

3.4 Discriminability, attractiveness and individual agents’ beliefs

Let us analyse how the main features for the shape of the representative agent’s distortion
function g, for a given aggregate endowment e*, are related to the individual characteristics
of the agents in I. Gonzalez and Wu (1999) exhibit two main features for the shape of the
probability weighting function in the context of CPT: diminishing sensitivity and attractiveness.

Attractiveness characterizes the absolute lelvlel of the function. Indeed, an inverse S-shaped



function can be completely below the identity line, can cross the identity line at some point
or can be completely above the identity line. Betting on the chance domain is more attractive
when the graph of the probability weighting function graph is more “elevated”. The definition
of attractiveness is expressed in terms of First Stochastic Dominance (FSD). The probability
weighting function g; is more attractive than the probability weighting function go when the
subjective density fi dominates the subjective density fo in the sense of the FSD. In our setting,
we will say that a (representative agent’s) distortion function g; associated with a set I; of agents
is more attractive than a (representative agent’s) distortion function go associated with a set Io
of agents if f I]‘f dominates f}\;[ in the sense of the FSD. Attractiveness of the distortion function
is related to the level of optimism of the representative agent. In particular, since FSD is
weaker than MLR, a more optimistic representative agent is associated with a more attractive
distortion function.

Let (;) and (v}) denote two possible distributions of agents’ density functions. If the set
(fi);er of agents’ density functions is totally ordered with respect to the FSD order, we will
say that the distribution (v}) dominates the distribution (7;) in the sense of the FSD if for any
increasing family (f;), we have Y ~v.fi =rsp Y. ~v;fi- In other words, the distribution (v}) puts
more weight on more attractive distributions. If the set (f;),;.; of agents’ density functions is
totally ordered with respect to the optimism order =,,;, we will say that the distribution (v})
dominates the distribution (v;) in the sense of the MLR if whenever f; =, f; we have 1—3 > %
In other words the ratio between the two densities (7};) and (7;) increases with agents’ optimism
and, in particular, the distribution (v}) puts more weight on more optimistic agents.

In the next proposition we analyze the impact of shifts in the distribution of agents char-

acteristics on the attractiveness of the distortion function and on the level of optimism of the

representative agent.

Proposition 5 1. For log-utility functions and in the case of lognormal distributionsloge* ~q,

N (,ui,UQ) fori=1,...,N, with the samiﬁ)ariance parameter o2, a FSD shift in the dis-



tribution of the means (p;) increases attractiveness of the representative agent’s distortion

function.

2. For log-utility functions and general distributions, if the set (f;),.; of agents’ density func-

el
tions is totally ordered with respect to the FSD order then a FSD shift in the distribution of

agents’ density functions increases attractiveness of the representative agent’s distortion

function.

3. For general CARA wutility functions and general distributions, if the set (f;);.; of agents’

iel
density functions is totally ordered with respect to the optimism order =qp: then a MLR
dominated shift in the distribution of agents’ density functions increases attractiveness of

the representative agent’s distortion function and the level of pessimism of the represen-

tative agent.

When all agents have logarithmic utility functions, attractiveness at the representative agent
level increases with the weight granted to the more attractive density functions. Since FSD is
weaker than MLR, attractiveness at the representative agent level increases with the weight
granted to the more optimistic agents. This is illustrated by Figure 5. As shown in Proposition
5, this last property can be extended to power utility functions if we replace FSD shifts on the
distribution of agents’ density functions by MLR shifts.

Diminishing sensitivity corresponds to the fact that people become less sensitive to changes
in probability as they move away from a reference point. In the probability domain, the two
endpoints 0 (certainly will not happen) and 1 (certainly will happen) serve as reference points
and under this principle, increments near the endpoints of probability loom larger than incre-
ments near the middle of the scale. This concept is related to the concept of discriminability in
psychophysics literature and can be illustrated by two extreme cases: a function that approaches
a step function and a function that is almost linear.

In our setting we say that a representative agent’s distortion function g; associated with a
13



set I; of agents exhibits more discriminability than a representative agent’s distortion function
g2 associated with a set Iy of agents if there exists z* € [0, 1] such that g1 < gy for < 2* and
g1 > go for x > x*. In the next proposition we show that the level of discriminability of the
representative agent’s distortion function is closely related to the level of disagreement among
agents.

Let us consider as above a family of agents with lognormal distributions In NV'(y;, 02). We
denote by (u;) the support of the distribution of the mean parameter and by (7,) the associated
weights. Recall that a mean preserving spread is defined as a modification of the distribution
set (7;) on a set of three locations p1; < py < pg with associated increments d; > 0,02 < 0
and d3 > 0 such that Z?:1 0; = 0 and Z?Zl 0;p; = 0. A mean preserving spread will be said

symmetric if §; = d3.

Proposition 6 For log-utility functions and in the case of lognormal distributions loge* ~q,
N(p;,0?), a symmetric mean-preserving spread on the distribution of the means (u;) decreases

discriminability of the representative agent’s distortion function.

Intuitively, this proposition means that when the level of disagreement among agents in-
creases, then the representative agent focuses more on the endpoints of the probability domain
and is less sensitive to probability variations in the middle of the scale. Figure 6 illustrates this
result. It shows, in the setting with two agents, that discriminability decreases with the level of
disagreement. When both agents agree on the objective distribution, the probability weighting
function is linear. When the agents disagree, one of them overestimating the average payoff by
twice the standard deviation and the other underestimating it by twice the standard deviation,

we obtain a function that approaches a step function.
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4 Noisy Beliefs and Cumulative Prospect Theory

We have seen that starting from a standard model with optimistic as well as pessimistic vNM
agents and a given aggregate endowment e*, we obtain, at the representative agent level and for
the aggregate endowment distribution, properties such as an inverse S-shaped distortion function
that are in line with recent empirical and experimental results. A possible interpretation of
such a result is to consider that each individual subject to experiments behaves as a group of
individuals at the equilibrium. This provides us with a possible representation of the brain as
an organization with a social planner and heterogeneous doers. Some doers are overoptimistic
while others are overpessimistic. Such an approach is in the same spirit as Brocas and Carillo
(2008) where the authors divide the brain into two systems: an impulsive/myopic one and a
cognitive/forward-looking one. However, while Brocas and Carillo (2008) model mainly relies
on information asymmetries and principal-agent models, our model relies on decentralization
and optimal allocation approaches®.

In this Section we show that an individual who evaluates lotteries through the social welfare
function associated with a collection of agents (neural systems or brain areas), each of them
with specific noisy beliefs, distorts the distribution of the lotteries through an inverse S-shaped
weighting function (common to all lotteries) as in CPT.

We start by considering normal distributions. Let us consider an individual who when facing
a lottery whose payoff x is described by a normal distribution A (y, 0%) passes this information
for evaluation to separate systems. Each system ¢ has a subjective belief ); under which =
has a normal distribution A (u + 4,0, 02) . The parameter §; is fixed independently of x and
characterizes the system 4. It might result from noise in the information transmission. In that

case there is no specific reason for the average perceived signal to be biased and we should

®Such a decomposition of the brain into different systems that are possibly in conflict are based on recent
neuroscience and psychology evidences (see Cohen, 2005) related to intrapersonal tensions: temporal horizon
conflicts, information conflicts (that may lead to information asymmetries as in Brocas and Carillo, 2008, but also
to information diversity and beliefs heterogeneity as in our model) or utility evaluation conflicts. In economics,
such decompositions have been first considered by Thaler and Shefrin (1981) and Shefrin and Thaler (1988).
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have ) d; = 0. It might also result from a specialization of the different systems, some systems
being optimistic, i.e., d; > 0 and others being pessimistic, i.e., §; < 0 (and we do not necessarily
have >~ 0; = 0). We assume that the individual acts like a central planner looking for a Pareto
optimal decomposition of the payoffs from the lottery among the systems and evaluates the
lottery through the social welfare function, i.e.,

Us(z) = max > B [u(a)] (2)

i

where the parameters 7, are the weights granted to the systems by the central planner or the

distribution of the §;s.

Proposition 7 Consider an individual who evaluates any lottery x in the space X of lotteries

with normal payoffs through Us(x).

1. The individual is a CPT agent over the space X in the sense that there exists a probability

weighting function gs such that, for all lotteries x in X with density f, we have Us(x) =

ffmg(s)u (s) ds where g(;(ftoo fz(s)ds) = ftoo Jz.5(s)ds.

2. If there exist at least one optimistic and one pessimistic system, then gs is inverse S-

shaped.

3. A MLR shift on the distribution of the §;s increases attractiveness of the probability weight-

ing function gs.

The main difference between this result and those of Section 3 is the fact that the distrib-
ution function of any prospect z (in the space X) is distorted through the function gs that is
independent of x. We obtain to an overall (representative agent) evaluation that corresponds
to the valuation that would be provided by a behavioral agent. The level of discriminability is
then directly related to the level of noise as illustrated in Proposition 6 in the case of log utility
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functions. The level of attractiveness is associated to the level of systematic bias (if any) as a
direct corollary of Proposition 5.

The behavior of the individual and the definition of the social welfare function Us can be
naturally generalized to any lottery whose payoff is a function of a normal distribution. Indeed,
consider a lottery whose payoff is of the form v = ¢(x) where x is normally distributed as above

and where ¢ is a Borelian function. We may define Us(v) by

Us(v) = ZH?):(U Z%EQi [u(v")]

%

where the (0;s and the §;s are related to x as above.
The following result extends the result of Proposition 7 to general lotteries. It relies on
the fact that any random variable is distributed as a function of a given normally distributed

variable.

Proposition 8 Consider an individual who evaluates through Us any lottery v = p(x) where x
is normally distributed and whose preferences over the set of all possible lotteries only depend
on the distribution of the lottery under consideration. The individual is a CPT agent over the
space of all possible lotteries in the sense that her preferences can be represented by the utility
function U extended to the space of all possible lotteries and there exists a probability weighting

function gs such that, for all lottery v with density f, we have Us(v) = [ f,5(s)u(s)ds where

95([° fo(s)ds) = [ fu,s(s)ds.

It appears then that a transmission of the objective distribution to separate (specialized)
systems (neural systems or brain areas) leads to the same distributional distortions as in CPT
when the overall evaluation results from a social welfare function applied to these systems.
The construction of the @;s in the general case is very similar to their construction in the
normal case. The resulting global behavior might then be associated intuitively with a possible

behavior of the systems that consists in descrlzlbring any random variable in terms of Gaussian



distributions®.

In Section 3, the prospect (aggregate endowment) e* and the individual probabilities were
given. We obtained a distortion function that was specific to the distribution of e*. In the
present Section the distortion function applies to all prospects. This has been obtained through
the introduction of beliefs depending upon the prospect.

As an application, let us analyze how our model might be embedded in a dynamic setting.

Consider as in financial models a diffusion setting. We denote by W a Brownian motion and
we assume that e* follows the following stochastic differential equation with constant parameters
def = (p+ %02) e;dt + oe;dW;. The distribution of ef is then, for all ¢, lognormal of the form
loge; ~ N (ut,o?t).

Let us assume as above that agents’ deviation from the objective mean is constant in terms
of standard deviation, i.e., that the subjective distributions are of the form log N'(u;t, 0%t) with
wit = ut + 6;04/t. Following Proposition 7, there exists a probability weighting function gs
that distorts the objective distribution into the distribution of the group. This function is
independent of ¢t and the behavior of the group is then consistent across time.
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Proof of Proposition 1

At the Pareto optimum, we have

NM (y') =g

for some random variable ¢. It follows that

hence

. g 17" ) 1 177
‘ _Z[AiMi] — 1 Z[AM]
el el
and
i [aM]”
v =
Zie[ P‘zM]

We have then

u(e®)

i (0 i P‘iMi]n_l
MNE [M'u(y')] = NE | M —
Z Z (Cier ad]") '

— Zie[ [)‘ZMI] !
(Cies Aidi]7) '

= F [Z [AiMi]”] 1/77 u(e*)

icl

= FE u(e®)

and U (¢*) = E [Mu(e*)] with M = [, A7 (M7)"]"". =

Proof of Corollary 2
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We have

r 1/n
icl
r : n\ 1/n
- E (Z% (J; (6*)> ) h(e”)
el
r ' i e* m1/n
_ 5 (Zz‘el%f({e*() )") h(e*>]
j (i ()
/(Zid%f({x)( )") h(z) f (z)dx
' 1/n
_ / (Z% (f (x))”) h (@) dz
icl

hence fM = (Zie] Vi (fz‘)n)l/n' u

Proofs for Example 2

1. Proof that the distribution of loge* is bimodal for |y — p5| > 20/,/7 and uni-

modal for |y — ps| < 20/,/n. We have

2
(flog)" _ 1 ( i0g>” L ( 10%)" . (@ — )"
2 2 2V 2o 202
1 _ 2
exp o n (z 2,’~L2) _
2V 2mo 20
This function has either two maxima that are symmetric with respect to % or only
one maximum at % In the first case % would be a local minimum. It suffices
then to analyse the sign of the second derivative of ( flog)77 at @ We obtain that the

distribution is bimodal for |p; — e > 20/\/n and unimodal for |p; — | < 20/ /7.

2. Proof that for p = % the distribution of loge* is portfolio dominated by

the objective distribution. The ratio between the density of loge* under ) and the
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density of log e* under P is given by

fMl"g(x) _ <; <n—2(x—u) (=) + 42 —/ﬁ) +Lexp <77_295(M—M2)+M2 —M%>>'1’

flo 2 P 202 2 202
which is clearly symmetric with respect to u, decreasing before p and increasing after p.
Moreover, since the distributions of log e* under ) and under P are both symmetric with
respect to p, we have E? [loge*] = E¥ [loge*] = u. These properties give Var® [loge*] >

Vart [loge*] (see Jouini and Napp, 2008).

3. Proof that for general (u;), Var® [loge*] > Var® [loge*]. For general (u;), fM°8

is symmetric with respect to % which gives E@ [loge*] = & 1;“ 2. Furthermore, we

may apply the same reasoning as in 2. to compare the distribution of loge* under @

$_111+u2 2
with the distribution whose density is given by \/QLWexp(Q;Q). We then have

Var® [loge*] > 0% = Var® [loge*].

4. Proof that a higher level of risk tolerance induces a Portfolio Dominated shift
in the representative agent distribution. For two different values 1 and 7’ of the risk

M log
. . / . .
tolerance parameter, it suffices to consider ~4/= and to apply the same reasoning as in 2.
9 fJbI log
n

Proof of Proposition 3

1. If limg % = lim_4 % = oo and lim_ % = limg f”;}” = 0 then the representa-
tive agent density function is such that lim_ f% = limeo fTM = oo and f% can not be

monotone.

2. This is immediate according to lim_, f—}” = limy fTM = 0.

1/n
7 .
3. It suffices to remark that fM = opt <’y§},§x + > i=1,..N (—r{&x> > CIf —fr{.;x is nonin-
i;éopt opt opt

1/n

N

creasing for all ¢ then <7§%§X + > i=1,..N <%) ) is bounded away from 0 and oo in
i#opt opt
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the neighborhood of co and we have fM ~ opt - The result at the neighborhood of —oo

is obtained similarly.

|
Proof of Proposition 4
1. Letgbeglvenbyf fu(z U f(z ] We have fy(x —gU f(z ]f(u)
and ¢ [[* f(z)dz] = % (u). We also have —f(u)g" [[° f(z)dz] = (f—}”)l (u) which
gives that the concavity of g is governed by the sign of (f M ) Remark that (f%) is
negative in a neighborhood of —co and then that ¢” is positive and g is convex in a
neighborhood of 1. Similarly, we have that (fTM), is positive in a neighborhood of oo
and then that ¢” is negative and g is concave in a neighborhood of 1 . Finally, (f M ) is a
combination of exponentials where the decreasing exponentials have a negative weight and

the increasing exponentials have a positive weight. The function (%) is then increasing.

The function g is then inverse S-shaped: concave then convex.

2. Since ¢’ [ [ f(z)dz] = f% (u), we have ¢'(0) = f% (00) = o0. If ¢”(0) is well defined, we
have ¢”(0) < 0 and hence g”(z) < 0 in a neighborhood of 0. The probability weighting
function is then concave for small probabilities. The result in the neighborhood of 1 is

obtained similarly.

Proof of Proposition 5

1. Let us consider a distribution of the means that is described by a density function

h . The associated representative agent cumulative distribution function is given by

() (u)

ds is decreas-

ds. Since the function g — [ exp—

Tozs Jdh () [7 exp —

ing a FSD shift of h decreases the value of [ dh (p) [ exp —( “) ds and leads then to

a FSD dominating distribution function for the representative agent.
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2. Let us consider a distribution (v;) and a FSD dominated shift (vy;). We want to prove
that Y ~/F; > > ~,F;. For a given z, letting z; denote the quantity Fj(x), it suffices to
prove that > ~ix; > > ~v,z; for a nondecreasing family (z;);e; which is true since (v})

dominates (7;) in the sense of the FSD.

3. Let us consider a distribution (v;) and a MLR dominated shift (v;). It suffices to prove

1
Ty Gy .. . . .
that M is increasing or that %723 is increasing with G; = f;. Without any loss
(Svl)? 70

of generality, we may assume that all the considered functions are differentiable and let

!
. . S Gy
us consider the derivative of &21i’
227G

(Z%Q)' (NG G — 2 G (O vGh)

> 7:Gi > %’Gi)Z

Zfiifj Vi (% B %) (G,iGj B GiG})
(X 7:Gi)? '

Remark that for f; = f; we have G; = G; and then G,G; — GZG;- > 0. Furthermore, for

fi = f; we also have % — YTJ > 0 which leads to the conclusion. W
J

Proof of Proposition 6
It is immediate that g, pe, and pg can be written in the form py — h, py, g + h for
some h > 0. For the distribution of individual characteristics (v;), the representative agent

2
distribution function is given by \/2;721 i ffoo exp—%d& The symmetric mean pre-

serving spread induces a modification of this distribution that is positively proportional to

\/2;?(]?00 exp (7%> — 2exp (7%> + exp (7%))&9. Simple computations
permit to show that this modification is positive for < u, and negative for x > py. A sym-
metric mean preserving spread leads then to a distribution function that is above (resp. below)
the original distribution function below a given threshold. We have then an increase of the level

of discriminability. B

Proof of Proposition 7 1. Let z € X with z ~ N (g, 0?%). We have z ~g, N (1 + 6;0,0?%).
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From Proposition 1, there exists @ such that Us(x) = E9 [z] and the density of x under Q

1
is given by fus(s) = [l SN (fm,gi)"} " Where [z, is the density of z under @;. We then

have Us(z) = [ fr5(s)u(s) ds. It suffices to prove that [ fa5(s)ds is a function of [ fo(s)ds
that does not depend on z, i.e. that does not depend upon g and o. Let gs be the function
defined by gs (\/%—W [ exp <—%) ds) = [~ [% Zf\;l (\/%—F exp <—n%>)} Y ds for all t.
The function gs is completely defined on [0, 1] and by a simple change of variables, we have
95 (ﬁ ftoo exp (—%) ds) = ftoo [% Zfil ( 21W exp (_HW»}UW ds for all t and

we then have [ f,5(s)ds = gs ([ f(s)ds) .

2. The function gs is the same as in Proposition 4.

3. Direct application of Proposition 5. H
Proof of Proposition 8

Let v such that v = p(z) where x is normally distributed. By definition, we have Us(v) =
SUpPy-, E9i [u(v;)]. We denote by f! the density of v with respect to Q. By Proposition 1 and
Corollary 2, we have Us(v) = [ f,5(s)u(s)ds with f, 5 = (3 (f];)n)% . We clearly have f, s =
P a9 and fi= @' fiop and since [ fos(s)ds = [ (5 (£)")7 (5)ds = g5 (7 fuls)ds)
a simple change of variable leads to [, f,5(s)ds = g5 ([, fo(s)ds) . We have then the result
over the set of transformations of normal distributions.

Let us consider now a random variable v and a normally distributed random variable x. We
know that v has the same distribution as F,, ! [F,(z)] where F,!(p) is defined by F,'(p) =
inf {¢: F,,(t) > p}. If the individual has preferences that only depend on the distribution, it
suffices to set Us(v) = Us(p(z)) with ¢ = F; ! o F, which is perfectly defined. We then have
Us(x) = [ fo)s(s)ul(s)ds with [ fu).5(s)ds = gs ([ fp(z)(s)ds) and since v is distributed
like p(z), we have [ fu).s(s)ds = gs ([, fo(s)ds) , and the result follows. M
Proof of Proposition 9

Let us consider <a:, (Qzl ’w)ie) and (:1:, (Q?J)id) two lotteries that our agent values equally.

For all ¢ in I, let us denote by Z\Ji1 and ZMZ2 the densities respectively associated to Q;’m and sz
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WehaveE[(Zze[M) u(z )}

L (Sier (M) + 3 (Sier (N,

{(ZZE[N )% (x )} Forn <1, we have (Ziel (%Mi+%Ni)n)

u
%Whlch gives I/ [ zeI M + lN ) U(gﬁ)} > FE [(Zzel Mn)
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Figure 1: In this figure, we have represented in black the consensus belief in a log-utility agents
setting. A proportion of 47% of the agents believe that loge ~ N(0,1) and the remaining 53%
believe that loge ~ N(2.5,1). The beliefs of these two categories of agents are represented in

grey.

x

Figure 2: In this figure we represent the consensus belief for 3 different levels of risk aversion.
We assume that a proportion of 47% of the agents believe that loge ~ N (0, 1) and the remaining
53% believe that loge ~ N(2.5,1). The upper curve corresponds to n = 2, the lower curve to
n = 0.8 and the middle curve to n = 1. An increase of 1 increases the distance between the
peaks and their size.
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Figure 3: In this figure we represent in black the representative agent probability weighting
function in a model with two logarithmic utility agents. One of them overestimates the ob-
jective mean by one standard deviation and the other one underestimates it by one standard
deviation. We also represent in grey the individual probability weighting functions (the concave
one corresponds to the optimistic agent).
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Figure 4: In this figure we represent Prelec’s function exp(—(—Inp)?) with v = 0.73 that cor-
responds to a standard specification. We also represent the probability weighting function
corresponding to a model with two log-utility agents. The first one underestimates the ob-
jective average by 120% of the standard deviation and has a weight of 30%. The second one
overestimates the objective average by 60% of the standard deviation and has a weight of 70%.
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Figure 5: In this figure we represent the probability weighting function of the representative
agent in a model with logarithmic utility agents. In the upper curve curve the optimistic and
the pessimistic agents are equally weighted. In the lower curve, the pessimistic agents have
a 60% weight and the optimistic ones have a 40% weight. Attractiveness decreases with the
weight granted to the pessimistic agents.

w(p)

Figure 6: The probability weighting function for different levels of divergence of belief. Both
agents agree on a normal distribution but one of them overestimates the objective mean by ¢
times the standard deviation while the other one underestimates it by 0 times the standard
deviation. The value of § ranges from 0 to 2. The discriminability decreases with ¢ (in other
words the curvature increases with ).
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