
HAL Id: halshs-00308798
https://shs.hal.science/halshs-00308798v1

Preprint submitted on 1 Aug 2008 (v1), last revised 26 Jan 2010 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The multiple facets of the canonical direct unit
implicational basis

Karell Bertet, Bernard Monjardet

To cite this version:
Karell Bertet, Bernard Monjardet. The multiple facets of the canonical direct unit implicational basis.
2008. �halshs-00308798v1�

https://shs.hal.science/halshs-00308798v1
https://hal.archives-ouvertes.fr


The multiple facets of the canonical direct

unit implicational basis

K. Bertet and B. Monjardet
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Abstract

The notion of dependencies between ”attributes” arises in many areas such as re-
lational databases, data analysis, data-mining, formal concept analysis, knowledge
structures . . .. Formalization of dependencies leads to the notion of so-called full
implicational systems (or full family of functional dependencies) which is in one-
to-one correspondence with the other significant notions of closure operator and of
closure system. An efficient generation of a full implicational system (or a closure
system) can be performed from equivalent implicational systems and in particular
from bases for such systems, for example, the so-called canonical basis. This paper
shows the equality between five other bases originating from different works and sat-
isfying various properties (in particular they are unit implicational systems). The
three main properties of this unique basis are the directness, canonical and mini-
mal properties, whence the name canonical direct unit implicational basis given to
this unit implicational system. The paper also gives a nice characterization of this
canonical basis and it makes precise its link with the prime implicants of the Horn
function associated to a closure operator. It concludes that it is necessary to com-
pare more closely related works made independently, and with different terminology
in order to take advantage of the really new results in these works.

Key words: implicational system, closure operator, closure system, canonical
direct basis, lattice, Horn function.

1 Introduction

In this paper, we deal with ”implications”, and more detailed explanations are
first required for our use of this term. Consider data organized as a set Ω of
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”objects” (also denoted prototypes, observations, . . .) together with a set S of
”attributes” (also denoted characteristics, descriptors, fields, . . .), and where
each object is related to a subset of attributes by a binary relation between
the objects and the attributes. Such a data set appears in several domains, for
instance in Data Analysis ([19]), in Data Mining ([31]), in Knowledge Spaces
([18]), in Formal Concept Analysis (FCA, [26]). For example, objects are pa-
tients, consumers, students or planets ; attributes are symptoms, products,
problems, characteristic. Each patient is described by the list of the symp-
toms he manifests ; each consumer is described by the list of products he
buys ; each student is described by the list of problems he solves ; each planet
by the list of the characteristics that it posseses. It is convenient to adopt here
FCA’s terminology and to call a context the triple composed of the set Ω of
objects, the set S of attributes and the binary relation R between Ω and S.

When all the consumers buying the two products x and y also buy the product
z, or, when all the students solving the two problems x and y also solve the
problems z, there is a dependence between x and y on one hand, and z on the
other hand. In the general case, there is a dependence between two subsets X

and Y of attributes when all objects related to the attributes of X also are
related to the attributes of Y . Such a dependence is called a valid association
rule in Data Mining, i.e. an association rule where the proportion of objects
related to X and Y among the objects related to X (also called the confidence)
is equal to 100%. In Formal Concept Analysis, one says that X implies Y . It is
in this sense that the term implication is used in this paper, and an implication
between X and Y will be denoted X → Y . It is clear that these implications
between attributes are ”contextual” since they depend on the given context.

The theory of relational databases induces the same notion of implication be-
tween attributes. Data is organized as tables (or relations according Codd’s
1970 terminology [13]) that corresponds to a relation between a list of ”records”
and a set of t multi-valued attributes. A record is then a tuple of values, one
for the domain of values of each attribute. Consider the case where all the
records related to the same values on a set X of attributes are also related to
the same values on another set Y of attributes. Then in the theory of relational
databases one says that Y functionally depends on X or that X determines
Y or that there is a functional dependency (FD) between X and Y . It is easy
to define a binary relation between the set of all pairs of records and the set
of attributes so that Y functionally depends on X if and only if X implies Y

with respect to this context (see [26]).

Consider a context and the set of all associated implications between subsets
of the set S of attributes. Formally, the implication X → Y is an ordered pair
(X,Y ) of subsets of S. So, the set of all implications between attributes is a
binary relation on the power set P(S) of the attributes. It is useful to consider
any binary relation on P(S) (it will be clear why below). Such an (arbitrary)
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binary relation on P(S) is called here an implicational system (it is called a
closed set of implications in FCA and a set of functional dependencies in the
relational data model).

It is also useful to consider a unit implicational system defined as a binary
relation between P(S) and S. It is clear that one can associate a unit impli-
cational system to an implicational system : any implication X → Y can be
replaced by the set of unit implications {X → y , y ∈ Y }. Conversely, one can
associate an implicational system to a unit implicational system: for instance,
the set of implications X → Y = {y ∈ S : X → y}. Observe that this
correspondence is not ”one-to-one” (see [26]).

Let us now return to the implicational system associated to a context (Ω, S, R).
It is not an arbitrary relation on P(S). For instance if X → Y and Y → Z

one also has X → Z (check what it means in the context associated to a
data set context as well as in the context associated to databases). Such an
implicational system is called here a full implicational system; in the theory
of knowledge structures it is called an entail relation, in FCA a closed set
of implications and in the theory of the relational databases a full family of
functional dependencies or a relational databases scheme or even a relation
scheme (at least by some authors since the terminology of databases is far
to be unified). A fundamental fact first observed by Armstrong in ([4]) in
the theory of relational databases is the following: ”there is a one to one
correspondence between the set of all the full implicational systems defined
on a set S and the set of all closure operators defined on S”. These sets
are also in a one to one correspondence with many other sets (see [12]) and in
particular with the set of all full unit implicational systems (called entailments
in the theory of knowledge structures), the set of all closure systems and the
set of all pure Horn (Boolean) functions (precise definitions and references are
given in Sections 2, 5 and 6).

Now the same problem has been encountered in all the aforementioned do-
mains. Take, for instance, the full family of functional dependencies associated
to a table in a relational database. It contains many dependencies but some
of them are trivial (for instance, X → Y if Y ⊆ X) and some can be deduced
from others (for instance, if X → y and y → z one has also X → z). So one
searches for ”small” generating implicational systems allowing us to recover a
given full implicational system (the definition of a generating system is given
in section 2.3). Observe that thanks to the correspondence between full impli-
cational systems and closure operators, a generating system allows us just as
well to recover a closure operator. In this paper we will rather consider that
one wants to efficiently recover a closure operator (which can be the closure
operator corresponding to a full implicational system).

There exists a significant result on the minimal generation of a closure operator
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(or of a full implicational system) by an implicational system. It has been
obtained independently (and with different formulations) by Maier ([39]) and
Guigues and Duquenne ([28]). The generating implicational system obtained
is often called the Duquenne-Guigues canonical basis. Here we will not be
concerned with this basis since our results bear on the generation of a closure
operator by a unit implicational system. We will show that five generating unit
implicational systems obtained by different authors in different fields and with
different formalisms are in fact identical. This unique generating system has
properties that justify calling it the canonical direct unit implicational basis
(but it is not the unit implicational system associated with the Duquenne-
Guigues canonical basis). Moreover, finding it is the same as finding the set
of the prime implicants of a Boolean function.

We end this introduction by presenting the contents of the different sections of
the paper. The second section recalls the notions about posets, lattices, closure
operators or closure systems, and (unit) implicational systems we will use. In
the third section we describe the five unit implicational systems proposed by
different authors in order to efficiently generate a closure operator (for reasons
explained later they are called ”bases” of the closure operator). The fourth
section contains our main results. We prove that these five bases are the same
and thus they define an unique basis which can be called the canonical direct
unit implicational basis. Whereas some of these equalities are easy to obtain,
others are deduced from a non obvious characterization of a direct basis.

One of the corollaries of these results shows that the necessary sets for x
(defined in the context of relational databases) can be identified with the x-
dominating sets (defined in the context of choice functions in microeconomics).
It is (more or less) well known that closure systems on a set S are in a one-to-
one correspondence with the so-called pure Horn Boolean functions defined
on P(S). In the fifth section we show that finding the canonical direct unit
implicational basis is the same as finding the prime implicants (or the prime
implicates) of a (pure) Horn Boolean function. The first part of section 6 is a
historical note on the appearance of the notions considered in this paper. We
also mention there the works that seek to relate these notions to traditional
notions in logic ([20,24,26,25]). The second part of section 6 is an overview
of the algorithmic results related to the notions and constructions considered
in this paper. The conclusion mentions some possible further research, and,
in particular, the need to compare more closely related works made indepen-
dently in various domains in order to take advantage of the results really new.
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2 Recalls and Definitions

2.1 Posets and Lattices

A partially ordered set P = (S,≤), also called a poset, is a set S 1 equipped
with an order relation ≤ where an order relation is a binary relation which is
reflexive (∀x ∈ S, x ≤ x), antisymmetric (∀x 6= y ∈ S, x ≤ y imply y 6≤ x)
and transitive (∀x, y, z ∈ S, x ≤ y and y ≤ z imply x ≤ z). We denote by <

the irreflexive relation associated to ≤, and by ≺ the cover relation defined by
x ≺ y if x < y and if there exists no z ∈ S with x < z < y. We then say that x

is covered by y (or y covers x). A poset P can also be given by its cover relation
≺ (P = (S,≺)). The induced graphical representation is called the (Hasse)
diagram of P . In what follows, we will write indifferently x ∈ S or x ∈ P . A
poset L = (S,≤) is a lattice if any pair {x, y} of elements of L has a join (i.e.
a least upper bound) denoted by x∨y and a meet (i.e. a greatest lower bound)
denoted by x∧ y. Therefore, a lattice contains a minimum element (according
to the relation ≤) called the bottom of the lattice, and denoted ⊥L (or simply
⊥). Respectively, a lattice contains a maximum element called the top of the
lattice, and denoted ⊤L (or simply ⊤).

An element j (respectively, m) of a lattice L is a join-irreducible (respectively,
meet-irreducible) of L if it cannot be obtained as the join (respectively, meet)
of elements of L all distinct from j (respectively, from m). Equivalently, an
element j (respectively, m) of L is a join- (respectively, meet-) irreducible if
it covers (respectively, is covered by) a unique element in L, which is then
denoted by j− (respectively, m+) and called the lower cover of j (respectively,
upper cover of m). The sets of join-irreducibles and of meet-irreducibles of a
lattice (L,≤) are respectively denoted by JL and ML. For an element x in L, we
denote by Jx (respectively, Mx) the set of all join-irreducibles j (respectively,
meet-irreducibles m) such that j ≤ x (respectively, x ≤ m).

2.2 Set systems and Lattices

A set system on a set S is a family of subsets of S. A closure system F on
a set S, also called a Moore family, is a set system stable by intersection
and which contains S: S ∈ F and F1, F2 ∈ F implies F1 ∩ F2 ∈ F. The
subsets belonging to a closure system F are called the closed sets of F. The
poset (F,⊆) is a lattice with, for each F1, F2 ∈ F, F1 ∧ F2 = F1 ∩ F2 and
F1 ∧ F2 =

⋂

{F ∈ F |F1 ∪ F2 ⊆ F}. Moreover, any lattice L is isomorphic

1 In this paper, all the sets will be finite
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to the lattice of closed sets of a closure system ([10]). The simplest closure
system representing L is defined on JL: it is the set system {Jx |x ∈ L}.

Example 1 Consider the closure system 2 on the set S = {1, 2, 3, 4, 5}:

F = {∅, 1, 2, 3, 4, 12, 13, 45, 234, S}

One can verify that it is stable by intersection. The lattice (F,⊆) is represented
by its Hasse diagram in Figure 1. We will use this example to illustrate several
notions in this paper.

0

1 2 3 4

12 13 234 45

12345

Fig. 1. The lattice (F,⊆) represented by its Hasse diagram, where F is the closure
system of our example.

A closure operator on a set S is a map ϕ on P(S) satisfying, ∀X,Y ⊆ S:

X ⊆ ϕ(Y ) ⇔ ϕ(X) ⊆ ϕ(Y ) (1)

Equivalently, and more commonly, a closure operator is defined as a map ϕ

satisfying the three following properties: ϕ is isotone (i.e. ∀X, X ′ ⊆ S, X ⊆
X ′ ⇒ ϕ(X) ⊆ ϕ(X ′)), extensive (i.e. ∀X ⊆ S, X ⊆ ϕ(X)) and idempotent
(i.e. ∀X ⊆ S, ϕ2(X) = ϕ(X)). Still equivalently, a closure operator is an
extensive map satisfying the path-independence property (i.e. ∀X, Y ⊆ S,
ϕ(X ∪Y ) = ϕ(ϕ(X)∪Y )). The set ϕ(X) is called the closure of X by ϕ. The
set X is said to be closed by ϕ whenever it is a fixed point of ϕ, i.e. when
ϕ(X) = X.

Closure operators are in one-to-one correspondence with closure systems. On
the first hand, the set of all closed elements of ϕ forms a closure system Fϕ:

Fϕ = {F ⊆ S |F = ϕ(F )} (2)

2 In this example as in the following, a subset X = {x1, x2, . . . , xn} is written as
the word x1x2 . . . xn. Moreover, we abuse notation in the following and use X + x

(respectively, X \ x) for X ∪ {x} (respectively, X\{x}), with X ⊆ S and x ∈ S.
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Dually, given a closure system F on a set S, one defines the closure ϕF(X) of
a subset X of S as the least element F ∈ F that contains X:

ϕF(X) =
⋂

{F ∈ F |X ⊆ F} (3)

In particular ϕF(∅) = ⊥F. Moreover for all F1, F2 ∈ F, F1 ∨ F2 = ϕF(F1 ∪ F2)
and F1 ∧ F2 = ϕF(F1 ∩ F2) = F1 ∩ F2.

A subset B of S is a basis of F , with F closed set for ϕ, if ϕ(B) = F and
ϕ(A) ⊂ ϕ(B) for every A ⊂ B (in other words, B is a minimal generating set
of F ). A subset B of S is free if for every x ∈ B x 6∈ ϕ(B\x). Or, equivalently,
B is free if and only if ϕ(A) ⊂ ϕ(B) for every A ⊂ B, or if and only if B is
a basis of ϕ(B). An element x of a subset X of S is an extreme point of X if
x 6∈ ϕ(X \ x). One denotes by Exϕ(X) or simply Ex(X) the set of extreme
points of X. Observe that X is free if and only if Ex(X) = X. A subset C

of S is a copoint of x ∈ S if C is a maximal subset of S such that x 6∈ ϕ(C).
It is well known that in the lattice Fϕ, the copoints of x are meet-irreducible
closed sets.

2.3 Unit Implicational System

A Unit Implicational System (UIS for short) Σ on S is a binary relation be-
tween P(S) and S: Σ ⊆ P(S) × S. An ordered pair (A, b) ∈ Σ is called a
Σ-implication whose premise is A and conclusion is b. It is written A →Σ b

or A → b (meaning “A implies b”). A subset X ⊆ S respects a Σ-implication
A → b when A ⊆ X implies b ∈ X (i.e. “if X contains A then X contains b”).

X ⊆ S is Σ-closed when X respects all Σ-implications, i.e A ⊆ X implies
b ∈ X for every Σ-implication A → b. The set of all Σ-closed sets forms a
closure system FΣ on S:

FΣ = {X ⊆ S |X is Σ-closed} (4)

Then, we can associate to Σ a closure operator ϕΣ = ϕFΣ
. One can state

([59,60]) that ϕΣ is the closure operator obtained by the iteration of the fol-
lowing isotone and extensive map, with X ⊆ S:

ϕΣ(X) = πΣ(X) ∪ π2
Σ(X) ∪ π3

Σ(X) ∪ . . . (5)

where
πΣ(X) = X ∪

⋃

{b |A ⊆ X and A →Σ b} (6)

and
π2

Σ(X) = πΣ(X) ∪
⋃

{b |A ⊆ πΣ(X) and A →Σ b} (7)
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Observe that the procedure in (5) terminates since S is finite. Moreover,
ϕΣ(X) = πn

Σ(X) with n ≤ |S| being the first integer such that πn
Σ(X) =

πn+1
Σ (X), and it is well known that iteration of an isotone and extensive map

defined on a finite set leads to an idempotent map, i.e. a closure operator.

Now, consider a closure operator ϕ on S. Then the closed sets of ϕ coincide
with the Σ-closed sets of the following UIS:

Σϕ = {X → y | y ∈ ϕ(X) and X ⊆ S} (8)

It is easy to see that Σϕ satisfies the two following properties:

F1 x ∈ X ⊆ S imply X →Σϕ
x.

F2 for every y ∈ S and all X, Y ⊆ S, [X →Σϕ
y and ∀x ∈ X, Y →Σϕ

x]
imply Y →Σϕ

y.

Unit IS satisfying properties F1 and F2 are called full UIS and are in one-to-
one correspondence with closure operators, and thus with closure systems and
lattices (via the set representation of lattices by the closure system {Jx |x ∈
L}).

The set of all full UIS is itself a closure system defined on the set of UIS. So,
when a UIS Σ is not full, there exists a least full UIS containing it. This full UIS
is nothing else than Σϕ where ϕ = ϕΣ is the closure operator associated with
Σ (see Equation5). This full UIS Σϕ can be obtained by applying recursively
rules F1 and F2 to Σ. The UIS Σ is then called a generating system (or cover
in relational data bases) for the full UIS Σϕ, and thus for the induced closure
operator ϕ, the closure system FΣ, and the induced lattice (FΣ,⊆). When
some UISs Σ and Σ′ on S are generating systems for the same closure system,
they are called equivalent (i.e. FΣ = FΣ′).

An illustration of a generating system of a full UIS Σϕ, is given by the UIS
Σfree composed of the subsets of S that also are free subsets:

Σfree = {X → y : y ∈ ϕ(X)\X and X free subset of S} (9)

An UIS Σ is called direct or iteration-free if for every X ⊆ S, ϕΣ(X) = πΣ(X)
(see Equation (6)). An UIS Σ is minimal or non-redundant if Σ \ {X → y}
is not equivalent to Σ, for all X → y in Σ. It is minimum if it is of least
cardinality, i.e. if |Σ| ≤ |Σ′| for all UIS Σ′ equivalent to Σ. A minimum UIS is
trivially non-redundant, but the converse is false. Σ is optimal if s(Σ) ≤ s(Σ′)
for all UIS Σ′ equivalent to Σ, where the size s(Σ) of Σ is defined by:

s(Σ) =
∑

A→b∈Σ

(|A| + 1) (10)
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A minimal UIS is usually called a basis for the induced closure system (and
thus for the induced lattice), and a minimum basis is then a basis of least
cardinality.

An implication X →Σ x with x ∈ X is called trivial. An UIS is called proper
if it doesn’t contains trivial implications. When an UIS is not proper, an
equivalent proper UIS can be obtained by applying the following rule:

F3 delete A →Σ b from Σ when b ∈ A.

In this paper, all UISs will be considered to be proper UISs. Then, for instance,
the term full IS will means ”the proper full IS deduced from the full IS by
applying F3”. Other definitions and bibliographical remarks can be found in
the survey of Caspard and Monjardet in [12].

Example 2 Consider the closure system of our example given by the lattice
(F,⊆) in Figure 1 and the generating system Σfree:

Σfree =























































( 1 ) 5 → 4 ( 2 ) 23 → 4 ( 3 ) 24 → 3 ( 4 ) 34 → 2

( 5 ) 14 → 2 ( 6 ) 14 → 3 ( 7 ) 14 → 5 ( 8 ) 25 → 1

( 9 ) 35 → 1 (10) 15 → 2 (11) 35 → 2 (12) 15 → 3

(13) 25 → 3 (14) 123 → 5 (15) 15 → 4 (16) 25 → 4

(17) 35 → 4 (18) 123 → 4

Notice that Σfree is a proper UIS since for every implication, the conclusion
is not included in the premise. Concerning the direct property, it is clear that
Σfree is a direct UIS.

3 Some interesting bases

In this section we are going to define several proper UIS which are generating
systems for a given closure operator ϕ (equivalently for a given closure system
F) which can be the closure operator associated to a given UIS Σ. In the
literature on IS, the term basis is often used not only for minimal IS but also
for IS satisfying various minimality criteria. We will do the same by defining
five such bases.
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3.1 The direct-optimal basis Σdo

A number of problems related to closure systems, (thus closure operators,
lattices or implicational systems) can be answered by computing closures of
the type ϕΣ(X), for some X ⊆ S. According to the definition (see Eq.(5))
ϕ(X) can be obtained given an UIS Σ by iteratively scanning Σ-implications:
ϕ(X) is initialized with X then increased with b for each implication A →Σ b

such that ϕ(X) contains A. The computation cost depends on the number
of iterations, and in any case is bounded by |S|. It is worth noticing that
for direct (or iteration-free) UISs the computation of ϕ(X) requires only one
iteration, since ϕΣ(X) = πΣ(X). The direct-optimal property combines the
directness and optimality properties:

Definition 3 A UIS Σ is direct-optimal if it is direct, and if s(Σ) ≤ s(Σ′)
for any direct UIS Σ′ equivalent to Σ.

In [8], Bertet and Nebut show that a direct-optimal UIS is unique and can be
obtained from any equivalent and proper UIS:

Proposition 4 [8] The direct-optimal basis Σdo is obtained from any equiv-
alent and proper UIS Σ as follows:

(1) first apply recursively the following rule 3 to obtain a direct equivalent
UIS:
F7 for all A →Σ b and C + b →Σ d with d 6= b, add A ∪ C → d to Σ

(2) then apply the F3 rule to obtain a proper UIS, and the following rule to
minimize premisses of the Σ-implications:
F8 for all A →Σ b and C →Σ b, if C ⊂ A then delete A →Σ b from Σ.

Example 5 Consider our example given by (F,⊆) in Figure 1. The basis Σdo

is:

Σdo =







































( 1 ) 5 → 4 ( 2 ) 23 → 4 ( 3 ) 24 → 3 ( 4 ) 34 → 2

( 5 ) 14 → 2 ( 6 ) 14 → 3 ( 7 ) 14 → 5 ( 8 ) 25 → 1

( 9 ) 35 → 1 (10) 15 → 2 (11) 35 → 2 (12) 15 → 3

(13) 25 → 3 (14) 123 → 5

One can verify that Σdo is direct like Σfree. Moreover, s(Σdo) < s(Σfree) and
Σdo ⊂ Σfree.

3 when Σ is not proper, this rule has to be applied only when b 6∈ A and d 6∈ A∪C
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1

2

5

3

1,3

5

2,3

4,5

4,5

1,34

1,3

4,5

4,5

1,2

1,2

4,23

13

12

0

3

2

1

Fig. 2. Relation δX for F of our example represented by a directed graph where each
relation aδXb is represented by an arc and labeled by X (∅ is denoted by 0)

3.2 The dependence relation’s basis Σdep

The dependence relation’s basis Σδ on S comes from the dependence relation
δ defined for a lattice, and introduced in [44] (see also [46]):

Definition 6 The dependence relation’s basis Σδ is:

Σδ = {X + y → x : xδXy and X is minimal for this property} (11)

where the dependence relation δX is defined on S, with x, y ∈ S and X ⊂ S,
by:

xδXy if and only if x 6∈ ϕ(X), y 6∈ ϕ(X) and x ∈ ϕ(X + y) (12)

The dual relation of the relation δX has been considered in [5] where it is
called domination. One can observe that the dependence relation δ on the
lattice (F,⊆) is then given by xδy if there exists X ⊆ S\{x, y} such that
xδXy (so δ = ∪{δX , X ⊂ S}).

Example 7 Figure 2 gives the dependence relations δ and δX of our example,
where two vertices x and y are linked by an arc if xδy. This arc is valued by
the subsets X such that xδXy. For instance, 5δ41, and 5δ231.

3.3 The canonical iteration-free basis Σcif

The canonical iteration-free basis on S is an implicational system introduced
by Wild in [60]. As mentioned in the introduction, this implicational system
can be transformed into a unit implicational system denoted Σcif :
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Definition 8 The unit basis Σcif deduced from the canonical iteration-free
basis is:

Σcif = {B → x : x ∈ ϕ(B)\πϕ(B) and B is a free subset} (13)

where πϕ is derived from ϕ as follows:

πϕ(B) = B ∪ {x ∈ S : there exists A ⊂ B with x ∈ ϕ(A) 4 }

3.4 The left-minimal basis Σlm

The left-minimal basis Σlm is the restriction of the (proper) full UIS Σϕ to
implications where the premise is of minimal cardinality. Using the definition
of Σϕ (see 8), Σlm can be expressed directly from ϕ:

Definition 9 The left-minimal basis Σlm is:

Σlm = {X → y : y ∈ ϕ(X) \ X and for every X ′ ⊂ X, y 6∈ ϕ(X ′)} (14)

An implication X → y is called left-minimal when it is a Σlm-implication.
It is also called proper implication in [56] where implications are used in the
data-mining area research, and minimal functional dependency in the domains
of relational databases and Horn theories ([39,36]).

Example 10 For our example, Σlm is the same as Σdo. Remark that Σlm of
our example has 14 implications, and not 15 as incorrectly written in [12]
about the same example (p.37).

3.5 The weak-implication basis Σweak

The weak-implication basis has been introduced by Rush and Wille in [53] to
show a connection between the theory of knowledge spaces ([18]) and formal
concept analysis ([26]). It is based on the definition of a copoint (recall that
a subset C of S is a copoint of x ∈ S if C is a maximal subset of S such that
x 6∈ ϕ(C)), and on the following classical notion of transversal set.

A subset B of a set S is a transversal of a family F of subsets of S if B∩F 6= ∅
for every F ∈ F . A transversal B is a minimal transversal of F if for every
A ⊂ B, A is not a transversal of F (i.e. there exists F ∈ F with A ∩ F = ∅).

4 When B is not a free subset, the condition ϕ(A) ⊂ ϕ(B) has to be added.
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Definition 11 [53] The weak-implication basis Σweak is:

Σweak = {B → x : B ⊆ S and B is a blockade for x} (15)

where a blockade for x ∈ S (also called x-block) is a minimal transversal of
Dx, the following family of subsets of S:

Dx = {S\(C + x) , C is a copoint of x} (16)

Lemma 12 Let x ∈ S and B ⊆ S. Then B x-block implies x 6∈ B and
x ∈ ϕ(B) (i.e. B → x)

Proof Consider an x-block B ⊆ S. The first point is immediate: by definition
of a blockade for x, we have x 6∈ B. For the second point, suppose x 6∈ ϕ(B).
Let F ⊆ S be a maximal closed set of ϕ such that x 6∈ F and ϕ(B) ⊆ F . Then
F is a co-point of x. But B ⊆ F implies B ∩ (S\(F + x)) = ∅, a contradiction
with B an x-block. ✷

4 The main results

The main result (Theorem 15) of this paper is to state the equality between
the five bases defined in the previous section all of which are thus direct bases.
The second main result (Theorem 14) is to give an interesting characterization
of the direct property based on an exchange property.

This exchange property has been independently introduced in [17] and in a
stronger form in [8]. In [17], Demetrovics and Nam Son use it to define the
notion of Sperner village and to show its equivalence with the notion of closure
operator. In [8], Bertet and Nebut use it in the generation of the direct-optimal
basis Σdo where rule F7 results directly from this exchange property.

The characterization of Theorem 14 uses another formulation of the direct
property issued from the definition (i.e. for every X ⊆ S, ϕ(X) = πΣ(X)).

Lemma 13 An UIS Σ is direct if and only if for every X ⊆ S, πΣ(X) =
π2

Σ(X).

Theorem 14 A proper UIS Σ is direct if and only if it satisfies the following
exchange condition:

∀A,C ⊆ S , ∀b ∈ S\A , ∀d ∈ S\(A ∪ C) and different from b : (17)

A →Σ b and C + b →Σ d implies there exists G ⊆ A ∪ C such that G →Σ d
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Proof ⇒: Let Σ be a direct UIS. Assume that for b ∈ S\A, d ∈ S\(A ∪ C)
and different from b, we have A →Σ b and C+b →Σ d, which means b ∈ ϕΣ(A)
and d ∈ ϕΣ(C + b). Then, using the path-independence property of a closure
operator, we get

d ∈ ϕΣ(A ∪ (C + b)) = ϕΣ(ϕΣ(A + b) ∪ C) = ϕΣ(ϕΣ(A) ∪ C) = ϕΣ(A ∪ C)

Now, Σ being direct, there exists G ⊆ A ∪ C such that G →Σ d.

⇐: Let Σ be a UIS satisfying condition (17). One must show that ϕΣ(X) =
πΣ(X), or equivalently by Lemma 13 that πΣ(X) = π2

Σ(X), or still equivalently
(since πΣ is extensive) that π2

Σ(X) ⊆ πΣ(X).
Assume that there exists X with πΣ(X) ⊆ π2

Σ(X), i.e. that there exists z ∈
π2

Σ(X)\πΣ(X). Then there exists Z ⊆ πΣ(X) with Z →Σ z and z 6∈ πΣ(X).
We set p(Z) = |Z ∩ (πΣ(X)\X)|. The proof of ϕΣ(X) = πΣ(X) will follow
immediately from the proof of the following result:

if p(Z) = p then there exists Z ′ ⊆ S with Z ′ →Σ z and p(Z ′) < p(Z).

Indeed, by iteration of this result we would get some Z(k) with Z(k) →Σ z and
p(Z(k)) = 0, which means Z(k) ⊆ X and z ∈ πΣ(X), a contradiction with our
hypothesis.
First, observe that p(Z) > 0: if not, Z ∈ X and z ∈ πΣ(X), a contradiction.
p(Z) > 0 means that there exists y ∈ Z with y ∈ πΣ(X)\X. Thus there exists
Y ⊆ X with Y →Σ y. Now writing Z = U + y, we have Y →Σ y, U + y →Σ z

with y 6∈ Y and (since z 6∈ πΣ(X)) z 6∈ Y ∪ U and z different from y. So, by
applying the exchange condition, we get that there exists Z ′ ⊆ Y ∪ U with
Z ′ →Σ z. Moreover, since p(Y ∪ U) = p(Z) − 1, we have p(Z ′) < p(Z) like
wanted. ✷

Now, let us give our other main result.

Theorem 15 Let ϕ be a closure operator defined on a set S, and the five
associated UISs above defined. Then

Σdo = Σcif = Σdep = Σlm = Σweak

Proof We prove first Σcif = Σdep = Σlm = Σweak by proving Σcif ⊆ Σdep ⊆
Σlm ⊆ Σweak ⊆ Σcif . Then we prove Σdo = Σlm

Σcif ⊆ Σdep: Let B → x be a Σcif -implication. This means that x ∈ ϕ(B)\πϕ(B)
where B is free, i.e. x ∈ ϕ(B) and x 6∈ ϕ(A) for every A ⊂ B. Take any y

in B. Since B\y ⊂ B and B is free, one has x 6∈ ϕ(B\y), y 6∈ ϕ(B\y) and
(obviously) x ∈ ϕ((B\y)+y). If X ⊂ B\y, X +y ⊂ B, and so x 6∈ ϕ(X +y).
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Then B\y is minimal such that x, y 6∈ ϕ(X) and x ∈ ϕ(X + y), i.e. B → x

is a Σdep-implication.
Σdep ⊆ Σlm: Let B = X + y → x be a Σdep-implication. Then x 6∈ ϕ(X) and

for every Y ⊂ X, x 6∈ ϕ(Y + y). So B → x is a Σlm-implication.
Σlm ⊆ Σweak: Let B → x be a Σlm-implication. Let us first prove that B is a

transversal of Dx = {S\(C + x), C co-point of x} before to prove that it
is a minimal transversal. Since x 6∈ B, B is a transversal of Dx if and only
if B is a transversal of D′

x = {S\C, C co-point of x}. Suppose there exists
C co-point of x such that B ∩ (S\C) = ∅ and so B ⊆ C. Then ϕ(B) ⊆ C

which implies x ∈ C, a contradiction with C co-point of x.
Suppose now that B is not a minimal transversal of Dx., i.e. that there
exists Y ⊂ B with Y transversal of Dx. Since B is left-minimal for the
implication B → x, we have x 6∈ ϕ(Y ). Then there exists a co-point C of x

such that Y ⊆ ϕ(Y ) ⊆ C. Therefore Y ∩ (S\C) = ∅, a contradiction with
Y transversal of Dx.

Σweak ⊆ Σcif : Let B → x be a Σweak-implication. This means that x ∈
ϕ(B)\B and B is minimal transversal of Dx = {S\(C + x), C co-point
of x}. We prove first that B is free by showing that for any A ⊂ B one
has ϕ(A) ⊂ ϕ(B). Indeed, when A ⊂ B, A is not a transversal of Dx and
there exists a copoint C of x such that A∩ (S\C +x) = ∅. So A ⊆ C (since
x 6∈ A) and ϕ(A) ⊆ C. But x 6∈ C implies x 6∈ ϕ(A) and so ϕ(A) ⊂ ϕ(B).
Moreover, we have just proved that x 6∈ ϕ(A) for every A ⊂ B, i.e. that
x 6∈ πϕ(B). Finally, B → x is a Σcif -implication.

Σlm = Σdo: To prove the equality Σlm = Σdo, let us prove that Σlm is direct-
optimal (since there is a unique direct-optimal basis). First we prove that
Σlm is direct, i.e. that for every A ⊆ S, ϕ(A) = A ∪ {x ∈ S : there exists
B ⊆ A with B →Σlm

x}. This is obvious since one can take for B a basis of
ϕ(A) such that B ⊆ A.

Now, let us prove that Σlm is direct-optimal. Consider a direct and equiv-
alent UIS Σ. It is sufficient to prove that, when B → x is a Σlm-implication,
it is also a Σ-implication. Assume that it is not the case. Since B → x is left-
minimal, A → x 6∈ Σ for every A ⊂ B. Therefore, x 6∈ ϕ(B) = B∪{x ∈ S :
there exists A ⊆ B with A →Σ x}, a contradiction with Σ direct.

✷

The above result justifies the following definition:

Definition 16 The unique basis obtained in Theorem 15 is called the canon-
ical direct unit basis, and is denoted Σcd.

Theorem 14 induces others nice characterizations of the canonical direct unit
basis:
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Corollary 17 Let ϕ be a closure operator. The canonical direct unit basis Σcd

is the smallest basis of the set of all direct unit bases ordered by inclusion.

Corollary 18 An UIS Σ is the canonical direct basis if and only if it satisfies
the two following properties:

(1) for every x ∈ S, B →Σ x and B′ →Σ x, B and B′ are incomparable.
(2) the exchange condition (17).

One can also observe that Corollary 17 is equivalent to the property of Σcif

being iteration-free in a canonical way, introduced in [60].

One can observe that the first property in Corollary 18 can equivalently be
reformulated using the terminology of a Sperner family like in [17]: for every
x ∈ S, the set Bx of all premisses of the Σ-implications B →Σ x forms a
Sperner family.

The fact that Σlm = Σweak shows that the Sperner family Bx is the family
of blockades of x, i.e. the family of minimal transversals of the family Dx =
{S \ (C + x) : C co-point of x}. We show now that the necessary sets for x,
and the x-dominating sets introduced in the literature are the same that the
sets S \ (C + x). Mannila and Raiha ([40,41]) define a necessary set for x as
a minimal transversal of Bx. On the other hand, one finds in Aizerman and
Aleskerov’s book on choice functions ([1]) the definition of an x-dominating
set as a subset T of S such that x ∈ Exϕ(S \ T ) and x 6∈ Exϕ(U) for every U

satisfying S \ T ⊂ U .

Corollary 19 Let ϕ be a closure operator on S, T ⊆ S and x ∈ S \ T . The
three following conditions are equivalent:

(1) T is a necessary set for x,
(2) there exists a co-point C of x such that T = S \ (C + x),
(3) T is an x-dominating set.

Proof

1 ⇔ 2 Let us denote by Mx the family of necessary sets for x. By definition,
Mx = Tr(Bx), the family of minimal transversals of Bx. And, as said above,
Bx = Tr(Dx) the family of minimal transversals of Dx = {S \ (C + x) : C

co-point of x}. But, it is well known that, when F is a Sperner family,
Tr(Tr(F)) = F . Therefore Mx = Tr(Bx) = Tr(Tr(Dx)) = Dx.

2 ⇒ 3 If T = S \(C +x), one has S \T = C +x. Since C is a maximal set such
that x 6∈ C, x ∈ Ex(S \ T ), whereas if U ⊃ S \ T = C + x, then U \ x ⊃ C

and x 6∈ Ex(U).
3 ⇒ 2 Let T be an x-dominating set. So, x ∈ Exϕ(S \ T ), i.e. {x ∈ ϕ((S \

T ) \ x)). Now, if U ∈ S \ T , U \ x ∈ (S \ T ) \ x and x ∈ Exϕ(U) means that
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x ∈ ϕ(U \ x)). Thus (S \ T ) \ x) = (S \ T + x) is a maximal set such that
x ∈ ϕ(S \ T + x)), i.e. a co-point C of x. Then T = S \ (C + x), with C

co-point of x.

✷

One can notice that the equivalence between 2 and 3 was proved in [47] but
only for closure operators satisfying the anti-exchange property.

5 The canonical direct unit basis and the Horn functions

It is well known that families of subsets of a set S are in a one-to-one corre-
spondence with the Boolean functions defined on the Boolean algebra P(S).
Indeed, one can associate to a family F of subsets of S its characteristic func-
tion fF :

fF(M) =











1 if M ∈ F with M ⊆ S

0 if not
(18)

And conversely, one can associate to a Boolean function f from P(S) to {0, 1}
the following family of subsets of S called the models or the true points of f :

Ff = {M ⊆ S : f(M) = 1} (19)

Observe that the set of all Boolean functions ordered by f ≤ g if Ff ⊆ Fg is
itself a Boolean algebra.

By considering dually the false points, one can provide another one-to-one
correspondence between families on S and Boolean functions on P(S). In
the following, we will prefer this second correspondence that associates to a
Boolean function h the family Fh of its false points or its counter-models :

Fh = {M ⊆ S : h(M) = 0} (20)

Conversely, one can associate to a family F on S the Boolean function hF :

hF(M) =











0 if M ∈ F with M ⊆ S

1 if not
(21)

A less known and still less used fact is that the closure systems on S are in a
one-to-one correspondence with the Boolean functions called pure (or definite)
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Horn functions (see historical notes for references). Then, any result on closure
systems (or closure operators or implicational systems) can be translated into
results about Horn functions, and conversely. In this section we are going to
do this translation for the canonical direct basis.

In order to define Horn functions we will recall some classic definitions and
facts. We denote by Q = (0, 1,∨,∧,′ ) the Boolean algebra on two elements
0 and 1, with the two Boolean operations ∨ (called disjunction or sum) and
∧ (called conjunction or product), and the unary operation ′ (called comple-
mentation). A Boolean function of n (Boolean) variables is then a function on
P(S) to Q, where S = {x1, x2, ...xn} is the set of n Boolean variables. We de-
note by (x1, x2, ...xn) a n-tuple of values 0 or 1 taken by these variables (then,
note that the same symbol xi can represent the variable xi or the value 0 or 1
taken by this variable according as it belongs either to a set or to a n-uple).
The set of these n-uples is in one-to-one correspondence with the set P(S) of
subsets of S (by the map (x1, x2, . . . , xn) → {xi ∈ S : xi = 1}) where such a
subset will also be called a point.

A variable x is called a literal whereas the complemented variable x′ is called a
complemented literal. A conjunction (respectively, a disjunction) of literals and
complemented literals, where each variable, complemented or not, appears at
most once is called a term (respectively, a clause). A conjunction like x∧y′∧z

will be generally written more simply xy′z.

Let f be a Boolean function on 2n and (x1, x2, ...xn) a true n-tuple of f (re-
spectively, a false n-tuple of f), i.e. a n-tuple such that f(x1, x2, . . . , xn) = 1
(respectively, f(x1, x2, . . . , xn) = 0). A true point (respectively false point)
of f is a subset of S corresponding to a true n-tuple (respectively false n-
tuple) of f . To a true (respectively false) n-tuple (or point) of f one asso-
ciates the term ∧{xi : xi = 1} ∧ {x′

i : xi = 0} (respectively, the clause
∨{xi : xi = 0} ∨ {x′

i : xi = 1}).

The sum (respectively, the product) of all these terms (respectively, clauses)
constitutes the canonical disjunctive normal form (respectively, the canonical
conjunctive normal form) denoted as the canonical DNF (respectively as the
canonical CNF) of f . But, using the well known properties of a Boolean algebra
(such that x = x ∨ x = xx = x ∨ (xy) = x(y ∨ x) , x ∨ x′ = 1, xx′ =
0), it is possible to get many other disjunctive or conjunctive normal forms
representing f . Any two such normal forms representing the same Boolean
function are called equivalent.

Example 20 For instance, let us denote more simply the set of n Boolean
variables by {1, 2, ...n} and consider the Boolean function defined on {1, 2, 3, 4, 5}
by its canonical DNF:
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h = 1′2′3′4′5′ ∨ 12′3′4′5′ ∨ 1′23′4′5′ ∨ 1′2′34′5′ ∨ 1′2′3′45′ ∨

123′4′5′ ∨ 12′34′5′ ∨ 1′2′3′45 ∨ 1′2345′ ∨ 12345

Then, since:

1′2′3′4′5′ ∨ 12′3′4′5′ ∨ 1′23′4′5′ ∨ 123′4′5′ = 3′4′5′

and 1′2′34′5′ ∨ 12′34′5′ = 2′34′5′

an equivalent DNF for h is:

h = 3′4′5′ ∨ 2′34′5′ ∨ 1′2′3′45 ∨ 1′2345′ ∨ 12345.

A classic problem (called the Boolean function minimization problem) is to
find minimum DNF (or CNF) of a Boolean function, i.e. DNF (or CNF) us-
ing a minimum number of literals (other minimization problems using other
criteria can be also considered). The first step for this research is to find
the so-called prime implicants (respectively, prime implicates) of the Boolean
function f . A prime implicant (respectively, a prime implicate) of f is a term
t (respectively, a clause c) such that (in the order between Boolean functions),
t ≤ f (respectively, f ≤ c) and is maximal (respectively, minimal) with this
property. Indeed, a Boolean function f is always the sum of its prime impli-
cants and the product of its prime implicates. But, it is generally possible to
delete some implicants (respectively, implicates) in these expressions to get
an equivalent more economical DNF or CNF. Then the second step consists
in searching for the expressions that use the least number of implicants (re-
spectively, implicates). For an arbitrary Boolean function, the search of all its
prime implicants (respectively, implicates) is a NP-complete problem.

We now define the so-called pure (or definite) Horn functions. Since we will
consider only such Boolean functions, we will henceforth omit the word pure.
A term is called Horn if it contains exactly one complemented literal. For
instance, 34′5 is a Horn term. A DNF is called Horn is all its terms are Horn.
A Boolean function is called a Horn function if it can be represented by a
Horn DNF. Now we have the following well known result (see Section 6.1):

Theorem 21 A Boolean function h of n variables x1, x2, . . . xn is a Horn
function if and only if the set of its false points is a closure system on S =
{x1, x2, . . . xn}.

Remark. In the literature one also finds another definition of a Horn function.
A clause is called Horn if it contains exactly one literal. For instance, 1 ∨ 2′ ∨
4′ ∨ 5′ is a Horn clause. A CNF is called Horn if all its clauses are Horn.
A Boolean function is called a Horn function if it can be represented by a
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Horn CNF. This definition is not equivalent to the previous one. In fact, a
Boolean function f is a Horn function in this second sense if and only if the
complementary function f ′ (in the Boolean algebra of all Boolean functions)
is Horn in the first sense. With this second definition, one has: “a Boolean
function is a Horn function if and only if the set of its true points is a closure
system”.

Now we can state the relationship between the prime implicants of a Horn
function h and the canonical direct implicational basis Σcd of its associated
closure operator. It is known that the prime implicants of a Horn function
are Horn terms, and so we can write Bx′ such a prime implicant, where B

is the subset of S corresponding to the literals of this prime implicant. For
completeness we give the proof of the following known result (see, for instance,
Theorem 4.1 in [36] where the result is proved with the Σlm version of the
canonical unit direct basis).

Proposition 22 Let S = {x1, x2, . . . , xn} be a set of elements, and:

• h be a Horn function of n variables on P(S);
• Fh the closure system defined on S by the false points of h;
• ϕh the associated closure operator on S;
• Σcd the corresponding canonical direct implicational basis.

Then Bx′ is a prime implicant of h if and only if B → x ∈ Σcd.

Proof Let Bx′ be a prime implicant of h and consider the implication B → x.
It belongs to Σϕ since h(ϕh(B)) = 0 implies Bx′(ϕh(B)) = 0 and so x ∈ ϕh(B).
Let A ⊂ B. Since Ax′ is not an implicant of h, there exists X ⊆ S such that
Ax′(X) = 1 and h(X) = 0. Then, A ⊆ X ⊆ S \ x and X ∈ Fh which means
that x 6∈ ϕh(A). So, A → x 6∈ Σϕ and B → x ∈ Σcd.

Conversely, let B → x ∈ Σcd and consider the Boolean term Bx′. For X ⊆ S,
we have Bx′(X) = 1 if and only if B ⊆ X and x 6∈ X. Then X ∈ Fh and
h(X) = 1, what shows Bx′ ≤ h. Moreover, B ≤ h since B(ϕh(B)) = 1 and
h(ϕh(B)) = 0. Similarly, if A ⊂ B, Ax′ 6≤ h, since Ax′(ϕh(A)) = 1 and
h(ϕh(B)) = 0. Then Bx′ is a prime implicant of h. ✷

Corollary 23 There is a one-to-one map between the set of prime implicants
of a Horn function and the set of implications in the canonical direct unit basis
of the closure operator corresponding to the Horn function.

Remark. When one considers the definition of a Horn function mentioned in
the remark following Theorem 21, one gets a one-to-one map between the set
of prime implicates of the Horn function and the set of implications in the
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canonical direct unit basis of the corresponding closure operator.

Example 24 In our example (Example 1), consider its closure system F de-
fined on S = {1, 2, 3, 4, 5} and its canonical direct UIS Σcd (equal to Σdo given
in Example 5). By Proposition 22, F is the closure system given by the false
points of the following Horn function whose prime implicants are deduced from
Σcd:

h = 54′ ∨ 234′ ∨ 243′ ∨ 342′ ∨ 142′ ∨ 143′ ∨ 145′ ∨

251′ ∨ 351′ ∨ 152′ ∨ 352′ ∨ 153′ ∨ 253′ ∨ 1235′

For instance, one can verify that 12 ∈ F is equivalent to h(12) = 0; and 14 6∈ F

is equivalent to h(14) = 1.

6 Notes

6.1 Historical note

We try to give the origins of some notions and results used in this paper.
It is well known that the notion of a binary relation on a set arose from
works of De Morgan and Peirce in the second half of the 19th century. But
it seems to be more difficult to know who introduced for the first time the
notion of binary relation between subsets and elements of a set or used for
the first time the notion of a binary relation on the power set of a set. It is
clear that such relations can be used in many different contexts. For instance,
a binary relation between subsets and elements of a set appears in Hertz’s
1927 paper ([33]) where it formalizes a consequence relation, and a relation
between elements and subsets of a set appears in Appert’s paper ([2]) where
a ”contiguity” relation allowing to define a topological space is formalized.

Birkhoff ([9]) dates back the origin of the notions of closure systems and closure
operators to Moore’ 1909 and 1910 papers ([48,49]). Indeed, in his 1909 paper
Moore, speaking in terms of a property of a class of functions, writes: ”let a
property satisfied by the class (of all functions) and by the greatest common
subclass of subclasses satisfying it. Then this property is extensionaly attain-
able in the sense that for every subclass S there exists a least extensive class
containing S, given by the intersection of all subclasses containing S”. But
it is probable that Moore’s observations about the equivalence of these two
notions would have been forgotten if these two concepts, under various names
and in a more or less general way, had not played a significant role in the
birth of the general topology as an axiomatic theory, in the beginning of the
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last century. Many mathematicians (Alexander, Alexandroff, Frechet, Haus-
dorff, Kuratowski, Riesz, Sierpinski, Siskorski, Monteiro, Ribero, Appert, etc.)
contributed to this creation, using systems of axioms based on several differ-
ent primitive notions such as derivation, neighborhood, surrounding, closed or
open sets, closure or interior operators. The notion of closure operator was also
used in logics as early as in Tarski’s 1929 and 1930’s papers ([57,58]) where he
defines the consequence relation of a logical deductive system as a closure op-
erator on an infinite set S satisfying a finitary axiom (see Martin and Pollard’s
1996 book ([42]) for the use of closure operators in logics). Also observe that
there are many notions equivalent to the notion of closure operator (see [45])
and in particular that the theory of closure systems is closely related to lat-
tice theory since every (finite) lattice can be represented by a closure system.
One can date back the notion of Boolean (or truth) function to Boole (in his
theory of elective functions). The definition of a Horn Boolean function as a
Boolean function having a Horn (disjunctive normal) form appears for the first
time (according to the authors) in Hammer and Kogan’s 1992 paper ([30]).
But the notion and name of Horn clause come from the logician Alfred Horn
who first pointed out the significance of such clauses in his 1951 paper ”On
sentences which are true of direct unions of algebras” ([35]). This attribution
is sometimes contested. For instance Hodges ([34]) writes: ”Horn clause logic
is a part of first-order logic. It was first isolated by J.C.C. McKinsey ([43]).
The name ‘Horn’ is a historical accident. After McKinsey’s paper in 1943,
Alfred Tarski suggested investigating a more general class of sentences that
are like Horn clauses except that they have arbitrarily many existential and
universal quantifiers at the beginning. The sentences that Tarski described are
now known as Horn sentences, because Tarski’s colleague Alfred Horn ([35])
responded to Tarski’s suggestion by showing that one of McKinsey’s theorems
is true for them too. This work of Horn is important in its own right, but it
is not directly relevant to Horn clauses. (Henschen ([32]) p. 820 explains the
name ‘Horn clause’ by a result of Horn ([35]) on Horn clauses; but the result is
false, and it is not in [35])”. On the other hand, Dechter and Pearl ([16]) write
that the equivalence between Horn functions and families of subsets closed by
intersection appears to be a general folklore among many researchers, although
we could not trace its precise origin. But, in fact, Horn’s 1951 paper ([35])
deals with Horn terms (i.e. propositional terms containing at most one com-
plemented literal) and its Lemma 7 amounts exactly saying that a Boolean
function h is Horn (in the sense that it admits a Horn DNF) if and only if
the family of its false points is closed by intersection. Let us also observe that
McKinsey ([43]) uses sentences like

∧

i∈I εi → ε, but where the ε’s are much
more general terms than simple propositional variables. So, finally, the names
Horn term and Horn (Boolean) function seem quite justified. It is interesting
to mention that the equivalence between the Horn Boolean functions and the
families of sets closed by intersection was also shown in an applied context.
In his Analyse booléenne des questionnaires([21]) Flament seeks to find sys-
tems of implications between dichotomous questions explaining the answers
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of subjects to queries (a well-known example of such a system is the so-called
Guttman’s scale). Then, he associates with these answers a family of sets (the
set of questions receiving a positive answer) and the corresponding Boolean
function. And he writes (page 198): ”le protocole est fermé pour l’intersection
si et seulement si aucune des PCU ne comporte plus d’une réponse négative”
(i.e., the family of sets associated to the positive answers of the subjects is
closed for intersection if and only if the prime implicants of the corresponding
Boolean function contain at most one negative answer).

It is apparently Armstrong ([4]) who in the context of relational data bases
has shown for the first time the one-to-one correspondence between the full
family of functional dependencies (called here full implicational systems) and
closure systems (Armstong called the closed sets saturated sets). But one
already finds a one-to-one correspondence between the so-called ”transitive
topologies” and the closure operator in Appert’s paper quoted above ([2], see
also [3]). And the transitive topologies are nothing else than the binary re-
lations between elements and subsets of a set which are the dual of the full
unit implicational systems. These same correspondences have been rediscov-
ered and/or generalized many times under various formulations. For instance,
they appear in Buchi’s book ([11]) where this author uses dependence relations,
and in Doignon and Falmagne’s book ([18]) between what they call entailment
relations and the families of sets closed by unions (see also below).

One can ask what the link is between our implicational systems and logi-
cal systems ? First one can present the notions and results about implica-
tional systems in the framework of propositional logic ([23]). More deeply, Fa-
gin displays an equivalence between the functional dependencies of relational
databases (our implications) and the implicational statements of propositional
logic ([20]). An implicational statement of propositional logic is a conjunction
of propositional (Boolean) variables implying a conjunction of propositional
variables. Then Fagin proves that a functional dependency is a consequence
of a set of functional statements if and only if the corresponding implica-
tional statement is a consequence of the corresponding set of implicational
statements. On the other hand there are formal links between implicational
systems and the ways to formalize the notion of logical consequence (see Scott
1974 [54] for an overview). As already mentioned, Hertz ([33]) (respectively,
Tarki) used a binary relation between subsets and elements of a set of sen-
tences (respectively, a closure operator) to formalize a notion of consequence.
The connection between the two presentations is the same as the one used in
this paper between an implicational system and a closure operator: X → y

iff y ∈ ϕ(X). Later, Gentzen in [27] introduced a relation where the right-
hand side of the relation is a disjunction of sentences. Then in 1982 ([55])
Scott introduced the notion of information systems where there is an entail-
ment relation between consistent subsets and elements of a set. And, later, a
one-to-one correspondence between Scott’s information systems and algebraic
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∩-structures has been displayed (see [15]). In the finite case, this correspon-
dence is exactly the correspondence between the full implicational systems
and the closure systems.

Finally we point out the attempts to extend the contextual attribute logic
of the Formal Concept Analysis to a contextual Boolean judgment logic by
introducing formal negations and oppositions ([26,14]).

6.2 Algorithmical note

Closure systems appear in many areas where we need efficient algorithms to
handle them. So, in these areas, a number of (generally independent) works
have been made to address the many algorithmical problem raised. In particu-
lar, since these systems may have several “representations”, a general problem
is to provide algorithms to go from a representation taken as input to another
taken as output. We will return later to the notion of representation, but we
consider first the two following important transformations problems:

• Generation of the canonical direct unit basis Σcd with an equivalent
UIS Σ as input.

• Generation of the closure operator ϕ or/and of the family F of
closed sets with either an UIS Σ or the basis Σcd as input.

Since F and Σcd are bounded by 2|S| in the worst case, and by 1 in the best case,
with a reasonable size in practice, these problems belong to the more general
class of problems having an input of size n, and an output of size N bounded
by 2n. For this class of problems, a classical worst-case analysis makes them
exponential, thus NP-complete in time and in space. However, a more precise
information can be obtained by output-sensitive analysis techniques (see a
survey in [50]). These analyses are relevant since the recent improvements
storage and treatment capacity increasingly often allow us to handle some
exponential data, what was not possible even some time ago.

Concerning the time-analysis, the idea is to consider the time complexity
needed to generate only one element of the output (i.e. one implication or
one closed set in our case). Time-complexity per element of the output can
be computed using two main analysis techniques. As a first technique, the
amortized complexity computes the “average cost” per element. It consists in
extracting the amortized cost c per element from the general classical time
complexity O(cN) where N is the size of the output. When c can be bounded
by a polynomial, we speak of a polynomial amortized time algorithm. The sec-
ond technique is the delay complexity : it considers the output as a sequence
of generated elements. It then consists in more accurately computing the time
between the generation of two consecutive elements called the delay cost. A
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polynomial delay algorithm is then an algorithm with a delay cost bounded by
a polynomial.

Concerning the space-analysis, one can introduce the storage requirement which
is satisfied when the output has to be kept in the memory. Hence, one can dis-
tinguish between counting algorithms (output is only counted, and not stored),
generation algorithms (output is generated, sometimes it has to be stored) and
construction algorithms (output is generated and stored).

Consider as an example the special case where F has an exponential size
(2|S|) when it contains all the subsets of S, thus (F,⊆) is a boolean lattice.
The generation of F then consists in generating all subsets of S, that can be
performed in O(1) per element using algorithms of constant amortized time or
of constant delay. Moreover, since storage is not required by these algorithms,
they have a non exponential space complexity.

6.2.0.1 Generation of Σcd. Since Σcd has an exponential size in the
worst-case, any generation algorithm has to be analyzed by considering the
time-complexity per implication. Currently, there exists no algorithm with a
polynomial generation per implication, using the storage requirement. More-
over, the existence of such a polynomial algorithm is still an open problem.
Wild in [60] provides an algorithm with an IS Σ as input that has an exponen-
tial time complexity per implication. His algorithm computes an intermediate
but larger UIS of exponential size in the worst case. Let us also mention in
the area of data-mining the algorithm of Taouil and Bastide in [56] where
the left-minimal implications are called proper implications. It has the same
exponential time and space complexity per implication. Bertet and Nebut’s
algorithm in [8], described by Definition 4, also generates an intermediate and
exponential but direct UIS Σd (rule F7) before minimizing it (rule F3), and
thus computes Σcd in O(|S||Σd|

2). An incremental generation algorithm has
been proposed in [6] where each implication Bi → xi is incrementally added
in the canonical direct basis issued from {Bj → xj ; j < i} in order to limit
the number of intermediate implications that have to be generated to obtain
the direct property, before the minimalisation treatment. This new algorithm
keeps an exponential worst case complexity, but an experimental study indi-
cates very significant improvements compared to existing algorithms.

6.2.0.2 Generation of ϕ and F. In [40], Mannila and Räihä propose
the generation of a closure ϕ(X) (algorithm Linclosure) in O(|S|2|Σ|), with
a given Σ as input. This algorithm iteratively scans implications of an UIS
Σ. The computation cost depends on the minimal number of implications
when using the Duquenne-Guigues canonical basis [28] Σcan of where unit
implications with the same premise are merged by X → Y = {y ∈ S : X →
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y}. The computation cost also depends on the number of iterations, in any
case bounded by |S|. In order to practically limit this number while keeping
the same complexity, Wild in [60] modifies this algorithm using additional and
sophisticated data structures. It is worth noticing that for direct UIS, and thus
with Σcd, the computation of ϕ(X) requires only one iteration. Therefore, using
Σcd, a closure ϕ(X) is obtained by Bertet and Nebut in [8] in O(|X||Σcd|)
(when expressed with respect to X) or in O(s(Σcd)) (when expressed with
respect to Σcd). They also propose in [8] an algorithm to generate the family
F by computing some closures ϕ(X). This algorithm has an exponential space-
complexity since the closed sets have to be stored, and a time complexity in
O(|S|2 + |S|cϕ) per element, where cϕ is the cost of generating one closure
ϕ(X). Therefore, their algorithm is in O(|S|3) using a given Σ as input, and
an improvement in O(|S|2 + |S|s(Σcd)) is obtained using the canonical direct
basis Σcd as input. This improvement is due to the direct property of Σcd and
can be applied to every algorithm that uses the computation of a closure ϕ(X)
as a basic step.

6.2.0.3 Other representations of F. To efficiently handle a closure sys-
tem F (or its associated closure operator ϕ), one can consider any implica-
tional system Σ generating it as a representation of F. However, the full unit
implicational system Σϕ (given by Formula (8)) would not be an efficient rep-
resentation of F for an algorithmical use. The efficiency of a representation can
be described by some simple properties: a representation of a closure system
F is efficient when it is small, readily identifiable, and when it uniquely deter-
minates F via simple and efficient generation algorithm. This paper focuses on
the representation of F by the canonical direct unit basis. However, one can
find many other (but not always efficient) representations of a closure system
F: representation by the Duquenne-Guigues canonical basis in data analysis
([28]) ; representation by Horn functions in logical programming ([22]) ; rep-
resentation by a poset of irreducibles in lattice theory ([50]) ; representation
by a table called a context in formal concept analysis ([26]) and data-mining.

Therefore, the generation of F can also be considered with various represen-
tations as input. The well-known algorithm generating F is the Next-closure
algorithm due to Ganter ([23]) in the context of formal concept analysis ([26]).
It accepts a table, and more generally a closure operator as input, and has a
polynomial space-complexity (since the closed sets do not have to be stored)
and a time complexity in O(|S|3) per element. It generates closed sets accord-
ing to a total order on all the closed sets (extending the inclusion order) called
the lectic order. One can find various algorithms generating F using different
representations, with the same complexity as the Next-closure algorithm, i.e. in
O(|S|3) per generated closed set. However, the algorithm with the best known
complexity uses a poset or a table as representation and is due to Nourine and
Raynaud in [51]. It has a time-complexity in O(|S|2) per generated closed set,
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and an exponential space-complexity since all closed sets have to be stored in a
tree structure (so it satisfies the storage requirement). Let us also mention an
attribute-incremental algorithm generating the Duquenne-Guigues canonical
basis from a context ([52]).

Another important point in this paper concerns the links between different rep-
resentations of F. For instance, in [36], one finds the correspondence between
left minimal implications (called there the minimal functional dependencies)
and prime implicates (Corollary 23). From an algorithmical point of view, let
us mention the algorithm of Mannila in [40], where Σcd is generated with the
irreducibles elements of F as input. It has an exponential time per implication
in the worst case, and is based on the generation of all minimal transversals, a
problem known to be an open problem (i.e. there actually only exists an expo-
nential algorithm to solve it). Stemming from the links between UIS and Horn
functions, let us also mention the algorithm with the best known complexity
that is due to Fredman and Khachiyan ([22]) with a DNF as input. It generates
one implication in O(|S|log |S|), i.e a quasi-polynomial time and has recently
been modified in [38] to solve this problem with a first step in deterministic
polynomial time, following by O(log2|S|) non deterministic steps. Although it
is computationaly difficult to compute Σcd with a general DNF as input, one
can compute a Σcd-implication in polynomial time with a Horn DNF or the
family F as input, using an algorithm due to Ibaraki et al. ([36]). Bertet et
al. in [7] propose a joint use of the two bases that are the Duquenne-Guigues
canonical basis Σcan ([28]) and the direct canonical basis for classification of
images of symbols [29] in data analysis (the Duquenne-Guigues canonical basis
offers the advantage of a minimal and condensed representation of data ; the
canonical direct basis allows efficient algorithm treatments). However, we will
conclude this algorithmical note by observing there is a need for more general
studies on the links between these two canonical basis, the direct one and the
non-direct one.

7 Conclusion

Since equivalent notions such as closure systems (or systems of sets closed
by union), closure operators (or dual closure operators), full systems of im-
plications (or of dependencies), (pure) Horn functions have been studied by
different authors in different domains (topology, lattice theory, hypergraph
theory, choice functions, relational data bases, data mining and concept anal-
ysis, artificial intelligence and expert systems, knowledge spaces, logic and
logic programming, theorem proving...), it is not surprising that one finds the
same notions, results or algorithms under various names. For instance, in AI
the meet-irreducible elements of a lattice of closed sets are called its char-
acteristic sets, the associated closure operator is called the forward chaining
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procedure. In the context of Horn functions a directed graph introduced as
earliest in 1987 by different authors on the set of the Boolean variables plays
an important role. It can be shown that in the case of pure Horn function,
the relation defined by this graph is the inverse of the dependency relation
defined in section 3.2 (it is also the domination relation defined in [5]. On
the other side, on can also find many original results or algorithms but which
are generally known only in a specific domain. It would be very profitable to
increase (or create) the communications between the various domains that use
the same (or equivalent) notions and tools. Our paper is a first step in this
direction and we intend to take further steps.

We also intend to work on the relationship between the canonical direct unit
implicational basis, and the Duquenne-Guigues canonical basis mentioned in
the introduction. Recall that this basis is an implicational system (IS for short)
i.e. a binary relation on P(S) and that one can associate to it (as to any IS) an
equivalent UIS by replacing each implication A → B by the set of implications
{A → b : b ∈ B}. We denote Σcan the UIS deduced of the Duquenne-Guigues
basis by applying this rule. Consider in our example the two bases Σcan (the
UIS deduced from the canonical basis) and Σcd (the canonical direct unit
basis):

Σcan =











(1) 5 → 4 (2) 23 → 4 (3) 24 → 3 (4) 34 → 2

(5) 14 → 2 (6) 14 → 3 (7) 14 → 5 (8) 2345 → 1

Σcd =







































( 1 ) 5 → 4 ( 2 ) 23 → 4 ( 3 ) 24 → 3 ( 4 ) 34 → 2

( 5 ) 14 → 2 ( 6 ) 14 → 3 ( 7 ) 14 → 5 ( 8 ) 25 → 1

( 9 ) 35 → 1 (10) 15 → 2 (11) 35 → 2 (12) 15 → 3

(13) 25 → 3 (14) 123 → 5

Remark that Σcan is a proper UIS since for every implication the conclusion
is not included in the premise. Remark also that Σcan 6⊆ Σfree (Example 2)
since the Σcan-implication (8) does not belong to Σfree. One can also verify
that Σcan is not direct, by considering the ϕΣ-closure of 15: πΣ(15) = 15 + 4
by applying Σcan-implication (1) and π2

Σ(15) = (15 + 4) + 2 + 3 by applying
Σcan-implications (5) and (6). Therefore ϕΣ(15) 6= πΣ(15).

We conclude that this paper is contradicting a conjecture of the literature (in
[37]). Indeed, one observes that the premise of implication (10) of Σcd is not
contained in a premise of any implication of Σcan.
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