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bd de l’Hôpital, 75647 Paris Cedex 13, France. We thank A. Chateauneuf, M. Cohen, J.Y. Jaffray, P. Mongin and
B. Walliser for useful comments. Financial support from an ACI grant by the Ministry of Research is gratefully
acknowledged.

1



Abstract

We provide a general theorem on the aggregation of preferences under uncertainty. We
study, in the Anscombe-Aumann setting a wide class of preferences, that includes most
known models of decision under uncertainty (and state-dependent versions of these models.)
We prove that aggregation is possible and necessarily linear if (society’s) preferences are
“smooth”. The latter means that society cannot have a non-neutral attitude towards uncer-
tainty on a subclass of acts. A corollary to our theorem is that it is not possible to aggregate
maxmin expected utility maximizers, even when they all have the same set of priors. We
show that dropping a weak notion of monotonicity on society’s preferences allows one to
restore the possibility of aggregation of non-smooth preferences.

Keywords: Aggregation, Harsanyi, Uncertainty, Multiple Priors.
JEL Number: D70, D81.

Résumé

Nous établissons un résultat général donnant les conditions sous lesquelles l’agrégation des
préférences dans l’incertain est possible. Dans un cadre à la Anscombe-Aummann, nous con-
sidérons une classe très large de préférences, incluant la plupart des modèles de décision (et
leur version dépendant de l’état). Nous montrons que l’agrégation des préférences n’est pos-
sible, et nécessairement linéaire, que si les préférences agrégées possèdent une propriété assez
restrictive pouvant s’interpréter comme de la neutralité face à l’incertitude. Un corollaire de
notre théorème est qu’il n’est pas possible d’agréger des préférences du type maxmin utilité
espérée. Nous montrons que relâcher une condition faible de monotonie sur les préférences
de la société restaure la possibilité d’agréger des préférences non neutres par rapport à
l’incertitude.

Mots clé: Agrégation, Harsanyi, Incertitude, Croyances Multiples.
Numéros JEL : D70, D81.

2



1 Introduction

Harsanyi (1955) celebrated result shows that it is possible to linearly aggregate von Neumann-
Morgenstern (vNM) expected utility maximizers: the social utility is a convex combination
of the agents’ utilities. Extending this result to more general settings (for instance, staying
within the expected utility framework but allowing for different beliefs) turns out to be difficult.
In this paper, we take up this issue, widening considerably the set of preferences considered,
that encompasses many well known models of decision under uncertainty (subjective expected
utility, maxmin expected utility of Gilboa and Schmeidler (1989), Choquet expected utility
of Schmeidler (1989) and more generally c-linear biseparable preferences of Ghirardato and
Marinacci (2001), as well as state-dependent versions of these preferences).1 We show a general
impossibility result of the following form. Assume agents and society have preferences in this
domain. Then, aggregating (some) agents’ preferences is possible if and only if they possess a
form of uncertainty neutrality, to be discussed momentarily, and leads to linear aggregation. In
particular, if an agent has some kind of attitude towards uncertainty, then either he is a dictator
(society’s preferences place a zero weight on all other agents) or he gets a zero weight in the
society’s preferences. A particular case of interest is when agents follow the maxmin expected
utility model (MMEU henceforth) of Gilboa and Schmeidler (1989), in which an agent evaluates
an act by taking its minimal expected utility with respect to a set of priors. Then, a corollary
of our result is that aggregation of such agents is impossible unless they are actually expected
utility agents (in which case the set of priors is a singleton). Going beyond this impossibility
result, our general approach enables us to identify which axioms are conflicting. In order to
present this tension, we need to explain in more detail which class of preferences we deal with.

The class of preferences we consider can be described as follows. These are preferences for
which there exists a set of acts, that we call regular acts, that have the following two properties.
First, they cannot be used to hedge other acts (since we are in the Anscombe-Aumann setting,
hedging is easily defined via mixture of acts). Second, the sure-thing principle applies when
comparing binary acts in this class.2 One can think of this set of acts as constant acts but,
more generally, for instance for state-dependent preferences, constant acts need not have these
two properties. Preferences of this type are shown to be represented on these binary acts
by a functional V that is affine with respect to regular acts. We also show that V can be
further decomposed on binary acts. For each event E, the evaluation of fEg can be decomposed
additively: if f is preferred to g for instance, it is the sum of the evaluation of f on E, VE(f),
and of the evaluation of g on Ec, VEc(g). If the opposite preference holds between f and g,
i.e., if now g is preferred to f , then the evaluation of fEg is still additive, but with respect to

1A limitation, on which we will comment in Section 3.2, is that we adopt Anscombe and Aumann (1963)
approach.

2That is, if f, g, h, h′ are acts that cannot be used to hedge other acts, and E an event, then, if fEh, the act
giving f(s) if s ∈ E and h(s) otherwise is strictly preferred to gEh then fEh′ is preferred to gEh′.
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two different functions V ′
E and V ′

Ec . In the particular case of subjective expected utility, VE is
simply the vNM utility functions times the subjective probability of E. For MMEU preferences,
VE is the vNM utility function times the lowest probability of E in the set of priors, while V ′

E

is that same vNM utility function multiplied this time by the highest probability of E in the
set of priors. We proceed to show that V (fEg) + V (gEf) = V (f) + V (g) if and only if the
agent is uncertainty neutral with respect to binary acts (on E) in the following usual sense:
combining probabilistically two indifferent acts fEg and hE` does not lead to an improvement.3

In that case, we will say that preferences are smooth on event E. As soon as there is a wedge
between V (fEg) + V (gEf) and V (f) + V (g), preferences exhibit a non neutral attitude towards
uncertainty.

Our impossibility result can then be stated more precisely. Consider agents that have prefer-
ences in the class just described and assume they are sufficiently diverse (in a sense made precise
in Section 3). Assume that society’s preferences are also in this class. Then the Pareto axiom
holds if and only if either there is an oligarchy of agents with smooth preferences, or there is
a dictator. Specifically, if V0 represents the society’s preferences and Vi the agents’, the only
possible aggregation is that V0 =

∑
i λiVi+µ where λi ≥ 0 and µ are real numbers. If two agents

get a non zero weight, then they must have smooth preferences on any event and society has
smooth preferences as well. Thus, any behavior that is non neutral towards uncertainty leads
to the impossibility of linear aggregation. As a consequence, it is not possible that society’s
preferences be, say, uncertainty averse, unless there is a dictator. To reiterate, if one restricts
attention to the class of MMEU preferences that do not reduce to subjective expected utility
(SEU henceforth), then it is impossible to aggregate agents’ preferences even if they happened
to have the same set of priors.

The theorem also points to ways of restoring possibility of aggregating non-smooth prefer-
ences. One, which we discuss in some detail, is to abandon the sure-thing principle on binary
acts. At a conceptual level, it shows that, in general, two forms of monotonicity of the society’s
preferences might be conflicting. The first one comes from Pareto, which is a monotonicity
condition imposed on society’s preferences when viewed as preferences defined on the agents’
utilities. The second is a form of event-wise monotonicity that states that if an act is preferred
to another one conditionally on an event and on the complement of that event, then it should
be preferred globally. Under smoothness of the preferences, these two monotonicity conditions
are compatible, as a direct consequence of the additivity of the functional representing society’s
preferences. However, as soon as one drops smoothness, the tension between these two forms of
monotonicity creeps in and is responsible for the impossibility result we obtain. We argue in the
final section of the paper that dropping the sure-thing principle on binary acts for the society’s
preferences might be compelling.

The result complements several previous results in the literature. Seidenfeld, Kadane, and
3This is how Gilboa and Schmeidler (1989) define uncertainty neutrality, for a richer set of acts.
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Schervish (1989) and Mongin (1995) showed that aggregation of SEU agents was not possible as
soon as they have different beliefs. Mongin (1998) showed that expanding the class of preferences
to state-dependent preferences would yield a possibility result but argued against this way of
restoring the possibility of aggregating preferences. He showed in particular that as soon as
one pins down the beliefs of the agents then state-dependence is of no help. Chambers and
Hayashi (2003) showed that eventwise monotonicity (P3) and weak comparative probability
(P4) were incompatible with the Pareto axiom. Relaxing these axioms while keeping the sure-
thing principle leads to state-dependent expected utility preferences, for which they show a
possibility result in a Savage setting. Our setting allows for state-dependence preferences from
the beginning, and our impossibility theorem applies to non-smooth state-dependent preferences
as well. Gilboa, Samet, and Schmeidler (2004) showed in a SEU setting, that imposing the Pareto
axiom on issues for which agents are unanimous (have identical beliefs) implies that the society’s
beliefs have to be an affine combination of agents’ beliefs and, similarly, that the society’s vNM
utility function has to be a linear combination of agents’ vNM utility functions (note that this
does not imply that society’s overall utility function is a convex combination of the agents’).
Blackorby, Donaldson, and Mongin (2004) showed, in a somewhat different framework (that of
ex ante-ex post aggregation), that aggregation was essentially impossible in the rank dependent
expected utility model.

The rest of the paper is built as follows. Section 2 contains the decision theoretic material
needed for our result; in particular it gives the characterization of a very wide class of preferences
that include, to the best of our knowledge, all models of decision under uncertainty cast in the
Anscombe-Aumann setup (as well as their state-dependent versions). Section 3 contains the
main result of the paper, which establishes that the notion of smoothness identified in the
previous section is key to draw the line between possibility and impossibility of aggregation. It
also contains a discussion of the proof and how it could be extended to a more general setting
than Anscombe-Aumann’s. Finally, it contains a discussion of the tension between the Pareto
principle and a weak form of monotonicity of society’s preferences, giving directions to restore
the possibility of aggregation of non smooth preferences. Proofs are gathered in two appendices;
the first one contains all the material concerning preference representation while the second one
contains the proof of our main theorem.

2 Setup and representation results

We consider a society made of a finite number of agents N ′ = {1, . . . , n}. Let N = {0, 1, . . . , n}
where 0 refers to society. Uncertainty is represented by a set S and an algebra of events Σ.
Let X be a non-empty set of consequences and Y be the set of distributions over X with finite
supports. Let A be the set of acts, that is, functions f : S → Y which are measurable with
respect to Σ. Since Y is a mixture space, one can define for any f, g ∈ A and α ∈ [0, 1], the act
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αf + (1− α)g in A which yields αf(s) + (1− α)g(s) ∈ Y for every state s ∈ S. Let Ac denote
the set of constant acts. For an event E and two acts f, g, denote fEg the act giving f(s) if
s ∈ E and g(s) if not.

We model the preferences of an agent i ∈ N ′ on A by a binary relation %i, and, as customary
we denote by ∼i and Âi its symmetric and asymmetric components. Society’s preferences
are denoted %0. We now introduce the structure we impose on the agents’ and the society’s
preferences, dropping subscript for simplicity.

The first axiom is usual, will be maintained throughout and states that preferences are a
complete, transitive and continuous relation.

Axiom 1 For all f, g, h ∈ A,

1. f % g or g % f ;

2. if f % g and g % h then f % h;

3. If f Â g and g Â h, then there exist α, β ∈ (0, 1) such that αf + (1 − α)h Â g and
g Â βf + (1− β)h.

We next introduce a set of acts which will play a crucial role in the sequel. These are acts
on which preferences have some linear structure.

Definition 1 A set of acts B ⊂ A is regular with respect to % if it satisfies the following
conditions

1. B is a mixture set, that is for all f, g ∈ B and α ∈ (0, 1), αf + (1− α)g ∈ B;

2. For all f ∈ B, for all g, h ∈ A, α ∈ (0, 1], g % h ⇔ αg + (1− α)f % αh + (1− α)f ;

3. For all acts f , g, h, h′ in B and events E, fEh Â gEh ⇒ fEh′ % gEh′.

A regular set of acts is thus a mixture set (condition 1) made of acts that cannot be used to
hedge against other acts (condition 2) and that satisfy the sure-thing principle for binary acts
(condition 3). It is included in the set of crisp acts as defined in Ghirardato, Maccheroni, and
Marinacci (2004). Note that the whole set A is a regular set of acts for subjective expected
utility (both state-independent and state-dependent).

Take now the MMEU model of Gilboa and Schmeidler (1989). In this model, f % g if and
only if minC

∫
u ◦ fdp ≥ minC

∫
u ◦ gdp, where C is a convex set of priors and u : Y → R is a

vNM utility function. For these preferences, the set of constant acts, Ac, is a regular set. It is
trivially a mixture set, and the two other properties can be easily checked on the functional.4

4For instance, the binary sure-thing principle is satisfied as fEh Â gEh is equivalent to saying that
minC p(E)(u(f) − u(h)) > minC p(E)(u(g) − u(h)) which in turn implies that u(f) > u(g), the latter imply-
ing that minC p(E)(u(f)− u(h′)) ≥ minC p(E)(u(g)− u(h′)).
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From an axiomatic view point, the second property is equivalent to C-independence, and the
third property is a consequence of Monotonicity.

Ac is also a regular set for Choquet Expected Utility (CEU henceforth) preferences as defined
and axiomatized in Schmeidler (1989). In this model, f % g if and only if

∫
Ch u ◦ fdν ≥∫

Ch u◦gdν, where u is a vNM function, ν is a capacity, i.e., a set function defined on (S, Σ) such
that ν(∅) = 0 and ν(S) = 1, and such that for two events E, F , E ⊂ F , ν(E) ≤ ν(F ), and for
any bounded and measurable function φ,

∫
Ch φdν, the Choquet integral of φ with respect to ν

is defined as follows
∫

Ch
φdν =

∫ ∞

0
ν({s ∈ S : φ(s) ≥ t})dt +

∫ 0

−∞
[ν({s ∈ S : φ(s) ≥ t})− 1]dt.

These two leading models, as well as the α-MMEU model,5 are particular cases of a more
general class of preferences, c-linear biseparable preferences, defined in Ghirardato and Marinacci
(2001) and refined in Ghirardato, Maccheroni, and Marinacci (2005). These preferences can
be represented by a function V , affine on Ac, such that for f, g ∈ Ac, f Â g, V (fEg) =
ρ(E)u(f) + (1 − ρ(E))u(g) where ρ is a capacity. It is easy to see that Ac is a regular set for
any preferences of this type.

In all these models, constant acts have the feature that they cannot be used to possibly
hedge other acts. Ac might also be a regular set for preferences that do not necessarily fall into
the models mentioned above. For instance, consider a state-dependent MMEU representation
with respect to C = {p ∈ ∆({1, 2, 3, 4}) |p = (α/2, (1− α)/2, α/2, (1− α)/2), α ∈ [0, 1]}, with
state-dependent utilities us satisfying u1 = u2 and u3 = u4. One can easily check that Ac is
regular for such a representation. More generally however, a regular set of acts does not have
to include constant acts.

Next, we define the notion of a representation of preferences that is affine on a subset of acts.

Definition 2 Let B ⊂ A. A function V : A → R is a B-affine representation of %, if

1. for all f, g ∈ A, f % g if and only if V (f) ≥ V (g);

2. for all f ∈ A, h ∈ B, and α ∈ (0, 1), V (αf + (1− α)h) = αV (f) + (1− α)V (h).

It is well known that MMEU, α-MMEU and CEU preferences are Ac-affine (or simply C-
affine). The next result provides a representation of preferences that admit a set of regular acts
and thus includes the models mentioned. This representation will be key to establish under
which conditions linear aggregation is possible.

Proposition 1 Let % be a binary relation on A that satisfies Axiom 1. Assume that there exists
a set B ⊂ A which is regular with respect to % and, furthermore, that % is not degenerate on B
(i.e., there exist f, g ∈ B such that f Â g.) Then,

5These preferences are a generalization of MMEU preferences, in which the utility of an act f is given by
α minC

∫
u ◦ fdp + (1−α)maxC

∫
u ◦ fdp. See Jaffray (1989) and Ghirardato, Maccheroni, and Marinacci (2004).
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1. there exists a B-affine representation of %, V : A → R, which is unique up to a positive
affine transformation;

2. for any event E, there exist four functions V E , V Ec , V E , V Ec such that for all f, g ∈ B

V (fEg) = V E(f) + V Ec(g) if f % g

= V E(f) + V Ec(g) if f - g

3. for any event E, there exists kE ∈ R such that for all f, g ∈ B, V (fEg)+V (gEf)−V (f)−
V (g) = kE |V (f)− V (g)|.

Preferences that satisfy the requirements of Proposition 1 will be called pseudo-additive
(with respect to B) in the following. Most models of decision under uncertainty cast in the
Anscombe-Aumann framework are pseudo-additive. α-MMEU preferences and more generally
c-linear biseparable preferences are of this type. One could imagine state-dependent versions of
these models that would fit our setting.6 The following example illustrates its generality.

Example 1 [state-dependent α-MMEU] Consider the following functional form, representing
α−MMEU state-dependent preferences.

V (f) = α min
p∈C

Epus(f(s)) + (1− α)max
p∈C

Epus(f(s))

Let B be the set of constant utility acts, that is B = {f ∈ A s.th. ∀s, t us(f(s)) = ut(f(t))}.
We now establish that B is regular with respect to the preferences represented by α−MMEU
state-dependent functional above. Notice first that B is a mixture set. Second, it is also easy
to establish that V (αf + (1− α)g) = αV (f) + (1− α)V (g) for all f ∈ B and g ∈ A. Third, we
check that condition 3 of Definition 1 holds as well.

Remark that for all f, h ∈ B, one has:

V (fEh) = α minp∈C(p(E)V (f) + (1− p(E))V (h)) + (1− α) maxp∈C(p(E)V (f) + (1− p(E))V (h))

=
{ (

αp(E) + (1− α)p(E)
)
V (f) +

(
α(1− p(E)) + (1− α)(1− p(E))

)
V (h) if V (f) ≥ V (h)(

αp(E) + (1− α)p(E)
)
V (f) +

(
α(1− p(E)) + (1− α)(1− p(E))

)
V (h) if V (f) ≤ V (h)

where p(E) = minp∈C p(E) and p(E) = minp∈C p(E).
Now, for all f, g, h ∈ B, it is straightforward, using the expression obtained for V (fEh) and

looking at all the possible ranking of V (f), V (g), V (h), to check that V (fEh) ≥ V (gEh) if and
only if V (f) ≥ V (g), thus establishing that condition 3 holds. Hence, one can conclude that
state-dependent α-MMEU are pseudo-additive with respect to B. The functions V E , V Ec , V E ,
and V Ec can easily be identified by looking at the expression obtained for V (fEh).

6To the best of our knowledge such models have not been studied in the literature, although there is no
difficulty imagining that they could be given sound axiomatic foundations.
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We now comment on the properties of pseudo-additive preferences. The first item in the
proposition is straightforward and well known (it follows from vNM like arguments). The second
item establishes that the evaluation of acts of the form fEg for f, g ∈ B can be decomposed
in a pseudo-additive manner, the decomposition being dependent on the ranking of the two
acts. To illustrate this, consider MMEU preferences represented by V (f) = minp∈C

∫
u ◦ fdp.

Let f, g be constant acts and assume f Â g. Define for any event E, p(E) = minp∈C p(E) and
p̄(E) = maxp∈C p(E), V (fEg) = p(E)u(f) + (1 − p(E))u(g) = p(E)u(f) + p̄(Ec)u(g). Hence,
defining V E(f) = p(E)u(f) and V Ec(g) = p̄(Ec)u(g), one gets V (fEg) = V E(f) + V Ec(g).
Similarly, one can define V E(f) = p̄(E)u(f) and V Ec(g) = p(Ec)u(g).

The third item can be interpreted as defining a measure of the agent’s attitude towards
uncertainty attached to an event. We illustrate this for c-linear biseparable preferences: if f % g,
V (fEg) + V (gEf)− V (f)− V (g) = ρ(E)u(f) + (1− ρ(E))u(g) + ρ(Ec)u(f) + (1− ρ(Ec))u(g)−
u(f)−u(g) = (ρ(E)+ρ(Ec)−1)(u(f)−u(g)). Defining kE = ρ(E)+ρ(Ec)−1 yields the desired
result. Intuitively, kE 6= 0 means that preferences exhibit a “kink” on event E, reflecting some
non-neutral attitude towards uncertainty: in the previous illustration, f and g are constant
acts, whose evaluation is therefore independent from any attitude towards uncertainty. On the
other hand, the evaluation of acts fEg and gEf is susceptible to be affected by the uncertainty
introduced. If kE < 0, the sum of the evaluations of these two acts is smaller than the sum
of the evaluation of f and g. This downward bias reflects uncertainty aversion. A positive kE

would on the other hand reflect uncertainty loving. We now make this intuition more formal by
defining a notion of “smoothness” of the preferences on an event for a given set of acts.

Definition 3 Let B ⊂ A be regular with respect to %. Say that % is smooth on an event E with
respect to B if for all f, g, h, ` ∈ B such that fEg ∼ hE` and all α ∈ (0, 1), αfEg + (1−α)hE` ∼
fEg. Furthermore, say that % is smooth with respect to B if it is smooth on any event.

Smoothness is defined by saying that the preferences are uncertainty neutral, as defined in
Gilboa and Schmeidler (1989), with respect to binary acts whose components are in a regular
set B. It is thus a weak form of uncertainty neutrality and we are not aware of a decision model
in which preferences can be uncertainty neutral with respect to such binary acts and at the same
time exhibit uncertainty aversion (or a taste for uncertainty) for some other acts in A. SEU
preferences are obviously smooth with respect to A, while c-linear biseparable preferences are
smooth with respect to Ac only on events for which ρ(E) = 1 − ρ(Ec). For instance, MMEU
preferences are not smooth with respect to Ac on the events for which p̄(E) 6= p(E). Our last
result in this section shows that, as hinted above, kE is an indicator of whether preferences are
smooth on E.

Proposition 2 Under the representation of Proposition 1, % is smooth on event E with respect
to B if and only if kE = 0.
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Before turning to the main result of the paper, let us summarize the decision theoretic
foundations on which it is built. We considered a very wide class of preferences in the Anscombe-
Aumann setting, that includes c-linear biseparable preferences and therefore MMEU and CEU
preferences (and state-dependent versions thereof). We defined a set of acts on which such
preferences admit a pseudo-additive representation and characterized what it means for such a
representation to be smooth on an event. In the following section, we argue that smoothness is
the crucial property that delimits the frontier between the possibility and impossibility of linear
aggregation.

3 Aggregation

In this Section, we first state our main theorem and an important corollary for c-linear bisep-
arable preferences. We then present informally the main argument of the proof, pointing out
how it applies were one to abandon the Anscombe-Aumann setting. We end with a discussion
of the tension that the theorem uncovers and argue that dropping the sure-thing principle on
binary acts for the society’s preferences might be a reasonable way to restore the possibility of
aggregation.

3.1 Main Theorem

We adopt the weak form of the Pareto axiom.

Axiom 2 (Pareto) For all f, g ∈ A, [∀i ∈ N ′, f Âi g ⇒ f Â0 g].

For the aggregation problem to be interesting, one needs to impose some diversity among
the preferences that one seeks to aggregate. The next definition provides one such condition
(see Mongin (1998)).

Definition 4 The n binary relations {%i}i∈N ′ satisfy the Independent Prospects Property on
a set B ⊂ A if for all i ∈ N ′, there exist h?

i , h?i ∈ B such that:

h?
i Âi h?i and h?

i ∼j h?i ∀j ∈ N ′ \ {i}.

Theorem 1 Let {%i}i∈N be binary relations on A and {Bi}i∈N be non-empty subsets of A.
Assume that

1. for all i ∈ N , %i satisfies Axiom 1;

2. for all i ∈ N , Bi is regular with respect to %i;

3. {%i}i∈N ′ satisfy the Independent Prospects Property on ∩i∈NBi.

Then, Axiom 2 holds if and only if,
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(i) there exists a Bi-affine representation Vi of %i for all i ∈ N , unique weights (λ1, · · · , λn) ∈
Rn

+ \ {0}, µ ∈ R such that

∀f ∈ A, V0(f) =
∑

i∈N ′
λiVi(f) + µ

(ii) ∀i, j ∈ N ′, i 6= j, λi × λj 6= 0 ⇔ ∀E ∈ Σ, kE
i = kE

j = 0.

In words, under the assumptions of the theorem, either society’s preferences are a linear
aggregation of smooth individuals’ preferences or there is a dictator. It cannot be the case that
society’s preferences are the result of the aggregation of an uncertainty averse agent with any
other type (uncertainty averse, loving or neutral) of agent. A consequence of this is that if
society’s preferences are uncertainty averse (of the limited kind corresponding to the fact that
it is not smooth on some event with respect to B0), then it must be dictatorial. Remark that
the theorem is in a sense stronger than Harsanyi’s since smoothness of the preferences is a
consequence and not an assumption of the theorem.7

When specified for the general class of c-linear biseparable preferences, the following corollary
is readily deduced from the theorem.

Corollary 1 Assume %i is c-linear biseparable (and not smooth) for all i ∈ N and that the
Independent Prospect Property holds on Ac, then Axiom 2 holds if and only if there exists
j ∈ N ′ such that %0=%j.

This is a direct consequence of the fact that Ac is regular for c-linear biseparable preferences and,
as we established in the previous section, that these preferences are not smooth with respect to
that set. Two important particular cases covered by this corollary are when agents and society
have MMEU preferences and when they have CEU preferences. Hence, for instance, it is not
possible to aggregate MMEU preferences into an MMEU social preferences, irrespective of the
fact that the sets of priors are identical among agents. Whereas in an expected utility setting it
is possible to aggregate agents with the same beliefs, this does not generalize to non-expected
utility settings.

3.2 Main arguments in the proof and how they generalize

The proof is divided into two distinct parts. The first one is a direct application of Proposition 2
in De Meyer and Mongin (1995). It states that, given the underlying convex structure introduced
via the Anscombe-Aumann setting, the Pareto axiom implies that V0 is a weighted sum of the
Vis. Hence, aggregation has to be linear. The second part can itself be divided in two.

7This fact has already been noted in Blackorby, Donaldson, and Mongin (2004) study of the aggregation of
rank dependent expected utility agents. As they put it “ the EU-like conditions are to be found here in the
conclusion, whereas Harsanyi put them in the assumption; apparently, he did not realize the logical power of his
own framework.”
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First, the Independent Prospect Property on ∩i∈NBi states that for any i, there exist h∗, h∗
in ∩i∈NBi such that h∗ Âi h∗ and h∗ ∼j h∗, ∀j ∈ N ′ \ {i}. Using these acts for any i, one can
establish that for any agent i that has a non zero weight λi, kE

i = kE
0 for any event E. Thus,

all agents that are taken into account in V0 must have the same attitude towards uncertainty.
Second, we prove that kE

0 = 0 as soon as there are two agents with non zero weights. Assume
for simplicity that only agent 1 and 2 have non zero weight. The argument relies on the fact that,
using the Independent Prospect Property and mixing acts, one can find two acts f, g ∈ ∩i∈NBi

such that f Â1 g and f ≺2 g, while f ∼0 g. The smoothness of the preferences can then be
established by computing V0(fEg)+V0(gEf)−V0(f)−V0(g) in two different ways. The first one
is direct and establishes that this quantity is zero since f ∼0 g. The second one is to compute
it decomposing V0 as the sum of λ1V1 and λ2V2. Using the fact that kE

1 = kE
2 = kE

0 , this last
part establishes that kE

0 = 0. In this last argument, the fact that we have a mixture operation
available is used only to build the acts f and g.

Now, if one were to relax the Anscombe-Aumann structure and move to a setting in which
there is no well defined notion of mixture, Proposition 2 in De Meyer and Mongin (1995) cannot
be used. As a consequence, there might be other forms of aggregation than simply taking a
weighted sum of the Vis. But, if there exist two acts f and g that have the property described
above, then our argument applies and shows that if an aggregation of the Vis is possible, then
it has to be non-linear (non utilitarian). These two acts can be constructed from the h∗, h∗
identified above (which exist when the Independent Prospect Property holds) whenever some
joint continuity among the preferences of the agents is satisfied.

The conclusion we’d like to draw from this is that whenever one can identify a set of acts
(which does not necessarily have a mixture space structure) on which preferences have a pseudo-
additive representation, and if there exists such a set that is common to all agents and the society,
then, under the Independent Prospect Property, linear aggregation of preferences that are non
smooth is not possible (under mild joint regularity conditions on agents’ preferences). Thus,
for invariant bi-separable preferences, Rank Dependent Utility preferences, CEU and MMEU
preferences in a Savage setting, the philosophy of the result applies: linear aggregation is possible
only if preferences are smooth. If non smooth, then either there is a dictator or there might be
a non-linear aggregation.

To illustrate this discussion, take the MMEU model and assume that agents all have their
set of priors equal to the simplex, so that Vi(f) = mins ui(f(s)). In the Anscombe-Aumann
version (the one originally axiomatized by Gilboa and Schmeidler (1989)), f(s) is a lottery,
and we showed that aggregation is not possible. Now, in the Savage version of the MMEU
model in which f(s) is an arbitrary consequence, linear aggregation is not possible but taking
V0(f) = mini Vi(f) is a perfectly legitimate preference for the society, that respects the Pareto
axiom and is of the MMEU type since one can define u0 by u0(f(s)) = mini ui(f(s)) and V0(f)
is then simply equal to mins u0(f(s)).
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3.3 On the possibility of aggregating non-smooth preferences.

As shown by Mongin (1998) and Chambers and Hayashi (2003) a way to circumvent the im-
possibility of aggregating SEU agents when they have different beliefs is to enrich the possible
domain for society’s preferences. Specifically, they allowed for state-dependence in society’s
preferences (while remaining in the SEU class). Since state-dependent preferences are already
included in our class of preferences, this particular way of enlarging the domain is not relevant.
However, Theorem 1 makes it clear that several options are available to restore the “possibility
of possibility”.

One option is to relax condition 3 in the theorem, so that the Independent Prospect Property
does not hold on ∩i∈NBi. An uninteresting way would be to assume that tastes are not diverse
(for instance, aggregation is trivially possible if all agents are identical). A less trivial way to
relax that condition is to say that it does not have any bite because ∩i∈NBi is empty, and
more specifically because the regular set for society’s preferences does not intersect ∩i∈N ′Bi.
However, in general, regular sets are not easy to characterize, so we cannot provide a general
characterization of when is it that ∩i∈NBi is empty. To illustrate, take the particular case in
which agents have c-bilinear preferences (and hence Ac is a regular set) that are non smooth.
Our theorem then says that aggregation is impossible if Ac is regular with respect to %0 (and the
Independent Prospect Property holds on Ac), but leaves open the fact that some pseudo-additive
preferences whose regular set of acts does not intersect Ac might aggregate agents’ preferences.

The second option is to relax condition 2 in Theorem 1, and to assume that there is no set
of acts which is regular with respect to society’s preferences. This in turn can be due either to
the fact that there are no acts f such that for all g, h ∈ A, α ∈ (0, 1], g % h ⇔ αg + (1− α)f %
αh + (1− α)f , or that there is no set of acts B such that for all acts f , g, h, h′ in B and events
E, fEh Â gEh ⇒ fEh′ % gEh′, that is, the binary sure-thing principle is violated. We explore
this latter avenue in more detail now and show why it is the tension between this principle and
the Pareto principle that is at the heart of the impossibility result and why smoothness allows
one to bypass the problem.

As we noticed in Section 2 when we introduced the binary sure-thing principle (Definition
1), it is a consequence of monotonicity in the MMEU model.8 Thus a violation of this axiom
(by society) would mean that monotonicity is not satisfied by %0. There are actually compelling
reasons as to why society might want to violate monotonicity. Consider the following society,
made of two agents 1 and 2. There are two states of nature s1 and s2. The following matrix
gives the (certain) utility associated in each state to acts f , g, h, and ` for both agents.

8Monotonicity requires that if f(s) % g(s) for all s, then f % g.
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s1 s2

f (1, 1) (1, 1)
g (10, 0) (0, 10)
h (0, 10) (0, 10)
` (10, 0) (10, 0)

Assume agents are MMEU with the simplex as a set of priors. Then both agents would prefer
f to g. The Pareto condition then yields that society should prefer f to g. Now, to make the
argument as simple as possible, imagine that it were possible to aggregate agents’ preferences
and assume that V0 = 1

2V1 + 1
2V2. Then, according to these preferences the constant act g(s1)

is preferred by society to f(s1) and similarly g(s2) is preferred to f(s2). Thus, monotonicity
yields that g is preferred to f by society, hence violating the conclusion obtained from the
Pareto condition. As expected, º0 does not satisfy the sure-thing principle on binary acts:
V0(fs1`) = 1

2V1(fs1`) + 1
2V2(fs1`) = 1

2 × 1 + 1
2 × 0 = 1

2 and similarly V0(hs1`) = 0. Hence,
fs1` Â0 hs1`. On the other hand, V0(hs1h) = 5 and V0(fs1h) = 1

2 , and therefore hs1h Â0 fs1h.
We hence get that fs1` Â0 hs1` together with hs1h Â0 fs1h, which is a violation of the sure-thing
principle for binary acts.

We now generalize the lesson from this example. Consider a society in which some set B
is regular for all agents’ preferences (assumed to satisfy Axiom 1). Preferences hence admit
B-affine representations Vi. Assume furthermore that the {ºi}i∈N ′ satisfy the Independent
Prospect Property on B. When is it that the preference relation represented by a weighted sum
of the Vi, say V0 =

∑
i λiVi, is acceptable for the society?

Observe first that V0 is B−affine. Therefore, B satisfies condition 2 of Definition 1 with
respect to º0. Furthermore, B is a mixture set, since it is a regular set with respect to the
ºi. Finally, º0 (represented by V0) obviously satisfies Axiom 2. Hence, the impossibility result
should come from a conflict between Axiom 2 and the requirement that social’s preferences
satisfy the sure-thing principle for binary acts on B, when agents’ preferences are not smooth.
Furthermore, this conflict should disappear whenever preferences are smooth.

First, note that %0 can be viewed as a preference relation over the agents’ utility levels, i.e.,
by a preference relation º̂0 on K = {(V1(f), · · · , Vn(f)) |f ∈ A}. Then, Axiom 2 can be read
as a monotonicity of º̂0 on K. This monotonicity is to be understood as a component-wise
monotonicity, where each component is an agent’s utility level.

On the other hand, the requirement that º0 satisfies the sure-thing principle for binary acts
on B can be interpreted as an event-wise monotonicity condition on the preference relation º0

(restricted to binary acts) on B. To see this, define a binary relation DE
0 on B by f DE

0 g if and
only if fEh º0 gEh for all h ∈ B, and by BE

0 its asymmetric part. The sure-thing principle on
binary acts implies that DE

0 is a weak order and represents conditional preferences on E. By
definition, it satisfies the independence axiom on B. Therefore, DE

i can be represented by a vNM
function. Hence, by Harsanyi’s Theorem, DE

0 can be represented by a linear combination of the
vNM representations of the DE

i . This implies in particular that %0 is event-wise monotonic in
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the following sense: for any f, g, h, ` ∈ B, if f DE
0 g and h DEc

0 `, then fEh º0 gE`.
Now, consider what happens if all agents have smooth preferences. In this case, we can

choose for ºi a representation of the following form on binary acts: Vi(fEg) = V E
i (f) +

V Ec

i (g), where V E
i and V Ec

i are vNM representations of DE
i and DEc

i , respectively. There-
fore, V0(fEg) =

∑
i λiVi(fEg) = (

∑
i λiV

E
i (f)) + (

∑
i λiV

Ec

i (g)). On the other hand, ap-
plying Harsanyi’s Theorem, V E

0 is a linear combination of the V E
i (and similarly with Ec

instead of E). Therefore, V E
0 (f) =

∑
i λ

E
i V E

i (f) and V Ec

0 (g) =
∑

i λ
Ec

i V Ec

i (g), which in
turn implies (since obviously º0 has to be smooth, and DE

0 should coincide with DEc

0 ) that
V0(fEg) = (

∑
i λ

E
i V E

i (f))+ (
∑

i λ
Ec

i V Ec

i (g)). Identifying the two expressions we got for V0, and
using the Independent Prospect Property, we finally get that λi = λE

i = λEc

i . Hence, it does
not matter if one first chooses to aggregate the agents’ preferences event by event, and then
build the representation of º0, or if one directly aggregates agents’ preferences on binary acts.
Therefore, in this case, the two monotonicity requirements do not conflict. The crucial point,
of course, is that one gets the same linear structure among events at the individual level, and
among agents. The possibility result is a direct consequence of the well-known fact that two
steps linear aggregations are equivalent whatever the order in which they are done.

Now, assume that some individual has non-smooth preferences. Then, one still get that V0

is a linear aggregation of the Vi. In order to apply the same trick as above, one should aggregate
the V̄ E

i and the V E
i separately, and then build the V0 functional. But this can be done only for

binary acts fEg such that all individuals agree that, e.g., f ºi g. By the Independent Prospect
Property, there is some pair of acts for which such an agreement does not exist, which prevents
the possibility of building V E

0 in this way. Hence, aggregation is not possible, unless one is
willing to relax the sure-thing principle on binary acts.

4 Appendix

4.1 Appendix A

Proposition 1.
Condition 1 follows from a usual vNM kind of proof and is omitted here.
Condition 2 & 3 (for sake of simplicity we prove the two conditions at the same time)
For any event E and acts f, g ∈ B, say that f DE g if for all act h ∈ B, fEh % gEh. This

relation is well-defined since % satisfies the sure thing principle for binary acts. We note BE

and ≈E respectively for the strict preference part and the indifference part. It can be checked
that by definition of B, DE satisfies the vNM axioms.

Suppose there exists f∗, f∗ ∈ B such that V (f∗Ef∗) + V (f∗Ef∗) 6= V (f∗) + V (f∗). As a first
step, we show that either DE=DEc or DEc is a reverse order of DE , in the sense that f DEc g

if and only if f DE g, for all f, g ∈ B. In step 2, we complete the proof of conditions 2 and 3.
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Step 1 Suppose that f∗ % f∗. Then, we necessarily must be in one of the following case:

• f∗ BE f∗ and f∗ BEc f∗,

• f∗ BE f∗ and f∗ DEc f∗,

• f∗ DE f∗ and f∗ BEc f∗

• f∗ DE f∗ and f∗ DEc f∗.

Note that this last case is not possible. Indeed, f∗ DE f∗ implies that f∗ % f∗Ef∗ and f∗Ef∗ %
f∗ while f∗ DEc f∗ implies that f∗ % f∗Ef∗ and f∗Ef∗ % f∗. Thus f∗ % f∗Ef∗, f∗Ef∗ % f∗ while
by assumption f∗ % f∗ and therefore f∗Ef∗ ∼ f∗Ef∗ ∼ f∗ ∼ f∗ and thus V (f∗Ef∗) + V (f∗Ef∗) =
V (f∗) + V (f∗) which leads to a contradiction.

Therefore, we have essentially two cases to consider : (a) f∗ BE f∗ and f∗ BEc f∗, and (b)
f∗ BE f∗ and f∗ DEc f∗ (the third case being the symmetric of case (b)).

Case (a): f∗ BE f∗ and f∗ BEc f∗.
Let us prove that DE=DEc . Assume to the contrary that there exist f, g ∈ B such that

f BE g while g DEc f . W.l.o.g, we can take these acts such that f∗ BE f BE g BE f∗ and
f∗ DEc g DEc f DEc f∗. Indeed, we can always exhibit two acts satisfying our conditions by
mixing f, g with either f∗or f∗. Then there exist a, ac, b, bc ∈ (0, 1) such that 1 ≥ a > b ≥ 0 and
1 ≥ bc ≥ ac ≥ 0 and

f ≈E af∗ + (1− a)f∗

f ≈Ec acf∗ + (1− ac)f∗

g ≈E bf∗ + (1− b)f∗

g ≈Ec bcf∗ + (1− bc)f∗.

Let suppose a > ac. By definition of B, f ∼ (af∗ + (1− a)f∗)E (acf∗ + (1− ac)f∗). Hence,

V (f) = V ((af∗ + (1− a)f∗)E (acf∗ + (1− ac)f∗))

= V

(
a− ac

1− ac
f∗E (acf∗ + (1− ac)f∗) +

1− a

1− ac
(acf∗ + (1− acf∗)

)

=
a− ac

1− ac
V (f∗E (acf∗ + (1− ac)f∗)) +

1− a

1− ac
V (acf∗ + (1− ac)f∗)

=
a− ac

1− ac
(acV (f∗) + (1− ac)V (f∗Ef∗)) +

1− a

1− ac
(acV (f∗) + (1− ac)V (f∗))

= acV (f∗) + (a− ac) V (f∗Ef∗) + (1− a)V (f∗)
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Since f ∈ B,

V
(

1
1+a−ac f + a−ac

1+a−ac f∗Ef∗
)

= 1
1+a−ac V (f) + a−ac

1+a−ac V (f∗Ef∗)

= 1
1+a−ac (acV (f∗) + (a− ac)V (f∗Ef∗) + (1− a)V (f∗)) + a−ac

1+a−ac V (f∗Ef∗)

But we also have by definition of B,

V
(

1
1+a−ac f + a−ac

1+a−ac f∗Ef∗
)

= V
((

1
1+a−ac f + a−ac

1+a−ac f∗
)

E

(
1

1+a−ac f + a−ac

1+a−ac f∗
))

= V
((

1
1+a−ac (af∗ + (1− a)f∗) + a−ac

1+a−ac f∗
)

E

(
1

1+a−ac (acf∗ + (1− ac)f∗) + a−ac

1+a−ac f∗
))

= V
((

a
1+a−ac f∗ + 1−ac

1+a−ac f∗
)

E

(
a

1+a−ac f∗ + 1−ac

1+a−ac f∗
))

= a
1+a−ac V (f∗) + 1−ac

1+a−ac V (f∗) .

Therefore,

(acV (f∗) + (a− ac) V (f∗Ef∗) + (1− a)V (f∗)) + (a− ac) V (f∗Ef∗) = aV (f∗) + (1− ac) V (f∗)

which is equivalent to

(a− ac) (V (f∗Ef∗) + V (f∗Ef∗)) = (a− ac) (V (f∗) + V (f∗))

This contradicts the fact that V (f∗Ef∗) + V (f∗Ef∗) 6= V (f∗) + V (f∗) and a > ac. In the case
where a ≤ ac, then either a < ac or a = ac but b < bc and the proof can be easily adapted in
both cases.

Hence, DE=DEc .

Case (b) : f∗ BE f∗ and f∗ DEc f∗.
In this case, we show that DEc is a reverse order of DE , that is, for all f, g ∈ B, f DE g if

and only if g DEc f .
Observe first that it has to be the case that f∗ BEc f∗. Indeed, if f∗ ≈Ec f∗, then by

definition of B, f∗ ∼ f∗Ef∗ and f∗ ∼ f∗Ef∗ and thus V (f∗Ef∗) + V (f∗Ef∗) = V (f∗) + V (f∗).
Suppose DEc is not a reverse order of DE , that is, there exist f, g ∈ B , such that f BE g while

f DEc g. As in case (a), we can assume w.l.o.g that f∗ BE f BE g BE f∗ and f∗ DEc f DEc g
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DEc f∗. Then, there exist a, ac, b, bc ∈ (0, 1) with a > b and ac ≤ bc such that

f ≈E af∗ + (1− a)f∗

f ≈Ec acf∗ + (1− ac)f∗

g ≈E bf∗ + (1− b)f∗

g ≈Ec bcf∗ + (1− bc)f∗

Either a > ac or a < ac or a = ac but b < bc. In case a > ac, we can replicate the proof made
before to show that

(a− ac) (V (f∗Ef∗) + V (f∗Ef∗)) = (a− ac) (V (f∗) + V (f∗))

We can adapt the proof to the other cases to show a similar contradiction.

Step 2 As a second step, we prove conditions 2 and 3 when there exists f, g ∈ B such that
V (fEg) + V (gEf) 6= V (f) + V (g).
Case (a) Suppose DE=DEc . Given that % is not degenerate on B, there exist f∗, f∗ ∈ B such
that f∗ Â f∗.

Thus, define for any f

V E(f) =
V (f∗Ef∗)− V (f∗)
V (f∗)− V (f∗)

V (f)

V E(f) =
V (f∗)− V (f∗Ef∗)

V (f∗)− V (f∗)
V (f)

V Ec(f) =
V (f∗Ef∗)− V (f∗)

V (f∗)− V (f∗)
V (f)

V Ec(f) =
V (f∗)− V (f∗Ef∗)
V (f∗)− V (f∗)

V (f)

Let us prove that for all f, g ∈ B,

V (fEg) = V E(f) + V Ec(g) if f % g

= V E(f) + V Ec(g) if f - g

Consider f, g ∈ B such that f % g and consider the case where V (f∗) ≥ V (f) ≥ V (g) ≥
V (f∗). We have that

f ≈E
V (f)− V (f∗)
V (f∗)− V (f∗)

f∗ + (1− V (f)− V (f∗)
V (f∗)− V (f∗)

)f∗

and
g ≈Ec

V (g)− V (f∗)
V (f∗)− V (f∗)

f∗ + (1− V (g)− V (f∗)
V (f∗)− V (f∗)

)f∗
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By definition of B, fEg ∼ (af∗ + (1− a)f∗)E (bf∗ + (1− b)f∗) where a = V (f)−V (f∗)
V (f∗)−V (f∗) and

b = V (g)−V (f∗))
V (f∗)−V (f∗) . Thus

V (fEg) = V ((af∗ + (1− a)f∗)E (bf∗ + (1− b)f∗))

= bV (f∗) + (a− b) V (f∗Ef∗) + (1− a)V (f∗)

=
(V (g)− V (f∗))V (f∗) + (V (f)− V (g))V (f∗Ef∗) + (V (f∗)− V (f))V (f∗)

V (f∗)− V (f∗)

=
(V (f∗Ef∗)− V (f∗))V (f) + (V (f∗)− V (f∗Ef∗))V (g)

V (f∗)− V (f∗)
= V E(f) + V Ec(g)

In the case where V (f∗) ≥ V (g) ≥ V (f) ≥ V (f∗), a similar computation shows that
V (fEg) = V E(f) + V Ec(g).

In the other cases, the proof can be easily adapted to show that

V (fEg) = V E(f) + V Ec(g) if f % g

= V E(f) + V Ec(g) if f - g

Define kE = V (f∗Ef∗)+V (f∗Ef∗)−V (f∗)−V (f∗)
V (f∗)−V (f∗) .

If f % g,

V (fEg) + V (gEf)− V (f)− V (g) =

= V E(f) + V Ec(g) + V E(g) + V Ec(f)− V E(f)− V Ec(f)− V E(g)− V Ec(g)

= V Ec(f)− V Ec(f) + V Ec(g)− V Ec(g)

=
(

V (f∗Ef∗)−V (f∗)
V (f∗)−V (f∗) − V (f∗)−V (f∗Ef∗)

V (f∗)−V (f∗)

)
V (f)−

(
V (f∗Ef∗)−V (f∗)

V (f∗)−V (f∗) − V (f∗)−V (f∗Ef∗)
V (f∗)−V (f∗)

)
V (g)

= kE (V (f)− V (g))

If f - g,

V (fEg) + V (gEf)− V (f)− V (g) =

= V E(f) + V Ec(g) + V E(g) + V Ec(f)− V E(f)− V Ec(f)− V E(g)− V Ec(g)

= V Ec(f)− V Ec(f) + V Ec(g)− V Ec(g)

= kE (V (g)− V (f))

Case (b): Suppose DEc is a reverse order of DE .
Let f∗, f∗ ∈ B be such that V (f∗Ef∗)+V (f∗Ef∗) 6= V (f∗)+V (f∗). Without loss of generality,

suppose that f∗ % f∗, f∗ BE f∗ and f∗ BEc f∗.
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Consider V E , V E the vNM utility functions representing DE and V Ec , V Ec the vNM utility
functions representing DEc such that

• V E (f∗) = V Ec (f∗) = V (f∗),

• V E (f∗) = V Ec (f∗) = 0,

• V E (f∗) = V (f∗) + V (f∗)− V (f∗Ef∗),

• V E (f∗) = V (f∗Ef∗)− V (f∗),

• V Ec (f∗) = V (f∗) + V (f∗)− V (f∗Ef∗),

• V Ec (f∗) = V (f∗Ef∗)− V (f∗).

Note that it is possible to choose this normalization for these vNM utility functions since
f∗ BE f∗ and f∗ BEc f∗ and thus

V (f∗Ef∗) > V (f∗) , V (f∗) > V (f∗Ef∗)

which implies that V E (f∗) > V E (f∗), V E (f∗) > V E (f∗), V Ec (f∗) > V Ec (f∗) and V Ec (f∗) >

V Ec (f∗).
Let us prove that for all f, g ∈ B,

V (fEg) = V E(f) + V Ec(g) if f % g

= V E(f) + V Ec(g) if f - g

Let f, g ∈ B such that f % g. Consider a first case where f∗ DE f DE f∗ and f∗ DE g DE f∗.
Then there exist a, b ∈ (0, 1) such that

f ≈E af∗ + (1− a)f∗

g ≈E bf∗ + (1− b)f∗

Since DEc is a reverse order of DE , we also have that

f ≈Ec af∗ + (1− a)f∗

g ≈Ec bf∗ + (1− b)f∗

Then, by definition of B, f ∼ af∗ + (1 − a)f∗ and g ∼ bf∗ + (1 − b)f∗. Since f % g and
f∗ % f∗, we get that a ≥ b. Thus,

V (fEg) = V ((af∗ + (1− a)f∗)E (bf∗ + (1− b)f∗))

= bV (f∗) + (a− b) V (f∗Ef∗) + (1− a)V (f∗)

= aV (f∗) + (1− a)(V (f∗) + V (f∗)− V (f∗Ef∗)) + 0.b + (1− b)(V (f∗Ef∗)− V (f∗))

= aV E (f∗) + (1− a)V E (f∗) + bV Ec (f∗) + (1− b)V Ec (f∗)

= V E (af∗ + (1− a)f∗) + V Ec (bf∗ + (1− b)f∗)

= V E (f) + V Ec (g)
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Consider a second case where f DE f∗ and f∗ DE g. Then, there exist a, b ∈ (0, 1) such that

f∗ ≈E af + (1− a)g

f∗ ≈E bf + (1− b)g

and

f∗ ≈Ec af + (1− a)g

f∗ ≈Ec bf + (1− b)g

and f∗ ∼ af + (1− a)g and f∗ ∼ bf + (1− b)g. Thus a > b and

V (f∗Ef∗) = V ((af + (1− a)g)E (bf + (1− b)g))

= bV (f) + (a− b) V (fEg) + (1− a)V (g)

Thus
V (fEg) =

V (f∗Ef∗)− bV (f)− (1− a)V (g)
a− b

We also have

V E (f) =
(1− b)V E (f∗)− (1− a)V E (f∗)

a− b

V Ec (g) =
bV Ec (f∗)− aV Ec (f∗)

b− a

and thus

V E (f) + V Ec (g) =
(1− b)V E (f∗)− (1− a)V E (f∗)− bV Ec (f∗) + aV Ec (f∗)

a− b

=
(1− b)V E (f∗)− (1− a)V E (f∗)− bV Ec (f∗) + aV Ec (f∗)

a− b

=
(1− b)V (f∗)− (1− a) (V (f∗) + V (f∗)− V (f∗Ef∗)) + a (V (f∗Ef∗)− V (f∗))

a− b

=
V (f∗Ef∗)− bV (f∗)− (1− a)V (f∗)

a− b

=
V (f∗Ef∗)− b (aV (f) + (1− a)V (g))− (1− a) (bV (f) + (1− b)V (g))

a− b

=
V (f∗Ef∗)− bV (f)− (1− a)V (g)

a− b

which proves that V (fEg) = V E (f) + V Ec (g).
The proof can be adapted in the cases where f DE f∗ and g DE f∗ (or f∗ DE g DE f∗) or

f∗ DE g DE f∗ and f∗ DE g or f∗ DE f and f∗ DE g.
Let suppose now that f∗ DE f DE f∗ and g BE f∗. Then, there exist a, b ∈ (0, 1) such that

f ≈E af∗ + (1− a)f∗

f∗ ≈E bg + (1− b)f∗
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Then we also have

f ≈Ec af∗ + (1− a)f∗

f∗ ≈Ec bg + (1− b)f∗

and thus

f ∼ af∗ + (1− a)f∗

f∗ ∼ bg + (1− b)f∗

which yields a contradiction to the fact that f % g.
We can prove that a similar contradiction occur if we suppose f∗ DE f and g BE f∗.
Since V E , V E are vNM representation of DE , V Ec , V Ec are vNM representation of DEc and

since they are two reverse orders, the uniqueness conditions imply that

• V E = V (f∗)−V (f∗Ef∗)
V (f∗Ef∗)−V (f∗)

(
V E − V (f∗)

)

• V Ec = V (f∗)−V (f∗Ef∗)
V (f∗)−V (f∗Ef∗)

(
V E − V (f∗)

)
+ V (f∗)

• V Ec =
V (f∗Ef∗)−V (f∗)
V (f∗)−V (f∗Ef∗)

(
V E − V (f∗)

)

Note that for all f ∈ B, V (f) = V (f∗)−V (f∗)
V (f∗Ef∗)−V (f∗)

V E(f)+
V (f∗Ef∗)−V (f∗)
V (f∗Ef∗)−V (f∗)

V (f∗). Let’s now check

that the representation of condition 3 obtains.
If f % g,

V (fEg) + V (gEf)− V (f)− V (g) = V Ec(f)− V Ec(f) + V Ec(g)− V Ec(g)

=
(

V (f∗)−V (f∗Ef∗)
V (f∗)−V (f∗Ef∗) −

V (f∗Ef∗)−V (f∗)
V (f∗)−V (f∗Ef∗)

) (
V E(f)− V E(g)

)

= V (f∗)−V (f∗)
V (f∗Ef∗)−V (f∗)

(
V E(f)− V E(g)

)

= V (f)− V (g)

If f - g,

V (fEg) + V (gEf)− V (f)− V (g) = V Ec(f)− V Ec(f) + V Ec(g)− V Ec(g)

= V (g)− V (f)

Step 3 As a third step, we consider the case where for all f, g ∈ B, V (fEg) + V (gEf) −
V (f)− V (g) = 0.
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If for all f, g ∈ B, fEg ∼ f , then for VE = V and VEc = 0, we have that V (fEg) =
VE (f) + VEc (g) which proves that conditions 2 and 3 hold.

Suppose now that there exist f∗, f∗ ∈ B such that f∗Ef∗ � f∗. Since V (f∗Ef∗) + V (f∗Ef∗) =
V (f∗)+V (f∗), w.l.o.g we can restrict our attention to two cases: (a) V (f∗) > V (f∗Ef∗) , V (f∗Ef∗) >

V (f∗) and (b) V (f∗Ef∗) > V (f∗) > V (f∗) > V (f∗Ef∗).
In either case, consider VE and VEc the vNM utility functions representing DE and DEc

such that VE (f∗) = V (f∗), VEc (f∗) = 0, VE (f∗) = V (f∗Ef∗), VEc (f∗) = V (f∗Ef∗) − V (f∗).
Note that it is possible to choose this normalization for these vNM utility functions. Indeed,
in case (a), we have f∗ BE f∗ and f∗ BEc f∗ and the normalization proposed is such that
VE (f∗) > VE (f∗) and VEc (f∗) > VEc (f∗), while in case (b), we have f∗ BE f∗ and f∗ BEc f∗

and the normalization proposed is such that VE (f∗) > VE (f∗) and VEc (f∗) < VEc (f∗).
Let f, g ∈ B and consider a first case where f∗ DE f DE f∗ and g is between f∗ and f∗

according to DEc . Then there exists a, bc ∈ (0, 1) such that

f ≈E af∗ + (1− a)f∗

g ≈Ec bcf∗ + (1− bc)f∗

If a ≥ bc, then by definition of B and since V (f∗Ef∗) + V (f∗Ef∗) = V (f∗) + V (f∗),

V (fEg) = V ((af∗ + (1− a)f∗)E (bcf∗ + (1− bc)f∗))

= bcV (f∗) + (a− bc) V (f∗Ef∗) + (1− a)V (f∗)

= aV (f∗) + (1− a)(V (f∗) + V (f∗)− V (f∗Ef∗)) + 0.bc + (1− bc)(V (f∗Ef∗)− V (f∗))

= aV (f∗) + (1− a)V (f∗Ef∗) + 0.bc + (1− bc)(V (f∗Ef∗)− V (f∗))

= aVE (f∗) + (1− a)VE (f∗) + bcVEc (f∗) + (1− bc)VEc (f∗)

= VE (af∗ + (1− a)f∗) + VEc (bcf∗ + (1− bc)f∗)

= VE (f) + VEc (g)

If bc ≥ a, then by definition of B and since V (f∗Ef∗) + V (f∗Ef∗) = V (f∗) + V (f∗),

V (fEg) = V ((af∗ + (1− a)f∗)E (bcf∗ + (1− bc)f∗))

= aV (f∗) + (bc − a) V (f∗Ef∗) + (1− bc)V (f∗)

= aV (f∗) + (1− a)V (f∗Ef∗) + 0.bc + (1− bc)(V (f∗)− V (f∗Ef∗))

= aV (f∗) + (1− a)V (f∗Ef∗) + 0.bc + (1− bc)(V (f∗Ef∗)− V (f∗))

= aVE (f∗) + (1− a)VE (f∗) + bcVEc (f∗) + (1− bc)VEc (f∗)

= VE (f) + VEc (g)

Consider now a second case, where f DE f∗ and g is between f∗ and f∗ according to DEc .
Then there exist a, bc ∈ (0, 1) such that

f∗ ≈E af + (1− a)f∗

g ≈Ec bcf∗ + (1− bc)f∗
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Therefore by definition of B,

V (f∗Eg) = V ((af + (1− a)f∗)E g) ⇔ V (f∗E (bcf∗ + (1− bc)f∗)) = aV (fEg) + (1− a)V (f∗Eg)

⇔ bcV (f∗) + (1− bc)V (f∗Ef∗) = aV (fEg) + (1− a) (bcV (f∗Ef∗) + (1− bc)V (f∗))

⇔ V (fEg) =
bcV (f∗)+(1−bc)V (f∗Ef∗)−(1−a)(bcV (f∗Ef∗)+(1−bc)V (f∗))

a

Using the fact that V (f∗) = V (f∗Ef∗) + V (f∗Ef∗)− V (f∗), we get that

V (fEg) =
(1− a + abc)V (f∗)− (1− a)V (f∗Ef∗) + a(1− bc)V (f∗Ef∗)

a

We also have that

VE (f) =
VE (f∗)− (1− a)VE (f∗)

a
VEc (g) = bcVEc (f∗) + (1− bc)VEc (f∗)

Thus

VE (f) + VEc (g) =
VE (f∗)− (1− a)VE (f∗) + a (bcVEc (f∗) + (1− bc)VEc (f∗))

a

=
V (f∗)− (1− a)V (f∗Ef∗) + a(1− bc) (V (f∗Ef∗)− V (f∗))

a

=
(1− a + abc)V (f∗)− (1− a)V (f∗Ef∗) + a(1− bc)V (f∗Ef∗)

a

and therefore V (fEg) = VE (f) + VEc (g).
In the other cases the proof can be adapted to show that V (fEg) = VE (f) + VEc (g).
Finally, remark that condition 3 is satisfied with kE = 0.

Proposition 2.
Suppose % is smooth on E with respect to B. Let us prove that for all f, g ∈ B , V (fEg) +

V (gEf) = V (f) + V (g) and thus that kE = 0.
Let f, g ∈ B. Suppose first that f ∼ g.
If f DE g and f DEc g, then f % fEg, gEf % g and thus f ∼ fEg ∼ gEf ∼ g. Therefore,

V (fEg) + V (gEf) = V (f) + V (g).
If f DE g and f CEc g, then fEg % f ∼ g % gEf . If f ∼ fEg ∼ gEf ∼ g then V (fEg) +

V (gEf) = V (f)+V (g). However, w.l.o.g let us suppose that fEg Â f . Since % is not degenerate
on B, there exists h ∈ B such that h � f . Suppose h Â f and w.l.o.g, suppose that fEg Â h Â
f ∼ g % gEf . Then

1
2
f +

1
2
h ∼ afEg + (1− a)f ∼ bgEf + (1− b)h

where a = 1
2

V (h)−V (f)
V (fEg)−V (f) and b = 1

2
V (h)−V (f)

V (h)−V (gEf) . Since

1
2
f +

1
2
h ∼ fE (ag + (1− a)f) ∼ (bg + (1− b)h)E (bf + (1− b)h)
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and % is smooth on E, then
(

b
a+bf + a

a+b (bg + (1− b)h)
)

E

(
b

a+b (ag + (1− a)f) + a
a+b (bf + (1− b)h)

)
∼ fE (ag + (1− a)f)

∼ 1
2f + 1

2h

Note that
(

b
a+bf + a

a+b (bg + (1− b)h)
)

E

(
b

a+b (ag + (1− a)f) + a
a+b (bf + (1− b)h)

)

∼ (1+a)b
a+b

(
1

1+af + a
1+ag

)
+ a(1−b)

a+b h

∼ (1+a)b
a+b f + a(1−b)

a+b h

Thus we have that

(1 + a)b
a + b

V (f) +
a(1− b)
a + b

V (h) =
1
2
V (f) +

1
2
V (h)

which is equivalent to

1
4

(
2V (fEg)+V (h)−3V (f)

V (fEg)−V (f)

)(
V (h)−V (f)

V (h)−V (gEf)

)
V (f) + 1

4

(
V (h)−V (f)

V (fEg)−V (f)

) (
V (h)+V (f)−2V (gEf)

V (h)−V (gEf)

)
V (h)

= 1
4

(
V (h)−V (f)

V (fEg)−V (f) + V (h)−V (f)
V (h)−V (gEf)

)
(V (f) + V (h))

equivalent to

(2V (fEg) + V (h)− 3V (f))V (f) + (V (h) + V (f)− 2V (gEf))V (h)
= (V (h)− V (gEf) + V (fEg)− V (f)) (V (f) + V (h))

and finally to
(2V (f)− V (fEg)− V (gEf)) (V (h)− V (f)) = 0

Since V (h) > V (f), we must have V (fEg) + V (gEf) = 2V (f) = V (f) + V (g).
The proof is similar for the other cases (f Â h or f CE g and f DEc g).
Suppose now that f Â g and consider a first case where f DE g and f DEc g and thus

f % fEg, gEf % g. First note that if f ∼ fEg, then gEf ∼ g and thus V (fEg) + V (gEf) =
V (f) + V (g).

If f Â fEg % gEf , then fEg ∼ (af + (1− a)g)E f where a = V (fEg)−V (gEf)
V (f)−V (gEf) . Since % is

smooth on E,
(

1− a

2− a
f + (1− 1− a

2− a
) (af + (1− a)g)

)

E

(
1− a

2− a
g + (1− 1− a

2− a
)f

)
∼ fEg

Note that
(

1− a

2− a
f + (1− 1− a

2− a
) (af + (1− a)g)

)

E

(
1− a

2− a
g + (1− 1− a

2− a
)f

)
=

1
2− a

f +
1− a

2− a
g

We also have fEg ∼ bf + (1 − b)g where b = V (fEg)−V (g)
V (f)−V (g) . Since f Â g, b = 1

2−a ; this is
equivalent to
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2− V (fEg)− V (gEf)
V (f)− V (gEf)

=
V (f)− V (g)

V (fEg)− V (g)
⇔ (2V (f)− V (gEf)− V (fEg))(V (fEg)− V (g)) = (V (f)− V (gEf)) (V (f)− V (g))

⇔ −V (f)V (g) + 2V (f)V (fEg)− V (gEf)V (fEg) + V (gEf)V (f)− V (fEg)V (fEg) +

+V (fEg)V (g)− V (f)V (f) = 0

⇔ (V (f)− V (fEg))(−V (f)− V (g) + V (gEf) + V (fEg)) = 0

Since f Â fEg, therefore V (fEg) + V (gEf) = V (f) + V (g). The proof is similar in the case
where f Â gEf % fEg.

Conversely, suppose that kE = 0. Consider the utility functions V E , V E , V Ec and V Ec . As
shown in the proof of Proposition 1 these functions are linear with respect to mixture on B.
Note that kE = 0 implies that for all f, g ∈ B, V E(f) + V Ec(g) = V E(f) + V Ec(g).

Let consider f, g, h, ` ∈ B such that fEg ∼ hE` and α ∈ (0, 1).

V ((αf + (1− α)h)E (αg + (1− α)`)) = V E(αf + (1− α)h) + V Ec(αg + (1− α)`)

= α
(
V E(f

)
+ V Ec(g)) + (1− α)

(
V E(h

)
+ V Ec(`))

= αV (fEg) + (1− α)V (hE`)

and thus (αf + (1− α)h)E (αg + (1− α)`) ∼ fEg.

4.2 Appendix B

In this Appendix, we provide the proof of our main result. We decompose the proof into 4
lemmas. Although not always explicitly stated in the lemma, all the assumptions of Theorem
1 are made throughout this Appendix. The following Lemma is adapted from Weymark (1993,
Lemma 1):

Lemma 1 Let (Vi)i∈N be a collection of Bi-affine representation of %i for all i ∈ N and assume
conditions 1, 2, 3 of Theorem 1 are satisfied. Then, (V1, · · · , Vn) are affinely independent on
∩i∈NBi.

Proof. Suppose on the contrary that (V1, · · · , Vn) are affinely dependent on ∩i∈NBi, that
is, there exists (λ1, · · · , λn) ∈ Rn and µ ∈ R such that

∑n
i=1 λiVi(f) + µ = 0 for all f ∈ ∩i∈NBi

with at least one λj 6= 0. Without loss of generality, assume that λ1 = −1. We then have:

V1(f) =
∑

i 6=1

λiVi(f) + µ, ∀f ∈ ∩i∈NBi. (1)

Let f and g in ∩i∈NBi be such that f ∼i g for all i 6= 1 and f Â1 g (such acts exist, since
{%i}i∈N ′ satisfy the independent prospects property on ∩iBi). But equation (1) implies that
V1(f) = V1(g), a contradiction.
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Lemma 2 There exist f̄ , f ∈ ∩i∈NBi such that f̄ Âi f for all i ∈ N ′.

Proof. For all i ∈ N ′, let f̄i, f i
∈ ∩i∈NBi be such that f̄i Âi f

i
and f̄i ∼j f

i
for all j 6= i

(such acts exist since {%i}i∈N ′ satisfy the independent prospects property). Consider αj ∈ ]0, 1[
for j = 2, .., n and define recursively f̄ j , f j by

• f̄2 = α2f̄1 + (1− α2)f̄2, f2 = α2f1
+ (1− α2)f2

• for j = 3, .., n, f̄ j = αj f̄
j−1 + (1− αj)f̄j , f j = αjf

j−1 + (1− αj)f j
.

Since ∩i∈NBi is a mixture space, f̄n, fn ∈ ∩i∈NBi and it we can check that f̄n Âi fn for all
i ∈ N ′.

Lemma 3 Let (Vi)i∈N be a collection of Bi-affine representation of %i for all i ∈ N and assume
conditions 1, 2, 3 of Theorem 1 are satisfied. There exist unique weights (λ1, · · · , λn) ∈ Rn

+\{0},
µ ∈ R, such that

∀f ∈ A, V0(f) =
∑

i∈N ′
λiVi(f) + µ.

Proof. Define F : A → Rn+1 by F (f) = (V0(f), V1(f), · · · , Vn(f)) and let Kf = co{f,∩i∈NBi}
for all f ∈ A. Clearly, for all f ∈ A, Kf is a convex set, ∩i∈NBi ⊆ Kf , and

⋃
f∈AKf = A.

We first prove that F (Kf ) is convex for all f ∈ A. Let f be fixed, and consider g1, g2 ∈ Kf ,
with g1 6= g2. Let γ = tF (g1) + (1 − t)F (g2), with t ∈ (0, 1). By definition, there exist
α1, α2 ∈ [0, 1], and h1, h2 ∈ ∩i∈N ′Bi such that g1 = α1f +(1−α1)h1 and g2 = α2f + (1−α2)h2.
Let g3 = tg1 + (1 − t)g2. Let h3 = t(1−α1)

t(1−α1)+(1−t)(1−α2)h1 + (1−t)(1−α2)
t(1−α1)+(1−t)(1−α2)h2

9. It is easy to
see that g3 = [tα1 + (1− t)α2]f + [1− (tα1 + (1− t)α2)]h3. Note that ∩i∈NBi is a mixture set
and thus h3 ∈ Kf .

We hence have, by affinity of the Vi

Vi(g3) = [tα1 + (1− t)α2]Vi(f) + [1− (tα1 + (1− t)α2)]Vi(h3)

= [tα1 + (1− t)α2]Vi(f) +

[1− (tα1 + (1− t)α2)]
[

t(1− α1)
t(1− α1) + (1− t)(1− α2)

Vi(h1)

+
(1− t)(1− α2)

t(1− α1) + (1− t)(1− α2)
Vi(h2)

]

= t[α1Vi(f) + (1− α1)Vi(h1)] + (1− t)[α2Vi(f) + (1− α2)Vi(h2)]

= tVi(α1f + (1− α1)h1) + (1− t)Vi(α2f + (1− α2)h2)

= tVi(g1) + (1− t)Vi(g2).

Hence F (g3) = γ, which proves that F (Kf ) is convex.

9Since g1 6= g2, α1 6= α2, and therefore t(1− α1) + (1− t)(1− α2) 6= 0.
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By Proposition 2 in De Meyer and Mongin (1995), the convexity of F (Kf ), axiom 2 and the
existence of two acts f, g such that f Âi g for all i ∈ N ′ imply that there exist non-negative
numbers λ1(f), · · · , λn(f), not all equal to zero, and a real number µ(f) such that, for all g ∈ Kf ,

V0(g) =
n∑

i=1

λi(f)Vi(g) + µ(f).

Now, consider f1 and f2 in A. Since ∩i∈NBi ⊆ Kf1 ∩Kf2 , for all act h ∈ ∩i∈N ′Bi, we have:
{

V0(h) =
∑n

i=1 λi(f1)Vi(h) + µ(f1)
V0(h) =

∑n
i=1 λi(f2)Vi(h) + µ(f2).

This implies that for all h ∈ ∩i∈N ′Bi,
∑n

i=1[λi(f1)−λi(f2)]ui(h)+[µ(f1)−µ(f2)] = 0. Since by
lemma 1, the Vi are affinely independent on ∩i∈N ′Bi, λi(f1) = λi(f2) i ∈ N ′ and µ(f1) = µ(f2).
Therefore, there exist n non-negative numbers, not all equal to zero, (λ1, · · · , λn) and a number
µ, such that for all f ∈ A,

V0(f) =
n∑

i=1

λiVi(f) + µ.

Finally, it remains to show that the weights (λ1, · · · , λn) and µ are unique. Since the {%i}i∈N ′

satisfy the independent prospects property, there exist for all i ∈ N ′ h∗i , hi∗ in ∩i∈N ′Āi such
that {

h∗i Âi hi∗
h∗i ∼j hi∗, ∀j ∈ N ′ \ {i}.

We have V0(h∗i ) − V0(hi∗) = λi (Vi(h∗i )− Vi(hi∗)) and thus λi is unique. This is true for all
i ∈ N ′. But since (λ1, · · · , λn) are unique, so is µ.

Lemma 4 Let (Vi)i∈N be a collection of Bi-affine representation of %i for all i ∈ N and assume
conditions 1, 2, 3 of Theorem 1 are satisfied. Let the weights (λ1, · · · , λn) ∈ Rn

+ \ {0}, µ ∈ R,
be such that

∀f ∈ A, V0(f) =
∑

i∈N ′
λiVi(f) + µ.

If there exist i, j ∈ N ′ such that λi, λj > 0, then these two agents have smooth preferences.

Proof. First, remark that for any i ∈ N ′ such that λi > 0, for any event E, kE
i = kE

0 .
Indeed, since the {%i}i∈N ′ satisfy the independent prospects property, there exists h∗, h∗ in
∩i∈N ′Bi such that {

h∗ Âi h∗
h∗ ∼j h∗, ∀j ∈ N ′ \ {i}.

We have that

V0(h∗Eh∗) + V0(h∗Eh∗)− (V0(h∗) + V0(h∗)) = kE
0 (V0(h∗)− V0(h∗))

= kE
0 λi(Vi(h∗)− Vi(h∗))
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but also

V0(h∗Eh∗) + V0(h∗Eh∗)− (V0(h∗) + V0(h∗)) = λi(Vi(h∗Eh∗) + Vi(h∗Eh∗)− (Vi(h∗) + Vi(h∗)))

= kE
i λi(Vi(h∗)− Vi(h∗))

and thus kE
0 = kE

i .
Suppose now that there exist i, j ∈ N ′ such that λi, λj > 0. Consider h∗i , hi∗, h∗j , hj∗ in

∩i∈N ′Bi such that {
h∗i Âi hi∗
h∗i ∼h hi∗, ∀h ∈ N ′ \ {i}

and {
h∗j Âj hj∗
h∗j ∼h hj∗, ∀h ∈ N ′ \ {j} .

Note that for α =
V0(h∗j )−V0(hj∗)

V0(h∗i )−V0(hi∗)+V0(h∗j )−V0(hj∗)
∈ [0, 1], we have V0 (αh∗i + (1− α)hj∗) =

V0

(
αhi∗ + (1− α)h∗j

)
. We also have that Vi (αh∗i + (1− α)hj∗) > Vi

(
αhi∗ + (1− α)h∗j

)
and

Vj (αh∗i + (1− α)hj∗) < Vj

(
αhi∗ + (1− α)h∗j

)
.

Thus, for an event E,

V0

(
(αh∗i + (1− α)hj∗)E

(
αhi∗ + (1− α)h∗j

))
+ V0

((
αhi∗ + (1− α)h∗j

)
E

(αh∗i + (1− α)hj∗)
)

−
(
V0(αh∗i + (1− α)hj∗) + V0(αhi∗ + (1− α)h∗j )

)
= 0

but it must also be the case that

V0

(
(αh∗i + (1− α)hj∗)E

(
αhi∗ + (1− α)h∗j

))
+ V0

((
αhi∗ + (1− α)h∗j

)
E

(αh∗i + (1− α)hj∗)
)

−
(
V0(αh∗i + (1− α)hj∗) + V0(αhi∗ + (1− α)h∗j )

)

= λik
E
i

[
Vi (αh∗i + (1− α)hj∗)− Vi

(
αhi∗ + (1− α)h∗j

)]

+ λjk
E
j

[
Vj

(
αhi∗ + (1− α)h∗j

)
− Vj (αh∗i + (1− α)hj∗)

]

= kE
0

[
λi

[
Vi(αh∗i + (1− α)hj∗)− Vi(αhi∗ + (1− α)h∗j )

]

+λj

[
Vj(αhi∗ + (1− α)h∗j )− Vj(αh∗i + (1− α)hj∗)

]]
.

Since

[λi

[
Vi (αh∗i + (1− α)hj∗)− Vi

(
αhi∗ + (1− α)h∗j

)]

+ λj

[
Vj

(
αhi∗ + (1− α)h∗j

)− Vj (αh∗i + (1− α)hj∗)
]
] > 0

we must have kE
0 = kE

i = kE
j = 0.

29



References

Anscombe, F., and R. Aumann (1963): “A definition of subjective probability,” Annals of
Mathematical Statistics, 34, 199–205.

Blackorby, C., D. Donaldson, and P. Mongin (2004): “Social Aggegation With-
out the Expected Utility Hypothesis,” Discussion Paper 2004-020, Cahier du Laboratoire
d’Econométrie.

Chambers, C., and T. Hayashi (2003): “Preference Aggregation under Uncertainty: Savage
vs. Pareto,” Social Science Working Paper 1184, California Institute of Technology, Forth-
coming, Games and Economic Behavior.

De Meyer, B., and P. Mongin (1995): “A Note on Affine Aggregation,” Economics Letters,
47(2), 177–183.

Ghirardato, P., F. Maccheroni, and M. Marinacci (2004): “Differentiating Ambiguity
and Ambiguity Attitude,” Journal of Economic Theory, 118, 133–173.

(2005): “Certainty Independence and the Separation of Utility and Beliefs,” Journal
of Economic Theory, 120, 129–136.

Ghirardato, P., and M. Marinacci (2001): “Risk, Ambiguity, and the Separation of Utility
and Beliefs,” Mathematics of Operations Research, 26, 864–890.

Gilboa, I., D. Samet, and D. Schmeidler (2004): “Utilitarian Aggregation of Beliefs and
Tastes,” Journal of Political Economy, 112, 932–938.

Gilboa, I., and D. Schmeidler (1989): “Maximin Expected Utility With a Non-Unique
Prior,” Journal of Mathematical Economics, 18, 141–153.

Harsanyi, J. (1955): “Cardinal Welfare, Individualistic Ethics, and Interpersonal Comparisons
if Utility,” Journal of Political Economy, 63, 309–321.

Jaffray, J.-Y. (1989): “Linear utility for belief functions,” Operations Research Letters, 8,
107–112.

Mongin, P. (1995): “Consistent Bayesian Aggregation,” Journal of Economic Theory, 66,
313–351.

(1998): “The paradox of the bayesian experts and state-dependent utility theory,”
Journal of Mathematical Economics, 29, 331–361.

Schmeidler, D. (1989): “Subjective Probability and Expected Utility Without Additivity,”
Econometrica, 57(3), 571–587.

Seidenfeld, T., J. B. Kadane, and M. J. Schervish (1989): “On the shared preferences
of two Bayesian decision makers,” The Journal of Philosophy, 86(5), 225–244.

30


