
RED-PL, a Method for Deriving Product Requirements
from a Product Line Requirements Model

Olfa Djebbi12, Camille Salinesi1

1 CRI, Université Paris 1 – Sorbonne, 90, rue de Tolbiac, 75013 Paris, France

2 Stago Instruments, 136 avenue Louis Roche, 92341 Gennevilliers, France
olfa.djebbi@malix.univ-paris1.fr, Camille.Salinesi@univ-paris1.fr, odjebbi@stago.fr

Abstract. Software product lines (SPL) modeling has proven to be an effective
approach to reuse in software development. Several variability approaches were
developed to plan requirements reuse, but only little of them actually address
the issue of deriving product requirements. Indeed, while the modeling
approaches sell on requirements reuse, the associated derivation techniques
actually focus on deriving and reusing technical product data.
This paper presents a method that intends to support requirements derivation.
Its underlying principle is to take advantage of approaches made for reuse PL
requirements and to complete them by a requirements development process by
reuse for single products. The proposed approach matches users' product
requirements with PL requirements models and derives a collection of
requirements that is (i) consistent, and (ii) optimal with respect to users'
priorities and company's constraints. The proposed methodological process was
validated in an industrial setting by considering the requirement engineering
phase of a product line of blood analyzers.

Keywords: Requirements, Derivation, Product Line.

1 Introduction

As defined by the Software Engineering Institute (SEI), “a software product line
(SPL) is a set of software-intensive systems that share a common, managed set of
features satisfying the specific needs of a particular market segment or mission and
that are developed from a common set of core assets in a prescribed way”.

Software Product Line Engineering is rapidly emerging as a viable and important
software development paradigm allowing companies to realize order-of-magnitude
improvements in time to market, cost, productivity, quality and flexibility.

These new outcomes can be attributed to strategic software reuse. Software
product line techniques explicitly capitalize on commonality and formally manage the
variations among products in the product line. As a result, the main effort to design a
product from the product line is due to the variations and the impact of the choices
made for the required product.

Compared with conventional techniques, companies that manage a software
product line report success stories in which they decreased their time-to-market for

O. Djebbi and C. Salinesi

new products by factors of 2 to 50, reduced defect rates as high as 96% and multiplied
productivity by a factor of 2 to 3 [1].
As Fig. 1 shows it, software products are developed, in the context of product line
engineering, according to a two-stage process: the domain engineering stage and the
application engineering stage [2]. Domain engineering involves implementing
commonalities between product family members through a set of shared software
artifacts, while preserving at the same time the ability to vary the products. During
application engineering, individual products are derived from the product family, i.e.
constructed using a subset of the shared software artifacts.

Fig. 1. Requirements Engineering challenges in a Software Product Line context (SEI).

In this particular context, Requirements Engineering (RE) processes have two
goals: to define and manage requirements within the product line and to coordinate
requirements for the single products. To achieve the latter goals, product requirements
must be elicited by matching the product line requirements with customers' initial
requirements (fig.1).

Some recommendations can be found to manage requirements in the context of
SPL, but they always need to be customized [3] [4] [5] [6] [7]. Existing approaches
rely on a requirements variability modeling process followed by a requirements
selection process to retrieve a requirements collection specifying the single product to
build.

Our experience showed us that, as stated by [8] [9], this way of working has
several limits:

• Requirements are solution-driven: the selection among pre-defined product
line requirements models that most often correspond to features already
implemented in existing products, can influence stakeholders and skew their
choices. They will naturally establish links between their problem and the existing
solutions, adopt features with marginal value, and naturally forget about important
requirements that are not present in the PL requirements model. As a result, the

Domain
Analysis

Domain
Design

Domain
Realization

Domain
Testing

Requirement
s

Architecture

Components T
ests

Domain
artifacts

Product
Analysis

Product
Design

Product
Realization

Product
Testing

Requirement
s

Architecture
Components T

ests

Product I

Product N

D
o

m
ai

n

E
n

g
in

ee
ri

n
g

P
ro

d
u

ct

E
n

g
in

ee
ri

n
g

New requirements

Requirements Elicitation and Derivation

focus is on model elements that implement the solution rather than on the
expression of actual needs.

• Customer dissatisfaction: the customer requirements can be different from the ones
identified in the PL requirements models. Selecting among existing requirements
can lead to miss out important requirements.

• Innovation damping: the RE process is inherently characterized by insight-driven
evolution episodes. It fosters opportunistic exploration of the conceptual space and
promotes creative thinking within the system requirements. On the opposite,
selecting among predefined requirements restricts considerably creativity and
search for innovative ways to deal with problems, hence reducing the added value
of the new products to be developed.

• Lack of guidance: customers and marketing people are most often on their own to
elicit the requirements for new products. Existing approaches provide little
guidance (notation, process, rules …) to assist them in eliciting consistent product
requirements, neither are developers guided in adding new requirements to the PL
requirements model.

• Customer training: interactions between customers and variable requirements
models imply that users should make an additional effort to understand the PL
models and to seek their requirements in these models.

• Customer overwhelm: customers should not have to consider the complete
collection of PL requirements as they are only interested in the requirements for a
current product. Overwhelmed by a huge amount of data, customers lose track of
the initial mission and are naturally lead to inquire about, comment, and even
ponder over “requirements” that do not correspond to real needs.
These limits engendered by the requirements selection processing have many

impacts on the project processes and artifacts, namely:
• Quality of the requirements documents: when stakeholders select requirements from

the PL models, the resulting documents consist in a copy of a PL requirements
model extract. When, on the contrary, stakeholders come up with new
requirements, specifying these independently from the PL requirements model is
inefficient. We believe, there is a need for guiding the merge between variability
requirements specifications with requirements documentation for single products.
Furthermore, product requirements specifications can be inconsistent since PL RE
methods do not propose processes to verify the consistency and the compatibility of
the new requirements with the older ones.

• Quality of the resulting product: it is quite well documented that the outcomes of
projects with poor requirements management drive to poor product quality. This
applies to products developed in the context of PL as for any other kinds of
products even though reuse is facilitated.

• Project management: training customers to understand the PL requirements models
and to discuss about them is a waste of time and creates an ambiguity between the
roles of analysts and customers that inevitably leads to conflicts. This, associated
with poor requirements definition in early project phase, generates rework in later
phases of the project, extra costs, deadlines overrun, and difficult project
management.

• Strategic objectives of the company: stopping innovation and market anticipation
with new products may harm the company strategic objectives. Besides, applied

O. Djebbi and C. Salinesi

methods leading to customer dissatisfaction may even threaten the survival of the
company.
To overcome these shortcomings of existing methods, we believe there is a need

for a product requirements derivation approach that satisfies the following
characteristics:
• Requirements oriented: customers should be able to express their real needs, and

the built product should answer to these needs.
• Product line based: the developed product should take advantage of the PL

platform and reuse elaborated requirements that are already linked, traced and
validated.

• Unified into the whole product line development cycle: it should provide means to
ensure traceability with the remainder development phases for both the product line
and the single product being developed.

• Easy to apply
• Supported by a CASE tool that is integrated into existing toolkits: appropriate tool

support is mandatory to facilitate automate handling of the method processes and
artifacts, and hence his large adoption by developers’ community.

• Scalable: the method should allow modeling large-scale systems.

This paper presents a method that intends to support the requirements listed above.

The study was undertaken with the collaboration of the AFIS1 association and the
method was developed by application to a product line of a French company named
Stago -a medical company that produces blood analyzers [10]. The experience
consisted in gradually introducing basic PL management principles while meeting
practical issues in the RE phases of a new product creation project. The selection of
these basic principles resulted from extensive bibliography research. Based on this
experience, we developed a method, named RED-PL (Requirements Elicitation &
Derivation for Product Lines) that guides the elicitation of product requirements by
derivation from the PL requirements specification. The approach takes into account
both the company’s environmental and technical constraints and the specific product
requirements as expressed by customers.

RED-PL is based on already existing PL requirements notations. The originality of
the RED-PL method is that (i) it is user-oriented and (ii) it guides product
requirements elicitation as a decision making activity. Indeed, RED-PL makes it
possible to users to express their needs using classic requirements engineering
techniques. Then, mechanisms are used to convert these needs and match them with
the PL requirements specification. Negotiation and arbitration are finally supported in
RED-PL to elicit optimal product requirements while maximizing reuse.

The paper is organized as follows. Section 2 outlines the challenges faced by Stago
and the problems encountered while performing RE activities within its SPL
management context. Section 3 presents the RED-PL method which was developed to
meet these challenges. The methodological process is illustrated using the Stago data
that were initially used to develop it. Section 4 provides an overview of existing

1 French Association on Systems Engineering, affiliated to INCOSE (International Council on

Systems Engineering) http://www.afis.fr/

Requirements Elicitation and Derivation

methods and discusses how they deal with these challenges. Finally, conclusions are
given in section 5.

2 Problem statement in Stago’s context

Stago Instruments [10] is a company that produces analytical instruments for the
haemostasis diagnosis. These instruments are embedded and real-time systems. They
are used in hospitals and laboratories in the context of routine analysis or biologic
researches.

The automatons produced by the company fit into a product line: all of them share
the same core part with the main blood analysis functionalities. Each automaton has
also its own characteristics and differs from the others. These variable parts can be as
simple as color, weight or user interface of the machine; or more advanced such as
biological processes, capacity in term of number of tubes handled, or mechanical and
electronic technologies.

In general, instruments make tests on patients’ products (total blood, plasma) and
return results that are then interpreted by doctors.

In order to make tests, biologists load tubes of patients’ products as well as reagent
tubes in the instrument. While loading, tubes have to be identified. The biologist must
then choose an analysis methodology and launch the tests. A methodology is a series
of steps that simulate corpus reactions. Methodologies differ following test types (TP,
TCA, etc.), but comprise necessarily a mix step and an incubation step. They may
also use mixing and heating steps. Researchers can compose their own
methodologies.

The instruments treat tubes, accomplish analyses according to specified
methodologies, make measurements, and return the results to the biologist.

Products are loaded by batch. Nevertheless, the instrument is able to interrupt
current tests in order to load and treat urgent tubes. Before launching tests, tubes must
be treated to separate their constituents. Two processes of separation exist:
centrifugation and micro-filtration. All instruments are able to implement theses
processes however only one of them is implemented at a time in a given instrument.

There are three kinds of measurements: chronometric, colorimetric and
immunologic. Instruments can implement several measure techniques, but an
instrument that implements micro-filtration should not implement the photometric
measure.

Test results are provided to the biologists in gross unit (Sec, D.O/min, ∆ D.O), as
well as in calculated unit (INR, µg/ml, UI/ml). To establish correspondences between
units, the instrument must support calibrations. Besides, the instrument can view
results on the screen, print them, and/or transfer them to the hospital or laboratory’
host and put them into the patient case historic.

During projects, Stago teams manage in parallel the requirements documentation
for the product line (common requirements) and for the single products (variable
requirements).

O. Djebbi and C. Salinesi

 Fig. 2 presents a model that was developed to document the most important
requirements of the Stago instruments product line. The PL requirements are modeled
using a Feature-oriented notation.

The figure shows a tree in which nodes are the features that correspond to PL
requirements and links describe feature decomposition. There are three types of
requirements: mandatory (e.g ‘Load products’), optional (e.g. ‘Separate constituents’)
and alternative (e.g. ‘Centrifuge’ and ‘Micro-filter’). A mandatory requirement is
common to the PL and must be included in every product of the PL. An optional
requirement may, or not, be chosen for the considered product. Alternative
requirements are collections of requirements from which some can be selected and
others not. A UML-cardinality is associated to the collection to indicate the minimum
and maximum number of requirements to be chosen. Additional dependency links
between requirements, namely the ‘requires’ and the ‘mutex’ relationships, can be
defined to specify additional constraints in requirements selection.

 Fig. 2. Requirements model of Stago’s product line

Since users are free in their way to express requirements, it happens that some
requirements already exist in the PL requirements documentation, but with a different
form. Users also insist on some requirements and ignore their impacts on other ones,
or on the project progress itself. Users also often forget about important requirements
and ignore opportunities offered by the product line.

In this context, Stago raised priority questions namely: (i) how to ensure the
satisfaction of the real user's needs? and (ii) how to derive an optimal and consistent
collection of product requirements that meet users needs and that cost little to the
company? The RED-PL approach was developed and tried out on a Stago project to
answer these questions.

Diagnose thrombosis/haemostasis
Identify failing factor Interpret results

Analyze
Set products to analyze and reagents

Calibrate

Set up analysis
methodology

Obtain analysis results

Avoid contamination Ensure traceability
Measure reaction

Load reagents Recuperate
products

Identify
products

By
RFID By

barcode
By identificator

Load
products

For
urgent

test
By batch

FIFO By test type By patient

Separate
constituents

Micro-
filter Centrifuge

Mix
Agitate

Incubate
Heat

Photometric
Immunologic

Chronometric

Manual By extern
system

In the
screen

By listing
In the patient
case history

FIFO
By test type

By patient

By id By RFID
By printing on tubes

Clean
Evacuate waste

1..*
« requires »

..*

1
Colorimetric

« mutex »

Requirements Elicitation and Derivation

2 The RED-PL approach

In contrast to the traditional ‘Selection’ approach, requirements derivation for PLs
must take into account stakeholders’ original needs. As depicted in Fig. 3, RED-PL
consists of:

• eliciting user requirements,
• matching users’ requirements with PL requirements. This activity leads to

establish the set of requirements that the PL subsumes and that satisfy users’ needs.
They correspond to a set of possible products to build.

• deriving the optimal set of product requirements, taking into account users’
and company’s constraints.
These processes are respectively described in the three following sub-sections.

Fig. 3. Processes of the RED-PL approach

3.1 The matching process

The matching process is an iterative process that consists in interpreting users’
requirements in terms of the PL requirements. It results in a collection of
requirements that shall be implemented in the product (named 'product requirements').
The matching process aims at: (i) eliciting new users’ requirements, (ii) avoid missing
possible requirements, (iii) refining progressively the final product requirements, and
(iv) updating the PL assets.

In the matching process, users’ needs can be elicited using classical methods.
Then, rules must be applied to construct a valid (i.e. unambiguous, consistent,
traceable and verifiable) collection of product requirements. Once this is achieved,
users’ requirements can be fetched and marked in the PL model.

If users’ requirements can not be found in the PL requirements model, then either
(i) they are new requirements and they should be added to the PL model as well as
links among them and in relation with old requirements, or (ii) they are the same
requirements expressed differently, and then consensus should be made on the
requirement formulation.

Product Line

Product 1
Product 2

Product N

�
Domain Engineer

�
User

�
Product Requirements

Engineer

Requirements
Elicitation + Constraints

�
Company

Constraints

Match requirements
+ Generate products

Capitalize

Arbitrate

O. Djebbi and C. Salinesi

Requirements’ matching is guided by using similarity analysis techniques. Two
kinds of similarity analysis techniques can be used: surface level and deep level. First
techniques are based on lexical similarity where two requirements are considered
similar when they use the same term or the same linguistic structures. Conversely,
deep level techniques use a structural and a semantic proximity. These techniques
need more sophisticated tools such as dictionaries and linguistic parsers. Our
similarity analysis approach also uses refinement, as suggested by goal modeling, to
progressively improve the quality of the matching and to focus on requirements that
are considered more important [11].

Our approach exploits the 30 generic similarity metrics adapted to Dice, Jaccard
and Cosine’s ratios. As shown below, similarity can be automatically computed by
applying a weighted ratio between a number of similarities found between two
requirements and the number of elements that define these requirements.

[] []
{ } { }BA

B
BA

A
A

BA
B

m
D TermesTermes

TermesTermesSIMMAXTermesTermesSIMMAX
BAS

+

+
=

∑∑),(),(
),(

(Formula 1) Adapted Dice ratio

After similarity study, marked requirements and all the associated requirements
can then be retrieved from the PL model. This collection of requirements should
correspond to a fragment of the PL requirements model, i.e. a sub-tree of
requirements that satisfy users’ requirements. However, the PL requirements model
also contains requirements that are not yet marked. These requirements may be either
(i) undesired, they must then be explicitly marked as such, (ii) mandatory then they
must be considered in the collection of product requirements, or (iii) variable
(optional/ alternative). As long as the tree contains unmarked optional and alternative
requirements, a decision must be made on which additional PL requirements to select
for the product. Arbitrations must therefore be investigated and discussed with users,
as explained in the next sub-section.

3.2 The arbitration process

The output of the matching process consists in a PL requirements model composed
of wanted/unwanted mandatory, optional and alternative requirements. The model
fragment composed of desired requirements represents a set of possible releases as it
can also contain optional and alternative requirements.

Only wanted optional and alternative requirements are considered in the following
to express preferences since mandatory requirements must anyway be included in the
collection of product requirements.

Preferences can be expressed by users under the form of weights associated to
optional and alternative requirements. A 0 weight means that the requirements should
not be selected, a 1 weight means that it should be included in the product
requirements collection. The sum of weights of a bunch of alternative requirements
must be equal to 1. Implicitly, each mandatory requirement has a 1 value weight.

Users can indicate their constraints on each requirement in terms of costs and
benefits. Likewise, managers can state their development constraints on each
requirement in terms of human resources, revenues, costs, and

Requirements Elicitation and Derivation

implementation/integration time. Although we knew they are important, other
constraints such as skills of development teams, team transfers, deadline extension,
external resources, were voluntarily ignored because they were too difficult to
evaluate and we didn't know if they would really influence arbitration significantly.

Once requirements, priorities and constraints are completely defined, they are
formalized using an Integer Linear Programming (ILP) notation. The Akkar approach
[12] was selected and adapted to solve the problem at hand. The adapted version
allows to define the subset of requirements that composes the optimal release while
doing a what-if analysis on a dashboard. The ILP approach generates a collection of
requirements that satisfies the constraints values, and is optimal with respect to the
optimization criterion.

The following presents our proposal for modeling PL requirements dependencies
using Akkar’s approach. In Akkar’s approach, a requirement xa∈{0,1} with xa=1 if xa
is selected, and xa=0 otherwise. Five kinds of dependencies can be considered:
composition, requires, optional composition, exclusion, and alternative. While the
four former dependencies were already considered in Akkar's approach under the
names ‘combination’, ‘implication’ and ‘exclusion’, the fifth kind had to be created to
deal with the specific semantics of PL requirements modeling notations.

Requires. If requirement xb is selected, then requirement xa must be selected too.
In the ILP model, it must be ensured that: xb=1 => xa=1

The ILP model is extended by the linear inequality xb ≤ xa (xa cannot be
implemented without implementing xb). In Akkar's initial approach, the corresponding
dependency was ‘implication’. In terms of PL requirements modeling, “requires”
dependencies can be found from the alternative, the optional and the requires
relationships.

xb ≤ xa (1)

Composition. If two requirements xa and xb cannot be implemented separately,
then it must be ensured that xa = xb. Composition dependencies can be found in the
PL requirements models from composition relationships. In Akkar's terms, it
corresponds to the combination dependency.

xa = xb (2)

Exclusion. If Ra and Rb cannot both be selected, in the ILP model then the
inequality: xa + xb ≤ 1 must be verified. In the PL modeling, exclusion dependencies
can be found from “mutex” relationships.

xa + xb ≤ 1 (3)

Alternative. In PL engineering, a requirement can be realized by one or more
requirements among a set. It is partly ensured by the implication relationship from a
requirement xa to its sub-requirements xb.. xk, but needs to be more detailed to model
the relationship between sub-requirements themselves. So, the alternative dependency
(which does not exist in Akkar's model) is defined in ILP model by the following
inequality:

xa*Cardmin ≤ xb+..+xk ≤ Cardmax (4)

O. Djebbi and C. Salinesi

The following table summarizes the mathematical formulae used to develop the
ILP model.

Table 1. Recapitulation of requirements dependencies and their representation in the ILP

Dependency
relationship

Explication Mathematical
formula

(composition)

If a requirement is selected then all mandatory
requirements composing it must be selected
 Ra = 1 ⇒ Rb = 1 Ra = 0 ⇒ Rb = 0
 Rb = 1 ⇒ Ra = 1 Rb = 0 ⇒ Ra = 0

Ra = Rb

(Combination)

(option)

If a requirement is selected then its optional sub-
requirements may be selected
 Ra = 1 ⇒ Rb ∈ {0,1} Rb = 1 ⇒ Ra = 1
 Ra = 0 ⇒ Rb = 0 Rb = 0 ⇒ Ra ∈ {0,1}

Rb ≤ Ra

(implication)

(alternative)

If a requirement is selected then alternative sub-
requirements must be selected respecting the
specified cardinality
 Ra = 1 ⇒ Rb..d ∈ {0,1} and

 Rb + Rc + Rd ≤ Cardmax and
 Rb + Rc + Rd ≥ Cardmin

 Ra = 0 ⇒ Rb..d = 0
 Rb..d = 1 ⇒ Ra = 1
 Rb..d = 0 ⇒ Ra ∈ {0,1}

Rb..d ≤ Ra

(implication)

Ra*Cardmin ≤
Rb+..+Rd ≤

Cardmax

(alternative)

(requires)

If a requirement is selected then all required
requirements must be selected
 Ra = 1 ⇒ Rb = 1 Rb = 1 ⇒ Ra ∈ {0,1}
 Ra = 0 ⇒ Rb ∈ {0,1} Rb = 0 ⇒ Ra = 0

Ra ≤ Rb

(implication)

(mutex)

If a requirement is selected then all requirements
that are mutually exclusive with it must not be
selected
 Ra = 1 ⇒ Rb = 0 Rb = 1 ⇒ Ra = 0
 Ra = 0 ⇒ Rb ∈ {0,1} Rb = 0 ⇒ Ra ∈ {0,1}

Ra + Rb ≤ 1

(exclusion)

The ILP modeling approach presented in the former section was tested in a Stago

project with satisfying results. The experience is reported in the next section.

Ra

Rb

Ra

Rb

Ra

Rb Rc Rd

Card

Ra

Rb

« requires »

Ra

Rb

« mutex »

Requirements Elicitation and Derivation

3.3 The case study

Once user requirements elicited, they were matched with PL requirements as
recommended in the RED-PL matching process. The resulting requirements
collection is a subset of the PL requirements model. The matching process revealed
that users were decided neither on the measurement technique nor on whether the
instrument to build should enable indoor constituents separation. Decisions had to be
made to generate the optimal collection of requirements for a complete product. The
arbitration process presented in section 3.2 was thus used to solve this problem.

First, the PL requirements model was analyzed and a ILP model was developed as
defined in section 3.1. All the constraints were recorded in a Microsoft Excel
spreadsheet, and analyzed with the Microsoft Excel solver (Fig. 4).

Two criteria were used to guide arbitration, namely cost and revenue. Revenue was
evaluated by enquiring salespeople about the perceived value of the functionalities
implementing the requirements. Cost evaluations were made by the engineering team
who was asked to consider development and integration costs, need for resources
(material and human), management costs, test costs, maintenance cost, and
installation costs. These evaluations are an ordinary activity of salespeople and
engineers, e.g in the context of risk analysis while elaborating the feasibility of the
project. Several methods can be used to do this. Our approach does not focus on a
particular one as it considers these evaluations as an input.
For confidentiality reasons, revenue and cost are defined in the next figure as relative
values rather than under the form of the absolute values that were actually defined.

Fig. 4. Screenshot of Stago ILP problem after solving

Optimal
requirements
set

Mini
mal cost

Maxim
al revenue

Cost and
dependencies
constraints

O. Djebbi and C. Salinesi

Two goals were considered for optimization: either minimize cost while
considering minimal revenue, or maximize revenue taking into account a global cost
limitation. Sales and engineer teams agreed to focus on the second goal which is
closer to their daily concerns. The collection of requirements generated by the solver
using these parameters was found realistic in the sense that the resulting products did
correspond to products already developed at Stago. Besides, the product did respond
to the users’ expressed at the beginning of the project and did correspond to products
already identified as being of low cost. It was however difficult to assess if the
generated product did really correspond to an optimal product or not.
Some difficulties were observed too while applying the method. First, the matching
process was difficult to handle due to a lack of precision in the formulation of users’
requirements. The difficulty was due not only to terminology, but also to a conceptual
mismatch between users’ requirements and the PL requirements (different levels of
abstractions, different views). Besides, the ILP technique seemed to be not scalable to
large systems, and is limited to optimization requests. We believe that this approach
can be replaced by more adequate, flexible and scalable technique such as Constraint
Programming. Further applications to other industrial projects are planed to enhance
the method and favor its repeatability.

4 Related works

Many different methods interested in constructing SPL assets are available in
literature [13] [14] [15] [16] [17] [18]. Product derivation methodologies are on the
contrary rather scarce [4] [19] [20]. Besides, while derivation affects the whole
product line artifacts, from requirements to code, the derivation issues are mainly
addressed in terms of design and implementation [4] [6].

At the requirement engineering level, how to create the right requirements assets of
the PL and dependencies among them to develop the right products have been
extensively studied [7] [21] [22] [23] [24] [25], but understanding the derivation
process itself has received little attention.

In existing approaches, the derivation of the product architecture, code or test
artifacts from the product and the PL specifications is performed using the following
techniques:
• Model transformation: static and dynamic models are instantiated for products from

the PL models, using a model transformation language [4] [26] [27] [28].
• Design patterns: for instance the method introduced by Jezequel which consists in

using the ‘Abstract Factory’ pattern as interface to create objects of each product in
the product line [29] [30].

• Variability bounding: generative approaches (e.g. Generative Programming
approach [19]) suggest automatic derivation by code generation. Selecting desired
product features is sufficient to allow assembling correspondent SPL elementary
reusable components and generate the application code. Other approaches introduce
aspect programming techniques to assemble components by waving features [31]
[32].

Requirements Elicitation and Derivation

Mostly, derivation methods consider as input a collection of PL requirements
selected from the SPL requirements model. However, industry experience suggests
that simply having the right assets is not sufficient to facilitate its selection and
assembly. So some works tried to propose guidelines to select the appropriate set of
assets, but they are still reduced to technical levels.

Namely, the specific assets needed could be specified in a production plan which
describes how the core assets are used to develop products [33]. Hunt considers
software components and studies the optimal organization proceedings to facilitate
finding and selecting them [34]. [35] discusses automating component selection using
artificial intelligence techniques. [3] [5] provide a framework of terminology and
concepts regarding product derivation as well as a generic software derivation
process. It is organized on iterative phases in order to determine the final
configuration of the derived product. Once again, the derivation process has by
default as input a subset of requirements that originate from customers, legislation,
hardware and product family organization. Details about how these requirements are
aggregated are not given. [4] also establishes a derivation framework. It indicates that
the product requirements derivation is made through a decision process. But, it does
not include more details about this process.

Nevertheless, a necessary step in product derivation is to determine the set of
requirements to use in order to build the particular product out of the possible
products in the product line. This requires some description of the customer needs that
allows it to be distinguished from others in the SPL. This description provides a set of
product requirements. Someone must then find and select the assets that are needed to
meet the product requirements. As presented in the existing approaches, it is often the
product developer that makes these decisions as the product is assembled. The role of
the user is dumped and mistreated.
While the focus provided by scoping develops mechanisms handling technical
derivation, we are interested in instructing requirements derivation processes that
originate from users needs, and involve users choices while tacking decisions; which
is not typically available in general derivation approaches.

4 Conclusions and future work

A major addition to existing reuse approaches since the 1990s are software product
lines that have been the long standing notion to solve the cost, quality and time-to-
market issues associated with development of related software applications.

Over the past few years, domain engineering has received substantial attention
from the software engineering community. Most of the researches, however, fail to
provide detailed derivation processes namely for deriving requirements, which has
been restricted to the selection of a requirements subset.
The idea behind the proposed approach is that the user, the main stakeholder to whom
the final product is intended, should be involved in specifying product requirements,
in a way that efforts expended in constructing the reusable requirements in domain
engineering are outweighed by the benefits in deriving the right individual products
that satisfy their mission.

O. Djebbi and C. Salinesi

RED-PL includes two processes that are the matching and the arbitration
processes. The first establishes the set of possible requirements that meet users’
needs. The latter, arbitrate on these requirements in order to derive a consistent
requirements set that is optimal for a defined set of users and company constraints
(e.g. revenue, cost, resources, time, etc.).

We have thought these processes (namely the mathematical model) based on
feature models. But, it is obvious that it may be applied for the different PL modeling
languages (Use cases, goals, UML, aspects). That is because these types of
dependencies represent fundamental concepts that are implemented by all existing
variability languages. Only visual representation is different depending on the
language constructs (use cases, classes, etc.) and stereotypes. Besides, the approach
viability was tested on real projects developing blood analyzers within a French
company named Stago. Obtained results were verified and appreciated.

Further research will focus on the refinement of the approach processes. We aim at
defining matching and arbitration processes of variable requirements in correlation
with variable PL physical architecture. It is worthwhile in Stago context since it
produces instruments where technical requirements impact heavily the decision on
functional requirements depending on technology costs and revenues.

We intend next to implement a tool support that interfaces with existing modeling
tools and enables such a matching and arbitration processes.
Moreover, the repeatability of the approach will be studied. The purpose is to define a
systematic process allowing modeling PLs and deriving products suitable to different
companies’ contexts. We are confident that if the Integer Linear Programming is not
scalable to large systems, it can be replaced by another more adequate Multi Criteria
Decision Making method.

References

1. http://www.sei.cmu.edu/productlines/plp_hof.html. SEI Product Line Hall of Fame web page
2. Linden F.: Software Product Families in Europe: The Esaps & Café Projects. (2002)
3. Deelstra S., Sinnema M., Bosch J.: Product derivation in software product families: a case

study. The Journal of Systems and Software (2004) 183–204
4. Haugen Ø., Møller-Pedersen B., Oldevik J., Solberg A.: An MDA®-based framework for

model-driven product derivation. Software Engineering and Applications, USA (2004)
5. Sinnema M., Deelstra S., Nijhuis J., Bosch J.: COVAMOF: A Framework for Modeling

Variability in Software Product Families. The 3rd Software Product Line Conference (2004)
6. Lee J., Kang K. C.: A Feature-Oriented Approach to Developing Dynamically

Reconfigurable Products in Product Line Engineering. SPLC. (2006)
7. Halmans G., Pohl K.: Communicating the variability of a software-product family to

customers. Proceedings of the Software and Systems Modeling, volume 2, Springer (2003)
8. Maiden N., Gizikis A., Robertson S.: Provoking Creativity: Imagine What Your

Requirements Could Be Like. IEEE Software, Vol. 22, No. 5 (2004) 68-75
 9. Michael G., Kang K. C.: Issues in Requirements Elicitation. Technical Report. (1992)
10. www.stago.fr. Diagnostica Stago Web page
11. Salinesi C., Etien A., Zoukar I.: A Systematic Approach to Express IS Evolution

Requirements Using Gap Modelling and Similarity Modelling Techniques. CAiSE
Conference, Springer Verlag, Riga, Latvia (2004)

Requirements Elicitation and Derivation

12. van den Akker M., Brinkkemper S., Diepen G., Versendaal J.: Flexible Release Planning
Using Integer Linear Programming. Proceedings of REFSQ (2005) 257-272

13. Gomaa H.: Designing Software Product Lines with UML: From Use Cases to Pattern-based
Software Architectures. Addison Wesley Object Technology Series (2004)

14. Bayer J., Flege O., Knauber P., Laqua R., Muthig D., Schmid K., Widen T., DeBaud J.-M.:
Pulse: a methodology to develop software product lines. In Proceedings of the SSR (1999)

15. Clements P., Northrop L. M.: Software Product Lines: Practices and Patterns. Addison
Wesley Professional (2001)

16. Bosch J., Florijn G., Greefhorst D., Kuusela J., Obbink H., Pohl K.: Variability Issues in
Software Product Lines. The International Workshop on Product Family Engineering (2001)

17. Dobrica L., Niemelä E.: UML Notation Extensions for Product Line Architectures
Modeling. Australasian Workshop on Software and System Architectures, Australia (2004)

18. Robak S., Franczyk B., Politowicz K.: Extending the UML for modelling variability for
system families. International Conference on Algorithmic Mathematics and Computer
Science (2002) 295–308

19. Czarnecki K., Eisenecker U.W.: Generative Programming: Methods, Tools, and
Applications. Addison Wesley (2000)

20. Sinnema M., Deelstra S., Hoekstra P.: The COVAMOF Derivation Process. Proceedings of
the 9th International Conference on Software Reuse (2006)

21. Thompson J., Heimdahl M.: Structuring Product Family Requirements for n-Dimensional
and Hierarchical Product Lines. Requirements Engineering Journal, vol-8, Issue 1 (2002)

22. Streitferdt D.: Family-Oriented Requirements Engineering. PhD Thesis, Technical
University Ilmenau (2003)

23. Kang K., Lee K., Lee J.: Concepts and Guidelines of Feature Modeling for Product Line
Software Engineering. Proceedings of the 7th International Conference on Software Reuse:
Methods, Techniques, and Tools (2002) 62 - 77

24. Gibson J. P.: Feature Requirements Models: Understanding Interactions. In Feature
Interactions, in Telecommunications IV, Montreal, Canada, IOS Press (1997)

25. Buhne S., Lauenroth K., Pohl K.: Modelling requirements variability across product lines.
In 14th IEEE International Conference on Requirements Engineering (2005)

26. Perez Garcia J., A. Laguna M., Gonzalez-Carvajal Y. C., Gonzalez-Baixauli B.:
Requirements variability support through MDD and graph transformation. International
Workshop on Graph and Model Transformation, Tallinn, Estonia (2006) 171-183

27. Ziadi T. : Manipulation de Lignes de Produits en UML. PhD thesis, Université de Rennes 1,
équipe IRISA-TRISKELL, directeur Jean-Marc Jézéquel (2004)

28. Ziadi T., Hélouët L., Jézéquel J-M.: Towards a uml profile for software product Lines. In
the Fifth Internationl Workshop on Product Familly Engineering, Springer Verlag (2003)

29. Jézéquel J-M.: Reifying configuration management for object-oriented software.
Proceedings of the 21th international conference on Software engineering (1998) 250–259

30. Jézéquel J-M.: Reifying variants in configuration management. ACM Transaction on
Software Engineering and Methodology (1999) 294–305

31. Jansen A., Smedinga R., van Gurp J., Bosch J.: First class feature abstractions for product
derivation. Special issue on Early Aspects: Aspect-oriented Requirements Engineering and
Architecture Design, IEE Proceedings Software (2004) 197-207

32. Mezini M., Ostermann K.: Variability Management with Feature Oriented Programming
and Aspects. Foundations of Software Engineering, ACM SIGSOFT (2004)

33. Chastek G., McGregor J. D.: Guidelines for developing a product line production plan.
Software Engineering Institute, Technical Report CMU/SEI-2102-TR-006 (2002)

34. Hunt J.M.: Organizing the asset base for product derivation. In 10th SPLC (2006)
35. Asikainen T., Mnnist T., Soininen T.: Using a configurator for modelling and configuring

software product lines based on feature models. Software Variability Management for
Product Derivation - Towards Tool Support at International Workshop of SPLC (2004)

