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Abstract. Software product lines (SPL) modeling has proven to be an effective 
approach to reuse in software development. Several variability approaches were 
developed to plan requirements reuse, but only little of them actually address 
the issue of deriving product requirements. Indeed, while the modeling 
approaches sell on requirements reuse, the associated derivation techniques 
actually focus on deriving and reusing technical product data. 
This paper presents a method that intends to support requirements derivation. 
Its underlying principle is to take advantage of approaches made for reuse PL 
requirements and to complete them by a requirements development process by 
reuse for single products. The proposed approach matches users' product 
requirements with PL requirements models and derives a collection of 
requirements that is (i) consistent, and (ii) optimal with respect to users' 
priorities and company's constraints. The proposed methodological process was 
validated in an industrial setting by considering the requirement engineering 
phase of a product line of blood analyzers. 
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1   Introduction 

As defined by the Software Engineering Institute (SEI), “a software product line 
(SPL) is a set of software-intensive systems that share a common, managed set of 
features satisfying the specific needs of a particular market segment or mission and 
that are developed from a common set of core assets in a prescribed way”. 

Software Product Line Engineering is rapidly emerging as a viable and important 
software development paradigm allowing companies to realize order-of-magnitude 
improvements in time to market, cost, productivity, quality and flexibility.  

These new outcomes can be attributed to strategic software reuse. Software 
product line techniques explicitly capitalize on commonality and formally manage the 
variations among products in the product line. As a result, the main effort to design a 
product from the product line is due to the variations and the impact of the choices 
made for the required product.  

Compared with conventional techniques, companies that manage a software 
product line report success stories in which they decreased their time-to-market for 
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new products by factors of 2 to 50, reduced defect rates as high as 96% and multiplied 
productivity by a factor of 2 to 3 [1]. 
As Fig. 1 shows it, software products are developed, in the context of product line 
engineering, according to a two-stage process: the domain engineering stage and the 
application engineering stage [2]. Domain engineering involves implementing 
commonalities between product family members through a set of shared software 
artifacts, while preserving at the same time the ability to vary the products. During 
application engineering, individual products are derived from the product family, i.e. 
constructed using a subset of the shared software artifacts. 

 

 

Fig. 1. Requirements Engineering challenges in a Software Product Line context (SEI). 

In this particular context, Requirements Engineering (RE) processes have two 
goals: to define and manage requirements within the product line and to coordinate 
requirements for the single products. To achieve the latter goals, product requirements 
must be elicited by matching the product line requirements with customers' initial 
requirements (fig.1). 

Some recommendations can be found to manage requirements in the context of 
SPL, but they always need to be customized [3] [4] [5] [6] [7]. Existing approaches 
rely on a requirements variability modeling process followed by a requirements 
selection process to retrieve a requirements collection specifying the single product to 
build. 

Our experience showed us that, as stated by [8] [9], this way of working has 
several limits: 

• Requirements are solution-driven: the selection among pre-defined product 
line requirements models that most often correspond to features already 
implemented in existing products, can influence stakeholders and skew their 
choices. They will naturally establish links between their problem and the existing 
solutions, adopt features with marginal value, and naturally forget about important 
requirements that are not present in the PL requirements model. As a result, the 
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focus is on model elements that implement the solution rather than on the 
expression of actual needs. 

• Customer dissatisfaction: the customer requirements can be different from the ones 
identified in the PL requirements models. Selecting among existing requirements 
can lead to miss out important requirements. 

• Innovation damping: the RE process is inherently characterized by insight-driven 
evolution episodes. It fosters opportunistic exploration of the conceptual space and 
promotes creative thinking within the system requirements. On the opposite, 
selecting among predefined requirements restricts considerably creativity and 
search for innovative ways to deal with problems, hence reducing the added value 
of the new products to be developed. 

• Lack of guidance: customers and marketing people are most often on their own to 
elicit the requirements for new products. Existing approaches provide little 
guidance (notation, process, rules …) to assist them in eliciting consistent product 
requirements, neither are developers guided in adding new requirements to the PL 
requirements model. 

• Customer training: interactions between customers and variable requirements 
models imply that users should make an additional effort to understand the PL 
models and to seek their requirements in these models.  

• Customer overwhelm: customers should not have to consider the complete 
collection of PL requirements as they are only interested in the requirements for a 
current product. Overwhelmed by a huge amount of data, customers lose track of 
the initial mission and are naturally lead to inquire about, comment, and even 
ponder over “requirements” that do not correspond to real needs. 
These limits engendered by the requirements selection processing have many 

impacts on the project processes and artifacts, namely: 
• Quality of the requirements documents: when stakeholders select requirements from 

the PL models, the resulting documents consist in a copy of a PL requirements 
model extract. When, on the contrary, stakeholders come up with new 
requirements, specifying these independently from the PL requirements model is 
inefficient. We believe, there is a need for guiding the merge between variability 
requirements specifications with requirements documentation for single products. 
Furthermore, product requirements specifications can be inconsistent since PL RE 
methods do not propose processes to verify the consistency and the compatibility of 
the new requirements with the older ones.  

• Quality of the resulting product: it is quite well documented that the outcomes of 
projects with poor requirements management drive to poor product quality. This 
applies to products developed in the context of PL as for any other kinds of 
products even though reuse is facilitated.  

• Project management: training customers to understand the PL requirements models 
and to discuss about them is a waste of time and creates an ambiguity between the 
roles of analysts and customers that inevitably leads to conflicts. This, associated 
with poor requirements definition in early project phase, generates rework in later 
phases of the project, extra costs, deadlines overrun, and difficult project 
management. 

• Strategic objectives of the company: stopping innovation and market anticipation 
with new products may harm the company strategic objectives. Besides, applied 
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methods leading to customer dissatisfaction may even threaten the survival of the 
company. 
To overcome these shortcomings of existing methods, we believe there is a need 

for a product requirements derivation approach that satisfies the following 
characteristics: 
• Requirements oriented: customers should be able to express their real needs, and 

the built product should answer to these needs.  
• Product line based: the developed product should take advantage of the PL 

platform and reuse elaborated requirements that are already linked, traced and 
validated. 

• Unified into the whole product line development cycle: it should provide means to 
ensure traceability with the remainder development phases for both the product line 
and the single product being developed. 

• Easy to apply 
• Supported by a CASE tool that is integrated into existing toolkits: appropriate tool 

support is mandatory to facilitate automate handling of the method processes and 
artifacts, and hence his large adoption by developers’ community. 

• Scalable: the method should allow modeling large-scale systems. 
 
This paper presents a method that intends to support the requirements listed above. 

The study was undertaken with the collaboration of the AFIS1 association and the 
method was developed by application to a product line of a French company named 
Stago -a medical company that produces blood analyzers [10]. The experience 
consisted in gradually introducing basic PL management principles while meeting 
practical issues in the RE phases of a new product creation project. The selection of 
these basic principles resulted from extensive bibliography research. Based on this 
experience, we developed a method, named RED-PL (Requirements Elicitation & 
Derivation for Product Lines) that guides the elicitation of product requirements by 
derivation from the PL requirements specification. The approach takes into account 
both the company’s environmental and technical constraints and the specific product 
requirements as expressed by customers.  

RED-PL is based on already existing PL requirements notations. The originality of 
the RED-PL method is that (i) it is user-oriented and (ii) it guides product 
requirements elicitation as a decision making activity. Indeed, RED-PL makes it 
possible to users to express their needs using classic requirements engineering 
techniques. Then, mechanisms are used to convert these needs and match them with 
the PL requirements specification. Negotiation and arbitration are finally supported in 
RED-PL to elicit optimal product requirements while maximizing reuse.  

The paper is organized as follows. Section 2 outlines the challenges faced by Stago 
and the problems encountered while performing RE activities within its SPL 
management context. Section 3 presents the RED-PL method which was developed to 
meet these challenges. The methodological process is illustrated using the Stago data 
that were initially used to develop it. Section 4 provides an overview of existing 

                                                           
1 French Association on Systems Engineering, affiliated to INCOSE (International Council on 

Systems Engineering)  http://www.afis.fr/ 
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methods and discusses how they deal with these challenges. Finally, conclusions are 
given in section 5. 

2   Problem statement in Stago’s context 

Stago Instruments [10] is a company that produces analytical instruments for the 
haemostasis diagnosis. These instruments are embedded and real-time systems. They 
are used in hospitals and laboratories in the context of routine analysis or biologic 
researches. 

The automatons produced by the company fit into a product line: all of them share 
the same core part with the main blood analysis functionalities. Each automaton has 
also its own characteristics and differs from the others. These variable parts can be as 
simple as color, weight or user interface of the machine; or more advanced such as 
biological processes, capacity in term of number of tubes handled, or mechanical and 
electronic technologies.  

In general, instruments make tests on patients’ products (total blood, plasma) and 
return results that are then interpreted by doctors.  

In order to make tests, biologists load tubes of patients’ products as well as reagent 
tubes in the instrument. While loading, tubes have to be identified. The biologist must 
then choose an analysis methodology and launch the tests. A methodology is a series 
of steps that simulate corpus reactions. Methodologies differ following test types (TP, 
TCA, etc.), but comprise necessarily a mix step and an incubation step. They may 
also use mixing and heating steps. Researchers can compose their own 
methodologies.  

The instruments treat tubes, accomplish analyses according to specified 
methodologies, make measurements, and return the results to the biologist. 

Products are loaded by batch. Nevertheless, the instrument is able to interrupt 
current tests in order to load and treat urgent tubes. Before launching tests, tubes must 
be treated to separate their constituents. Two processes of separation exist: 
centrifugation and micro-filtration. All instruments are able to implement theses 
processes however only one of them is implemented at a time in a given instrument. 

There are three kinds of measurements: chronometric, colorimetric and 
immunologic. Instruments can implement several measure techniques, but an 
instrument that implements micro-filtration should not implement the photometric 
measure. 

Test results are provided to the biologists in gross unit (Sec, D.O/min, ∆ D.O), as 
well as in calculated unit (INR, µg/ml, UI/ml). To establish correspondences between 
units, the instrument must support calibrations. Besides, the instrument can view 
results on the screen, print them, and/or transfer them to the hospital or laboratory’ 
host and put them into the patient case historic. 

During projects, Stago teams manage in parallel the requirements documentation 
for the product line (common requirements) and for the single products (variable 
requirements). 
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     Fig. 2 presents a model that was developed to document the most important 
requirements of the Stago instruments product line. The PL requirements are modeled 
using a Feature-oriented notation.  

The figure shows a tree in which nodes are the features that correspond to PL 
requirements and links describe feature decomposition. There are three types of 
requirements: mandatory (e.g ‘Load products’), optional (e.g. ‘Separate constituents’) 
and alternative (e.g. ‘Centrifuge’ and ‘Micro-filter’). A mandatory requirement is 
common to the PL and must be included in every product of the PL. An optional 
requirement may, or not, be chosen for the considered product. Alternative 
requirements are collections of requirements from which some can be selected and 
others not. A UML-cardinality is associated to the collection to indicate the minimum 
and maximum number of requirements to be chosen. Additional dependency links 
between requirements, namely the ‘requires’ and the ‘mutex’ relationships, can be 
defined to specify additional constraints in requirements selection. 

 

 

     Fig. 2. Requirements model of Stago’s product line 

Since users are free in their way to express requirements, it happens that some 
requirements already exist in the PL requirements documentation, but with a different 
form. Users also insist on some requirements and ignore their impacts on other ones, 
or on the project progress itself. Users also often forget about important requirements 
and ignore opportunities offered by the product line.  

In this context, Stago raised priority questions namely: (i) how to ensure the 
satisfaction of the real user's needs? and (ii) how to derive an optimal and consistent 
collection of product requirements that meet users needs and that cost little to the 
company? The RED-PL approach was developed and tried out on a Stago project to 
answer these questions. 
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2   The RED-PL approach 

In contrast to the traditional ‘Selection’ approach, requirements derivation for PLs 
must take into account stakeholders’ original needs. As depicted in Fig. 3, RED-PL 
consists of: 

• eliciting user requirements, 
• matching users’ requirements with PL requirements. This activity leads to 

establish the set of requirements that the PL subsumes and that satisfy users’ needs. 
They correspond to a set of possible products to build. 

• deriving the optimal set of product requirements, taking into account users’ 
and company’s constraints. 
These processes are respectively described in the three following sub-sections. 
 

 

Fig. 3. Processes of the RED-PL approach 

3.1   The matching process  

The matching process is an iterative process that consists in interpreting users’ 
requirements in terms of the PL requirements. It results in a collection of 
requirements that shall be implemented in the product (named 'product requirements'). 
The matching process aims at: (i) eliciting new users’ requirements, (ii) avoid missing 
possible requirements, (iii) refining progressively the final product requirements, and 
(iv) updating the PL assets. 

In the matching process, users’ needs can be elicited using classical methods. 
Then, rules must be applied to construct a valid (i.e. unambiguous, consistent, 
traceable and verifiable) collection of product requirements. Once this is achieved, 
users’ requirements can be fetched and marked in the PL model.  

If users’ requirements can not be found in the PL requirements model, then either 
(i) they are new requirements and they should be added to the PL model as well as 
links among them and in relation with old requirements, or (ii) they are the same 
requirements expressed differently, and then consensus should be made on the 
requirement formulation. 
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Requirements’ matching is guided by using similarity analysis techniques. Two 
kinds of similarity analysis techniques can be used: surface level and deep level. First 
techniques are based on lexical similarity where two requirements are considered 
similar when they use the same term or the same linguistic structures. Conversely, 
deep level techniques use a structural and a semantic proximity. These techniques 
need more sophisticated tools such as dictionaries and linguistic parsers. Our 
similarity analysis approach also uses refinement, as suggested by goal modeling, to 
progressively improve the quality of the matching and to focus on requirements that 
are considered more important [11].  

Our approach exploits the 30 generic similarity metrics adapted to Dice, Jaccard 
and Cosine’s ratios. As shown below, similarity can be automatically computed by 
applying a weighted ratio between a number of similarities found between two 
requirements and the number of elements that define these requirements. 
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(Formula 1) Adapted Dice ratio 

After similarity study, marked requirements and all the associated requirements 
can then be retrieved from the PL model. This collection of requirements should 
correspond to a fragment of the PL requirements model, i.e. a sub-tree of 
requirements that satisfy users’ requirements. However, the PL requirements model 
also contains requirements that are not yet marked. These requirements may be either 
(i) undesired, they must then be explicitly marked as such, (ii) mandatory then they 
must be considered in the collection of product requirements, or (iii) variable 
(optional/ alternative). As long as the tree contains unmarked optional and alternative 
requirements, a decision must be made on which additional PL requirements to select 
for the product. Arbitrations must therefore be investigated and discussed with users, 
as explained in the next sub-section. 

3.2   The arbitration process 

The output of the matching process consists in a PL requirements model composed 
of wanted/unwanted mandatory, optional and alternative requirements. The model 
fragment composed of desired requirements represents a set of possible releases as it 
can also contain optional and alternative requirements.  

Only wanted optional and alternative requirements are considered in the following 
to express preferences since mandatory requirements must anyway be included in the 
collection of product requirements.  

Preferences can be expressed by users under the form of weights associated to 
optional and alternative requirements. A 0 weight means that the requirements should 
not be selected, a 1 weight means that it should be included in the product 
requirements collection. The sum of weights of a bunch of alternative requirements 
must be equal to 1. Implicitly, each mandatory requirement has a 1 value weight. 

Users can indicate their constraints on each requirement in terms of costs and 
benefits. Likewise, managers can state their development constraints on each 
requirement in terms of human resources, revenues, costs, and 
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implementation/integration time. Although we knew they are important, other 
constraints such as skills of development teams, team transfers, deadline extension, 
external resources, were voluntarily ignored because they were too difficult to 
evaluate and we didn't know if they would really influence arbitration significantly. 

Once requirements, priorities and constraints are completely defined, they are 
formalized using an Integer Linear Programming (ILP) notation. The Akkar approach 
[12] was selected and adapted to solve the problem at hand. The adapted version 
allows to define the subset of requirements that composes the optimal release while 
doing a what-if analysis on a dashboard. The ILP approach generates a collection of 
requirements that satisfies the constraints values, and is optimal with respect to the 
optimization criterion.  

The following presents our proposal for modeling PL requirements dependencies 
using Akkar’s approach. In Akkar’s approach, a requirement xa∈{0,1} with xa=1 if xa 
is selected, and xa=0 otherwise. Five kinds of dependencies can be considered: 
composition, requires, optional composition, exclusion, and alternative. While the 
four former dependencies were already considered in Akkar's approach under the 
names ‘combination’, ‘implication’ and ‘exclusion’, the fifth kind had to be created to 
deal with the specific semantics of PL requirements modeling notations. 

Requires.  If requirement xb is selected, then requirement xa must be selected too. 
In the ILP model, it must be ensured that: xb=1 => xa=1 

The ILP model is extended by the linear inequality xb ≤ xa (xa cannot be 
implemented without implementing xb). In Akkar's initial approach, the corresponding 
dependency was ‘implication’. In terms of PL requirements modeling, “requires” 
dependencies can be found from the alternative, the optional and the requires 
relationships. 

xb ≤  xa (1) 

Composition.  If two requirements xa and xb cannot be implemented separately, 
then it must be ensured that  xa = xb. Composition dependencies can be found in the 
PL requirements models from composition relationships. In Akkar's terms, it 
corresponds to the combination dependency. 

xa = xb (2) 

Exclusion.  If Ra and Rb cannot both be selected, in the ILP model then the 
inequality: xa + xb ≤ 1 must be verified. In the PL modeling, exclusion dependencies 
can be found from “mutex” relationships. 

xa + xb ≤  1 (3) 

Alternative.  In PL engineering, a requirement can be realized by one or more 
requirements among a set. It is partly ensured by the implication relationship from a 
requirement xa to its sub-requirements xb.. xk, but needs to be more detailed to model 
the relationship between sub-requirements themselves. So, the alternative dependency 
(which does not exist in Akkar's model) is defined in ILP model by the following 
inequality:  

xa*Cardmin  ≤  xb+..+xk  ≤  Cardmax (4) 
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The following table summarizes the mathematical formulae used to develop the 
ILP model. 

Table 1.  Recapitulation of requirements dependencies and their representation in the ILP 

Dependency 
relationship 

Explication Mathematical 
formula 

(composition) 

If a requirement is selected then all mandatory 
requirements composing it must be selected   
    Ra = 1 ⇒ Rb = 1        Ra = 0 ⇒ Rb = 0  
    Rb = 1 ⇒ Ra = 1        Rb = 0 ⇒ Ra = 0 

Ra = Rb  

(Combination) 

(option) 

If a requirement is selected then its optional sub-
requirements may be selected   
    Ra = 1 ⇒ Rb ∈ {0,1}       Rb = 1 ⇒ Ra = 1 
    Ra = 0 ⇒ Rb = 0                Rb = 0 ⇒ Ra ∈ {0,1} 

Rb ≤ Ra 

(implication) 

(alternative) 

If a requirement is selected then alternative sub-
requirements must be selected respecting the 
specified cardinality   
  Ra = 1  ⇒     Rb..d ∈ {0,1}  and  

                  Rb + Rc + Rd  ≤  Cardmax  and 
                  Rb + Rc + Rd  ≥  Cardmin 

  Ra = 0    ⇒    Rb..d = 0 
  Rb..d = 1 ⇒    Ra = 1 
  Rb..d = 0 ⇒    Ra ∈ {0,1} 

Rb..d ≤ Ra 

(implication) 

 

Ra*Cardmin ≤ 
Rb+..+Rd ≤ 

Cardmax 

(alternative) 

(requires) 

If a requirement is selected then all required 
requirements must be selected   
    Ra = 1 ⇒ Rb = 1             Rb = 1 ⇒ Ra ∈ {0,1} 
    Ra = 0 ⇒ Rb ∈ {0,1}      Rb = 0 ⇒ Ra = 0 

Ra ≤ Rb 

(implication)  

(mutex) 

If a requirement is selected then all requirements 
that are mutually exclusive with it must not be 
selected   
    Ra = 1 ⇒ Rb = 0             Rb = 1 ⇒ Ra = 0 
    Ra = 0 ⇒ Rb ∈ {0,1}     Rb = 0 ⇒ Ra ∈ {0,1} 

Ra + Rb ≤ 1 

(exclusion)  
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3.3   The case study 

Once user requirements elicited, they were matched with PL requirements as 
recommended in the RED-PL matching process. The resulting requirements 
collection is a subset of the PL requirements model. The matching process revealed 
that users were decided neither on the measurement technique nor on whether the 
instrument to build should enable indoor constituents separation. Decisions had to be 
made to generate the optimal collection of requirements for a complete product. The 
arbitration process presented in section 3.2 was thus used to solve this problem.  

First, the PL requirements model was analyzed and a ILP model was developed as 
defined in section 3.1. All the constraints were recorded in a Microsoft Excel 
spreadsheet, and analyzed with the Microsoft Excel solver (Fig. 4). 

Two criteria were used to guide arbitration, namely cost and revenue. Revenue was 
evaluated by enquiring salespeople about the perceived value of the functionalities 
implementing the requirements. Cost evaluations were made by the engineering team 
who was asked to consider development and integration costs, need for resources 
(material and human), management costs, test costs, maintenance cost, and 
installation costs. These evaluations are an ordinary activity of salespeople and 
engineers, e.g in the context of risk analysis while elaborating the feasibility of the 
project. Several methods can be used to do this. Our approach does not focus on a 
particular one as it considers these evaluations as an input.  
For confidentiality reasons, revenue and cost are defined in the next figure as relative 
values rather than under the form of the absolute values that were actually defined.  

 

 

Fig. 4. Screenshot of Stago ILP problem after solving 
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Two goals were considered for optimization: either minimize cost while 
considering minimal revenue, or maximize revenue taking into account a global cost 
limitation. Sales and engineer teams agreed to focus on the second goal which is 
closer to their daily concerns. The collection of requirements generated by the solver 
using these parameters was found realistic in the sense that the resulting products did 
correspond to products already developed at Stago. Besides, the product did respond 
to the users’ expressed at the beginning of the project and did correspond to products 
already identified as being of low cost.  It was however difficult to assess if the 
generated product did really correspond to an optimal product or not.  
Some difficulties were observed too while applying the method. First, the matching 
process was difficult to handle due to a lack of precision in the formulation of users’ 
requirements. The difficulty was due not only to terminology, but also to a conceptual 
mismatch between users’ requirements and the PL requirements (different levels of 
abstractions, different views). Besides, the ILP technique seemed to be not scalable to 
large systems, and is limited to optimization requests. We believe that this approach 
can be replaced by more adequate, flexible and scalable technique such as Constraint 
Programming. Further applications to other industrial projects are planed to enhance 
the method and favor its repeatability. 

4   Related works 

Many different methods interested in constructing SPL assets are available in 
literature [13] [14] [15] [16] [17] [18]. Product derivation methodologies are on the 
contrary rather scarce [4] [19] [20]. Besides, while derivation affects the whole 
product line artifacts, from requirements to code, the derivation issues are mainly 
addressed in terms of design and implementation [4] [6].  

At the requirement engineering level, how to create the right requirements assets of 
the PL and dependencies among them to develop the right products have been 
extensively studied [7] [21] [22] [23] [24] [25], but understanding the derivation 
process itself has received little attention. 

In existing approaches, the derivation of the product architecture, code or test 
artifacts from the product and the PL specifications is performed using the following 
techniques: 
• Model transformation: static and dynamic models are instantiated for products from 

the PL models, using a model transformation language [4] [26] [27] [28]. 
• Design patterns: for instance the method introduced by Jezequel which consists in 

using the ‘Abstract Factory’ pattern as interface to create objects of each product in 
the product line [29] [30]. 

• Variability bounding: generative approaches (e.g. Generative Programming 
approach [19]) suggest automatic derivation by code generation. Selecting desired 
product features is sufficient to allow assembling correspondent SPL elementary 
reusable components and generate the application code. Other approaches introduce 
aspect programming techniques to assemble components by waving features [31] 
[32]. 
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Mostly, derivation methods consider as input a collection of PL requirements 
selected from the SPL requirements model. However, industry experience suggests 
that simply having the right assets is not sufficient to facilitate its selection and 
assembly. So some works tried to propose guidelines to select the appropriate set of 
assets, but they are still reduced to technical levels.  

Namely, the specific assets needed could be specified in a production plan which 
describes how the core assets are used to develop products [33]. Hunt considers 
software components and studies the optimal organization proceedings to facilitate 
finding and selecting them [34]. [35] discusses automating component selection using 
artificial intelligence techniques. [3] [5] provide a framework of terminology and 
concepts regarding product derivation as well as a generic software derivation 
process. It is organized on iterative phases in order to determine the final 
configuration of the derived product. Once again, the derivation process has by 
default as input a subset of requirements that originate from customers, legislation, 
hardware and product family organization. Details about how these requirements are 
aggregated are not given. [4] also establishes a derivation framework. It indicates that 
the product requirements derivation is made through a decision process. But, it does 
not include more details about this process. 

Nevertheless, a necessary step in product derivation is to determine the set of 
requirements to use in order to build the particular product out of the possible 
products in the product line. This requires some description of the customer needs that 
allows it to be distinguished from others in the SPL. This description provides a set of 
product requirements. Someone must then find and select the assets that are needed to 
meet the product requirements. As presented in the existing approaches, it is often the 
product developer that makes these decisions as the product is assembled. The role of 
the user is dumped and mistreated. 
While the focus provided by scoping develops mechanisms handling technical 
derivation, we are interested in instructing requirements derivation processes that 
originate from users needs, and involve users choices while tacking decisions; which 
is not typically available in general derivation approaches. 

4   Conclusions and future work 

A major addition to existing reuse approaches since the 1990s are software product 
lines that have been the long standing notion to solve the cost, quality and time-to-
market issues associated with development of related software applications. 

Over the past few years, domain engineering has received substantial attention 
from the software engineering community. Most of the researches, however, fail to 
provide detailed derivation processes namely for deriving requirements, which has 
been restricted to the selection of a requirements subset. 
The idea behind the proposed approach is that the user, the main stakeholder to whom 
the final product is intended, should be involved in specifying product requirements, 
in a way that efforts expended in constructing the reusable requirements in domain 
engineering are outweighed by the benefits in deriving the right individual products 
that satisfy their mission. 
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RED-PL includes two processes that are the matching and the arbitration 
processes. The first establishes the set of possible requirements that meet users’ 
needs. The latter, arbitrate on these requirements in order to derive a consistent 
requirements set that is optimal for a defined set of users and company constraints 
(e.g. revenue, cost, resources, time, etc.).  

We have thought these processes (namely the mathematical model) based on 
feature models. But, it is obvious that it may be applied for the different PL modeling 
languages (Use cases, goals, UML, aspects). That is because these types of 
dependencies represent fundamental concepts that are implemented by all existing 
variability languages. Only visual representation is different depending on the 
language constructs (use cases, classes, etc.) and stereotypes. Besides, the approach 
viability was tested on real projects developing blood analyzers within a French 
company named Stago. Obtained results were verified and appreciated. 

Further research will focus on the refinement of the approach processes. We aim at 
defining matching and arbitration processes of variable requirements in correlation 
with variable PL physical architecture. It is worthwhile in Stago context since it 
produces instruments where technical requirements impact heavily the decision on 
functional requirements depending on technology costs and revenues. 

We intend next to implement a tool support that interfaces with existing modeling 
tools and enables such a matching and arbitration processes. 
Moreover, the repeatability of the approach will be studied. The purpose is to define a 
systematic process allowing modeling PLs and deriving products suitable to different 
companies’ contexts. We are confident that if the Integer Linear Programming is not 
scalable to large systems, it can be replaced by another more adequate Multi Criteria 
Decision Making method. 
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